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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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POWERS OF SEQUENCES AND RECURRENCE

NIKOS FRANTZIKINAKIS, EMMANUEL LESIGNE, AND MÁTÉ WIERDL

Abstract. We study recurrence, and multiple recurrence, properties along the k-th
powers of a given set of integers. We show that the property of recurrence for some
given values of k does not give any constraint on the recurrence for the other powers.
This is motivated by similar results in number theory concerning additive basis of
natural numbers. Moreover, motivated by a result of Kamae and Mendès-France, that
links single recurrence with uniform distribution properties of sequences, we look for an
analogous result dealing with higher order recurrence and make a related conjecture.

November 16, 2007
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1. Motivation, historical remarks

In their 1912 paper ([HarLi]), Hardy and Littlewood proved that for any irrational
number α, the set (α, α), (2α, 22α), (3α, 32α), . . . mod 1 is dense in the two dimensional
torus, and the obvious extension of this result to higher dimensional tori, and arbitrary
powers. This result can be considered as an indication that in some sense the sequences
1, 2, 3 . . . and 12, 22, 32 . . . behave independently. Soon after Hardy-Littlewood’s work,
Weyl proved that, in fact, the sequence (α, α), (2α, 22α), (3α, 32α), . . . mod 1 is uni-
formly distributed in the two dimensional torus ([We]).

Since these results, a number of theorems appeared that could be interpreted to express
the independence of sequences of powers of n. A direct motivation for our work is the
result of Deshouillers, Erdös and Sárközy ([DESa]) on bases. A set B of positive integers
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is called a basis if there exists an h ∈ N such that every n ∈ N can be written in the
form n = b1 + b2 + · · ·+ bh, bi ∈ B ∪ {0}. The result of Deshouillers, Erdös and Sárközy,
says that there exists a set of integers B = {b1, b2, . . .} which is not a basis, but the set
B2 = {b2

1, b
2
2, . . .} is a basis. They also construct a set of integers which is a basis, but

the set of squares of its elements is not a basis. The ultimate generalization of this result
appears in a paper by Deshouillers and Fouvry ([DFou]). It says the following: given any
set G (the set of “good” exponents), there exists a set of integers B = {b1, b2, . . .} such
that, for all k ∈ N, the set Bk = {bk

1, b
k
2, . . .} is a basis if and only if k ∈ G. Again, this

result can be interpreted as expressing the independent behavior of powers, and indeed,
the proof utilizes a quantitative version of Weyl’s theorem via the Hardy-Littlewood
circle method.

Our work is for intersective sets. A set of integers R is called intersective (this adjective
was introduced by Ruzsa in [Ruz]) if for every set of integers Λ with positive upper
density1, the equation x − y = r is solvable in x, y ∈ Λ and r ∈ R \ {0}. The reason the
word “intersective” is used here is because the solvability of the equation x − y = r in
x, y ∈ Λ and r ∈ R \ {0} can be written in the following way

Λ ∩ (Λ − r) 6= ∅ for some nonzero r ∈ R.

It is a well known theorem of Sárközy ([Sa]), that for any fixed k, the set of k-th powers
is intersective. Bergelson and H̊aland ([BeH̊al]) constructed a set of integers that is not
intersective but the set of squares of its elements is intersective. We establish a gener-
alization of their result to the setting of the Deshouillers–Fouvry theorem we mentioned
above:

Theorem A. Let G be a set of positive integers.
There exists a set of integers R = {r1, r2, . . .} such that: for all k ∈ N, the set

Rk = {rk
1 , r

k
2 , . . .} is intersective if and only k ∈ G.

In our paper we go further, and prove a generalization of this result to arithmetic
progressions. The famous result of Szemerédi ([Sz]) states that every set of integers with
positive upper density contains arbitrarily long arithmetic progressions. Bergelson and
Leibman proved in [BeLei] that, for any fixed k, every set of positive density contains
arbitrarily long arithmetic progressions so that the difference of the progression is a k-
th power. To be able to talk about our result, we introduce the following definition.
A set R is called ℓ-intersective if every set Λ of positive density contains an ℓ + 1 long
arithmetic progression with a common difference from R\{0}. In other words, Λ contains
configurations of the form

m,m + r,m + 2r, . . . , m + ℓr

for some nonzero r ∈ R. Similarly to single intersectivity, we can rewrite this condition
as

Λ ∩ (Λ − r) ∩ (Λ − 2r) ∩ · · · ∩ (Λ − ℓr) 6= ∅ for some nonzero r ∈ R.

In this language our result is the exact “multiple” analog of Theorem A:

1If Λ ⊂ Z, the upper density of Λ is the number d̄(Λ) = lim supN→∞
|Λ ∩ {−N, . . . , N}|/(2N + 1). If

the previous limit exists we call it the density of Λ and denote it by d(Λ).
2



Theorem B. Let ℓ be a positive integer and G be a set of positive integers.
There exists a set of integers R = {r1, r2, . . .} such that: for all k ∈ N, the set

Rk = {rk
1 , r

k
2 , . . .} is ℓ-intersective if and only k ∈ G.

Note that, for example, we do not claim the existence of a set R such that is ℓ-
intersective for every ℓ ∈ N but the set R2 is not ℓ-intersective for some ℓ ∈ N. Actually, it
may very well be impossible to construct such an example (see Question 2 in Section 5.3).

We will use Furstenberg’s correspondence principle to translate the previous state-
ments to ergodic theory and will then verify the corresponding ergodic statements. In
the next section we explain the ergodic theoretical analogs of the previous theorems, and
we state our main results.

2. Main results

2.1. Good and bad powers for sets of recurrence and ℓ-recurrence. All along the
article we will use the word system, or the term measure preserving system, to designate
a quadruple (X,B, µ, T ), where (X,B, µ) is a probability space, and T : X → X is
a measurable map such that µ(T−1A) = µ(A) for all A ∈ B. In [Fu1], Furstenberg
perceived a connection between existence of structures in sets of integers having positive
upper density and recurrence properties of measure preserving systems. He used this,
and other ideas, to give an ergodic theoretic proof of Szemerédi’s theorem on arithmetic
progressions. This new approach gave rise to the field of ergodic Ramsey theory, where
problems in combinatorial number theory are treated using techniques from ergodic
theory, and led to several far reaching extensions of Szemerédi’s theorem. We will use
this correspondence to translate statements about “intersectivity” to statements about
“recurrence”. The following formulation is from [Be]:

Furstenberg Correspondence Principle. Let Λ be a set of integers. There exist a
system (X,B, µ, T ) and a set A ∈ B with µ(A) = d̄(Λ) such that

(1) d̄(Λ ∩ (Λ − n1) ∩ . . . ∩ (Λ − nℓ)) ≥ µ(A ∩ T−n1A ∩ · · · ∩ T−nℓA),

for all n1, . . . , nℓ ∈ Z and l ∈ N.

Using this principle, we can reformulate Theorems A and B in ergodic theoretic lan-
guage. We first translate the notion of intersectivity.

Definition 2.1. We say that the set of integers R is a set of recurrence for the system
(X,B, µ, T ) if for every set A ∈ B of positive measure, we have

(2) µ(A ∩ T−rA) > 0 for some nonzero r ∈ R.

We say that the set of integers R is a set of recurrence, or good for recurrence, if it is a
set of recurrence for every system.

Note that if R is a set of recurrence then (2) is in fact satisfied for infinitely many
r ∈ R.

Using Furstenberg’s correspondence principle it is easy to see that if R is a set of
recurrence then it is intersective (the converse is also true and not hard to show). As a
consequence, the following result implies Theorem A:

3



Theorem A′. Let G be a set of positive integers.
There exists a set of integers R = {r1, r2, . . .} such that: for all k ∈ N, the set

Rk = {rk
1 , r

k
2 , . . .} is good for recurrence if and only k ∈ G.

Although Theorem A′ will be later subsumed by a stronger result (Theorem B′), we
choose to give an independent proof of it in Section 3, as in this case the analysis does
not depend upon complicated multiple ergodic theorems, and so it becomes easier to see
the main ideas of the proof.

Now to formulate the ergodic theoretical analog of Theorem B, we first translate the
notion of ℓ-intersectivity.

Definition 2.2. Let ℓ be a positive integer. We say that the set R of integers is a set
of ℓ-recurrence for the system (X,B, µ, T ) if for every set A ∈ B of positive measure, we
have

µ(A ∩ T−rA ∩ T−2rA ∩ · · · ∩ T−ℓrA) > 0 for some nonzero r ∈ R.

We say that the set of integers R is a set of ℓ-recurrence, or good for ℓ-recurrence, if it
is a set of ℓ-recurrence for every system.

Some examples of sets of ℓ-recurrence (or ℓ-intersective), for every ℓ ∈ N, are IP sets,
meaning sets that consist of all finite sums (with distinct entries) of some infinite set
([FuK2]), and sets of the form

⋃

n∈N
{an, 2an, . . . , nan} where an ∈ N (follows from a

finite version of Szemerédi’s theorem). It is also known that the set of values of any
non-constant integer polynomial with zero constant term is a set of ℓ-recurrence for all
ℓ ∈ N ([BeLei]). Examples of sets which are not sets of recurrence are sets which do
not contain any multiple of a given d ∈ N, and lacunary sets. An example of a set of
ℓ-recurrence but not (ℓ + 1)-recurrence is

{

n ∈ N : {nℓ+1α} ∈ [1/4, 3/4]
}

where α is any
irrational number ([FrLesWi]).

The ergodic theoretical analog of Theorem B is:

Theorem B′. Let ℓ be a positive integer and G be a set of positive integers.
There exists a set of integers R = {r1, r2, . . .} such that: for all k ∈ N, the set

Rk = {rk
1 , r

k
2 , . . .} is good for ℓ-recurrence if and only k ∈ G.

We prove this result in Section 5 using an argument similar to the one used to prove
Theorem A′. There are some extra difficulties in this case though, since we have to estab-
lish some equidistribution results on nilmanifolds, and also a uniform multiple recurrence
result that we state and prove in the Appendix.

2.2. Good and bad powers for sets of (na1 , . . . , naℓ)-recurrence. The previous re-
sults deal with sets of recurrence along families of polynomials of the form {nk, 2nk, . . . , ℓnk}.
We also study the other extreme case, of sets of recurrence along families of linearly in-
dependent polynomials, like families of the form {na1 , . . . , naℓ}, where a1, . . . , aℓ ∈ N are
distinct. The next definition will facilitate our discussion.

Definition 2.3. Let u1(n), . . . , uℓ(n) be integer sequences. We say that the set R ⊂ Z is
good for recurrence along the sequence (u1(n), . . . , uℓ(n)) if for every system (X,B, µ, T )

4



and A ∈ B of positive measure, there exist infinitely many r ∈ R such that

µ(A ∩ T−u1(r)A ∩ . . . ∩ T−uℓ(r)A) > 0.

Using Furstenberg’s correspondence principle it is easy to define an analogous notion
in combinatorics. We will show:

Theorem C. Let Aℓ = {(a1, a2, . . . , aℓ) ∈ Nℓ : a1 < a2 < . . . < aℓ} and G ⊂ Aℓ.
There exists a set of integers R such that: R is good for recurrence along the sequence

(na1 , . . . , naℓ) if and only if (a1, . . . , aℓ) ∈ G.

The proof of this result is similar to the proof of Theorem B′ and we give it in Section 6.

2.3. Powers of sequences and sufficient conditions for ℓ-recurrence. When ℓ ≥ 2,
there is currently no general criterion providing usable sufficient conditions for a set of
positive integers R = {r1, r2, . . .} to be good for ℓ-recurrence. In contrast, when ℓ = 1
such a criterion exists, it is a result of Kamae and Mendès-France [KaMe] that links
recurrence properties of a set R with uniform distribution properties of sequences of the
form (rnα)n∈N in T, where α is irrational (see Theorem 7.1).

In Section 7 we are seeking for a similar result for ℓ-recurrence. When ℓ = 2 it is well
understood that such a criterion should be related to stronger uniform distribution prop-
erties of “quadratic nature”, forcing at the very least good single recurrence properties
for the sequence (rn)n∈N and its sequence of squares (r2

n)n∈N. We show why a plausible
statement involving only quadratic functions of rn fails (Theorem 7.2), the reason turns
out to be that one has to also take into account generalized quadratic functions of rn,
so sequences like ([rnα]rn)n∈N where α is irrational (Lemma 7.4). Using the language of
nilsystems we state a conjecture that, if true, would provide a natural generalization of
the Kamae and Mendès-France criterion for ℓ-recurrence. In Theorem 7.5 we verify this
conjecture when the set R has positive density.

Notation: The following notation will be used throughout the article: Tf = f ◦ T ,
e(x) = e2πix, {x} = x − [x]. For a bounded numerical sequence (an)n∈N we will write
D-limn→∞(an) = 0 if one of the following equivalent properties is satisfied :
- For every ε > 0, d

(

{n : |an| > ε}
)

= 0;
- There exists E ∈ N, with d(E) = 1, such that limn→∞,n∈E an = 0;

- limN→+∞
1
N

∑N
n=1 |an| = 0.

3. Good and bad powers for sets of recurrence

In this section we will prove Theorem A′. The proof is based on the following ergodic
result:

Proposition 3.1. Let (X,B, µ, T ) be a system, f ∈ L∞(µ), h1, . . . , hs : T → C be Rie-
mann integrable functions, and β be an irrational number. If k, k1, . . . , ks are distinct
positive integers then

(3) lim
N→∞

1

N

N
∑

n=1

h1(n
k1β) · . . . ·hs(n

ksβ) ·T nk

f =

∫

h1 dt · . . . ·
∫

hs dt · lim
N→∞

1

N

N
∑

n=1

T nk

f,

5



where the convergence takes place in L2(µ).

Remark. It is well known, as a direct consequence of the spectral theorem and Weyl’s
uniform distribution theorem, that both limits exist in L2(µ).

Proof. Using a standard estimation by continuous functions from above and below2, it
suffices to check that (3) holds when h1, . . . , hs are continuous functions. Using Weier-
strass approximation theorem of continuous functions by trigonometric polynomials, and
linearity, it suffices to check the result when h1(t) = e(l1t), . . . , hs(t) = e(lst) for some
l1, . . . , ls ∈ Z. If all the li’s are zero then (3) holds trivially. So without loss of generality
we can assume that l1 6= 0. Using the spectral theorem for the unitary action T on
L2(µ), we associate to the function f a finite positive measure σf on the torus T, such
that, for any complex numbers a1, . . . , aN we have

(4)

∥

∥

∥

∥

∥

1

N

N
∑

n=1

an · T nk

f

∥

∥

∥

∥

∥

L2(µ)

=

∥

∥

∥

∥

∥

1

N

N
∑

n=1

an · e(nkt)

∥

∥

∥

∥

∥

L2(σf (t))

.

Setting an = e(l1n
k1β) · . . . · e(lsnksβ) in (4), we see that it suffices to show that

(5) lim
N→∞

∥

∥

∥

∥

∥

1

N

N
∑

n=1

e(l1n
k1β) · . . . · e(lsnksβ) · e(nkt)

∥

∥

∥

∥

∥

L2(σf (t))

= 0.

In this case, the average in (5) becomes

1

N

N
∑

n=1

e
(

l1n
k1β + . . . + lsn

ksβ + nkt
)

.

Since the integers k, k1, . . . , ks are distinct, the coefficient of nk1 is l1β, which is irrational
since β is irrational and l1 6= 0. By Weyl’s uniform distribution theorem the last average
converges to zero for every t ∈ [0, 1), which gives (5). ¤

We will also use the following result of Forrest [For] (a more general result is proved
in the Appendix of the present paper):

Theorem 3.2 (Forrest [For]). Suppose that R is a set of single recurrence. Then for
every ε > 0 there exists an N = N(ε) and δ = δ(ε) > 0, such that for every system
(X,B, µ, T ) and set A ∈ B with µ(A) ≥ ε we have

µ(A ∩ T−nA) ≥ δ

for some n ∈ R ∩ [1, N ].

Proof of Theorem A′. We first consider the case where the complement B of G is empty
or finite. If B is empty then R = N works (see [Fu2]). If B is finite then B = {b1, . . . , bs}
for some bi ∈ N. Fix an irrational number β, and for k ∈ N let

Rk = {n ∈ N : {nkβ} ∈ [1/4, 3/4]}.
We claim that the set R = Rb1 ∩ . . . ∩ Rbs

has the advertised property.

2For every ε > 0 we can find continuous functions h, h, such that h ≤ h ≤ h and
∫

(h − h) dt ≤ ε.
6



The set Rb is not good for single recurrence for b ∈ B since it is not good for recurrence
for the rotation by β on T. Now take g ∈ G. Using Proposition 3.1 we will show that
Rg is a set of single recurrence. Let (X,B, µ, T ) be a system and A ∈ B with µ(A) > 0.
Set hi = 1[1/4,3/4], ki = bi, for i = 1, . . . , s, k = b, and f = 1A in (3), then multiply by
1A and integrate with respect to µ. We get

lim
N→∞

1

N

∑

1≤n≤N,n∈R

µ(A ∩ T−ng

A) =
1

2s
lim

N→∞

1

N

N
∑

n=1

µ(A ∩ T−ng

A).

The last limit is positive (this is implicit in [Fu1] and [Fu2] and explicit in [BeLei]),
showing that Rg is a set of single recurrence.

Now we deal with the general case where the set of bad powers B is infinite. Fix s ∈ N

and let Rs =
⋂

b∈B,b≤s Rb. We showed before that (Rs)
g is a set of single recurrence for

g ∈ G. By Theorem 3.2 there exists a finite set Fs ⊂ Rs such that for g ∈ G ∩ [1, s] the
following is true: For every system (X,B, µ, T ) and every A ∈ B with µ(A) > 1/s we
have that µ(A ∩ T−nA) > 0 for some n ∈ (Fs)

g.
We claim that R =

⋃

s∈N
Fs is the set we are looking for. We first show that Rb is not

a set of single recurrence for k ∈ B. So let b be an element of B. Since R is contained
in Rb up to a finite set, and (Rb)

b is not a set of single recurrence, we conclude that
Rb is not a set of single recurrence. Suppose now that g ∈ G, it remains to show that
Rg is a set of single recurrence. Let (X,B, µ, T ) be a system and A ∈ B be such that
µ(A) > 0. Then µ(A) > 1/s for some s ∈ N with s > g. By the definition of Fs we have
that µ(A∩ T−nA) > 0 for some n ∈ (Fs)

g. Since Fs ⊂ R we conclude that Rg is a set of
single recurrence. This completes the proof. ¤

4. Background in ergodic theory

4.1. Factors in ergodic theory. Throughout the article we consider invertible measure
preserving systems (X,B, µ, T ) where the probability space (X,B, µ) is a Lebesgue space.
This classical assumption allows us to use Rokhlin’s theory of factors and disintegration.
(The basic reference here is [Ro], see also [Zim] Section 1.1, [Rud] Chapter 2, or [Wa]
Section 2.3.) These two extra assumptions are not at all restrictive for our purposes, the
reason being that the measure preserving systems constructed using the correspondence
principle of Furstenberg are invertible and Lebesgue.

A homomorphism from a system (X,B, µ, T ) onto a system (Y,D, ν, S) is a measurable
map π : X ′ → Y ′, where X ′ is a T -invariant subset of X and Y ′ is an S-invariant subset
of Y , both of full measure, such that µ ◦ π−1 = ν and S ◦ π(x) = π ◦ T (x) for x ∈ X ′.
When we have such a homomorphism we say that the system (Y,D, ν, S) is a factor of
the system (X,B, µ, T ). If the factor map π : X ′ → Y ′ can be chosen to be injective,
then we say that the systems (X,B, µ, T ) and (Y,D, ν, S) are isomorphic (bijective maps
on Lebesgue spaces have measurable inverses).

A factor can be characterized (modulo isomorphism) by the data π−1(D) which is a
T -invariant sub-σ-algebra of B, and any T -invariant sub-σ-algebra of B defines a factor;
by a classical abuse of terminology we denote by the same letter the σ-algebra D and
its inverse image by π. In other words, if (Y,D, ν, S) is a factor of (X,B, µ, T ), we think

7



of D as a sub-σ-algebra of B. A factor can also be characterized (modulo isomorphism)
by a T -invariant sub-algebra F of L∞(X,B, µ), in which case D is the sub-σ-algebra
generated by F , or equivalently, L2(X,D, µ) is the closure of F in L2(X,B, µ).

If D is a T -invariant sub-σ-algebra of B and f ∈ L2(µ), we define the conditional
expectation E(f |D) of f with respect to D to be the orthogonal projection of f onto
L2(D). We frequently make use of the identities

∫

E(f |D) dµ =

∫

f dµ, T E(f |D) = E(Tf |D).

(If we want to indicate the dependence on the reference measure, we write E = Eµ.)
For each d ∈ N, we define Kd to be the factor induced by the function algebra

{f ∈ L∞(µ) : T df = f}.
We define the rational Kronecker factor Krat to be the factor induced by the algebra
generated by the functions

{f ∈ L∞(µ) : T df = f for some d ∈ N} .

This algebra is the same as the algebra spanned by the bounded functions that satisfy
Tf = e(a) · f for some a ∈ Q.

The Kronecker factor K is induced by the algebra spanned by the bounded eigenfunc-
tions of T , that means, functions that satisfy Tf = e(a) · f for some a ∈ R.

It is known that if f is a bounded function such that Eµ(f |K(T )) = 0, then Eµ⊗µ(f ⊗
f |Krat(T × T )) = 0 (see for example [Fu2], Section 4.4).

The transformation T is ergodic if Tf = f implies that f = c (a.e.) for some c ∈ C.
Every system (X,B, µ, T ) has an ergodic decomposition, meaning that we can write µ =
∫

µt dλ(t), where λ is a probability measure on [0, 1] and µt are T -invariant probability
measures on (X,B) such that the systems (X,B, µt, T ) are ergodic for t ∈ [0, 1]. We
sometimes denote the ergodic components by Tt, t ∈ [0, 1].

We say that (X,B, µ, T ) is an inverse limit of a sequence of factors (X,Bj, µ, T ) if
(Bj)j∈N is an increasing sequence of T -invariant sub-σ-algebras such that

∨

j∈N
Bj = B

up to sets of measure zero.

4.2. Characteristic factors. Following [HoKr1], for every system (X,B, µ, T ) and func-
tion f ∈ L∞(µ), we define inductively the (functional valued) seminorms |||f |||ℓ as follows:
For ℓ = 1 we set |||f |||1 = |E(f |I)|, where I is the σ-algebra of T -invariant sets. For ℓ ≥ 2
we set

(6) |||f |||2ℓ+1

ℓ+1 = lim
N→+∞

1

N

N−1
∑

n=0

|||f · T nf |||2ℓ

ℓ .

It was shown in [HoKr1] 3 that for every integer ℓ ≥ 1, ||| · |||ℓ is a seminorm on L∞(µ) and
it defines factors Zℓ−1 = Zℓ−1(T ) in the following manner: the T -invariant sub-σ-algebra

3In [HoKr1] the authors work with ergodic systems, in which case |||f |||1 =
∣

∣

∫

f dµ
∣

∣, and real valued
functions, but the whole discussion can be carried out for nonergodic systems as well and complex valued
functions without extra difficulties.
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Zℓ−1 is characterized by

for f ∈ L∞(µ), E(f |Zℓ−1) = 0 if and only if |||f |||ℓ = 0.

If f is a bounded function such that Eµ(f |Zℓ(T )) = 0 then Eµ⊗µ(f ⊗f |Zℓ−1(T ×T )) = 0
(this is implicit in [HoKr1]). Also, if Tt where t ∈ [0, 1] are the ergodic components of
the system, then E(f |Zℓ(T )) = 0 if and only if E(f |Zℓ(Tt)) = 0 for a.e. t ∈ [0, 1].

We note that for ergodic systems the factor Z0 = I is trivial and Z1 = K. The factors
Zℓ are of particular interest because they can be used in order to study the limiting
behavior in L2 of some multiple ergodic averages.

Theorem 4.1 (Host-Kra [HoKr2], Leibman [Lei2]). Let p1, p2, . . . , ps be polynomials
with integer coefficients. There exists a nonnegative integer ℓ = ℓ(p1, p2, . . . , ps) with the
following property: If (X,B, µ, T ) is a system and f1, f2, . . . , fs ∈ L∞(X) then the limit

lim
N→+∞

1

N

N
∑

n=1

T p1(n)f1 · T p2(n)f2 · . . . · T ps(n)fs

exists in L2(µ); and it is equal to zero as long as one of the functions fi is orthogonal to
the factor Zℓ(T ).

(We say that Zℓ(T ) is a characteristic factor associated to p1, p2, . . . , ps when this last
fact is true.)

Here are some examples that will be used later:

(i) [HoKr1] If pi(n) = in, 1 ≤ i ≤ s, then ℓ(p1, p2, . . . , ps) = s − 1.
(ii) [Fr] More generally, if p is a nonconstant integer polynomial and if pi(n) =

ip(n), 1 ≤ i ≤ s, then ℓ(p1, p2, . . . , ps) = s − 1.
(iii) [FrKr2] If the polynomials p1, p2, . . . , ps are linearly independent and have zero

constant term then Krat(T ) is a characteristic factor.

Proposition 4.2. Let p1, p2, . . . , ps be a family of polynomials with integer coefficients
and Zℓ(T ) a characteristic factor associated to this family. Let (X,B, µ, T ) be a system
and f0, f1, . . . , fs ∈ L∞(X). If one of the functions fi is orthogonal to the factor Zℓ+1(T ),
then

D-lim
n→∞

∫

f0 · T p1(n)f1 · . . . · T ps(n)fs dµ = 0.

Proof. If fi is orthogonal to the factor Zℓ+1(T ), then fi ⊗ fi is orthogonal to the factor
Zℓ(T × T ), hence the averages

1

N

N
∑

n=1

∫

f0(x)f0(y)f1(T
p1(n)x)f1(T

p1(n)y) . . . fs(T
ps(n)x)fs(T

ps(n)y) dµ(x)dµ(y)

converge to zero. This can be written as

lim
N→+∞

1

N

N
∑

n=1

∣

∣

∣

∣

∫

f0 · T p1(n)f1 · . . . · T ps(n)fs dµ

∣

∣

∣

∣

2

= 0

and gives the announced convergence in density. ¤
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Similarly, we have the following result:

Proposition 4.3. Let p1, p2, . . . , ps be a family of linearly independent integer polyno-
mials with zero constant term. Let (X,B, µ, T ) be a system and f0, f1, . . . , fs ∈ L∞(X).
If one of the functions fi is orthogonal to the Kronecker factor Z1(T ), then

D-lim
n→∞

∫

f0 · T p1(n)f1 · . . . · T ps(n)fs dµ = 0.

Proof. A characteristic factor associated to the family of polynomials is Krat and if fi is
orthogonal to the factor Z1(T ), then fi ⊗ fi is orthogonal to the factor Krat(T ×T ). The
same argument as in the preceding proof applies. ¤

4.3. Nilsystems. We will now define a class of systems of purely algebraic structure that
will be crucial for our study. Given a topological group G, we denote the identity element
by e and we let G0 denote the connected component of e. If A,B ⊂ G, then [A,B] is
defined to be the subgroup generated by elements of the form {[a, b] : a ∈ A, b ∈ B}
where [a, b] = aba−1b−1. We define the commutator subgroups recursively by G1 = G
and Gℓ+1 = [G,Gℓ]. A group G is said to be ℓ-step nilpotent if its (ℓ + 1) commutator
Gℓ+1 is trivial. If G is an ℓ-step nilpotent Lie group and Γ is a discrete cocompact
subgroup, then the compact space X = G/Γ is said to be an ℓ-step nilmanifold. The
group G acts on G/Γ by left translation where the translation by a fixed element a ∈ G
is given by Ta(gΓ) = (ag)Γ. Let m denote the unique probability measure on X that is
invariant under the action of G by left translations (called the Haar measure) and let
G/Γ denote the Borel σ-algebra of G/Γ. Fixing an element a ∈ G, we call the system
(G/Γ,G/Γ, m, Ta) an ℓ-step nilsystem.

Nilsystems play a central role in our study because they provide a sufficient class
for verifying several multiple recurrence results for general measure preserving systems.
In fact when one deals with “polynomial recurrence” this is usually a consequence of
Theorem 4.1 and the following result of Host and Kra (a closely related result was
subsequently proved by Ziegler ([Zie])):

Theorem 4.4 (Host & Kra [HoKr1]). Let (X,B, µ, T ) be a system. Then for every
ℓ ∈ N the factor Zℓ(T ) is an inverse limit of ℓ-step nilsystems.

Fundamental properties of nilsystems, related to our discussion, were studied in [AGHah],
[Parry], [Les2], and [Lei1]. Below we summarize some facts that we shall use, all the
proofs can be found in [Lei1].

If H is a closed subgroup of G and x ∈ X then Hx may not be a closed subset of X
(take X = R/Z, x = Z, and H = {k

√
2: k ∈ Z}), but if Hx is closed in X then the

compact set Hx can be given the structure of a nilmanifold. More precisely, if x = gΓ
and Hx is closed, we have Hx ≃ H/∆ where ∆ = H ∩ gΓg−1, and h 7→ hgΓ induces the
isomorphism from H/∆ onto Hx. We call any such set a sub-nilmanifold of X.

Let (X = G/Γ,G/Γ,m, Ta) be an ergodic nilsystem. The subgroup 〈G0, a〉 projects to
an open subset of X that is invariant under a. By ergodicity this projection equals X.
Hence, X = 〈G0, a〉/Γ′ where Γ′ = Γ∩〈G0, a〉. Using this representation of X for ergodic
nilsystems, we have that G is generated by G0 and a. From now on, when we work with
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an ergodic nilsystem, we will freely assume that this extra hypothesis is satisfied, and so
for example we can assume that the commutator subgroups Gℓ are connected for ℓ ≥ 2
([Les2]).

4.4. Uniform distribution properties in nilmanifolds. If G is a nilpotent Lie group,
a1, . . . , as ∈ G, and p1, . . . , ps are integer polynomials N → Z, then a sequence of the

form g(n) = a
p1(n)
1 a

p2(n)
2 · · · a

ps(n)
s is called a polynomial sequence in G. In the sequel

we need to establish various uniform distribution properties of polynomial sequences on
nilmanifolds. The next result will simplify our task:

Theorem 4.5 (Leibman [Lei1]). Let X = G/Γ be a nilmanifold and g(n) be a poly-
nomial sequence in G. Define Z = G/([G0, G0]Γ) and let πZ : X → Z be the natural
projection. Then for every x ∈ X:

(i) There exist xi ∈ X and connected sub-nilmanifolds Yi = Hxi of X, 1 ≤ i ≤ t, where

H is a closed subgroup of G (depending on x), such that Y = {g(n)x : n ∈ N} =
⋃t

i=1 Yi,
and for i = 1, . . . , t the sequence (g(tn + i))n∈N is uniformly distributed in Yi. If Y is
connected then t = 1.

(ii) If X is connected, then the sequence (g(n)x)n∈N is dense in X if and only if
it is uniformly distributed in X. Moreover, (g(n)x)n∈N is dense in X if and only if
(g(n)πZ(x))n∈N is dense in Z.

We remark that the groups G0 and [G0, G0] are normal subgroups of G. The group
G/[G0, G0] has the additional property that the connected component of its identity
element is Abelian. This forces every rotation on the nilmanifold Z = G/([G0, G0]Γ) to
have very special structure. More precisely, a map T : G → G is said to be affine if T (g) =
bA(g) for an endomorphism A of G and some b ∈ G. Let ℓ ∈ N; the endomorphism A,
or the affine transformation T , is said to be ℓ-step unipotent if (A − Id)ℓ = 0.

Theorem 4.6 (F. & Kra [FrKr1]). Let X = G/Γ be an ℓ-step connected nilman-
ifold with the Haar measure m such that G0 is Abelian and a ∈ G. The nilsystem
(X,G/Γ,m, Ta) is isomorphic to an ℓ-step unipotent affine transformation on some fi-
nite dimensional torus with the Haar measure. Furthermore, the conjugation can be
taken to be continuous.

5. Good and bad powers for sets of ℓ-recurrence

In this section we will prove Theorem B′, but before delving into the proof let us
motivate a bit the choice of the set R. Suppose we just want to construct a set R
that is bad for double recurrence but the set of squares of its elements R2 is good for
double recurrence. In view of Proposition 5.1 below, it makes sense to take R =

{

n ∈
N : {p(n)β} ∈ [1/4, 3/4]

}

for some quadratic polynomial p, this way we guarantee that
R will be bad for double recurrence. It remains to choose the polynomial p such that the
set R2 is good for double recurrence. The obvious choice p(n) = n2 will not work since
then R2 will not even be good for single recurrence. But the choice p(n) = n2 +n will do
the job (for any irrational β ∈ R) and this will be formally shown using Proposition 5.2
below.
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5.1. Proof of main theorem modulo a multiple ergodic theorem. We shall first
establish Theorem B′ modulo an ergodic theorem that we will prove in subsequent sec-
tions. We need two preliminary results. The first is elementary and was proved in
[FrLesWi] in the special case where the polynomial p is a monomial. The same argument
gives the following more general result:

Proposition 5.1. Let R be a set of ℓ-recurrence and p be an integer polynomial with
zero constant term and deg p ≤ ℓ. Then for every α ∈ R and ε > 0 there exists r ∈ R
such that {p(r)α} ∈ [0, ε] ∪ [1 − ε, 1).

The second is a multiple ergodic theorem, its proof uses deeper results from ergodic
theory and will be given in the next section.

Proposition 5.2. Let (X,B, µ, T ) be a system, f1, . . . , fℓ ∈ L∞(µ), h1, . . . , hs : T → C be
Riemann integrable functions, and β be an irrational number. If k, k1, . . . , ks are distinct
positive integers then

lim
N→∞

1

N

N
∑

n=1

h1

(

(nℓk1 + nk1)β
)

· . . . · hs

(

(nℓks + nks)β
)

· T nk

f1 · . . . · T ℓnk

fℓ =(7)

∫

h1 dt · . . . ·
∫

hs dt · lim
N→∞

1

N

N
∑

n=1

T nk

f1 · . . . · T ℓnk

fℓ,

where the convergence takes place in L2(µ).

Remarks. (i) The limits appearing in the statement exist by [HoKr2] or [Lei2].
(ii) As it will become clear from the proof, the integer polynomials nℓk1+nk1 , . . . , nℓks +

nks can be replaced by any family of polynomials p1, . . . , ps with zero constant term
having the following property: For every nonzero polynomial p of the form p(n) =
c1n

k + c2n
2k + ... + cℓn

ℓk the set {p1, ..., ps, p} is linearly independent.

We will also need an extension of Theorem 3.2. In order to not interrupt our discussion
we state and prove the result needed in the Appendix.

Proof of Theorem B′. If G = N then by the polynomial Szemerédi theorem ([BeLei])
R = N works. If G 6= N then the complement B of G is nonempty. Let us first consider
the case where B is finite, say B = {b1, . . . , bs}, for some bi ∈ N. Fix an irrational
number β and for k ∈ N let Rk =

{

n ∈ N : {(nℓk + nk)β} ∈ [1/4, 3/4]
}

. We claim that
the set R = Rb1 ∩ . . . ∩ Rbs

has the advertised property.
Let b ∈ B. If p(n) = nℓ +n then the set p(Rb) is not good for single recurrence for the

rotation by β. It follows from Proposition 5.1 that the set Rb is not good for ℓ-recurrence.
On the other hand, let g ∈ G, (X,B, µ, T ) be a system and A ∈ B with µ(A) > 0. We
will show that Rg is good for ℓ-recurrence using Proposition 5.2. We set hi = 1[1/4,3/4],
ki = bi, for i = 1, . . . , s, and fi = 1A for i = 1, . . . , ℓ in (7), then multiply by 1A and
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integrate with respect to µ. We get

lim
N→∞

1

N

∑

1≤n≤N,n∈R

µ(A ∩ T−ng

A ∩ . . . ∩ T−ℓng

A) =

1

2s
lim

N→∞

1

N

N
∑

n=1

µ(A ∩ T−ng

A ∩ . . . ∩ T−ℓng

A).

Using the polynomial extension of Szemerédi’s theorem ([BeLei]) we get that the last
limit is positive, proving that Rg is a set of ℓ-recurrence.

The case where the set of bad powers B is infinite is treated as in the proof of Theo-
rem A′. We use the finite case and Theorem 8.2. ¤

5.2. Proof of the multiple ergodic theorem. In order to prove Proposition 5.2 we
will use a “reduction to affine” technique. The first step is a reduction to nil-systems
and is based on Theorems 4.1 and 4.4. Next we show that it suffices to check the result
for a particular class of nilsystems, namely, for unipotent affine transformations on finite
dimensional tori (the reduction is done in the course of proving Lemma 5.4). Lastly, we
verify the result for such transformations (the main ingredient is Lemma 5.3).

We now execute our plan.

Lemma 5.3. Let T be an ℓ-step unipotent affine transformation acting on some finite
dimensional torus Td, β be an irrational number, and k, k1, . . . , ks ∈ N be distinct for
some s ∈ N. Then for every x ∈ Td and functions f ∈ C(Td), h1, . . . , hs ∈ C(T) we
have

lim
N→∞

1

N

N
∑

n=1

h1

(

(nℓk1 + nk1)β
)

· . . . · hs

(

(nℓks + nks)β
)

· f(T nk

x) =(8)

∫

h1 dt · . . . ·
∫

hs dt · lim
N→∞

1

N

N
∑

n=1

f(T nk

x).

Proof. Without loss of generality we can assume that k1 < k2 < . . . < ks. Arguing as
in the proof of 3.1, it suffices to check (8) when f(x) = χ(x) is a character of Td and
h1(t) = e(c1t), . . . , hs(t) = e(cst), where c1, . . . , cs ∈ Z. Equivalently, we need to show
that if one of the ci’s is nonzero then for every x ∈ Td we have

(9) lim
N→∞

1

N

N
∑

n=1

e
(

(c1(n
ℓk1 + nk1) + . . . + cs(n

ℓks + nks))β
)

· χ(T nk

x) = 0.

Let imin be the minimum i ∈ {1, . . . , s} such that ci 6= 0 and imax be the maximum
i ∈ {1, . . . , s} such that ci 6= 0. Notice that since the affine transformation T is ℓ-
step nilpotent, by the definition of matrix multiplication the coordinates of T nx are
polynomials in n of degree at most ℓ. Hence,

χ(T nk

x) = e(q(nk))

for some real valued polynomial q (depending on x) with deg q ≤ ℓ. We denote p(n) =
q(nk). Consider two cases:
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Case 1. Suppose that kimin
< k. Notice that the non-constant terms of the polynomial

p have degree greater or equal to k. Therefore, in (9) we are averaging a sequence of
the form e(P (n)) for some polynomial P that has a nonconstant irrational coefficient
(namely the coefficient of nkimin ). By Weyl’s uniform distribution theorem ([We]) this
average must converge to zero.

Case 2. Suppose that kimin
> k. Since deg p ≤ ℓk, in (9) we are again averaging a

sequence of the form e(P (n)) for some polynomial P that has a nonconstant irrational
coefficient (namely the coefficient of nℓkimax ). We conclude by Weyl’s uniform distribution
theorem that this average must converge to zero. ¤

Lemma 5.4. Let (X = G/Γ,G/Γ, m, Ta) be an ℓ-step nilsystem, x ∈ X, β be an ir-
rational number, and k, k1, . . . , ks be distinct positive integers for some s ∈ N. Let
g(n) =

(

(nℓk1 + nk1)β, . . . , (nℓks + nks)β, ank

x
)

. Then the sequence (g(n))n∈N has an as-
ymptotic distribution of the form λ ⊗ ρ where λ is the Lebesgue measure on Ts and ρ is
the asymptotic distribution of the sequence

(

ank

x
)

n∈N
in X.

Proof. Let us denote Y = {ankx : n ∈ N}. Suppose first that the set Y is connected. It
follows from part (i) of Theorem 4.5 and the discussion in Section 4.3 that Y is isomorphic
to a connected sub-nilmanifold H/∆ of X, so we can assume that Y = H/∆.

We need to show that (g(n))n∈N is uniformly distributed on the nilmanifold Ts×Y . By
part (ii) of Theorem 4.5 it suffices to show that the sequence

((

(nℓk1 +nk1)β, . . . , (nℓks +

nks)β, ank

πZ(x)
))

n∈N
is uniformly distributed on Ts × Z where Z = H/([H0, H0]∆) and

πZ : Y → Z is the natural projection. Substituting H/[H0, H0] for H we can assume that
Z = H/∆ where H0 is Abelian. Since Z is connected and H0 is Abelian, by Theorem 4.6
we can assume that Ta, acting on Z, is an ℓ-step unipotent affine transformation on some
finite dimensional torus. In this case the result follows from Lemma 5.3.

In the general case we argue as follows: By part (i) of Theorem 4.5 we have Y =

∪t
i=1Yi where Yi are connected subnilmanifolds of X such that Yi = {a(tn+i)kx : n ∈ N}

for i = 0, . . . , t−1. Applying the previous argument (coupled with the analogous version
of Lemma 5.3) we get that for i = 0, . . . , t − 1 the sequence (g(tn + i))n∈N is uniformly
distributed on the set Ts×Yi. We obtain the announced result with ρ being the arithmetic
mean of the uniform probabilities on the Yi’s. ¤

Proof of Proposition 5.2. First notice that using an ergodic decomposition argument
we can assume that the system is ergodic. Since both limits in (7) exist (see [HoKr2],
[Lei2]), it suffices to show that identity (7) holds weakly, that means, for f0, . . . , fℓ ∈
L∞(µ), and Riemann integrable functions h1, . . . , hs : T → C we have

lim
N→∞

1

N

N
∑

n=1

h1

(

(nℓk1 + nk1)β
)

· . . . · hs

(

(nℓks + nks)β
)

·
∫

f0 · T nk

f1 · . . . · T ℓnk

fℓ dµ =

(10)

∫

h1 dt · . . . ·
∫

hs dt · lim
N→∞

1

N

N
∑

n=1

∫

f0 · T nk

f1 · . . . · T ℓnk

fℓ dµ,
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If fi⊥Zℓ for some i ∈ {0, 1, . . . , ℓ}, then by Proposition 4.2 and Example (ii) after
Theorem 4.1, both limits in (10) are zero. So we can assume that fi ∈ Zℓ for all
i ∈ {0, 1, . . . , ℓ}. By [HoKr1], we know that the factor Zℓ is isomorphic to an inverse
limit of ℓ-step nilsystems. Moreover, using a standard approximation argument we reduce
our study to the case where the system is an ℓ-step nilsystem, say (X = G/Γ,G/Γ,m, Ta)
for some a ∈ G. Hence, (10) would follow if we show that for every x ∈ X the sequence
((

(nℓk1 + nk1)β, . . . , (nℓks + nks)β, ank

x, . . . , aℓnk

x
))

n∈N
has an asymptotic distribution

in Ts × Xℓ of the form λ ⊗ ρ, where λ is the Lebesgue measure on Ts and ρ is the
asymptotic distribution of the sequence

(

ank

x, . . . , aℓnk

x
)

n∈N
in Xℓ. But this follows

from Lemma 5.4 applied to the nilsystem induced by the rotation by b = (a, a2, . . . , aℓ)
on the ℓ-step nilmanifold Xℓ for the diagonal point (x, x, . . . , x) ∈ Xℓ. ¤

5.3. Related results and questions. We discuss here some possible variations on
Theorems B and B′. We have shown that if G is a prescribed set of integers then there
exists R ⊂ N such that the set Rg is good for ℓ-recurrence for all g ∈ G, and Rb is
bad for ℓ-recurrence for b ∈ B = N \ G. A natural question is whether it is possible to
strengthen this result and make Rb have bad 1-recurrence properties? In several cases
this can be done, but there are some limitations too. For example, if Rg is good for
ℓ-recurrence then the set Rkg, k = 1, . . . ℓ, is good for 1-recurrence for all circle rotations
(see Proposition 5.1). We can show that this is actually the only restriction.

Theorem 5.5. Let G ⊂ N and ℓ : G → N. If B = N \ G then the condition

B ∩ kG = ∅, for 1 ≤ k ≤ ℓ(g)

is necessary and sufficient for the existence of a set R ⊂ N such that

• for all g ∈ G, the set Rg is good for ℓ(g)-recurrence,
• for all b ∈ B, the set Rb is bad for recurrence for some circle rotation.

The proof is analogous to the proof of Theorem B′ so we are just going to sketch it. If
B is finite, say B = {b1, b2, . . . , bs}, we fix an irrational number β and define R to be the
intersection of the sets

{

n ∈ N : {nbiβ} ∈ [1/4, 3/4]
}

for i = 1, . . . , s. Then for b ∈ B the

set Rb is obviously bad for the 1-recurrence for rotation by β. To show that Rg is good
for ℓ(g)-recurrence when g ∈ G, we study the limiting behavior of the following multiple
ergodic averages:

1

N

N
∑

n=1

h1(n
b1β) · . . . · hs(n

bsβ) · f(T ng

x) · f(T 2ng

x) · . . . · f(T ℓ(g)ng

x).

We can establish an ergodic theorem analogous to Proposition 5.2 using a minor mod-
ification of the argument used in Section 5.2, showing that the set Rg is good for ℓ(g)-
recurrence. The case where B is infinite can be treated using the finite case and Theo-
rem 8.2, much like it was done in the proof of Theorem A′.

As we remarked before, if R is a set of 2-recurrence then R2 is a set of recurrence
for circle rotations. The same method shows that it is actually a set of recurrence for
rotations on any multidimensional torus. But is R2 necessarily a set of 1-recurrence?
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Question 1. If R ⊂ Z is a set of 2-recurrence, is it true that R2 = {r2 : r ∈ R} is a set
of 1-recurrence?

Another closely related question is the following (a similar question was asked in
[BrGrLa]):

Question 2. If R ⊂ Z is a set of ℓ-recurrence for every ℓ ∈ N, is the same true for the
set R2 = {r2 : r ∈ R}?

Theorem B′ is a model for a variety of multiple recurrence results one may attempt
to prove. For example, the following question is related to a plausible generalization of
Theorem B′:

Question 3. Let p1, . . . , pℓ be a family of integer polynomials with zero constant term
and G be a set of positive integers. Does there exist a set R ⊂ N such that: for all k ∈ N,
the set Rk = {rk : r ∈ R} is good for recurrence along the sequence (p1(n), . . . , pℓ(n)) if
and only if k ∈ G?

We are unable to give a positive answer because we lack detailed information about
the limiting behavior of multiple ergodic averages along general polynomial schemes.

6. Good and bad powers for sets of (na1 , . . . , naℓ)-recurrence

We begin by a multiple ergodic theorem that will be used in the proof of Theorem C.
We remind the reader that the set Aℓ consists of all ℓ-tuples (a1, a2, . . . , aℓ) ∈ Nℓ such
that a1 < a2 < . . . < aℓ.

Proposition 6.1. Let (X,B, µ, T ) be an ergodic system, f1, . . . , fℓ ∈ L∞(µ), h1, . . . , hs : T →
C be Riemann integrable functions. Furthermore let (a1,1, . . . , a1,ℓ), . . ., (as,1, . . . , as,ℓ),
(b1, . . . , bℓ)∈ Aℓ be distinct vectors, and suppose that the real numbers 1, α1, . . . , αs are
rationally independent. If pi(n) = nai,1 + . . . + nai,ℓ for i = 1, . . . , s, then

lim
N→∞

1

N

N
∑

n=1

h1

(

p1(n)α1

)

· . . . · hs

(

ps(n)αs

)

· T nb1f1 · . . . · T nbℓfℓ =(11)

∫

h1 dt · . . . ·
∫

hs dt · lim
N→∞

1

N

N
∑

n=1

T nb1f1 · . . . · T nbℓ fℓ,

where the convergence takes place in L2(µ).

Remark. Both limits exist by [HoKr2] and [Lei2].

Proof. First notice that using an ergodic decomposition argument we can assume that
the system is ergodic. Since the limits in (11) exist, it suffices to show that identity (11)
holds weakly, that means, for f0, f1, . . . , fℓ ∈ L∞(µ), and Riemann integrable functions

16



h1, . . . , hs : T → C we have

lim
N→∞

1

N

N
∑

n=1

h1

(

p1(n)α1

)

· . . . · hs

(

ps(n)αs

)

·
∫

f0 · T nb1f1 · . . . · T nbℓ fℓ dµ =(12)

∫

h1 dt · . . . ·
∫

hs dt · lim
N→∞

1

N

N
∑

n=1

∫

f0 · T nb1f1 · . . . · T nbℓfℓ dµ.

If fi⊥K for some i ∈ {0, 1, . . . , ℓ} then by Proposition 4.3 both limits in (12) are zero. So
we can assume that fi ∈ K for all i ∈ {0, 1, . . . , ℓ}. Every Kronecker system is isomorphic
to a rotation on a monothetic compact Abelian group with the Haar measure, and any
such group is the inverse limit of groups of the form Tk × Zd for some nonnegative
integers k, d. Hence, using a standard approximation argument we can furthermore
assume that our system is a rotation on Tk × Zd with the Haar measure m, and also
that fi(x) = χi(x), i = 0, 1, . . . , ℓ, for some characters χ0, χ1, . . . , χℓ of Tk × Zd, and
hi(t) = e(lit), i = 1, . . . , s, for some l1, . . . , ls ∈ Z. If li = 0 for i = 1, . . . , s then
(12) is obvious. If this is not the case, without loss of generality we can assume that
l1 6= 0. Then the right hand side of (12) is zero. Furthermore, notice that the integral
∫

χ0 ·T nb1χ1 · . . . ·T nbℓχℓ dm is either zero or has the form e(nb1β1 + . . .+nbℓβℓ) for some
β1, . . . , βℓ ∈ R. Keeping in mind these two facts, we see that in order to verify (12) it
suffices to show that

(13) lim
N→∞

1

N

N
∑

n=1

e(l1p1(n)α1 + . . . + lsps(n)αs + nb1β1 + . . . + nbℓβℓ) = 0.

Since (a1,1, . . . , a1,ℓ) and (b1, . . . , bℓ) are distinct vectors in Aℓ, there exists j ∈ {1, . . . , ℓ}
such that a1,j 6= bi for every i ∈ {1, . . . , ℓ}. Then the coefficient γ of na1,j in (13) is equal
to l1α1 plus an integer linear combination of the numbers α2, . . . , αs. Since l1 6= 0 and
the numbers 1, α1, α2, . . . , αs are rationally independent it follows that γ is nonzero. By
Weyl’s uniform distribution theorem ([We]) we conclude that (13) is satisfied, completing
the proof. ¤

We will also use the following simple lemma:

Lemma 6.2. If R is a set of recurrence along the sequence (na1 , . . . , naℓ) then for every
α ∈ R and ε > 0 there exists r ∈ R such that {(ra1 + . . . + raℓ)α} ∈ [0, ε] ∪ [1 − ε, 1).

Proof. Consider the system induced by the rotation by α on T with the Haar measure,
and let A = [0, ε/ℓ]. Our assumption easily implies that there exists r ∈ R such that
{ra1α}, . . . , {raℓα} ∈ [0, ε/ℓ] ∪ [1 − ε/ℓ, 1). The result follows. ¤

Proof of Theorem B. If G = Aℓ the polynomial Szemerédi theorem ([BeLei]) shows that
R = N works. So we can assume that G 6= Aℓ. Suppose first that the nonempty set
B = Aℓ \ G is finite and consists of the vectors (b1,1, . . . , b1,ℓ), . . ., (bs,1, . . . , bs,ℓ). Let

R =
{

n ∈ N : {p1(n)α1}, . . . , {ps(n)αs} ∈ [1/4, 3/4]
}
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where pi(n) = nbi,1 + . . . + nbi,ℓ , i = 1, . . . , ℓ, and 1, α1, . . . , αs ∈ R are rationally inde-
pendent. We claim that R is a set of recurrence along the sequence (na1 , . . . , naℓ) if and
only if (a1, . . . , aℓ) ∈ G.

Let (bi,1, . . . , bi,ℓ) ∈ B. Since {pi(n)αi} ∈ [1/4, 3/4] for every n ∈ R, we get by
Lemma 6.2 that R is not a set of recurrence along the sequence (nbi,1 , . . . , nbi,ℓ). We will
now use Proposition 6.1 to show that if (g1, . . . , gℓ) ∈ G then R is a set of recurrence along
the sequence (ng1 , . . . , ngℓ). Let (X,B, µ, T ) be a system, and A ∈ B with µ(A) > 0. Set
hi = 1[1/4,3/4] for i = 1, . . . , s, and fi = 1A for i = 1, . . . , ℓ in (11), multiply by 1A and
integrate with respect to µ. We find that

lim
N→∞

1

N

∑

1≤n≤N,n∈R

µ(A ∩ T−ng1A ∩ . . . ∩ T−ngℓA) =

1

2s
lim

N→∞

1

N

N
∑

n=1

µ(A ∩ T−ng1A ∩ . . . ∩ T−ngℓ A).

By the polynomial extension of Szemerédi’s Theorem ([BeLei]) we have that the last
limit is positive, proving that R is a set of recurrence along the sequence (ng1 , . . . , ngℓ).

The case where B is infinite is treated as in the proof of Theorem A′ using the finite
case and Theorem 8.2. ¤

7. Powers of sequences and sufficient conditions for ℓ-recurrence

Useful sufficient conditions for a given set of integers R to be good for single recurrence
were given in [KaMe]4. Our objective in this section is to discuss analogous sufficient
conditions for higher order recurrence.

7.1. Sufficient conditions for single recurrence. We first prove a single recurrence
result, similar to the one given in [KaMe], that will serve as a prototype for the higher
order statement we have in mind. The argument is very similar to the one used by
Furstenberg ([Fu2]) to prove that the set of squares is good for single recurrence.

Theorem 7.1 (Kamae & Mendès-France [KaMe]). Let (rn)n∈N be sequence of positive
integers that satisfies
(i) The sequence (rnα)n∈N is uniformly distributed in T for every irrational α.
(ii) The set {n ∈ N : d|rn} has positive upper density for every d ∈ N.
Then the set R = {r1, r2, . . .} is good for single recurrence.

Proof. We first use assumption (i) to show the following: If (X,B, µ, T ) is a system and
f ∈ L∞(µ) is such that E(f |Krat) = 0 then

(14) lim
N→∞

1

N

N
∑

n=1

∫

f̄ · T rnf dµ = 0.

4In [KaMe] it is shown that a set R ⊂ N is good for recurrence if for every d ∈ N there exists a
sequence (rd,n)n∈N with values in the set Rd = {r ∈ R : d!|r} such that the sequence (rd,nα)n∈N is
uniformly distributed (mod 1) for every irrational number α.
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Let σf be the spectral measure of the function f with respect to our system. Then the
limit in (14) is equal to

(15) lim
N→∞

1

N

N
∑

n=1

∫

[0,1)

e(rnt) dσf (t) =

∫

[0,1)

(

lim
N→∞

1

N

N
∑

n=1

e(rnt)
)

dσf (t).

Since by assumption

lim
N→∞

1

N

N
∑

n=1

e(rnt) = 0

for t irrational and the measure σf has no rational point masses (since E(f |Krat) = 0),
the limit in (15) is zero and (14) follows.

Next we use (14) and assumption (ii) to finish the proof. Let A ∈ B with µ(A) > 0.
Setting f = 1A − E(1A|Krat) in (14) we find that

lim
N→∞

( 1

N

N
∑

n=1

µ(A ∩ T−rnA) − 1

N

N
∑

n=1

∫

E(1A|Krat) · T rnE(1A|Krat) dµ
)

= 0.

Hence, it suffices to show that

(16) lim sup
N→∞

1

N

N
∑

n=1

∫

E(1A|Krat) · T rnE(1A|Krat) dµ > 0.

To see this, let ε > 0 (to be determined later), and choose d ∈ N such that

‖E(1A|Kd) − E(1A|Krat)‖L2(µ) ≤ ε.

Let R∩ dN = {t1, t2, . . .}. Since by assumption the set {n ∈ N : d|rn} has positive upper
density, in order to show (16) it suffices to show that

(17) lim inf
N→∞

1

N

N
∑

n=1

∫

E(1A|Krat) · T tnE(1A|Krat) dµ > 0.

Using the triangle inequality twice we see that the limit in (17) is greater or equal than

lim inf
N→∞

1

N

N
∑

n=1

∫

E(1A|Kd) · T tnE(1A|Kd) dµ − 2ε.

For g ∈ Kd and n ∈ N we have T tng = g, hence the last expression is equal to
∫

E(1A|Kd)
2 dµ − 2ε.

Finally, since
∫

E(1A|Kd)
2 dµ ≥ µ(A)2, we see that it suffices to choose ε < µ(A)2/2 in

order to obtain (17). This completes the proof. ¤

Using standard estimates on exponential sums one can use Theorem 7.1 to deduce
some well known results (see [Sa]), for example that the set of squares {n2 : n ∈ N} and
the set of shifted primes {p− 1: p prime} are good for single recurrence. See [BeLes] for
a stronger version of the preceding result and several other applications.
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7.2. A counterexample for double recurrence. As stated in Proposition 5.1, double
recurrence for a set R forces nontrivial single recurrence properties for sets of the form
p(R) where p is any quadratic integer polynomial with zero constant term. So in order
to extend Theorem 7.1 to double recurrence, one is lead to consider uniform distribution
properties of “quadratic nature” as possible substitutes for condition (i) of Theorem 7.1.
We first show why the term “quadratic nature” cannot be characterized using standard
quadratic polynomials only.

Theorem 7.2. There exists a sequence of positive integers (rn)n∈N that satisfies:
(i) If either γ or δ is irrational then the sequence (r2

nγ + rnδ)n∈N is uniformly distributed
in T.
(ii) The set {n ∈ N : d|rn} has density for every d ∈ N.
(iii) The set R = {r1, r2, . . .} is not good for double recurrence.

In order to prove Theorem 7.2 we need two preparatory lemmas. The first one is
proven in [H̊al] using van der Corput’s inequality and some elementary manipulations of
the resulting exponential sums. It shows that some simple generalized quadratic sequence
is asymptotically orthogonal to standard quadratic sequences.

Lemma 7.3. Suppose that 1, α, β are rationally independent real numbers. Then for
every real valued polynomial p with deg p ≤ 2 we have

lim
N→∞

1

N

N
∑

n=1

e([nα]nβ + p(n)) = 0.

The next result has similar context with Proposition 5.1, it strengthens the single
recurrence properties that we can deduce when we know that a set is good for double
recurrence.

Lemma 7.4. Suppose that 1, α, β are rationally independent real numbers. If R is a
set of double recurrence then for every ε > 0 there exists nonzero r ∈ R such that
{[rα]rβ} ∈ [0, ε] ∪ [1 − ε, 1).

Remark. The conclusion actually holds for every α, β ∈ R but we will not use this.

Proof. Let 0 < ε < 1 and β′ = β/4. From Lemma 7.3 and Weyl’s criterion for uniform
distribution it follows that the sequence ([nα]nβ′, nβ′) is uniformly distributed in T2. As
a result, the set

Λ =
{

n ∈ N : {[nα]nβ′} and {nβ′} ∈ [0, ε/4]
}

has positive density. Since R is a set of double recurrence and Λ has positive density,
there exist m ∈ N and nonzero r ∈ R such that m,m + r,m + 2r ∈ Λ. Then

(18) {mβ′}, {(m + r)β′}, {(m + 2r)β′} ∈ [0, ε/4],

and if

A = {[mα]mβ′}, B = {[(m + r)α](m + r)β′}, C = {[(m + 2r)α](m + 2r)β′}.
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we have that A, B, C ∈ [0, ε/4]. Using the identity [a+ b] = [a] + [b] +1{a}+{b}>1(a, b) we
get that

A + C − 2B =[mα]mβ′ + ([mα] + 2[rα] + e1 + e2)(m + 2r)β′−(19)

2([mα] + [rα] + e3)(m + r)β′ (mod 1)

=4[rα]rβ′ + (e1 + e2)(m + 2r)β′ − 2e3(m + r)β′ (mod 1)

for some e1, e2, e3 ∈ {0, 1}. Since {A + C − 2B} ∈ [0, ε/2] ∪ [1 − ε/2, 1) and {(e1 +
e2)(m + 2r)β′ − 2e3(m + r)β′} ∈ [0, ε/2] ∪ [1 − ε/2, ) (by (18)), equation (19) gives that
{4[rα]rβ′} ∈ [0, ε] ∪ [1− ε, 1). Keeping in mind that 4β′ = β, the proof is complete. ¤

Proof of Theorem 7.2. Let α and β be two real numbers such that 1, α and β are
rationally independent. We claim that the set R =

{

n ∈ N : {[nα]nβ} ∈ [1/4, 3/4]
}

has
the advertised properties. First notice that by Lemma 7.3 the sequence ([nα]nβ)n∈N is
uniformly distributed in T, so we deduce that d(R) = 1/2.

We verify (i). Since the sequence (n2γ + nδ)n∈N is uniformly distributed in T, using
Weyl’s criterion and Lemma 7.3 we can easily derive that the sequence

(

([nα]nβ, n2γ +

nδ)
)

n∈N
is uniformly distributed in T2. It follows that for nonzero integers k we have

lim
N→∞

1

N

N
∑

n=1

1[1/4,3/4]({[nα]nβ}) · e
(

k(n2γ + nδ)
)

= 0.

Since d(R) = 1/2 this gives for nonzero integers k that

lim
N→∞

1

N

N
∑

n=1

e
(

k(r2
nγ + rnδ)

)

= 0.

Hence, the sequence (r2
nγ + rnδ)n∈N is uniformly distributed in T.

Next we verify (ii). Using Lemma 7.3 we can show as in the proof of (i) that

lim
N→∞

1

N

N
∑

n=1

1[1/4,3/4]({[nα]nβ}) · e(np/q) = 0

for every noninteger rational number p/q. It follows that the set R is uniformly dis-
tributed in arithmetic progressions, a statement stronger than (ii).

Finally we verify (iii). By construction, for every r ∈ R we have {[rα]rβ} ∈ [1/4, 3/4].
Hence, Lemma 7.4 shows that R is not a set of double recurrence, completing the proof.

¤

7.3. Conjecture for ℓ-recurrence. The discussion in the previous section indicates
that in order to give necessary conditions for double recurrence, uniform distribution
properties in T of generalized quadratic sequences of the form ([rnα]rnβ)n∈N should also
be taken into account. In the same manner, higher order recurrence forces us to look
for uniform distribution properties involving more complicated generalized polynomials,
the general form of which we will not attempt to spell out. It has become apparent
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in recent years5 that a more efficient way to encode all these conditions is to work in
a non-Abelian setup, and look into uniform distribution properties of linear sequences
on nilmanifolds. Using this language, we can formulate what we think is a natural
generalization of the result of Kamae & Mendès-France (Theorem 7.1), and thus state
some potentially sufficient conditions for ℓ-recurrence in a very condense form.

Firstly, we need to extend the notion of an irrational rotation on T to general connected
nilmanifolds: Given a connected nilmanifold X = G/Γ, an irrational nilrotation in X is
an element a ∈ G such that the sequence (anΓ)n∈N is uniformly distributed on X. We
remark that if a ∈ G is irrational nilrotation then ad is irrational for every d ∈ N.

Conjecture I. Let (rn)n∈N be sequence of positive integers that satisfies:
(i) For every connected ℓ-step nilmanifold X and every irrational nilrotation a in X the
sequence (arnΓ)n∈N is uniformly distributed in X.
(ii) The set {n ∈ N : d|rn} has positive upper density for every d ∈ N.
Then the set R = {r1, r2, . . .} is good for ℓ-recurrence.

Notice that for ℓ = 1 the conjecture is true since it easily reduces to Theorem 7.1. It
can be shown that conditions (i) and (ii) are satisfied for nonconstant polynomials with
zero constant term (see [Fr]), and recent work of Green and Tao (see [GT1] and [GT2])
indicates that they are probably satisfied for the set of shifted primes {p − 1: p prime}
(the shift is needed only for condition (ii)).

For ℓ = 2 the definition of multiplication on a 2-step nilpotent group is simple enough
to find it beneficial to rewrite condition (i) in coordinates, much like it is done in
the Appendix B of [GT1]. One is then led to consider uniform distribution prop-
erties involving generalized quadratics, that means, functions p : R → R of the form
p(t) =

∑k
i=1[αit]βit + γt2 + δt + c where αi, βi, γ, δ, c ∈ R for i = 1, . . . , k. We say that a

generalized quadratic is irrational if the sequence (p(n))n∈N is uniformly distributed in
T.

Conjecture II. Let (rn)n∈N be a sequence of positive integers that satisfies:
(i) The sequence (p(rn))n∈N is uniformly distributed in T for every irrational generalized
quadratic p.
(ii) The set {n ∈ N : d|rn} has positive upper density for every d ∈ N.
Then the set R = {r1, r2, . . .} is good for double recurrence.

7.4. Proof of conjecture for positive density sets. To add credibility to the previous
conjectures we will verify Conjecture I in a special case.

Theorem 7.5. Conjecture I holds if d(R) > 0.

Remark. Our argument can actually be used to verify Conjecture I for any sequence
(rn)n∈N for which the nilfactor Zℓ turns out to be characteristic for the multiple ergodic
averages related to the family {rn, 2rn, . . . , ℓrn}.

We first prove a lemma that will help us deal with systems that have nontrivial “pe-
riodic part”.

5See for example [GT1], [GT2], where a similar problem arises in the study of asymptotics of ℓ-term
arithmetic progressions in the prime numbers.
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Lemma 7.6. Let d ∈ N and (Nk)k∈N be an increasing sequence of positive integers.
Suppose that (rn)n∈N is a sequence of positive integers that satisfies:
(i) For every connected ℓ-step nilmanifold X and every irrational nilrotation a in X the
sequence (arnΓ)n∈N is uniformly distributed in X with respect to the intervals [1, Nk].
(ii) The set Id = {n ∈ N : d|rn} has positive density with respect to the sequence of
intervals [1, Nk].
Then the subsequence (rn)n∈Id

also satisfies property (i).

Proof. Let m denote the Haar measure on X. It suffices to show that for every connected
ℓ-step nilmanifold and irrational nilrotation a ∈ X we have

(20) lim
Nk→∞

1

|Id ∩ Nk|
∑

n∈Id∩[1,Nk]

f(arnΓ) =

∫

f dm

for all f ∈ C(X).
We will prove (20) by induction on ℓ. For ℓ = 1 we are reduced to the Abelian case

and the proof is easy (if not, look at the proof of the inductive step). Suppose that
the statement holds for all connected (ℓ − 1)-step nilmanifolds, and let X = G/Γ be a
connected ℓ-step nilmanifold and a ∈ G be an irrational nilrotation in X.

We start with a reduction. Since G is ℓ-step nilpotent, the subgroup Γℓ = Gℓ ∩ Γ is
normal in G. So G/Γℓ is a group and X = (G/Γℓ)/(Γ/Γℓ). Using this representation for
X we can assume that Γℓ = {e} and so Gℓ is a compact Abelian Lie group. Since Gℓ is
connected if ℓ ≥ 2 (see discussion at the end of Section 4.3) we can further assume that
it is some finite dimensional torus.

By F we denote the set of g ∈ C(X) with the following property: there exists a
character χ of the torus Gℓ such that for every b ∈ Gℓ we have g(bx) = χ(b) · g(x) for
every x ∈ X. It follows from [Les1] (see the proof of Proposition on page 121) that linear
combinations of functions in F form a dense subset of C(X). So it suffices to verify (20)
for functions in F .

Let g ∈ F . If the character χ defined before is trivial then g is Gℓ-invariant and so
it factors through the connected (ℓ − 1)-step nilmanifold (G/Gℓ)/(Γ/Γℓ). Applying the
induction hypothesis we get that (20) holds for g in place of f .

Suppose now that there exists a nontrivial character χ of Gℓ such that g(bx) = χ(b) ·
g(x) for x ∈ X. Integrating this equation with respect to x and using that x 7→ bx is
measure preserving gives

∫

g dm = 0. So it suffices to show that the limit in (20) is zero
when g takes the place of f . Since Gℓ is a torus there exists ed ∈ Gℓ such that ed

d = 1

and ej
d 6= 1 for j = 1, . . . d − 1, where 1 is the identity element in Gℓ.

Since a is an irrational nilrotation, for every j ∈ N, the sequence (aj+ndΓ)n∈N is
uniformly distributed in X. It follows that for j = 1, . . . , d, the nilrotations bj = a · ej

d

are also irrational on X. So condition (i) gives that

lim
Nk→∞

1

Nk

Nk
∑

n=1

g(brn

j x) = 0
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for j = 1, . . . , d. Averaging over j we get

(21) 0 = lim
Nk→∞

1

Nk

Nk
∑

n=1

(1

d

∑

1≤j≤d

g(brn

j x)
)

= lim
Nk→∞

1

Nk

Nk
∑

n=1

(

g(arnΓ) · 1

d

∑

1≤j≤d

χ(ejrn

d )
)

=

lim
Nk→∞

1

Nk

Nk
∑

n=1

(

g(arnΓ)·1Id
(n)

)

= lim
Nk→∞

|Id ∩ [1, Nk]|
Nk

· lim
Nk→∞

1

|Id ∩ [1, Nk]|
∑

n∈Id∩[1,Nk]

g(arnΓ).

Note that we used the nontriviality of χ to justify the third equality. Since by condition
(ii) the density of the set Id with respect to the intervals [1, Nk] is positive, (21) gives
that

lim
Nk→∞

1

|Id ∩ [1, Nk]|
∑

n∈Id∩[1,Nk]

g(arnΓ) = 0.

So (20) is satisfied with g in place of f . This completes the proof. ¤

Proof of Theorem 7.5. Let ℓ ∈ N. It suffices to show that for every system (X,B, µ, T )
and f ∈ L∞(µ), nonnegative and not a.e. zero, we have

(22) lim sup
N→∞

1

N

N
∑

n=1

∫

f · T rnf · . . . · T ℓrnf dµ > 0.

We start with some reductions. Using an ergodic decomposition argument we can
assume that the system is ergodic. Furthermore, since d(R) > 0, by example (i) right
after Theorem 4.1 and Proposition 4.2, the factor Zℓ is characteristic for the multiple
ergodic averages appearing in (22). Notice also that the projection of f onto Zℓ is also
nonnegative and not a.e. zero. Since by Theorem 4.4 the factor Zℓ is an inverse limit
of ℓ-step nilsystems, we have reduced the problem to establishing (22) for such systems.
Moreover, an argument completely analogous to that of Lemma 3.2 in [FuK1] shows
that the positiveness property (22) is preserved by inverse limits. Hence, we can further
assume that the system is an ergodic ℓ-step nilsystem.

In this case, by Proposition 7.2 of [BeHoKr], there exists an ergodic ℓ-step nilsystem
(Y = G/Γ,m, Ta) and a continuous function F on X such that

(23)

∫

f · T nf · . . . · T ℓnf dµ = F (anΓ)

for every n ∈ N.
We can assume that for some d ∈ N we have Y = Zd × Y0 where Y0 is a connected

nilmanifold (the torsion part is cyclic since Y admits an ergodic nilrotation). By changing
the first coordinate of a to 0 ∈ Zd, we get an irrational element b of the connected
nilmanifold {0} × Y0 that satisfies bd = ad.

Let Id = {n ∈ N : d|rn}. Since d̄(Id) > 0, there exists an increasing sequence of integers
Nk such that limNk→∞ |Id ∩ [1, Nk]/Nk > 0. So in order to establish (22), it suffices to
show that

(24) lim sup
Nk→∞

1

|Id ∩ [1, Nk]|
∑

n∈Id∩[1,Nk]

∫

f · T rnf · . . . · T ℓrnf dµ > 0.
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Using (23), and noticing that arn = brn for n ∈ Id, we see that the last limit is equal to

lim sup
Nk→∞

1

|Id ∩ [1, Nk]|
∑

n∈Id∩[1,Nk]

F (arnΓ) = lim sup
Nk→∞

1

|Id ∩ [1, Nk]|
∑

n∈Id∩[1,Nk]

F (brnΓ).

Since b is an irrational nilrotation of {0} × Y0, by Lemma 7.6 the sequence (brnΓ)n∈Id
is

uniformly distributed in {0} × Y0 with respect to the sequence of intervals [1, Nk]. Also,
since bd is irrational, the sequence (bdnΓ)n∈N is uniformly distributed in {0} × Y0. It
follows that the last lim sup is equal to

lim
Nk→∞

1

|Id ∩ [1, Nk]|
∑

n∈Id∩[1,Nk]

F (brnΓ) = lim
N→∞

1

N

N
∑

n=1

F (bdnΓ).

Using once again that bd = ad and (23), we find that the last limit is equal to

lim
N→∞

1

N

N
∑

n=1

F (adnΓ) = lim
N→∞

1

N

N
∑

n=1

∫

f · T dnf · . . . · T dℓnf dµ

which is positive by Furstenberg’s multiple recurrence theorem [Fu1]. This completes
the proof. ¤

8. Appendix: Uniformity for sets of multiple recurrence

We establish some uniform estimates that were used in the proofs of Theorems B’ and C.
Related estimates were obtained in [BeHoMcParre], but our result is more general and
our proof shorter.

Definition 8.1. A sequence (u1(n), . . . , uℓ(n))n∈N with values in Zℓ is a good sequence
for multiple recurrence if, given any system (X,B, µ, T ) and any A ∈ B with µ(A) > 0,
there exists n ∈ N such that

µ(A ∩ T−u1(n)A ∩ . . . ∩ T−uℓ(n)A) > 0.

Using Furstenberg’s correspondence principle it is not hard to verify that the sequence
(u1(n), . . . , uℓ(n))n∈N is good for multiple recurrence if and only if for any set Λ of positive
upper density in Z, there exists n ∈ N such that

|Λ ∩ (Λ − u1(n)) ∩ . . . ∩ (Λ − uℓ(n))| > 0.

Theorem 8.2. Let (u1(n), . . . , uℓ(n))n∈N be a good sequence for multiple recurrence.
Then

(i) For every ε > 0 there exist δ = δ(ε) > 0 and N0 = N0(ε), such that for every
N ≥ N0 and integer set Λ ⊂ [−N,N ] with |Λ| ≥ εN , we have

|Λ ∩ (Λ − u1(n)) ∩ . . . ∩ (Λ − uℓ(n))| ≥ δN

for some n ∈ [1, N0].
(ii) For every ε > 0 there exist γ = γ(ε) > 0 and N1 = N1(ε), such that for every

system (X,B, µ, T ) and A ∈ B with µ(A) ≥ ε, we have that

µ(A ∩ T−u1(n)A ∩ . . . ∩ T−uℓ(n)A) ≥ γ
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for some n ∈ [1, N1].

Proof. (i) The argument is similar to one used in [FrKr2]. Suppose that the result fails.
Then there exist ε0 > 0, sequence (δm)m∈N of positive real numbers with limm→∞ δm = 0,
increasing integer sequences (Km)m∈N, (Nm)m∈N, with Nm ≥ Km, and integer sets Λm ⊂
[−Nm, Nm], such that

(25) |Λm| ≥ ε0Nm

and

(26) |Λm ∩ (Λm − u1(n)) . . . ∩ (Λm − uℓ(n))| ≤ δmNm

for every m ∈ N and n ∈ [1, Km]. In order to get a contradiction, we will construct a
measure preserving system with bad recurrence properties.

For m ∈ N set Λ0
m = Z \ Λm and Λ1

m = Λm. Using a diagonal argument we can find a
subsequence of (Nm)m∈N, which for convenience we denote again by (Nm)m∈N, such that
the limit

lim
m→∞

|(Λi1
m − n1) ∩ (Λi2

m − n2) ∩ . . . ∩ (Λis
m − ns) ∩ [−Nm, Nm]|

2Nm

exists for every s ∈ N, n1, . . . , ns ∈ Z, and i1, . . . , is ∈ {0, 1}.
On the sequence space (X = {0, 1}Z,B), where B is the Borel σ-algebra, we define a

measure µ on cylinder sets as follows:

µ({xn1
= i1, xn2

= i2, . . . , xns
= is}) =

lim
m→∞

|(Λi1
m − n1) ∩ (Λi2

m − n2) ∩ . . . ∩ (Λis
m − ns) ∩ [−Nm, Nm]|

2Nm

where n1, n2, . . . , ns ∈ Z, and i1, i2, . . . , is ∈ {0, 1}. Thus defined, µ extends to a pre-
measure on the algebra of sets generated by cylinder sets and hence by Carathéodory’s
extension theorem ([C]) to a probability measure on B. Then the shift transformation T
defined by

T
(

(xj)j∈Z

)

= (xj+1)j∈Z

preserves the measure µ and gives rise to the system (X,B, µ, T ). If

A = {x ∈ X : x(0) = 1},
using the definition of µ we see that

µ(A ∩ T−u1(n)A ∩ . . . ∩ T−uℓ(n)A) = µ({x0 = 1, xu1(n) = 1, . . . , xuℓ(n) = 1})

= lim
m→∞

|Λm ∩ (Λm − u1(n)) ∩ . . . ∩ (Λm − uℓ(n))|
2Nm

,

for every n ∈ N. Combining this with (25) and (26), and remembering that limm→∞ δm =
0, we find that µ(A) ≥ ε0/2 > 0 and

µ(A ∩ T−u1(n)A ∩ . . . ∩ T−uℓ(n)A) = 0

for all n ∈ N. This contradicts the fact that the sequence (u1(n), . . . , uℓ(n))n∈N is good
for multiple recurrence and completes the proof of (i).
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(ii) The argument is similar to one used in [BeHoMcParre]. Let ε > 0 and A ∈ B with
µ(A) ≥ ε. Set N1 = N0(ε/2) where N0 was defined in part (i). For x ∈ X let

f(x) =
1

N1

N1
∑

m=1

1A(Tmx).

Since
∫

f dµ = µ(A) ≥ ε, if B = {x ∈ X : f(x) ≥ ε/2} we have that

µ(B) + (1 − µ(B)) · ε/2 ≥ ε,

which implies that µ(B) ≥ ε/2. Notice that for x ∈ B we have that

|{m ∈ [1, N1] : Tmx ∈ A}| ≥ ε

2
N1.

Letting Λx = {m ∈ [1, N1] : Tmx ∈ A} we get by part (i) that

Λx ∩ (Λx − u1(n)) ∩ . . . ∩ (Λx − uℓ(n)) 6= ∅,

which implies that

(27) 1A(Tmx) · 1A(Tm+u1(n)x) · . . . · 1A(Tm+uℓ(n)x) = 1

for some m ∈ [1, N1] and n ∈ [1, N1]. Since we have N1 choices for m and n, we can
choose m0, n0 ∈ [1, N1], and a set C ⊂ B such that µ(C) ≥ µ(B)/N2

1 and (27) holds for
all x ∈ C. We have that

µ(A∩T−u1(n0)A∩. . .∩T−uℓ(n0)A) =

∫

1A(Tm0x)·1A(Tm0+u1(n0)x)·. . .·1A(Tm0+uℓ(n0)x) dµ

which is greater than
∫

1B(x) · 1A(Tm0x) · 1A(Tm0+u1(n0)x) · . . . · 1A(Tm0+uℓ(n0)x) dµ ≥ µ(C),

where the last inequality is valid because (27) holds for all x ∈ C. We have thus verified
(ii) with γ = µ(B)/N2

1 ≥ ε/(2N2
1 ). ¤
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(Máté Wierdl) Department of Mathematics, University of Memphis, Memphis, TN, 38152,
USA

E-mail address: mw@csi.hu

29


