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UNIQUENESS RESULTS FOR NONLOCAL HAMILTON-JACOBI
EQUATIONS

GUY BARLES, PIERRE CARDALIAGUET, OLIVIER LEY, AND AURELIEN
MONTEILLET

ABSTRACT. We are interested in nonlocal Eikonal Equations describing the
evolution of interfaces moving with a nonlocal, non monotone velocity. For
these equations, only the existence of global-in-time weak solutions is available
in some particular cases. In this paper, we propose a new approach for proving
uniqueness of the solution when the front is expanding. This approach simpli-
fies and extends existing results for dislocation dynamics. It also provides the
first uniqueness result for a Fitzhugh-Nagumo system. The key ingredients are
some new perimeter estimates for the evolving fronts as well as some uniform
interior cone property for these fronts.

1. INTRODUCTION

In this article, we are interested in uniqueness results for different types of
problems which can be written as nonlocal Hamilton-Jacobi Equations of the
following form:

uy = c[lyy>y] (7, t)[Du| in RY x (0,T), (1.1)

u(z,0) = up(x) in RY (1.2)

where T' > 0, the solution u is a real-valued function, u; and Du stand respectively
for its time and space derivatives and 1 4 is the indicator function of a set A.
Finally ug is a bounded, Lipschitz continuous function.

For any indicator function y or more generally for any y € L>® with 0 < x <1
a.e., the function ¢[x] depends on x in a nonlocal way and, in the main examples
we have in mind, it is obtained from y through a convolution type procedure
(either only in space or in space and time). In particular, in our framework,
despite the fact that x has no regularity neither in  nor in ¢, ¢[x] will be always
Lipschitz continuous in x; on the contrary we impose no regularity with respect
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to t. More precisely we always assume in the sequel that, for any y, the velocity
¢ = c[x] satisfies

(H1) For all z € RV, t s ¢(z,t) is measurable and there exist C, ¢, > 0 such
that, for all z,y € RY and t € [0, 7],

ez, 1) — e(y, 1)

0<c<c(zt) <e

(1.3)

We will come back to this assumption later on.

To give a first flavor of our main uniqueness results, we can point out the fol-
lowing key facts: Equation ([.]) can be seen as the “level-set approach”-equation
associated to the motion of the front I'; := {z : u(z,t) = 0} with the nonlocal ve-
locity c[1 {u(~,t)2o}]- However, in the non-standard examples we consider, it is not
only a nonlocal but also non-monotone “geometrical” equation; by non-monotone
we mean that the inclusion principle, which plays a central role in the “level-set
approach”, does not hold and, therefore, the uniqueness of solutions cannot be
proved via standard viscosity solutions methods.

In fact, the few uniqueness results which exist in the literature (see below) rely
on L' type estimates on the solution; this is natural since one has to connect the
continuous function u and the indicator function 1y,>¢;. The main estimates
concern measures of sets of the type {z : a < u(x,t) < b} for a,b close to 0.
Whether or not the aforementioned estimate has to be uniform on time, or of
integral type, strongly depends on the properties of the convolution kernel. In
order to emphasize this fact, we are going to concentrate on two model cases:
the first one is a dislocation type equation (see Section f]) in which the kernel
belongs to L® while the second one is related to the Fitzhugh-Nagumo system
arising in neural wave propagation or in chemical kinetics in which the kernel is
essentially the kernel of the Heat Equation (see Section ff). In that case, it is not
in L. The fact that the convolution kernel is, or is not, bounded is indeed the
key difference here.

Before going further, let us give some references: for the first model case (dislo-
cation type equations), we refer the reader to Barles, Cardaliaguet, Ley and Mon-
neau [fI] where general results are provided for these equations. We point out—
and we will come back to this fact later—that uniqueness in the non-monotone
case was first obtained by Alvarez, Cardaliaguet and Monneau [l]] and then by
Barles and Ley [ using different arguments; we also refer to Rodney, Le Bouar
and Finel P(] for the physical background on these equations. The Fitzhugh-
Nagumo system has been investigated in particular by Giga, Goto and Ishii [[[3],
and by Soravia and Souganidis []. They provided a notion of weak solution
for this system (see ([1]) below) and proved existence of such weak solutions.
They also study the connections with the phase field model (a reaction-diffusion
system which leads to such a front propagation model). However the uniqueness
question has been left open until now.

Let us return to the key steps to prove uniqueness for ([L1))-(.2). A major
issue is the properties of the solutions of the Eikonal equations of the form

ug = ¢(z,t)|Du| in RY x (0,7), (1.4)
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where c is a continuous function, satisfying suitable assumptions. Of course, such
partial differential equations appear naturally when considering 1,>g) as an a
priori given function. We recall that this equation is related via the level-set
approach to the motion of fronts with a (x,t)-dependent normal velocity c(z,t)
and to deal with compact fronts and to simplify matter, we assume that the
initial datum satisfies the following conditions: the subset {ug > 0} is non empty
and there exists Ry > 0 such that

ug = —1 in RNV \ B(0, Ry). (1.5)

This implies, in particular, that the initial front I'g = {ug = 0} is a non empty
compact subset of B(0, Ryp).

Assumption (H1) ensures existence and uniqueness of a solutions to ([[.4) but
we also assume that the function ¢ = ¢[x] is positive (and even strictly positive),
together with

(H2) There exists 19 > 0 such that
—|ug(x)| — [Dug(z)| +no < 0 in RY in the viscosity sense.

The above assumption implies that the set {u = 0} has a zero Lebesgue measure
(cf. Ley [[[d]) which is an important property for our arguments. Indeed [4]
provides a counter-example (even in a (quasi) monotone case) where fattening
phenomena leads to a non-uniqueness feature for a nonlocal equation. In addition
to this non-fattening property, a key consequence of (H1)-(H2) is a lower bound
on the gradient Du on a set {x : |u(x,t)| < n} for a small enough 7 (cf. [[F]).

We now concentrate on the estimates of the measures of the volume of sets like
{a < wu(-,t) < b} where — < a < b < n. We first note that such estimates are
related with perimeter estimates of the « level-sets of u for « close to 0 (typically
la] < n): indeed, combining the co-area formula with the lower bound on the
gradient of the solution, we obtain

b
/ Lacu(py<pyde = / / |Du|~tdH" tds
RN a {u('vt):S}

b—a

— sup Per({u(-,t) = s}), (1.6)
N a<s<b

where 77 is the lower bound on |Du| on the set {z : |u(x,t)| < n}.

In [[l] and [f], perimeter estimates for the a level-sets of u were obtained
by using bounds on the curvatures of these sets. Although this approach was
powerful, it has the drawback to require strong assumptions on the dependence
in z of ¢[x] (typically a CY!' regularity). Unfortunately such strong regularity
does not always hold: for instance it is not the case for the Fitzhugh-Nagumo
system.

The key contribution of this paper is to provide L'([0,7]) or L>=([0,T]) es-
timates of the volume of the set {a < u(-,t) < b} (or, almost equivalently, of
the perimeter of the « level-sets of u) in situations where the velocity c[x] is less
regular in x. As a consequence we are able to prove new uniqueness results.

For the dislocation dynamics model, our approach allows to relax the assump-
tions of [l and on the data. The proofs are also simpler, requiring only
LY([0,T)) estimates and a mild regularity (c[x] is merely measurable in time



4 GUY BARLES, PIERRE CARDALIAGUET, OLIVIER LEY, AND AURELIEN MONTEILLET

and Lipschitz continuous in space). So the main conclusion here is that “soft”
estimates are sufficient provided the convolution kernel is in L.

On the contrary, for the Fitzhugh-Nagumo system, where the convolution ker-
nel is unbounded, these L'-estimates are no more sufficient and the uniqueness
proof rather requires heavy L°-estimates on the perimeter. These estimates are
obtained by establishing, through optimal control type arguments, that the set
{z : u(z,t) > 0} satisfies a uniform “interior cone property”, from which we
deduce (explicit) estimates on the perimeter.

The paper is organized as follows: in Section ], we recall the notion of weak so-
lution for ([[.])) introduced in [[f]. In Section [J we prove uniqueness of the solution
for the dislocation type equation, while we deal with the Fitzhugh-Nagumo case
in Section f]. The main technical results of this paper are gathered in Section [j:
we recall here some useful results for the Eikonal Equation ([L.4), we show the
interior cone property and deduce the uniform perimeter estimates.

Aknowledgment. This work was supported by the contract ANR MICA “Mou-
vements d’'Interfaces, Calcul et Applications”.

Notation. In the sequel, |-| denotes the standard euclidean norm in RY, B(x, R)
(resp. B(wx, R)) is the open (resp. closed) ball of radius R centered at z € RY.
We denote the essential supremum of f € L®(RY) or f € L®(R" x (0,T)) by
|f|oo- Finally, £ and H™ denote, respectively, the n-dimensional Lebesgue and
Hausdorff measures.

2. DEFINITION OF WEAK SOLUTIONS TO ([L.1)

We will use the following definition of weak solutions introduced in [H].

Definition 2.1. Let u : RY x [0,T] :— R be a continuous function. We say that
u is a weak solution of ([L1)-(L.2) if there exists x € L=°(RN x [0,77;[0,1]) such
that

(1) u is a L*-viscosity solution of
ug(z,t) = c[x](z,t)|Du(z,t)] in RN x (0,T),
u(-,0) = up in RV,

(2) For almost all t € [0,T),

(2.1)

Liuepso0p < X(1) < Ly oy in RY.

Moreover, we say that u is a classical solution of (L) if in addition, for almost
all t € [0,T] and almost everywhere in RY,

Lutn>00 = Lugpy>o0y -

We refer to [[], Appendix| for basic definition and properties of L!-viscosity
solutions and to [4, (8, [[d, B, B] for a complete presentation of the theory.

3. MODEL PROBLEM 1: DISLOCATION TYPE EQUATIONS

In this section, we consider equations arising in dislocations theory (cf. [R0])
where, for all x € L®°(RY) or LY(RY), ¢[x] is defined by

c[x](z,t) = (co* x)(2,t) + c1(x, t) in RY x (0,T), (3.1)
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where ¢y, c; are given functions, satisfying suitable assumptions which are de-
scribed later on and “x” stands for the usual convolution in RY with respect to
the space variable . Our main result below applies to slightly more general cases
but the main interesting points appear on this model case.

We refer to [[]] for a complete description of the characteristics and difficulties
connected to ([[.T]) in this case; as recalled in the introduction, not this equation is
not only nonlocal but it is also, in general, non-monotone, which means that the
maximum principle (or, here, inclusion principle) does not hold and one cannot
apply directly viscosity solutions’ theory. Roughly speaking, a (more or less)
direct use of viscosity solutions’ theory requires that ¢y > 0 in RY x (0,7), an
assumption which is not natural in the dislocations’ framework.

We use the following assumptions on ¢y and c;.

(H3) cp,c1 € CO(RY x [0,7]) and there exists a constant C' such that, for any
z,y € RV and t € [0,T],

‘Co(x7t) - Co(y7t)’ + ‘Cl(.%',t) - Cl(yvt)‘ < C‘.%' - y‘ .

Moreover, ¢y € CY([0,7); L*(RY)) and there exist ¢, > 0 such that, for any
r € RN and t € [0, 7],

leo(z,t)] <@,
0 <c< —leo(t)|pr + e, t) <leo(st)|pr +cr(m,t) <T.

This assumption ensures that the velocity c[x] in (B.I) satisfies (H1) with
constants independent of 0 < y < 1 with compact support in some fixed ball (see
Step 1 in the proof of Theorem B.1). Assumption (H3) can be slightly relaxed
(and in particular localized) using that the front remains in a bounded region
of RY. Note that, in contrast to [], we do not assume that cg,c; are C*! (or
semiconvex).

We provide a direct proof of uniqueness for the solution of the dislocation
equation ([L.1]); we recall that the existence of weak solutions is obtained in [, [
and that, in our case, the weak solutions are classical solutions since the set
{u = 0} has a zero Lebesgue measure by the result of [[J since ¢[x] > 0 for all
0<x<L

Theorem 3.1. Suppose that co, ¢y satisfy (H3) and that ug is a Lipschitz con-
tinuous function satisfying (H2) and such that ([.§) holds. Then (L.1))-([.9) has

a unique (Lipschitz) continuous viscosity solution in RN x [0,T].

Proof of Theorem [3.1.

1. Uniform bounds for the velocity. By (H3) and Lemma f.3, the set {u(-,t) > 0}
remains in a fixed ball B(0, Ry +¢TI') of RY. Then, for any subset A of B(0, Ry +
cT), c[1 4] satisfies (H1) with constants which are uniform in A.

2. L>-estimate. If uy,us are two solutions of ([.1)-([.9), for 0 < 7 < T, we set

O 1= sup ‘ul(x7t) _UZ(wat)"
RN x[0,7]

Since ug is Lipschitz continuous and 0 < ¢[ly,,>03] < € (i = 1,2), for 7 small
enough, we have §; < n/2 where 7 is obtained by applying Theorem p.] to the
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u;’s. By Lemma .3, we have

5, < |Duplocc®” /0 (L 503] — Lugo01]) (s Dloodt
< |Duglocc®” /0 co(+£) % (Lguy (0950} — Lpun(otro0p) oodt

< E\Duo’ooGCT/o /RN Ly >0 — Lup >0y [ddt (32)

by using the L*°-bound |cy|oo < C.
3. L'-estimate. We have

w500 — Lgupsoy] < L{s, <uy<op + L{s, <up<op  in RN x [0, 7].
Using Proposition .5 we get

T 20,
/0 /RN [Liuy>0p — Liup>0y|dadt < %% ;
where we have set
Uy = LY({z : ug(z) > =0, — | Dugloot}) — LY ({2 : ug(z) > 0}) .
4. Uniqueness on [0,7] for small 7. Using this information in (B.9) yields

2c
0r < % \DUO\OOGCT¢T5T,

namely
5r < Liprds,

where L = L(T,c,¢,C,7, | Dup|eo) is a constant. Since the 0-level set of ug has
a zero Lebesgue-measure from assumption (H2), we have ¢», — 0 as 7 — 0.
Therefore, for 7 small enough, L1, < 1 and necessarily 6, = 0. It follows u; = us
on RV x [0, 7].

5. Uniqueness on the whole time interval. Step 4 gives the uniqueness for small
times but then we can consider

7 =sup{r > 0; u; = ug on RY x [0,7]}.

In fact, by continuity of u; and wg, T is a maximum. If 7 < T, then we can
repeat the above proof from time 7 instead of time 0. This is, in fact, rather
straightforward since u(-,7) satisfies the same properties as ug. Finally, 7 = T
and the proof is complete. O

4. MODEL PROBLEM 2: A FITZHUGH-NAGUMO TYPE SYSTEM

We are now interested in the following system:

up = a(v)|Dul in RV x (0,7),
ve—Av =gt (0) Loy + 9 (V)1 — Lgsey) i RY % (0,7), (4.1)
u(+,0) = ug, v(-,0) =wvg in RV,

which is obtained as the asymptotics as € — 0 of the following Fitzhugh-Nagumo
system arising in neural wave propagation or chemical kinetics (cf. [1])):

1
uj —eAu® = gf(ue,ve) in RY x (0,7), (4.2)

vf — Avf = g(uf,v%)  in RY x (0,7),



UNIQUENESS RESULTS FOR NONLOCAL HAMILTON-JACOBI EQUATIONS 7

where
flu,v) =u(l —u)(lu—a)—v (0<a<l),
g(u,v) = u—yv (v >0).

The functions «, g7 and ¢~ appearing in ([l.1) are Lipschitz continuous functions
on R associated with f and g. The functions g~ and g* are bounded and sat-
isfy g~ < gt in R. The initial datum vg is bounded and of class C! in RY with
| Dvgloe < +00.

System (K.1) corresponds to a front I'(t) = {u(-,¢) = 0} moving with normal
velocity «(v), the function v being itself the solution of an interface reaction-
diffusion equation depending on the regions separated by I'(¢). The u-equation in
(ET) can be written as ([L.1)-([.3) although the dependence of ¢ in 1 u(.,p)>0 s less
explicit than in the first model case. More precisely, for x € L>(RY x[0, T, [0,1]),
let v be the solution of

v —Av =gt (u)x +g7(v)(1—x) mRY x[0,T],
{ v(+,0) = v inRY .

Then Problem ([£1) reduces to (L1)-(L.2) with c[x](z,t) = a(v(z,1)).
Under the additional assumption that o > 0 in R, we prove uniqueness of
solutions to the system (1)) (or equivalently ([L.1])). We suppose

(4.3)

(H4) vg is bounded and C!, g—, gt are Lipschitz continuous with
|Dvplos < +00 and g<g (r)<g"(r)<g foralreR.

(H5) « is Lipschitz continuous and there exists ¢,¢,C' > 0 such that, for all
r,r’ € R,
c<a(r) <g,
la(r) —a(r)| < Clr —1).
(H6) ug is Lipschitz continuous and satisfies ([[.) with Ky := {up > 0} which is
the closure of a non empty bounded open subset of RY with C? boundary.

Theorem 4.1. Under assumptions (H2), (H4), (H5), (H6), system (L.1)) has
a unique solution.

We recall that the existence of weak solutions is obtained in [[[J, RI]. Moreover,
since @ > 0 in R, weak solutions are classical thanks to the results of [[[5]. Before
giving the uniqueness proof, we start by a preliminary on the inhomogeneous
heat equation.

4.1. Classical estimates for the inhomogeneous heat equation. We first
gather some regularity results for the solutions of the heat equation ([.J). The
explicit resolution of the heat equation (f.d) shows that for any (x,t) € RY x[0, 77,

v(x,t) = [ Gz —y,t)v(y)dy

]RN
T / Gla —y,t — ) [0 (0)x + g~ @)1 = ))(y» 5) dyds,
0 RN
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where G is the Green function defined by

1 _?
G(y; S) - (4778)]\7_/26

It is then easy to obtain the following lemma.
Lemma 4.2. Assume that (H4) holds. For x € L¥ (RN x [0,T7];[0,1]), let v be

the unique solution of (L.3). Set v = max{|g|, [g|}. Then there exists a constant
kxn depending only on N such that

(i) v is uniformly bounded: for all (z,t) € RN x [0,T],
(@, )] < [voloo + 1.

(ii) v is continuous on RN x [0,T].

(iii) For any t € [0,T), v(-,t) is of class C' in RV,
(iv) For allt € [0,T], z,y € RV,

[o(@, 1) = v(y, )| < (|Dvoloo +vkn VE) |2 = yl.
(v) Forall0<s<t<T,zecRVN,
o(a 1) — v(a )] < k(Do loe + 7k VE) VI 5+ 3(t — 5).

In particular the velocity c[x] (given here by a(v)) is bounded, continuous on
RN x [0,T] and Lipschitz continuous in space, uniformly with respect to x. It
follows that (P.) has a unique continuous (classical) viscosity solution for all
x € L=®(RY x [0,T];0,1]).

4.2. Proof of Theorem |.1]. 1. Properties of the velocity. As explained above,
for any measurable subset A of RV, the velocity c[ll 4] in ([L.1]) satisfies (H1) with
constants which are uniform in A: for all z,2' € RN, t € [0,T],

c<clla]<e
le[La](2, 1) — e[1a](a,1)] < Cla — '],

with C' := C(\Dvo\oo—i—’yk_:]v\/f). By Lemma p.3, it follows that the set {u(-,t) > 0}
remains in a fixed ball B(0, Ry +¢T') of RV,

(4.4)

2. First estimate (eikonal equation). We start as in the proof of Theorem B.1].
Let uy, up be two solutions of ([L.1]) and vy, vs be the solutions of (|.3) associated
with uq, ug respectively. For 0 <7 < T, we set

Or = sup |u1(xat) —UQ($,t)|
RN x[0,7]

and we choose 7 small enough in order that 0, < 1/2 where 7 is given by applying
Theorem .1 to the u;’s. By Lemma .9, we have

5 s|Dmmé”A|ummNﬂ—dmwwmunMﬁ
S\D%&J”/!m@ﬂ—Mthﬂ&ﬁ
0

< C\Duo\ooeéT/ (o1 = v9) (-, ) o . (4.5)
0

It remains to estimate |(v1 — v2)(+,t)]oco-
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3. Second Estimate (heat equation). The function v = v; — v solves
vi—Av = (Lgy, 30 — Luy>0) (g7 (01) — g7 (v1))
g0 (97 (1) = 97 (02)) = Lguyz03 (97 (1) — g7 (v2))
+(g (v1) — g™ (v2))

in RN x [0,7)]. Since g7 and g~ are Lipschitz continuous, say with Lipschitz
constant M, we have

T {uy>0 (97 (01) =97 (v2)) = Lguy >0y (97 (1) =97 (v2))+ (g™ (v1) =g (v2))] < 3M|o].
Moreover

L0y = Liuozyl 97 (v1) =97 (v1)] < (T = DI Lju 300 — Loy s
by (H4). This implies that both v and —v are viscosity subsolutions of

wy — Aw = 3M|w| = (§ = 9)[ L, >0y = Lupzy  in RY x [0, 77,

whence |v] = max{v, —v} is also a subsolution as the maximum of two subsolu-
tions. Therefore we have

ol = AJo] = 3MJo] < (@ — 9L urs0) — Lpupsoy] 0 RY x [0,7].
In particular the function w : (z,t) — e 3M|v(x,t)| satisfies
wy — Aw < (G = g)e M [y, 50y — Lpup2|  in RY x [0, 77.

By the comparison principle, since w(-,0) = 0, we have for any (z,t) € RY x [0, 7],

we.t) < [ [ 6=t =G0 M 0y — uuzoy(:5) duds.
Using the definition of ¢, we have
w00 — Lguo>01 (05 8) < Upis <urcop + L5, <us<o} -
This implies that for any (z,t) € RV x [0, 7],
|vy(z,t) — va(z, t)] (4.6)

t
< (g _ 2) e3MT/O /RN G(m — y,t — S) (]1{—5T§u1<0} + l{_57§u2<0}) dde

For simplicity, we set B = B(0,1) and
K;(t) ={u;(-,t) > 0} fori=1,2.

4. We claim that {—6; < wu;(-,t) < 0} C (K;(t) +26:B/n) \ Ki(t) where 7 is
given by (5.2). Indeed let z € RY be such that —d, < u;(z,t) < 0. Since we
chose d, small enough in Step 2, (5.9) holds and Lemma p.4 implies that there
exists y € B(x, 25, /1) such that u;(y,t) > u;(z,t)+d; > 0. This proves the claim.

5. Use of an interior cone property for the K;(t)’s. Note that {—0, < w;(-,t) <
0} \ {—6r <wu;(-,t) < 0} has a 0 Lebesgue measure since the velocity is nonneg-
ative (cf. [[§]). Then, from (f.6) and Step 4, we obtain

|vy(z,t) — va(z, t)] (4.7)

t
S (y - g) egMT/O RN G('I - Y, t— S) (]lEl(t) (y) + ]]‘E'g(t) (y)) dde

where E;(t) = (K;(t) + 26, B/7) \ K;(t) for i =1,2.
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We are now going to use the fact that the sets Ki(t) = {ui(-,¢) > 0} and
Ks(t) = {ua(-,t) > 0} have the interior cone property (see Definition .7) for all
t € [0,T], for some parameters p and 6 independent of ¢:

Lemma 4.3. There exist p and 0 depending only on the data (o, wug, vo, g

and g~ ) such that 0 < p < 0 < 1 and K;(t) has the interior cone property of
parameters p and 6 for all t € [0,T].

This lemma is an application of Theorem .9 below (see Section p.4)), the assump-
tions of which are satisfied for uq,us because of Step 1. It follows that we can
use the following lemma which is proved Section [L.3:

Lemma 4.4. Let {K(t)}cj0.r) C B(0,R) x [0,T] be a bounded family of compact
subsets of RV having the interior cone property of parameters p and 6 with 0 <
p<0<1and R >0, and let us set, for any x € RN, ¢t € [0,T] and r > 0,

P(x,t,r) = /t o G(x —y,t — ) L(s)4rp(Yy) dyds.
Then for anyrg > 0 and 0 < 7 < 1, there exists a constant Ay = Ao(7, N, R, 79, p,0/p)
such that for any x € RN, ¢t € [0,7] and r € [0,70],
|p(z,t,7) — Pp(x,t,0)] < Agr.
We apply this lemma to the K;(¢)’s which verify the assumptions with R =

Ry +¢T by Step 1 and since we can assume that 7 < 1. From ((.§) and ([£7), we
finally obtain that

0 < LT1d;
where L = L(T,C, C, | Do ooy 9,9, M, 7, Ag). Choosing 7 such that LT < 1, we
obtain &, = 0. We conclude as in the proof of Theorem B.1. a

4.3. Proof of Lemma fi.4. For any z € RV, ¢ € [0,7] and r > 0,

t
Qb(ﬁﬂ, t, T) - gb(x, t, 0) = /0 RN G(x -yt = S) (lK(s)JrTB - lK(s)) (y) dyds.
Let EK(S) denote the signed distance function to K (s), namely

{ _dg(s)(@) = dree)(x)  ifx ¢ K(s),
dK(s)(x) = —dpK (s) (x) ifx e K(s),

where, for any A C RV, d4 is the usual distance to A. Then Ik(s)4rB — Lr(s) =

t
¢($,t,T) - ¢($,t, 0) - / / G(l’ _yat_ 8) dyds
0<EK S)<'f‘}

Since EK(S) is Lipschitz continuous with |DEK(S | = 1 almost everywhere, the
coarea formula (see [1J]) shows that

oz, t,r) — P, t,0) / / / Gz —y,t — s)dH N "(y)dods
{dg(sy=0}

_le—y?
= do*/ e T dHN(y)ds.
/0 /0 {EK(S)zo} (47T(t - S))N/2
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The change of variable z = j% in this last integral yields

- 1 r t 1 _% N1
¢(x,t,r) — (b(l',t,()) = WA dUA \/ﬁ /S’(7 & dH (z)ds,

where we have set

(o0 = {%, dic(s)(y) = 0}-
1212

For some R(s) to be precised later, we split f(s e dHNfl(z) in two parts,

one in Bp(y) = B(0, R(s)), and one in Biys)- First, for any s € [0,¢) and o > 0,

122
/ e~ A dHNT1(2)
Cs,0NBR(s)

HN?I(CS,U N BR(S))
AN, p,0/p)LN (B(0,1))(R(s) + p/4)"
AN, p,0/p) £¥ (BO, D) (R(s) + 1)V

where A(N, p,8/p) is the constant given by Theorem f.§. Indeed, for any s € [0,¢)
and o > 0,

IN

IN A

_x —
Cs,a = a{jﬁv dK(s)(y) < 0}7

and these sets inherit the interior cone property of parameters greater than
p/max(y/7,1) = p and 0/ max(y/7,1) = 6 from K(s) (we recall that we have
assumed 7 < 1). Besides

2 2
/ ef% dHNfl(z)
(s,oNBS

%o
< e—%s)?HN‘l(cs,a)

< . m?ﬂv_l({af((s) =0})

< e_#ﬁ A(N,p,0/p) LY (B(0,1))(R + 10 + p/4)N
< e_#ﬁ A(N,p,0/p) LY (B(0,1))(R +ro + 1)V,

because {EK(S) < 0} C BRiy, for any s € [0,7] and r € [0,70]. This last estimate
also comes from Theorem f.§ for the same reason as above. Thus we have proved
the existence of a constant

Ay = A1(N,R,70,p,0/p) = A(N,p,0/p) LY (B(0,1))(R + 7o+ 1)V

1
(47T)N/2
such that for any = € RV, ¢ € [0, 7] and 7 € [0, ro],

_R(s)?
N e 1 s
— (R(s)+ 1) + 7(75 9 = ds. (4.8)

t
(@, t,r) — G, £,0)] < Ayr /O
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2 N—1

Choosing R(s) = /—2(N — 1)log(t — s), so that e (t—s)" 2 , we can
estimate the right-hand side of (l.§) as follows:

t 1 6_%3)2
/ (R(s)+ DY + | ds
0o Vt—s (t—s) 2z

<

/1 (J2(N — Dlog(u)[*? + )N +1 du
0 Vu

We deduce the existence of the constant
Ao = Ao(7, N, R, 10,p,0/p) = A1 I(N)
such that for any = € RV, ¢ € [0, 7] and 7 € [0, o],
|p(x,t, 1) — (2, t,0)| < Agr.

5. EIKONAL EQUATION, INTERIOR CONE PROPERTY AND PERIMETER
ESTIMATES

5.1. Some results on the classical eikonal equation. In this section, we
collect several properties of the eikonal equation (|L.4).
We first recall the

Theorem 5.1 ([LF]).

(i) Under assumption (H1), equation ([L.4) has a unique continuous viscosity
solution u. If ug is Lipschitz continuous, then w is Lipschitz continuous
and, for almost all x € RN, t € [0,T],

|Du(z,t)] < e“T|Dug|os , lug(z,t)| < 27| Dug|os -

(ii) Assume that uy is Lipschitz continuous and that (H1) and (H2) hold.
Then there exist v = v(C,¢,m9) > 0,n = n(C,¢,m9) > 0 such that the
viscosity solution u of ([.4) satisfies in the viscosity sense

vt
~Julz, )| — %|Du(m,t)|2 +n<0inRY x[0,7]. (5.1)

We refer the reader to [IF] for the proof of this result. Let us mention that (H1)
implies that p € RY + c(z,t)|p| is convex for every (z,t) € RY x [0, T] which is
a key assumption to prove (ii). We remark that, in (ii), v is Lipschitz continuous
because the assumptions of (i) are satisfied. Therefore u is differentiable a.e. in
RN x [0,7] and (F-1)) holds a.e. in RY x [0,7]. Part (ii) gives a lower-bound
gradient estimate for u near the front {(x,t) € RN x [0,T] : u(x,t) = 0}. Indeed,
if |u(z,t)] <mn/2, then

— |Du(z,t)] < —/2ne % .= —5 < 0 in RN x [0,7] (5.2)

in the viscosity sense (and almost everywhere in RY x [0, T7).
We continue by giving an upper-bound for the difference of two solutions with
different velocities c;.
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Lemma 5.2 ([f]). Fori=1,2, let u; € C°(RY x [0,T]) be a solution of
(u3)e = ci(z,t)|Du;| in RN x [0,T),
wil,0) = uo(x) in RY,

where ¢; satisfies (H1) and ug is Lipschitz continuous. Then, for any t € [0,T],

[(u1 = u2) (- )]o < IDzmlooe(’y’f/O [(e1 = e2) (-, 8) oo ds.

Finite speed of propagation implies a uniform bound for compact fronts gov-
erned by eikonal equations:

Lemma 5.3 ([6]). Suppose that (H1) holds and that ug is Lispchitz continuous
and satisfies ([LF). Let u be the viscosity solution of ([L4) with initial condition
ug. Then, for all t € [0,T],

{u(-,t) > 0} € B(0, Ry +¢t).

Lemma 5.4 ([§]). (viscosity increase principle) Let w € CO(RY) satisfying (H2)
and § < /2. If x € {—§ < w < 4}, then

sup  w > w(x) + 4.
B(,25/m0)

We refer the reader to [ff] for the proofs of these results.

5.2. Estimates on the measure of level-sets for solutions of (.4). Now we
turn to the key estimates on the measure of small level-sets of the solution of the
Eikonal equation ([L4). For every —n/2 < a < b < 1/2, we consider the function
¢ :R — R*  depending on a and b such that ¢ = 0 on (—o0,a), ¢'(t) = (b—a)~*
in (a,b) and ¢ =1 on [b, +00). In fact, ¢ is chosen in such a way that (b—a)¢’ is
the indicator function of [a, b]. We omit to write the dependence of ¢ with respect
to a, b for the sake of simplicity of notations.

Proposition 5.5. Assume (H1), (H2) and suppose that {ug > 0} is a compact
subset of RN, Let —1/2 < a < b < n/2 where 1 is defined in (5.1]) and let u be the
unique Lipschitz continuous viscosity solution of (L4). Then, for any0 <7 <T

/ / Lfa<u<pydrdt < < 770 /]RN [o(u(z, 7)) — p(u(z,0))] dz, (5.3)
where 7 is defined in (5.2). It follows

/ / n{a<u<b}dmt<— 1Y ({u(7) > a}) — £ ({u(-,0) > b})]dz, (5.4)

/ / ]1{G<u<b}d.%'dt (55)

<? e %[N ({u(-,0) > a — 2 Dugloor}) — £ ({u(-,0) > b})] .

Remark 5.6. The above Proposition is related with results obtained by the fourth
author in [[[7] for the eikonal equation with a changing sign velocity.
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Proof of Proposition [5.4. By the definition of ¢

/ / 1 {a<u<pydzdt :/ / (b —a)¢' (u(x,t))dwdt .
0 JRN 0o JrRN

Using the fact that —n/2 < a < b < /2 and the definition of 7 in (f.3), we can
estimate the right-hand side by

/T/ (b—a)go'(u(x,t)) 2, )|Du|d dt ,
0 JRN ¢ n

since ¢ < ¢ on RV x (0,T) and |Du| > 7 on the set {|u| < n/2}. Therefore, by
the equation, we have the following equality

b—a/ / Ye(x, t)|Duldzdt = / / ), dxdt |
RN RN

and (5.J) follows by applying Fubini’s Theorem and integrating. Inequality (f.4))
follows easily by taking into account the form of ¢. To deduce (b.5), it is suffi-
cient to note that, since uy + ¢|Dup|oot is a supersolution of we have, by
comparison, u(x,t) < ug(z) 4 ¢ Dug|oot in RN x (0,7T). O

5.3. Estimate of the perimeter of sets with the interior cone property.

Definition 5.7. Let K be a compact subset of RN. We say that K has the
interior cone property of parameters p and 0 if 0 < p < 0 and if, for any x € 0K,
there exists some v € SV 1 such that the set

Cly = x+0,0)B(v,p/0) _
= {z+ W+ A €[0,0], €€ B(0,1)}

18 contained in K.

Theorem 5.8. Let K be a compact subset of RN having the interior cone property
of parameters p and 6. Then there exists a positive constant A = A(N,p,8/p)
such that for all R > 0,

HYN"YOK N B(0,R)) < ALN(K N B(0,R+ p/4)). (5.6)

Proof.

1. RJeCstm'ction to a finite number of axes for the interior cones. We first observe

that if z € 0K and Cﬁ;ﬁ C K, then for all v/ € SN~ verifying |v — /| < p/(26),

we have Cf/{ 22’9 C K. By compactness of SV !, we can cover S’ ! with the traces
n SN¥=1 of at most p := B(N)/(p/(20))N~! balls of radius p/(260) centered at v;,

for some positive constant (N) and 1 < i < p. Therefore, for any z € JK, there

exists 1 < i < p such that Cﬁﬁ’e C K.

2. Local study of points of the boundary with the same interior cone axis. We fix
1<i<pandset A; = {z € 9K; Cp/ze C K}. Up to a rotation of K, we can
assume that v; = (0,...,0,—1) =: v. Let us fix z € A;, that we write z = (x,y)
with 2 € R¥=1 and y € R. Let us set V = Bn_1(z, p/4) x (y — /2,y + 6/2) and
D;=vn U .
(z',y")eA;nV
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0 . . )
FIGURE 1. C,’sz: interior cone at z of parameters p,0 and axis v.

Then A; NV C dD; NV: indeed if (2/,y') € A; NV, then (2/,y) € D; NV, and
(2',y’) can not lie in the interior of D;, otherwise for A > 0 small enough, we
would have (z,y") — A\v € D;, which would imply that (z’,y’) lies in the interior
of one of the cones forming D;, and therefore in the interior of K, which is absurd
since (2/,y') € OK.

3. The set 9D; NV is a Lipschitz graph of constant \/(260/p)? — 1. More precisely
let us prove that 9D; NV is equal to

Gi = {(:C/,y') s € BNfl(xap/Zl)
and y' = max{y” : (2/,y") € OC for one of the cones C forming D;}}.

First of all, it is easy to show that D; is closed, and that the maximum in
the definition of G; exists and is not equal to y + g; otherwise there would ex-
ist a cone C in D; such that (z,y) € int(C) C int(K), which is absurd. The
inclusion G; C 9dD; NV follows from the same argument used for the inclu-
sion A, NV C dD; NV in Step 2. Conversely, let us fix (2/,y') € 9D; N V.
Then (2/,y') € D; since D; is closed, so that (2/,%') is included in the trace
on V of one of the cones forming D, let us say (2/,y') € C. But then (2/,v')
can not belong to int(C), otherwise we would have (z/,y') € int(D;), so we
deduce that (2/,y') € OC N'V. Moreover if there exists y” > ¢’ such that
(2',y") € 9C" for some other of the cones C' forming D;, then we must have
(',y") € int(C') NV C int(D;), which is absurd, and proves that 3’ is equal to
the maximum in the definition of G;, and that 0D; NV C G;. Therefore 9D; NV
is a Lipschitz graph of constant u = 1/(26/p)? — 1 as a supremum of graphs of
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Vi

FIGURE 2. Illustration of the proof of Theorem [5.§.

cones of same parameters p and 6.

4. FEstimate of the perimeter of A; in V. It follows from Step 3 that 9D NV is
HN=1 measurable with

HYHODNV) < LY Y (By-a(@, p/4) V1 + 12,

hence

N-1 20

HN "N ANV) <wng (3) p

4

where w; denotes the volume of the unit ball of R7.

5. Covering of A; with balls of fixed radius. By Besicovitch’s covering theorem
(see [[J]), there exists a constant £y depending only on N such that for any
e >0 and R > 0, there exist numbers I'y,...,T'¢, and a finite family (x;) (for
1 <k<é&yvand1<j<TIy) of points of A; N B(0, R) such that

En Tg

A;NB(0,R) c | J | Blaws.o),
k=1j=1

for each k, the balls B(zyj,€), 1 < j < T, are pairwise disjoint.
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The family (xy;); is a priori only countable, but has to be finite by boundedness
of A; and because the radius of covering balls is fixed. We now want to estimate
Ziﬁ 1 T'k. Let us therefore compute

En Ty

RIS ) 9t e

NB(0,R+¢) k=1 j—1

On the one hand, we have

N
Z /KmB 0,R+¢) Z LB < LYK N B0, R +¢)), (5.7)
k=1 €)

7j=1

because for each k, the balls B(:ckj, ¢) are pairwise disjoint. On the other hand,
CP/2 0

for each k£ and j, the ball B(xkj,s) contains a fixed portion of the cone Cy; ),

portion which is included in K N B(0, R + ¢) by the interior cone property, since
xp; € A; N B(0, R). We call

v = LN(Blagg,e) NCYZY)

Vi Xk

the volume of this portion of cone, the computation of which is done in Step 7.
Note that v is independent of x;;. Therefore

v T v T
/sz(o,me ; ]Z; ot ; ]Z; / KOBORES ) Z e
From (b.7) and (5.§), we deduce
EN
YTy < &VLN(KmB(o,RJre))
k=1

Since B((z,y),e) C V. = Bn_1(z,p/4) X (y—0/2,y+60/2), as soon as ¢ <
min{p/4,0/2} = p/4, we deduce from this that A; N B(0, R) can be covered by
Ziﬁl 'y cylinders of the form of V centered at points of A; N B(0, R), so that,
from (£3),

EN
HY"(AiN B(0,R)) < I;Pk WN-1 <§)
EN p\N-1 20
<—wN1(> =N KNB(O,R+¢
Sonai (§) S LMK BOR+ ).
6. Sum for all axes. What we have done does not depend on the fixed direction

axis v;, and we know, thanks to Step 1 that 0K is the union of less than p =
B(N)
(p/20)N =1

N—1 96
p

sets of the form A;, so that we finally have

HwaakaB«LRDfé—igég——éwafl(p) lif

(/2T 5

: LN(K N B(0,R +¢))

which gives (.4).
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7. Computation of the value of v. As soon as € < /6% — (p/2)? (the length of the
longest segment included in 8051./7 i’fj), then B(zy;,€) contains at least the straight
portion of Cﬁi/, i’fj of length | = pue/(26), the volume of which equals
wn-1 IV _ WN-1 (ﬁg)N
N N1 TN P\%f)

This gives a lower bound for ~. Moreover, we obtain a more precise estimate for

A in (B.G): since p < 0, we see that p/4 < /6% — (p/2)?, so that sending ¢ to
p/4, we get

HN L OK N B(0,R)) < 4VNTINB(N)éy 10/ LY(K N B(0,B + p/4)).
T P/(20/p)* —1 ’

O

5.4. Propagation of the interior cone property. We want to prove that the
interior cone property is preserved for sets whose evolution is governed by the
Eikonal equation ([.4). We assume:

(H7) The function ¢(-, t) is Lipschitz continuous with a constant independant of
t € [0,7] and, for all R > 0, there exists an increasing modulus of continuity wr
such that, for all x € B(0, R), t,s € [0,T], then

le(x,t) — c(z, s)| < wr(|t — s|).

Theorem 5.9. Assume that ¢ satisfies (H1) and (H7) and that that ug satisfies
(H6). Let u be the unique uniformly continuous viscosity solution of ([L4). Then
there exist p > 0 and 0 > 0 depending only on Koy, N, ¢, ¢ and C, such that
K(t) = {z € RY; u(x,t) > 0} has the interior cone property of parameters p and
0 for allt € [0,T]. More precisely, let v > 0 be such that Ky has the interior ball
property of radius r > 0, then we can choose

2

. c 1/(¢ C
0= mln{E,QwR (Z) ,’I“} and p= %9
where R > 0 is such that Ko+ ¢T'B(0,1) C B(0, R).
Proof of Theorem [5.9.

1. Minimal time function. We first remark that the assumption that c(z,t) > ¢
implies that ¢ +— u(z,t) is nondecreasing for any 2 € R™Y. Moreover, this assump-
tion and the finite speed of propagation property imply that if w(z,t) = 0, then
u(zx,s) > 0 for any s € (¢,T]. Therefore, the minimal time function
v(xz) = min{t € [0,T]; u(z,t) >0}

is defined at points x € K(T), and for any t € [0, T,

{z eRY; u(z,t) > 0} = {z € RY; v(w) < t},

{x e RY; u(x,t) =0} = {z € RY; v(x) =t}
Moreover, v is 1/¢-Lipschitz in K (T): let us fix 2 and y in K (T') with v(z) < v(y).
The function

u:(z,t) — sup u(2',v(z))
|2/ 2| <c[t—v(z)|
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is the unique uniformly continuous viscosity solution (see [{]) of

{ Ui (z,t) = c|Du(z,t)| in RN x (v(x),T),
a(-,v(z)) = u(-,v(x)) inRY,

The comparison principle for continuous viscosity solutions implies that w < u in
RN x [v(x),T]. In particular
Ay, o~ yl +v(@) < uly, - |r — yl + v(z),
which implies by deﬁni_tion of w and v that i
0= u(e,v(2)) < aly, | — |+ v(w)) < uly, =l — gl + o(2)),
from which the Lipschitz prope_rty follows, since we dec_iuce that
o(y) < =l — gl + o(e).

2. Interior cone property at time t € [, T| for some p > 0. To prove the claim
of the theorem, we will use arguments from control theory. For this we need the
velocity ¢ to be C! in space, additionnal condition that we can assume without
loss of generality by replacing ¢ by suitable space convolution ¢s of ¢. Then we
get the result for ¢5, and, letting 6 — 07, obtain the desired result since the
constants 6 and p do not depend on §.

It is well-known that, for each time ¢, the set K (t) can be seen as the reachable
set from K for the controlled system

2'(t) = c(x(t),t)a(t) for t € [0,T], (5.9)

where the control a takes its values in the unit closed ball. Let « be an extremal
trajectory, i.e. a trajectory verifying z(7') € OK(T). For such a trajectory, it
is easy to see that t — wu(x(t),t) is non-decreasing, from which we infer that
x(t) € 0K (t) for any t € [0,T], that is to say, v(z(t)) = t.

The Pontryagine maximum principle [[0] implies the existence of an adjoint p
such that the following system is satisfied on [0, T:

)
z'(t) = ¢( (t)’t)‘p(t)‘7 (5.10)

—p/(t) = De(x(t),1)|p(t)]-

From now on, we fix 0 < ¢ < T. From (f.1(0) and the regularity of ¢ we infer that,
if we set M = 3C¢, then for any s € [0, ],

[a/(s) — /(D)) < M(I — 5) + wrli - 5),

where R := Ry + ¢I is given by Lemma p.3. By integration on [¢,t], we deduce
that, for any ¢ € [0, ],

jw(f) — (t) — 'O - 1)] <

Let © € OK(t), and let x(-) be an extremal trajectory with x(tf) = 2. We are
going to show that for any ¢ € [0,¢], the ball B(t) of radius r(t) centered at

%(f— t)? + wr(f — t)(F - 1). (5.11)
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x(t) — 2'(t)(t — t) is contained in K (t) for some r(t) to determine, i.e. that we
have for any £ € B(0,r(t)),

o (o) — SO 1)+ ) <.
We therefore estimate, using the Lipschitz continuity of v and (p.11),
F— v (a®) — 2/ (B 1) +€)
> F 0 (a®) ~ @ (DE - 1) - ¢

Y

F—o(a(t) — 1 (ﬁ(t— 12+ wp(f — 1) — t)) L

_ 1 /M, _ _
= t—t—= (7(t—t)2+w3(t—t)(t—t) +r(t)> .
Thus if we set r(t) = 5(t — t), the above quantity is nonnegative as soon as

and wg(t—1t) <

=10

For this choice, it follows
B(t) = B(x(f)—iﬂ'(f)(f—t),r(t))
2/ (t)
{at) - SN0+
c K(t).

S @1 - 06 €< BO.D)

Since z(t) = z and ¢ < |2/(t)| < T, this proves the interior cone property at x as
soon as t > y = min (ﬁ,wél (%)), of parameters

2
p1 = é_ 91, with 91 = min (20]\4 CwR (9/4)> ’

2c

3. Interior cone property for small time t € [0, u]. With the previous notation,
let # € 0K (t) and z(-) be an extremal trajectory of (B.9) with z(¢) = x. Let us
recall that the regularity of Ky implies that it has the interior ball property, i.e.
there exists r > 0 independent of y € 0K such that

B(y —v(y)r,r) C Ko,

where v(y) is the unit outer normal to Ky at y € 0Ky. Note that, as a con-
sequence, K, has the interior cone property at z(0) of parameters p = r/2
and 0§ = r and v(z(0)) = p(0)/|p(0)]. We see by the regularity of Ky that

v(z(0)) = p(0)/[p(0)], so that

. p(0)
(x(0) — r,r) C K. (5.12)
[p(0)]
We will prove that, for ¢ < pu, K(t) has the interior cone property of parameters
=r/2and  =r. Let y € CT/QT with v = |p%‘ We write y as
y=x— p(®) —= A+ - )\5, (5.13)

Ip(2)]
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where 0 < A <r and || < 1. Let y(-) be the solution of

{ y(1) = e,y 2 tort e (0.8,

Ip(t)]
y(t) =y,

where p(+) is the adjoint associated with z(-) by () It is enough to prove that
y(0) € Ky, since then y = y(f) € K(f). Because of (5.13), we only have to show

that
) = (2(0) - £EA) ‘ <A

Moreover, we remark that (5.13) implies that

- (- )| - =3

Let us therefore set

) a1 A2

so that f(t) < %2. It only remains to prove that f(0) < A2. But

P = 2(y(t) - x(t).y/ (1) — 2'(8)) + 20 <y’(t) (1), f—>
p

> —2Cy(t) — x(t)]” — 2XCy(t) — z(t)] — 2X\[y(t) — z(t)]

—2Aly(t) — x(t)

Thanks to (p.1(), we know that

p'(t) ‘ <C and ‘p(t)<p(t),p’(t)> ‘ <C
(I~ ’
so that
F1(t) = =2Cy(t) — x(t)]* = 6AC|y(t) — x(t)|-
But if we set g(t) = |y(t) — z(¢)|?, then
g(t) =2(y(t) — z(t),y'(t) — 2'(t)) = —2C|y(¢) — z(t)]> = —2Cg(1),
which implies that for all ¢ € [0, 7]

9()e*" < g(B)e*,
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that is to say thanks to (5.13)

ly(t) — z(t)] < |y — z[eCTD < 2O,

vo| &

We therefore obtain

— 2 — — —
f't) > —2C (%60t> —6XC %eCt = — <gCe2Ct + 9C’eCt> A2,

If we set k = gCeZCf +9CeC?, we finally have

2
£(0) < f(E) + kXN < AZ + kXN < A2

as soon as kt < %. Thus if we set b to be the unique solution of %be% + 9bel = %

(b > 0), we get that f(0) <0 as soon as t < b/C. If we assume that

b C C

J— > _— = —
C —2M 6Cc’

which is always possible by reducing ¢ or increasing ¢, we see that K (f) has the
interior cone property of parameters p, = r/2 and 63 = r for all 0 < ¢ < u (note
that the parameters po, 02 depend only on ¢ and Kj).

4. End of the proof. We remark that

whence we finally obtain that for any ¢ > 0, K(¢) has the interior cone property
of parameters p = 526 with 6 = min{fy, f}. O
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