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OPTIMAL EIGENVALUE ESTIMATE FOR THE DIRAC-WITTEN
OPERATOR ON BOUNDED DOMAINS WITH SMOOTH BOUNDARY

DANIEL MAERTEN

ABsTRACT. Eigenvalue estimate for the Dirac-Witten operator is given on bounded
domains (with smooth boundary) of spacelike hypersurfaces satisfying the dominant
energy condition, under four natural boundary conditions (MIT, APS , modified APS
and chiral conditions). Roughly speaking, any eigenvalue of the Dirac—Witten operator
satisfies

AP > ——Ro
(n

— 1)
where PRy is the infinimum of (the opposite of) the lorentzian norm of the constraints
vector. Equality cases are also investigated and lead to interesting geometric situations.

1. INTRODUCTION

The aim of spectral geometry is to derive some geometric properties from the study of the
spectrum of a certain elliptic operator, which is mostly a Laplace operator (Laplacian on
functions, Hodge Laplacian on p—forms or Dirac-Laplacian on spinors). In that context,
a classical issue is to give lower bounds for the eigenvalues of the Dirac operator on a
compact manifold (M™,g), (n > 2). In [B], T. Friedrich proved that any eigenvalue A of
the Dirac operator satisfies

n
1.1 A > —— inf Scal?

(1.1) An — 1) 3 O

where Scal? denotes the scalar curvature of (M",g). A few years later, O. Hijazi [d, [I0]
improved this result by showing that, for any n > 3,

n

(1.2) 2> D

M1,

where 1 is the first eigenvalue of the conformal Laplacian. Clearly, estimates ([CII) and
([C2) are under interest only if the scalar curvature is positive. In a recent work, O. Hijazi
and X. Zhang [I2) established an analogous version of ([LII) for the Dirac-Witten operator
under a chiral boundary condition, of a compact spacelike hypersurface (M, g, k) satisfying
the dominant energy condition, namely

2 n . 2 2
(1.3) A2 > ml}r\l/[f{Scalg%—(trgk) —|k|g—2|5gk+dtrgk|g} .

On the other hand, S. Raulot [I6] proved an eigenvalue estimate for the Dirac operator
on domains with boundary. More precisely, if €2 is a compact domain of an n—dimensional
Riemannian spin manifold (M, g), whose boundary 9f) has positive mean curvature H, he
showed under a natural boundary condition (called "MIT" boundary condition), that any
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2 DANIEL MAERTEN

eigenvalue A of the spectrum of the Dirac operator on Q (which is an unbounded discrete
set of complex numbers of positive imaginary part) satisfies

(1.4) AP > inf Scal? +nIm(\)inf H .
Q o0

n
4(n —1)
The most interesting fact in Inequality (L) is that the bound depends on some boundary
geometric quantity, which is not the case for Inequality (C3)). In addition, S. Raulot showed
that equality in (L)) leads to the existence of imaginary Killing spinor on €2, and also to
the conclusion that the boundary 0f2 is a totally umbilical and constant mean curvature
hypersurface.

The goal of this article is to generalise Inequalities ([L3) and (L)) in several direc-
tions. Indeed, we shall prove analogous versions of ([L3) for the Dirac-Witten operator on
bounded domains, under four natural boundary conditions (see [I1]) and also generalise
([CA) for the Dirac-Witten operator.

The article is organised as follows: In Section B we give our geometric conventions and
preliminary results; Section Bl is devoted to the statements of the main results and their
proves.

2. GEOMETRIC BACKGROUND

2.1. Notations. We consider (N"*! ~) a Lorentzian manifold of signature (—,+,--- ,+)
which contains (M™, g, k), a spin (in dimension 3 this only means orientable) Riemannian
hypersurface (not necessarily compact) whose induced metric is g and second fundamental
form (extrinsic curvature) is k. Let ) be a compact domain in (M™, g, k) satisfying the
dominant energy condition, which reads as the following inequality along €2

Scalf + (trgk)” — |k|? > 2|0,k + dtrgk|, .

We will work with the complex spinor bundle of N restricted to the hypersurface domain
Q, that is to say X := X(V))q which is given by the choice of a unit normal e of M in N,
along €. More precisely, if one denotes by Pgpin(n,1)(N) the bundle of Spin(n,1)-frames
on N, and by p, 1 the standard representation of Spin(n, 1) then

E(N) = PSpin(n,l)(N) Xpn,l CKWH)/Q]'
Now the choice of unit normal ey of M in N, along €2, induces a natural inclusion
Spin(n) C Spin(n, 1) and so we can define

Y= PSpin(n,l) (N) [(n+1)/2]

12 X (pn,1)|spin(n) :

Y naturally carries two sesquilinear inner products: the first one denoted by (x,x) is
Spin(n, 1)-invariant (it is not necessary positive); the second one which is denoted by
(x,%) 1= (eg - *,*) is Spin(n)-invariant and Hermitian definite positive (- is the Clifford
action with respect to the metric ). The Hermitian or anti-Hermitian character of the
Clifford multiplication by vectors differs if we consider (x,*) or (x,x) and is described
in [T3], for instance. X is also endowed with two different connections V,V which are
respectively the Levi-Civita connections of v and g. Let us take a spinor field ¢ € T'(X)
and a vector field X € I'(T(?), then our conventions are

Vit = Tt gh(X) o
(k(X)7Y> = (vXYveO>fy
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In these formulae - denotes the Clifford action with respect to the metric y. The induced
metric, Levi-Civita connection and second fundamental form of the boundary 052, are
respectively denoted by £, V, 6. Our conventions are, for any X,Y € ['(T052) and ¢ € ¥j5q,

VxY = VxY +0(X,Y)
— ~ 1
Vxy = VX¢+§9(X)‘V'¢,

where v is the unit normal to 02 pointing inside 2, and - still denotes the Clifford action
with respect to the metric 7. Finally we define the following geometric quantity

1,
M = 7 inf {Scalg + (trgk)? — k] — 2[5,k + dtrgk:]g} .

2.2. Dirac-Witten operators and Bochner—Lichnerowicz formulse. From now on,
(ex)p—o denotes an orthonormal basis at the point, with respect to the metric v, and where
v = e;. We can then define the Dirac-Witten operator of V

n

Dy = Zek Ve,
k=1
where - is the Clifford action with respect to the metric . Notice that ® can be considered
as a deformation of ® the usual Dirac operator of V since we recover ® = ® as soon as
k = 0. The Dirac-Witten operator ® is clearly formally self adjoint in L? with respect to
(%, %) in the class of compactly supported spinor fields, and we have the classical Bochner-
Lichnerowicz-Weitzenbock formula (cf. [I, [d, [5] for instance)

(2.1) DD =00 =V*V+NR,
where

1
R = Z(Scad7 + 4Ric (g, €0) + 2¢0 - Ric7 (eg))

1
= 7 {(Scalg + (trgk;)2 _ ]k\z) + 2(6gk + dtrgk) - 60} )

As usual, we derive from (I]) an integration formula. The idea is to consider a certain
spinor field ¢ and to define the 1-form w, € I'(T7*(2) by the relation

we(X) = (Vxp+ X - Dy, ) .
Then, computing the g-divergence of w,, we obtain
divgwy = [Del” = Vel = (R, )
which gives, applying Stokes’ theorem

(22) Lo = [ e+ [ @oer+ [ (Vptvp) .

We now have to introduce P the twistor operator with respect to the connection V,
which is defined by the relation

1
Pxyp:=Vxp+ EX@so )

for every X € I'(T?) and every spinor field ¢ € I'(¥). We derive a second integration
formula based on a Bochner—Lichnerowicz formula for the twistor operator.



4 DANIEL MAERTEN

2.1. Proposition. For any spinor field ¢ € I'(X), we have

23) Lipe=(222) [ ok - [ @op - [ o).

PrOOF: We first prove the Bochner—Lichnerowicz formula for P, namely

n

1 1
|Pol* = > <Vek<p + ek D, Ve o+ —e - i)cp>

k=1
1 2
= Vel (- 2) el
1
= |[Vol* == |Dy” .
n

We integrate this formula on €2 so that

Lipet = [ vl = [ gr
_ (”;1>/Q|®gp|2—/ﬂ<mso,so>—/mw¢<v),

where the second line is obtained thanks to (Z2). [ |

It is clear that the value of the 1-form w, depends upon the boundary condition that will
be used. We will need the intermediate result:

2.2. Lemma. For any spinor field ¢ € I'(X), we have along the boundary 02
~ 1
24)  wplv) = <V‘€j‘Vej80+§<(tfgk)7/'€0'—k(V)'€0'+(trz9)>% ¢> .

PROOF: Just compute, using the relations of compatibility between the different connec-
tions

n
Vop+rv-Do = I/-Zej-vejtp
j=2

~ 1 1
= v-e- <Vej — §k(ej) “ep - +§0(ej) . 1/-) ©

1
= v-ej-Vep+ 3 ((trgk)u ceg - —k(v) - e - —i—(trgé?))(p .

3. MAIN RESULTS

3.1. "MIT" boundary condition. Remind that our aim is to find an estimate for the
spectrum of the Dirac-Witten operator under a natural boundary condition (that had
been used in order to obtain some black hole version of the positive mass theorem for
asymptotically hyperbolic manifolds [4, [[3]). It consists on finding a lower bound for |)\|2
where A is any non—zero complex (a priori) number involving in the following elliptic first
order boundary problem
Dp=Ap onf)

(MIT) { F(p)=¢ ono2 ~’
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where ¢ is non—zero (eigen—)spinor field, and where F' € End (E|8Q) is defined by the
relation F'(v)) =iv -1. The boundary condition F'(1)) = 1 was originally introduced by
physicists of the MIT, and this the reason why it is often called "MIT" boundary condition.
Their idea is based on the fact that the Dirac (and also the Dirac-Witten) operator on
manifold with boundary is not formally self-adjoint anymore, since we have the following
integration by parts formula

(3.1) [ @ewr=[ om0~ [ wow)

for any spinor fields ¢, 9. This defect of self-adjointness has a consequence on the spectrum
of the problem (MIT).

3.1. Lemma. The spectrum of (MIT) is a discrete set of complex numbers with positive
imaginary parts.

PROOF: Let A be any eigenvalue of (MIT) with ¢ a corresponding eigenspinor field. Just
take 1) = i in ([BJl) and consequently get

2Im<A>/ of? =/ W2 >0,
Q o0

and so Im(\) > 0. Assume now that Im(\) = 0, then ¢ should vanish on 092 and so on
the whole €2, by the continuation principle. This contradicts the fact that an eigenspinor
is by definition non identically zero. |

For later use we introduce some geometric quantities.

3.2. Definition. We set

n

MIT ._ - _ |00 02, .— Nes
H, .—1anﬂf{trg0 ‘k (y)‘g} , K7 (v) ;k(y,e])e].

The first main result of this note is a generalisation of the lower bound of [I6] for the
Dirac-Witten operator (we recover (L) when we set k =0 on ).

3.3. Theorem. Let ) be a compact domain of a spacelike spin hypersurface (M, g, k) which
satisfies the dominant energy condition along Q (so that Rg > 0). The boundary O is
assumed to verify HéVHT > 0. Then under the (MIT) boundary condition, the spectrum
of the Dirac—Witten operator on €) is an unbounded discrete set of complex numbers with
positive imaginary part, such that any eigenvalue satisfies

2 n
>7

PROOF: The fact that, under the (MIT) boundary condition, the spectrum of the Dirac—
Witten operator on €2 is an unbounded discrete set of complex numbers with positive
imaginary part, has been proved in the previous lemma.

As far as Inequality (BZ) is concerned, we consider a l-parameter family of modified
spinorial Levi—Civita connection. Indeed, for any a € R, we define the action of V¢ on X
by the relation

(3.2) (9%0 + gMIT Im()\)> .

Vi :=Vxp+iaX ¢,
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for every X € T'(T2). We can then define the Dirac-Witten operator with respect to the

Killing connection V*
n

D= e Vigp,
k=1
where - is the Clifford action with respect to the metric . An easy computation gives the
relation D = ® — ina, so that D is not formally self-adjoint in L? with respect to (x, *)
in the class of compactly supported spinor fields if o 2 0.
We consider a certain spinor field ¢ and define the 1-form wg € I'(T*2) by the relation
we(X) = (Ve +X - D%, ¢) .
We notice that w(X) = wy(X) —a(n — 1) (iX - ¢,¢). Then, we only have to compute
the g-divergence of the 1-form §(X) := (iX - ¢, ). To this end, we assume that our local
base satisfies Ve, = 0 at the point where the computation is made (this is equivalent to
Ve,em = —k(ej, em)eo) so that

divgs = = ej-&(ey)
j=1

= - <ﬁejej -so,so> — (iej - Veyi0,0) = (iej -, Ve, 0)
——r
=0
. 17/. . 1/,
= —(®p,p) =5 (1¢ kleg) e, ) = (0, iDp) + 5 {ik(ej) -¢je0 9.9
=—trgk =—trgk
= —(iD¢,0) — (p,iDp) .
Using Stokes’ theorem and integration formula (Z2), we get

/6,9“3(”):/Q\@W—/QIWQ—/Q%PWJ+a(n—1)/ ((iDp, 0) + (,iDgp) ) .

Q
Easy computations lead to the relations

V%[> = Vol +na?|g|* + a((iDp, ) + (p,iDy))
D% = D¢’ +n?a?|g|* + na((iDe, ) + (p,iDp)) .

Plugging this into our integration by parts formula, we obtain

(3:3) | wsw)= [ = [ 197 - [ @)

where R® := R + n(n — 1)a?. The twistor operator with respect to the connection V¢ is
defined by

1
PRe:=Vip+ -X-D%,
n
for every X € I'(TQ2) and every spinor field ¢ € I'(X). We straightly have
1
[Pof* = [Vo|* = ~ D% > 0,

and, after integration on Q we get, using (B3])

g o< [Pl = (M) [ e - [ e - [ o).
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We now need to give some elementary properties of the boundary spinorial endomor-
phism F' (the proof is left to the reader).

3.4. Proposition. The endomorphism F is symmetric, isometric with respect to (x,x),
commutes to the action of v- and anticommutes to each ey-, (k # 1).

The important fact is that the boundary condition of (MIT) allows us to express the
boundary integrand of (B in terms of the extrinsic curvature tensors k and 6.

3.5. Lemma. If F(p) = ¢ then along the boundary 02 we have

(3.5) wa(v) = % <eo . {(me —2(n—1)a)eg + kaﬂ(u)} -, <p> :

PrOOF OoF LEMMA B0l We use Equation (Z4))

1
wa(v) = <1/ ej Ve, ot+aiv-ej-ej-p+ 5 ((trgk)u ceg - —k(v) - e - —i—(trgH))(p, cp>

. 1
= <V rej+ Veyp = (n = Daiv -+ 2 <(trzk‘)v ceq - =k (V) o - +(trz9))30, s0> :

Taking Proposition B4 into account and also the assumption F'(¢) = ¢, it comes out

wg(y) = % <((tr30 —2a(n—1)) — k:‘m(u) ~ep - )(p, cp>
= % <60 - ((tref — 2c(n — 1))eg + kaQ(l/)) -, go>
= %<€0'K§AIT‘%SD> )

where we have defined the vector field K{j € I'(T'Njgq) as
KR = (tref — 2a(n —1))eo + kY (v) .
[ |

a

(V) is non-negative if and only if

Then, it is well known that the boundary integrand w

KR is causal and future oriented, which reads as

(3.6) tref —2a(n — 1) > ‘kaﬂ(y)‘
g

As a consequence, if one assumes that ([B) holds and that D¢ = Ay, then (B implies

0 < <n;1)IA—inal2/Q|30I2—/Q<W%SD,>
(”;1> (W2 -+ n2a? —2natm() [ 1of = [ @e.0)
0 < (n;1> (!Mz—?nalm(k))/Qlw\z—/ﬂ(iﬁ%w :

which is possible only if [\|? > ey Ro+2na Im(X) . Now just take o = g = mHé\/HT

so that K1 is clearly causal and future oriented and we obtain the desired inequality,
namely

0

N

n

2
>
A" = (n—1)

(mo + HMIT Im()\)) .
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The equality case in (BZ) is not easy to treat in general, but we can however deduce
some information under a natural additional assumption.

3.6. Theorem. Under the assumptions of Theorem [Z3, equality in (ZA) always leads to
the existence of an imaginary V-Killing spinor on Q of Killing number —icg = —A/n.
If we assume furthermore that k%(v) = 0 along the boundary 09, then 0 is a totally

umbilical and constant mean curvature hypersurface of €.

PROOF: Suppose now that equality holds in [BZ). Thereby, there exists a non—zero A—
eigenspinor field ¢ such that

(3.7) P =0, (eo-Kyfp-e,0)=0.

The second equation of ([B) simply says that the vector field K1 is lightlike, which
means in other words

tref — ‘kaﬂ(y)‘ =2(n—1)ag .

The first equation of ([B) can be reformulated as
A
Vxe+ - X -p=0, VXel(TQ),

that is, ¢ is a Killing spinor. It is well known that the Killing number (_T/\) has to be either
real or purely imaginary. But remind that Im(\) > 0, and so A € iR* . For later use, we
set A = ip with p a positive real number. We consider now any vector field X € I'(T'09)
tangent to the boundary, and we compute

() xr - v
= Vx(iv-p)
= i(VXy-go+1/-VXgo)

= 1 (vxl/ c—k(X,v)eg - —i <%) V- X-) ®
= i (-00X) —h(X,v)eo  + (%) X,
This finally leads to

(3.8) VX € T(To9) , <—0(X) k(X v)en - + (%") X-> 0=0.

The condition (BX) notably implies that for any vector field X € T'(T'0f?), the vector field
{—G(X) —k(X,v)eg + (gn’i) X} is lightlike, and consequently we have

(3.9) VX € T(TOQ) ,  k(X,v)? = (Q(X) —9 (ﬁ) X‘2 .

n g
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The striking relation (BX9) somehow measures the failure of 9 to be totally umbilical. We
now prove that u = nag. Indeed, using ([BF]), we compute along the boundary

(2—M>Zn:<€j-w,ej-w> = Ao De
n j=2 n
= (ej -, {0(ej) - +k(ej,v)eo} - )
=2
= - <<P7 ej - {0(ej) - +k(ej,v)en} - ¢)
Jj=

o {0}

= (p,e0-Kir-¢) ,

<.

which can be written in short as {p, e - K{;rp) = 2”(" L |4|?. Besides, using the second
equation of (B), we know that

0 = / (eo - Kifir - ©,9)
o0
= [ (oo Klur-¢) — 20— 1ao [ ol
o0 o0
= 20-1) (B a0) [ ol
n o0

which entails © = nag since the eigen—spinor ¢ cannot vanish identically along 9). Sup-
pose furthermore, that k%?(v) = 0 on the boundary, then it is clear from (B3 that 0 is
a totally umbilical and constant mean curvature hypersurface. |

3.2. APS Boundary Condition. The Atiyah-Patodi-Singer (APS) boundary condition
was often used in order to prove positive mass theorem for asymptotically flat black holes
(that is to say for asymptotically flat manifolds with boundary [8, [4]). More precisely,
we denote by ILy the L?-orthogonal projections on the spaces of eigenspinors of positive

(respectively negative) eigenvalues of the Dirac operator of the boundary D= Y- €j-00 Ve »
j=2

where -5 denotes the Clifford action with the respect to boundary metric . In this section,

our aim is to find a lower bound for \)\\2 where \ is any non—zero complex (a priori) number

involving in the following elliptic first order boundary problem

Dp = Ay on {2
(APS) { IIy(p)=0 onoQ2 ’

where © still denotes the Dirac-Witten operator. We first prove that the spectrum of
(APS) is real.

3.7. Lemma. The spectrum of (APS) is a discrete set of real numbers.

PROOF: Let A € C be any eigenvalue of (APS) with ¢ a corresponding eigenspinor field.
Now, ‘n, 'q, ‘9o the Clifford actions of respectively v, g, £ satisfy the following relations

(3.10) Xgotb=X v, X-ov=:iX Neo N .
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These identities imply D=—v- >oej- ﬁej, where - = - is still the Clifford action of ~.
Jj=z2
The spinor bundle X5 has a natural L?—orthogonal decomposition

Seo = ImIl; @ ImIlL & Ker®

(3.11) + - 0
= i O Xpe O g

An important fact is that D anticommutes with v-, namely v - D =-Dv-. Indeed, for any
spinor ¢ € Xj5q we have

D) = —v-y Ve, 1)
j=2

= v (Vo0 = gole) v

= —v-g- (-9(6]-) P+ v Veh + %H(ej) : ¢>

= —V-ej-(—%V-G(ej)-l/-qb%—l/-vej?/))

= —V-’}Szp.

Thereby, it turns out that v - E%Q C ETF@Q and v - 2?89 C 2?89' Remind our integration by

parts formula (BTI)
| @ewr=[ oo~ [ g .

Taking ¢ a solution of (APS) for an non-zero eigenvalue \ and setting ¢ = ¢ in the formula
above, leads to

A =N llellz@) == - 0, 0) 12090 -
But, ILy ¢ = 0 means pjaq € X5, & E?@Q’ and v - E‘iaﬂ_c E‘jgﬂ—i— gives (V- ¢, ) 12090y =0
because of decomposition [BII). We thus obtain A — A = 0, that is A is real. |

For later use we introduce a geometric quantity.

3.8. Definition. We set

NI

H)TPS = iané tred — | (trek)? + JZ_; k(v,e;)?

The second main result of this note is a generalisation of the lower bound of [IT] for the
Dirac-Witten operator under the (APS) boundary condition (we recover the inequality of
[IT] when we set £ =0 on ).

3.9. Theorem. Let Q be a compact domain of a spacelike spin hypersurface (M,g,k)
which satisfies the dominant energy condition along Q (so that Ry > 0). The boundary

0 is assumed to verify H(?PS > —2) (the definition of \ will be given below). Then
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under the (APS) boundary condition, the spectrum of the Dirac—Witten operator on € is
an unbounded discrete set of real numbers, such that any eigenvalue satisfies
n

(3.12) > D)

NRo .

PROOF: The fact that, under the (APS) boundary condition, the spectrum of the Dirac—
Witten operator on € is an unbounded discrete set of real numbers, has been proved in
the previous lemma.

Thanks to the isomorphisms of the several Clifford actions ([BIM), we can improve (22

we(v) = <—590 + %(trﬁ + (trek)v - eg — kag(u) e - )gp, g0>

~ 1
= <—©<P + 560" Kaps - ¢, <P> ’
where we have defined the vector field Kaps € I'(T'Njgq) as
Kaps = (tref)eg — (trok)v + k% w) .

Let (Xm, Ym )mez the eigenvalues and eigenspinors of D (with the convention that Xm <0

if and only if m < 0). If we suppose that 11 = 0, then ¢ = po + > @, where @, is
m<0

the L%-orthogonal projection of ¢ on the line R, and g € Ker®. We can deduce

/an “o) = 2 /am <(_Xm + %eo ' KAPS')¢m7<Pm> :

m<0

It is well known that <(—Xm + %60 “KAps)em, <,0m> > 0 if the vector field (KAps—QXmGQ)
is causal and future oriented, for each integer m < 0. This equivalently means

1
~ 2\ 2
tref — 20, > <(t1‘gk)2 + ‘kag(u)‘ ) ,
for every m < 0. This condition will be satisfied if
APS < _9Y . _o: 5
(3.13) HAPS > o) . 27%{ )\m} .

As a consequence, if one assumes that ([BI3) holds and that ¢ is solution of (APS) for a
non—zero A € R, then ([Z3]) implies

n—1
o<( >A2/|so|2—/<w,so,>,
n Q 9]

which is possible only if

3.10. Remark . The boundary assumption H{]\PS > —2)\ is quite weaker than the one used
in [, even for the case k = 0.
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3.11. Remark . According to the lower bound of C. Bdr and O. Hijazi
(n—1)
(n—2)

where % (02, £) denotes the Yamabe invariant of the closed manifold (02, ¢), we can replace
the boundary assumption H&PS > —2\ by the stronger one

~ 1 _
(3.14) >3 Vol(@Q,E)nll\/ W (00, 1)

(n—1)
(n—2)

HAPS > —Vol(@Q,ﬁ)nll\/ Y (090,0) .

We will use this condition in order to investigate the equality case of (313).

The equality case in ([BIZ) is not easy to treat in general, but we can however de-
duce some information under the stronger boundary assumption (BId]) introduced in the
previous remark.

3.12. Theorem. Let Q be a compact domain of a spacelike spin hypersurface (M, g, k)
which satisfies the dominant energy condition along Q (so that Ry = 0). The boundary
0 is assumed to have a positive Yamabe invariant and to verify the boundary inequality

HRPS > —Vol(aQ,f)n;}l EZ:;;Z’/((?Q,E) . Then equality in (ZI3) always leads to the

existence of an imaginary V-Killing spinor on Q of Killing number —X/n, and the boundary
metric £ is Finstein with positive scalar curvature on Of).

PROOF: Suppose that equality holds in [BIZ). Thereby, there exists a non-zero A-
eigenspinor field ¢ such that

(3.15) Pp=0, <eo - (Kaps — 2Xeo) -, <p> =0.

The second equation of (BT simply says that the vector field (Kaps — QXeO) is lightlike,
which means in other words _

H{PS = —2) |
but it says that we are in the equality case of ([BI4l), and so the boundary metric ¢ is
Einstein with positive scalar curvature on 0f2.
The first equation of (BIH) can be reformulated as

A
Vxe+ <E>X-<p:0, VX e I(T9Q),

that is, ¢ is a Killing spinor of Killing number —\/n. |

3.13. Remark . If we replace the boundary assumption of Theorem [Z14 by Hékps > —2)
(or by HYPS >0 as in [I]), then equality in (IIA) cannot occur.

3.3. Modified APS Boundary Condition. The modified Atiyah-Patodi-Singer (mAPS)
boundary condition was first introduced in [I1]. In this section, our goal is to find a lower
bound for |A|* where X is any non-zero complex (a priori) number involving in the following
elliptic first order boundary problem
Do = A\ on )
(mAPS) { Mi(p+v-9)=0 ondQd ~’
where D still denotes the Dirac-Witten operator. As for the (APS) problem, we first prove
that the spectrum of (mAPS) is real.
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3.14. Lemma. The spectrum of (mAPS) is a discrete set of real numbers.

PROOF: Let A € C be any eigenvalue of (mAPS) with ¢ a corresponding eigenspinor field.
We know that

A =X ||SDHL2(Q) = — (o 80>L2(aﬂ)

1
= 5[ ltrpp-vy
o0
p— O’

since o +v - € E@Q by definition and ¢ — v - p € EIBQ' Indeed, we can show that

IT,v = vII_ (that is a consequence of v-® = —Dv-), and so

h(v-o—p) = My(v-o+v-v-p)
= vl (¢+v-9)
= v-(pt+v o)
vV-p—@.
(]

The third main result of this note is a generalisation of the lower bound of [IT] for the
Dirac-Witten operator under the (mAPS) boundary condition (we recover the inequality
of [I1] when we set £k =0 on Q).

3.15. Theorem. Let Q be a compact domain of a spacelike spin hypersurface (M, g, k)
which satisfies the dominant energy condition along Q (so that Ry = 0). The boundary
0 1s assumed to verify H&PS > 0 . Then under the (mAPS) boundary condition, the
spectrum of the Dirac—Witten operator on ) is an unbounded discrete set of real numbers,
such that any eigenvalue satisfies

2, M

“won

(3.16)

PROOF: The fact that, under the (mAPS) boundary condition, the spectrum of the Dirac—
Witten operator on € is an unbounded discrete set of real numbers, has been proved in

the previous lemma.
We still have

-1
wp(v) = <—©s0+ €0 Kaps - 30,90> :

where K 4 pg has been defined in the previous section. If we suppose that IT; (¢ + v - ¢) = 0,
then we know (see the proof of the lemma above) that ¢ +v - ¢ € E@Q andp —v-p€ E\BQ'
Therefore,

<5(30+V-s0),s0—v-30>

Do, ¢>L2(m) ;

L2(99)

I
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where the second line is obtained thanks to the property v -2 = —Dy-. Assume @ is
solution of (mAPS) for a non—zero A € R, then (3] implies

n—1
o<< )AQ/MQ—/(%WP,%
n Q 9]

since the condition Hé*PS > 0 implies that K4pg is causal and future oriented. This leads
to the desired inequality, namely

The equality case in ([BI0) is not easy to treat in general, but we can however deduce
some information under a natural additional assumption.

3.16. Theorem. Under the assumptions of Theorem [Z3, equality in (ZA) always leads to
the existence of an imaginary V—-Killing spinor on Q of Killing number —\/n. If we assume
furthermore that k%*(v) = 0 along the boundary 09, then O is an apparent horizon.

PROOF: Suppose that equality holds in [BI0). Thereby, there exists a non—zero A—
eigenspinor field ¢ such that

(3.17) Pp=0, ({eo-Kaps-p,0)=0.

The second equation of ([BI7) simply says that the vector field Kapg is lightlike, which
means in other words
HMPS =0,

and the first one reads as
A
Vxe+ <E>X-<p:0 ., VX eI(TQ),

that is, ¢ is a Killing spinor of Killing number —\/n.

If we suppose futhermore k%}(v) = 0 along the boundary 02, then H{PS = 0 can be re-
formulated as tryf = |trpk| which, in the General Relativity literature, is the condition to
be an apparent horizon. [ |

3.4. Chiral Boundary Condition. In the present section, our aim is to find an estimate
for the spectrum of the Dirac—Witten operator under a natural boundary condition asso-
ciated to a chirality operator. It consists on finding a lower bound for |)\|2 where A is any
non—zero complex (a priori) number involving in the following elliptic first order boundary
problem

Dp=Ap onf)
(CHI) { Glp)=¢ onodQ ~’

where ¢ is non-zero (eigen—)spinor field, and where G € End (E|ag) is defined by the
relation G(¢) = ev - ey - 9, with e = £1. The boundary condition G(1)) = 1) was originally
introduced (as the (APS) condition) to prove some black hole version of the positive mass
theorem for asymptotically flat manifolds [6], [[]. Some of our arguments appeared first in
[T2], but our conclusion concerning the equality case is much more stronger. As usual in
this article, we first prove that the spectrum of (CHI) is real.
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3.17. Lemma. The spectrum of (CHI) is a discrete set of real numbers.

PROOF: Let A € C be any eigenvalue of (CHI) with ¢ a corresponding eigenspinor field.
We know that

A=Nllellz@y = — {90 1200
= —(v-pe0-eo- 80>L2(aﬂ)
= (Ve p,e0 ¥) 1200
= £{p,e0- 80>L2(aﬂ) )

which is real since eg- is Hermitian with respect to the scalar product (x, *). |

For later use we introduce a geometric quantity.
3.18. Definition. We set
HHL .= 1515 {tre0 + e(trek)} .

The last main result of this note is a generalisation of the lower bound of [II]] for the
Dirac-Witten operator under the (CHI) boundary condition (we recover the inequality of
[IT] when we set k£ =0 on ).

3.19. Theorem. Let Q be a compact domain of a spacelike spin hypersurface (M, g,k)
which satisfies the dominant energy condition along 2 (so that Ro = 0). The boundary OS2
s assumed to verify HEHI > 0. Then under the (CHI) boundary condition, the spectrum
of the Dirac—Witten operator on ) is an unbounded discrete set of real numbers, such that
any eigenvalue satisfies

(3.18) A2 >

(n—1)
PROOF: The fact that, under the (CHI) boundary condition, the spectrum of the Dirac—
Witten operator on € is an unbounded discrete set of real numbers, has been proved in
the previous lemma.

We now need to give some elementary properties of the boundary spinorial endomorphism
G (the proof is left to the reader).

Ry .

3.20. Proposition. The endomorphism G is symmetric, isometric with respect to (x,x),
anticommutes to the action of v- and eg-, and commutes to each ey, (k > 2).

The important fact is that the boundary condition of (CHI) allows us to express the
boundary integrand of (B in terms of the extrinsic curvature tensors k and 6.

3.21. Lemma. If G(¢) = ¢ then along the boundary 02 we have

1
(3.19) we(v) = §(trg0 + e(trek)) o] .
ProOF oF LEMMA BZTF We use Equation (4
~ 1
we(v) = <V e Vet 5 <(tfgk)7/ ~eo - —k(v) - eo- +(trz9)>% 30>

~ 1
= <V €5 Ve, o+ 3 <(‘01‘z/€)V ceq - —k? () - eq - +(t1“z9))% <P>
1
2

(tred + e(trek)) o]
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when we take Proposition and the assumption G(p) = ¢ into account. Assume ¢ is
solution of (CHI) for a non-zero A € R, then (Z3) implies

n—1
o<( )Az/wﬁ—/w,@»,
n Q Q

since the condition HSM! > 0 induces the non—negativity of the boundary integral in [Z3).
This leads to the desired inequality, namely

On the contrary to the other boundary conditions, equality case in ([BI8) can be treated
in general.

3.22. Theorem. Under the assumptions of Theorem [Z13, equality in (ZI8) always leads
to the existence of an imaginary V—Killing spinor on Q of Killing number —\/n, and the
second fundamental form of O is proportional to k%, since

0+ek?=0.
In particular, OS2 is an apparent horizon.

PROOF: Suppose now that equality holds in ([BIX). Thereby, there exists a non-zero
A—eigenspinor field ¢ such that

(3.20) Po=0, H™M=0.
The second equation of (B20) simply says that try0+¢e(trek) = 0 on 9. The first equation
of (BZ0) can be reformulated as
A
Vxe+ - X -p=0, VXel(TQ),

that is, ¢ is a Killing spinor. We consider now any vector field X € I'(T'0f2) tangent to
the boundary, and we compute

A
—<—>X'<P = Vxo
n
= eVx(v- e o)
= 8((qu)-eo-(p+V-(VXeQ)-tp—i-V-eo-Vch)

= 6<vxl/-eo-—k:(X,l/)—V-k(X)-—(%)V.QO.X)SD

= 8(—0(X)'60'—/€(X,I/)—I/-/{)(X)-)(p—<5>X-(p.

n
This finally leads to (after a left multiplication by eg-)
(3.21) VX e(TOQ), (0(X) - —k(X,v)eg-+v-e9-k(X))p=0.
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The condition (BZI) can be improved, using once again G(¢) = ¢

0 = (0(X) —k(X,v)eg-+v-eo-k(X))p
= (6?(X) C—k(X,v)eq - +v-eq - kKOUX) - 4v-eg - k(X 1/)1/-) ®
= (00X) - +v e KX)o
= (000 + k(X)) -,
for every X tangent to the boundary. This induces § 4+ £k%? = 0 on 99. |

3.23. Remark . The Gauss equation explicitely gives the Ricci curvature of g restricted to
the boundary when equality is achieved in (TI13)

. Scal’
RJCg789 = me — (trga)é’ + 0 o 0
§)
= PO, ko 1 k0 o 0
(n—1)

since £ is an Eintein Yamabe metric, and 0 + k% =0 on 09 (2 = 1).
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