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Abstract. A decomposition approach to multiclass classification problems consists
in decomposing a multiclass problem into a set of binary ones. Decomposition splits
the complete multiclass problem into a set of smaller classification problems involv-
ing only two classes (binary classification: dichotomies). With a decomposition, one
has to define a recombination which recomposes the outputs of the dichotomizers
in order to solve the original multiclass problem. There are several approaches to
the decomposition, the most famous ones being one-againt-all and one-against-one
also called pairwise. In this paper, we focus on pairwise decomposition approach to
multiclass classification with neural networks as the base learner for the dichotomies.
We are primarily interested in the different possible ways to perform the so-called
recombination (or decoding). We review standard methods used to decode the de-
composition generated by a one-against-one approach. New decoding methods are
proposed and compared to standard methods. A stacking decoding is also proposed
which consists in replacing the whole decoding or a part of it by a trainable classifier
to arbiter among the conflicting predictions of the pairwise classifiers. Proposed
methods try to cope with the main problem while using pairwise decomposition:
the use of irrelevant classifiers. Substantial gain is obtained on all datasets used in
the experiments. Based on the above, we provide future research directions which
consider the recombination problem as an ensemble method.

Keywords: Pairwise classifier; combination; stacking.

1. Introduction

Since the advent of data mining in information management systems,
the applications of multiclass pattern recognition has covered a very
wide range including image or text categorization, object classification,
speech recognition. Multiclass pattern recognition aims at building a
function F that maps the input feature space to an output space of more
than two classes. Each example (x, y) consists of an instance x ∈ X and
a label y ∈ {1, ...,K} where X is the feature vector input space and K
the number of classes to be discriminated. A general classifier can be
considered as a mapping F from instances to labels F : X → {1, ...,K}.
There are two ways for a classifier to solve multiclass problems: (1)
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2 Olivier Lezoray

consider all the data in one optimization problem, (2) construct several
binary classifiers and combine them. The first approach formulates the
multiclass problem into one single optimization problem (all-at-once).
However, the number of samples is the main factor that contributes
to the time complexity for training the classifier. Therefore, algorithms
of the first category are significantly slower than ones that include
several binary classifiers where each classifier classifies only a small
portion of the data [11, 12, 23, 34]. Moreover, muticlass classification is
intrinsically harder than binary classification because the classification
algorithm has to learn to construct altogether a high number of separa-
tion boundaries whereas binary classifiers have to determine only one
appropriate decision function. Therefore, the machine learning commu-
nity has devoted considerable attention to the latter type of approach
the principles of which are the following. A decomposition splits a
complete multiclass problem into a set of less complex and independent
two-class problems (dichotomies) and a recombination (a decoding)
recomposes the outputs of dichotomizers in order to solve the original
polychotomy [11, 21]. A binary classifier having to face with the classifi-
cation of data using examples as positive ones and the others as negative
ones, there are two schemes to construct several binary classifiers for
multiclass problems [31]. The most traditional scheme [36] splits the
original problem into a series of binary problems (one for each class)
where the ith classifier is trained while labeling all the samples in the ith

class as positive and the rest as negative. This technique is called one-
against-all since each classifier separates one class from all the others.
The drawbacks of this approach is that each binary classifier has to see
all the training database instead of a reduced version of it and the train-
ing data can be unbalanced which can distort each binary classifier. The
second scheme constructs K×(K−1)/2 classifiers using all the pairwise
combinations of the K classes [13, 34, 39]. This technique is called one-
against-one (pairwise). The latter approach is very interesting since the
binary decision is not only learned on fewer training examples but the
decision function of each binary problem can be considerably simpler
than in the case of one-against-all [11, 12, 27]. The major advantage
of the pairwise approach is that it provides redundancy which can
lead to better generalization abilities. Pairwise classification has been
tried in the areas of statistics [2, 10], neural networks [19, 27, 28, 34],
support vector machines [13, 15, 21] and others (bioinformatics [7, 16],
speech recognition [17], pathology [25]). Typically, this technique learns
more accurate concepts than the more commonly used one-against-
all classification method with lower computational complexity (see in
[12]). Furthermore, the advantage of pairwise classification increases
for computationally expensive (super-linear) learning algorithms. The
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reason is that expensive learning algorithms learn many small problems
much faster than a few large problems. Pairwise classifiers can also be
tuned so as to use a specific subset of features which can be different
for each pairwise classification problem.
Beside choosing the way to decompose the problem, one also needs
to devise a strategy for combining the outputs of binary classifiers
and provide a final prediction. Whatever the used decomposition (one-
against-all and one-against-one), if a simple voting strategy is used,
there can be inconsistent regions (less for one-against-one but one still
remains, see [39]). The problem of combining binary classifiers has
therefore been extensively studied and a lot of combining schemes have
been proposed but many researchers reported opposing views to which
scheme is better in terms of accuracy and speed [1, 11, 12, 13, 15,
26, 29, 30, 31, 33, 36, 38, 39]. Speed issues depend primarily on the
different implementations of the basic binary classifier and accuracy
issues depend on the nature of the basic learner, the data set and how
the basic classifiers are well tuned to achieve maximum performance
[36]. Literature being inconclusive (recent papers still claim that there
is non clear superiority over the methods [8]), the best method for
combining binary classifiers is an important research issue that remains
open. In this paper, we propose to compare several classical combining
schemes using Multi Layer Perceptrons (MLP) as the base learner.
Moreover, we also propose new combining schemes which outperform
the classical ones. We consider only the one-against-one formulation to
proceed to the construction of binary neural networks. In Section 2, we
present the binary neural networks we used. In section 3, we discuss how
to combine binary neural networks. In Section 4, we demonstrate the
effectiveness of the proposed combining methods by computer experi-
ments. Last Section draws a conclusion and future research directions
which consider the recombination problem as an ensemble method.

2. Binary Neural Networks

Since we consider the one-against-one decomposition scheme, for a clas-
sification problem with K classes, a set of neural networks is built; each
one being in charge of separating elements from two distinct classes.
The set of different classes is denoted by C = {C1, C2, ..., CK} with
|C| = K. The set of Binary Neural Networks (BNN) is given by
A = {RC1,C2 ; · · · ;RCK−1,CK

}. In the rest of the paper, we will equally
use the notationRCi,Cj

orRi,j for sake of simplicity. The global training
dataset containing patterns of all the different classes is denoted by
DTrain. The latter is divided in several subsets for each neural network.
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4 Olivier Lezoray

DTrain(Ci, Cj) is the dataset that corresponds to the neural network
which differentiates the classes Ci and Cj and contains patterns of
only those two classes. Then, the initial training data (DTrain(Ci, Cj))
associated to each neural network is split into two subsets: a learning
set (DLearn(Ci, Cj)) and a validation set (DV alid(Ci, Cj)). The lat-
ter consists in 20% of DTrain(Ci, Cj) and the learning set in 80%
of DTrain(Ci, Cj). The learning of a neural network is performed on
DLearn(Ci, Cj) and the DV alid(Ci, Cj) validation set is used to evaluate
the classification rate of the network during the training. Therefore,
the validation set is not used to learn the weights of neural networks,
but only to tune the hyper-parameters (number of neurons, number
of iterations, etc.). The structure of the neural networks used is the
following one: a layer of inputs containing as many neurons as the
number of features associated with the object to be classified, a hidden
layer containing a variable number of neurons and one output neuron.
The value of the output neuron is in the interval [−1, 1]. According to
the sign of the result associated with this single neuron, an object is
classified in one of the two classes that the network separates. The
neural networks used are very simple: only one hidden layer, only
one neuron of output. This has several advantages [4, 23, 26]. The
simplicity of the task associated to each neural network simplifies the
convergence of the training as well as the search for a simple structure.
Therefore, an automatic method is used to find the number of hidden
neurons that gives the best classification rate [23, 3, 22]. The output
value provided by a BNN when a sample data x has to be classified is
denoted by O(x,RCi,Cj

). From this output, x can be classified as Ci or
Cj according to the sign of the output: x is considered as of class Ci

if O(x,RCi,Cj
) ≥ 0 and Cj otherwise. The output can therefore be di-

rectly used as an estimate for the class memberships. However, it might
be more suitable to have pairwise class probability estimates which can
be obtained by [34] rij(x) = (O(x,RCi,Cj

)+1)/2 and rji(x) = 1−rij(x).
rij(x) estimates the pairwise posterior probability of the input vector
x to belong to the class i and rji(x) to the class j (according to the
single BNN RCi,Cj

).

3. Combining binary classifiers

Constructing multiclass classifiers from a pairwise decomposition con-
sists in combining the B = (K×(K−1)/2) pairwise classifiers outputs.
Each binary classifier is a mapping fb : X → R with b ∈ {1, ..., B}. A
vector f(x) = (f1(x), ..., fB(x)) is constructed from the outputs of the
binary classifiers. A combination rule g can then be applied to combine
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all the outputs f(x) using a function g : R
B → R

K which couples the
estimates of each binary classifier in order to obtain class membership
estimates (which can be probabilities) for the multiclass problem. Once
the class memberships µ have been estimated as

g(f(x)) = g(f1(x), ..., fB(x)) = (µ(C1|x), ..., µ(CK |x)),

a final selection scheme is used to choose the winner class. This is
done as a mapping h : R

K → {1, ...,K}. The whole K-ary classifier
combining all the binary classifiers scores (obtained by pairwise de-
composition) is denoted by F (x) = h(g(f(x))) where h is the selection
scheme function applied to select the winner class and g the combina-
tion rule. h◦g defines the complete decoding scheme needed to perform
multiclass classification from binary pairwise classifiers.

3.1. Standard Decoding

In this Section, we review the standard decoding schemes based on
class memberships estimation and propose a new one.

3.1.1. Majority vote
The most commonly used combination rule is probably the Majority
Vote (MV) one. With this combination rule [10], each class receives
votes from individual classifiers. The membership estimates correspond
to the number of votes received by each class: µ(Ci|x) = ΣjV (rij(x) ≥
0.5) with V (x) = 1 if x is true and 0 otherwise. The chosen class is the
one which receives the largest number of votes and h = argmax.

3.1.2. Hastie
A way to obtain class membership estimates from the pairwise probabil-
ity estimates rij(x) has been proposed by Hastie [13]. To combine all
the estimates of the BNN, we would like to obtain a set of class member-
ship probabilities pi(x) = P (Ci|x). The rij estimate class conditional
probabilities and are related to the pi according to

rij(x) = P (Ci|x,Ci ∨Cj) =
pi(x)

pi(x) + pj(x)

In order to find the best approximation r′ij(x) = µi(x)
µi(x)+µj (x) , the algo-

rithm starts with µi(x) =
2Σj 6=irij(x)

K(K−1) and computes the corresponding
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6 Olivier Lezoray

r′ij(x). The µi(x) are obtained by minimizing the average Kullback-
Leibler distance between rij(x) and r′ij(x):

L(µ) =
∑

i<j

nij

(

rij log
rij

r′ij
+ (1− rij) log

1− rij

1− r′ij

)

where nij is the number of examples of classes i and j in the training
set. The associated equations are:

∑

j 6=i

nijr
′
ij =

∑

j 6=i

nijrij subject to

K
∑

k=1
µk = 1. At convergence, we have the class membership estimates

with µ(Ci|x) = µi(x). The winner class is considered as the most likely
one and h = argmax.

3.1.3. Price
Another approach for estimating the class memberships has been pro-
posed by Price [34]. It is based on the fact that neural networks
trained to minimize a MSE cost function estimate posterior proba-
bilities. A BNN with sigmoidal transfer function can therefore estimate
the posterior probabilities for the two classes (previously denoted by
rij(x) and rji(x)). One can then obtain the final expression of the class
membership estimates by µ(Ci|x) = 1

Σj 6=i
1

rij (x)
−(K−2)

. As for the Hastie

combination rule, we have h = argmax.

3.1.4. Loss Based Decoding (LBD)
Another interesting combination rule is based on Error Correcting Out-
put Codes (ECOC) [1, 5, 6]. Different classes are represented by output
codes in the output vector space and the prediction of classification is
based on the fact that the chosen class has its output code close to the
output one of the example to be classified. It has been introduced to
combine the outputs of binary Support Vector Machines. For a problem
with K classes, it creates a matrix M ∈ {−1, 0, 1}K×B . For a K = 3
classification problem, the matrix is defined as:

f1 f2 f3

C1 +1 +1 0

C2 -1 0 +1

C3 0 -1 -1

A column in the matrix M corresponds to a binary classifier Ri,j and
a row corresponds to a class. For instance, the first column corre-
sponds to the classifier RC1,C2. Therefore, to each class is assigned
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a binary code vector of length K which makes up the rows of the
code matrix. Combining all the binary classifiers to estimate the class
memberships consists in comparing the matrix rows with the classifiers
outputs expressed by µ(Ck|x) =

∑B
b=1 L(M(k, b).fb(x)). This provides

the distortion between the vector of the BNN outputs f(x) and the row
M(k, ·). For this combination rule, the outputs of the binary classifiers
O(x,Rij) are directly used and not the rij(x). The original approach to
ECOC predicts the class whose corresponding row vector has minimum
Hamming distance to the vector of 0/1 predictions obtained from the
classifiers [6]. However, the accuracy can be improved by using Loss
Based decoding (LBD) and we have therefore used L(z) = exp(−z).
This means using the outputs of the binary classifiers rather than their
hard 0/1 predictions [1]. For LBD decoding schemes h = argmin since
this leads to finding the row being the most similar to the classifiers out-
puts [17, 18] (nearest neighbor decoding). Some works consider learning
the weights of the code matrix by solving an optimization problem [16]
but we do not consider that issue in this paper.

3.1.5. Min-Max
For all the previous decoding schemes, the probability estimates of
the classifiers obtained by the combination rule g are used to assign
to an input pattern the class with the maximal output. Combining
all the pairwise classifiers can lead to bad results since if the input x
is of class Ci, there are only (K − 1) relevant classifiers among the
(K × (K − 1))/2 which have seen the class Ci and the remaining
((K − 1)× (K− 2))/2 irrelevant classifiers have never seen inputs from
class Ci. While classifying an input, one wishes that relevant classi-
fiers will provide coherent informations to cope with all the irrelevant
ones. Moreira has proposed [30] to estimate the relevance of a binary
classifier with correcting classifiers which separate each pair of classes
from all the other classes; correcting classifiers being used to weight
the pairwise probabilities. This approach is however very expensive
and the advantages of the pure pairwise approach are lost. To try to
alleviate this problem, we propose to get the minimum value of rij(x)

for each class Ci : µ(Ci|x) =
K−1
min

j
rij(x). Finally, we select the class

which maximizes this minimum value: h = argmax. The principle of
this method consist in choosing the candidate class whose probability
is less bad than that for all other candidate classes. The intuitive idea
behind is that having a high pairwise probability for a particular pair
of classes does not imply a strong decision towards this class because
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8 Olivier Lezoray

of irrelevant classifiers. However, it can be rejected if the probability is
low.

3.2. Elimination Decoding

Another decoding scheme is the elimination decoding one. This decoder
was originally described by Kressel [21] and reintroduced by Platt

[33] where it was called Directed Acyclic Graph (DAG). One strong
argument for using DAG is that it resolves the problem of unclassi-
fiable regions for pairwise classification. The elimination decoding is
nothing more than a decision-tree based pairwise classification. The
nodes of this tree are binary classifiers. To perform a multiclass classi-
fication, an example is presented to each node and follows a path in the
tree by eliminating a class at each node. The set of binary classifiers
A0 = {R1,2, ...,RK−1,K} contains all the binary classifiers and the set
E0 = {C1, ..., CK} contains all the candidate winner classes. Elimina-
tion decoding operates iteratively. At each iteration t = {1, ...,K−1}, a
binary classifier performs a decision and one class Ck is eliminated. The
size of Et is then decreased by one and all the classifiers discriminating
Ck in At are eliminated [18]: At+1 = At − {Ri,j : i = Ck ∨ j = Ck}.
The set AK−2 contains only one binary classifier which determines
the winner class. Several problems occur however when using DAGs.
First of all, the choice of the winner class depends on the sequence of
binary classifiers in nodes which affects the reliability of the algorithm.
Moreover, the correct class to be predicted is more or less advantaged
according to its distance to the root node (higher risk of being rejected
in the nodes near the root). Secondly, since there are a lot of classifiers
which are irrelevant for a given classification, using these classifiers
can cause severe defects. To overcome this problem, several authors
have proposed to use an Adaptive DAG (called ADAG) by optimizing
its structure. However, the generalization ability still depends on the
structure of the tree [26, 4, 20, 32, 40]. We propose a new elimination
decoding which takes into account all the outputs of the binary classi-
fiers. When using a classical decoding scheme without elimination, one
selects the class with the largest probability (h = argmax). In the case
of elimination, we want to eliminate the least credible class and this
comes back to eliminate the class having the minimum of probability.
The class to be eliminated is deduced from the class membership esti-
mates: Ck = h(g(f(x))). g can be any of the previous combination
rules (Majority Vote, Hastie, Price, LBD, Max-Min) and since the
method eliminates the least probable class at each iteration, we have
h = argmin. At the iteration t, the number of candidate classes is
|Et| = (K − t) and the number of binary classifiers to be combined is
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Figure 1. Illustration of the proposed new elimination decoding. At each step, a
class is eliminated. The remaining candidate classes are shown on the right of boxes
designing a step of the algorithm.

|At| = (K − t)(K− t− 1)/2. This new elimination decoding is different
of the Direct Acyclic Graph [33] since at each iteration, all the outputs
of candidate binary classifiers are combined to determine the class to be
eliminated. Indeed, with a DAG, only one classifier output is used for
eliminating a class at each iteration. The proposed elimination decoding
can be summarized by Algorithm 1. Figure 1 presents an illustration
of the algorithm for a 4-class problem.

Algorithm 1 The proposed new elimination decoding.

t← 0, At ← {R0,1, ...,RK−1,K}, Et ← {C1, ..., CK}
while |Et| 6= 1 do

Ck ← h(g(f(x)))
Et+1 ← Et − {Ck}
At+1 ← At − {Ri,j : i = Ck ∨ j = Ck}
t← t + 1
endwhile

F (x) = Et

3.3. Stacking Decoding

The combination of the class membership estimates can be performed
via a separate trainable classifier [17, 37]. This method is referred to as
stacking [41]. Very few works consider this issue for multiclass classi-
fication. Klautau [17] and Mayoraz [29] both use a neural network
to stack the predictions provided by one-versus-all binary classifiers.
Savicky combines binary decision trees with a meta decision tree at
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10 Olivier Lezoray

Table I. Classification cases to illustrate
the advantages of stacking decoding.

Classifier Original

C1vsC2 C1vsC3 C2vsC3 class

C1 C1 C2 C1

C2 C3 C2 C2

C1 C3 C3 C1

. . . . . . . . . . . .

C2 C3 C3 C3

the stacking level [37]. This approach seems more suitable than all
the previous ones for the following reason. As said before, combining
classifiers which have never seen instances from one same class during
the training phase results in combining different information sources.
The combination of these ignorant classifiers (a binary classifier has
seen only two classes among K) with respect to the others can therefore
result in almost random classification. Indeed, decoding methods such
as voting rely on the assumption that the relevant classifiers mainly
predict the correct class and provide more votes to the true class than
the irrelevant classifiers to any other class. However, if some of the
relevant classifiers predict wrong classes, the final classification can be
also wrong. Since we cannot predict the behavior of irrelevant classifiers,
more sophisticated decoding schemes are needed. The potential gain of
stacking for decoding is evident and it can lead to correct predictions
where other methods would fail [37, 42]. Table I illustrates this fact
and presents classification results for a 3-class problem (from [37]).
With a standard decoding such as voting, the decoding will always
fail to predict the correct class of the third sample. Indeed, the clas-
sifier C1vsC3 makes a mistakes (it predicts class C3) and the classifier
C2vsC3, which is irrelevant for this classification (the input sample is of
class C1), predicts the input sample as of class C3. This case illustrates
all the problems we have to face with when using binary classifiers: some
classifiers are irrelevant and the relevant classifiers can make mistakes.
Simple standard decoding schemes cannot cope with such cases and one
has to learn to recognize such ones: a Meta Classifier can be used to
that aim. We therefore propose two approaches to stacking decoding.

Stacking consists in combining the outputs of different classifiers
to feed a trainable Meta Classifier. With a pairwise decomposition
approach to classification, two approaches to stacking can be consid-
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Comparing combination rules of pairwise neural networks classifiers 11

ered. The first approach to stacking is to learn on all the probabilities
estimated by any standard decoding. In standard decoding, the whole
K-ary classifier combining all the binary classifiers scores (obtained by
pairwise decomposition) is denoted by F (x) = h(g(f(x))). One can
replace h by a trainable classifier to cope with irrelevant predictions
provided by by some pairwise classifiers. In that case, each feature
vector xi of the training set DTrain is used to feed all the binary classi-
fiers and class membership estimates are obtained with a combination
rule g. A new example (x̃i, yi) = (g(f(xi)), yi) is then obtained. The
dimension of x̃i is equal to the number of classes and yi is the known
class of xi. A new training set D′

Train = {(x̃1, y1), ..., (x̃N , yN )} =
{(g(f(x1)), y1), ..., (g(f(xN )), yN )} is generated from the class mem-
bership estimates. The new training data set is used to train a Meta
Classifier which predicts the final class by F (x) = h(g(f(x))). The func-
tion h designs the Meta Classifier to be used. Using a Meta Classifier
which performs stacking on the class membership estimates is close to
learn the weights of LBD decoding matrix [16].
The second approach to stacking is to learn on all the predictions of the
binary classifiers [24]. To that aim, a trainable classifier is used with
as training input the output vector f(x) of all the binary classifiers.
For this approach to stacking, new examples of the meta training set
are (x̃i, yi) = (f(xi), yi). In that case, the function h ◦ g designs the
Meta Classifier to be used. The D′

Train = {(f(x1), y1), ..., (f(xN ), yN )}
database generated by all the binary classifiers provides valuable in-
formation about the possible misleading predictions caused by the
irrelevant classifiers.

4. Experimental results

This Section presents an experimental comparison of the ways to com-
bine binary neural networks according to different combining rules. The
databases for which results will be presented here are data bases coming
from the Machine Learning Data Repository of the University of Cal-
ifornia at Irvine (UCI) [14]. Table II describes the different databases
showing the variety of training data set sizes (|DTrain|), the number of
classes (K), the number of neural networks (B) and the dimensionality
of the data input (|x|). The tests are performed on a data set (DTest)
independent of the training set.

Tables III, IV and V presents all the classification rates obtained
on DTest for the different combining rules (best rates bold faced for
each decoding rule family). For the standard decoding (Table III), the
results are homogeneous, except for Hastie and Price methods which
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12 Olivier Lezoray

Table II. Data bases used for the tests.

Database K |DTrain| |DTest| |x| B

Iris 3 120 30 4 3

Wine 3 144 34 13 3

Vehicle 4 679 167 18 6

PageBlocks 5 4382 1091 10 10

SatImage 6 4435 2000 36 15

Shuttle 7 43500 14500 9 21

PenDigits 10 7494 3498 16 45

OptDigits 10 3065 760 64 45

Letter 26 16000 4000 16 325

Table III. Classification rates of one-versus-all and one-against-one
standard decoding.

MLP MV Hastie Price LBD MinMax

Iris 70.00 70.00 63.33 63.33 70.00 70.00

Wine 97.06 97.06 97.06 97.06 97.06 97.06

Vehicle 66.67 69.46 68.26 70.06 69.46 69.46

PageBlocks 84.80 88.27 42.35 46.29 88.45 88.36

SatImage 80.00 77.90 80.10 79.90 80.10 78.35

Shuttle 79.15 95.70 95.01 95.18 95.82 95.57

Pendigits 83.82 89.17 82.19 88.42 89.05 89.22

Optdigits 90.39 91.70 81.69 87.62 90.91 91.83

Letter 62.45 78.37 65.50 71.57 78.52 77.72

perform significantly worse on several datasets. As expected from the
literature, LBD decoding performs very well and provides results always
better than the Majority Vote. One thing to point out with LBD is
that it can be a robust combining method as long as the errors of the
binary classifiers are not correlated [30, 29]. For this purpose, all the
dichotomies must be as distinct as possible, using well-tuned binary
classifiers does the matter and explains why LBD works well in our
study. When LBD is not best combining method, best results are ob-
tained with the proposed Min-Max method which confirms the intuitive
idea that in some cases the irrelevant classifiers have strong influence
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on the final decision. Another advantage of the Min-Max method is its
simplicity. One can therefore say that even if the results are very mixed,
two standard decoding schemes can be retained as the best ones: LBD
and the proposed Min-Max method.

Table IV. Classification rates of one-against-one elimination decod-
ing.

ADAG MV Hastie Price LBD MaxMin

Iris 70.00 70.00 70.00 70.00 70.00 70.00

Wine 97.06 97.06 97.06 97.06 97.06 97.06

Vehicle 69.46 68.26 68.86 68.86 68.86 69.46

PageBlocks 88.45 88.36 88.36 88.45 88.45 88.36

SatImage 78.05 77.85 78.20 78.10 78.20 78.35

Shuttle 95.64 95.66 95.63 95.62 95.76 95.59

Pendigits 88.99 89.19 89.14 89.11 89.17 89.28

Optdigits 88.67 91.04 91.17 91.17 91.17 91.70

Letter 77.64 78.44 77.54 77.64 78.47 77.67

If we now have a look at the results obtained with the proposed
elimination decoding method (Table IV), the first interesting thing is
that the results look much more homogeneous between the different
combining rules. As it was noted by Platt with DAGs, using an iter-
ative elimination method reduces the error bound [33] since it avoids
the problem of irrelevant regions of classification. Table IV presents a
comparison for the proposed elimination decoding with an improved
ADAG (a Graph of Neural Networks, see in [4, 26] for details). It can
be noted that the elimination method we propose performs in general
better than classical DAGs [15] even of improved structure; proving
that using an elimination method based on combining rules is a more
robust method than one based on a decision tree of binary classifiers,
without the problem of optimizing the structure of the tree. This is
all the more interesting since our elimination decoding reduces the
error bound whatever the combining rule. As for the standard decoding
method, the two best combining rules are LBD and Max-Min (since we
perform an elimination we do not have Min-Max: at each iteration
the class minimizing the highest pairwise probability is eliminated).
Elimination decoding is however in average less good than standard
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decoding and it has be preferred only when the latter does not perform
well (e.g. for Hastie and Price standard decoding on the PageBlocks
data base, see Table III). The inner limitation of elimination decoding is
related to the problem of irrelevant classifiers which can predict wrong
class with high confidence resulting in their early elimination.

Table V. Classification rates of stacking decoding with as input: class member-
ship estimates by standard decoding (rows 1-4) or all the pairwise predictions
(rows 5-6).

Hastie Price LBD MinMax C4.5 (HP) C4.5 (SP)

Iris 93.30 90.00 96.70 90.00 70.00 90.00

Wine 100.00 100.00 100.00 100.00 97.10 100.00

Vehicle 74.90 71.90 71.30 72.50 68.30 75.40

PageBlocks 91.30 92.70 91.20 92.90 89.60 92.30

SatImage 84.30 84.40 84.50 85.60 79.60 85.10

Shuttle 99.80 99.80 99.70 99.80 96.70 99.80

Pendigits 91.60 92.60 92.00 92.70 92.10 93.10

Optdigits 89.20 89.90 88.90 92.50 90.50 93.02

Letter 80.40 80.40 80.20 80.70 81.00 81.00

Finally, we analyze the results of our two proposed approaches to
stacking decoding (Table V). We used decision trees (C4.5 [35]) Meta
Classifiers to perform stacking. On all stacking datasets, a 10-fold cross
validation is performed. Table V presents the results with, in rows
1-4 the first stacking approach and in rows 5-6 the second stacking
approach. If one compares the first stacking approach (which consist in
learning on the class memberships estimates provided by any standard
decoding) with the standard and elimination decodings (Tables III and
IV), stacking enables to improve the decoding for all data bases except
one (Optdigits). In some cases, the increase of the recognition rate can
be spectacular: for PageBlocks with Price or Hastie decoding, replacing
h = argmax (Table III) by a decision tree (Table V) results in a doubly
of the recognition rate. It highlights the fact that, in a lot of cases,
the class membership estimates of some classes are very close one to
another and a simple decision rule such as h = argmax cannot cope
with such problems: conflicts between classes have to be learned to
be overcome. We can also point out that for this first approach to
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stacking, the Hastie and the MinMax combination rules seem more
appropriate to estimate the class membership estimates. Indeed, among
the four stacked combination rules, one of the two above-mentioned
always enable to obtain the best results (Table V). If we now consider
our second approach to stacking (Table V, rows 5-6) which learns on all
the BNN outputs, the performance of stacking depends on the type of
predictions provided by the binary classifier (hard or soft predictions).
For hard predictions (HP), the prediction of each binary classifier is a
0/1 prediction and for soft predictions (SP), it is the output of each
binary classifier. As regards the results of standard decoding (Table IV)
and of our first approach to stacking (Table V, rows 5-6), the second
approach to stacking using hard predictions (Table V, row 5) does not
provide a substantial gain of the recognition rate. On the contrary,
using soft predictions (Table V, row 6) enables to obtain better results
than standard decoding and than our first approach to stacking on half
of the databases. As compared to the work of Savicky [37], the use
of posterior probabilities instead of hard class decisions of the binary
classifiers to feed the stacking Meta Classifier enables substantial gain
in the recognition rate.

To conclude these experiments, using binary classifiers is very inter-
esting since it can be viewed as an ensemble method which performs a
simplification of the problem by decomposing it, the latter results been
easier to classify by stacking than the initial ones all-at-once or even
with standard decoding schemes. The question is now which approach
to stacking to choose. Indeed, if stacking always provides better results
than standard or elimination decoding, the best stacking approach de-
pends on the data bases. Our second approach to stacking has to deal
with very large problems since the size of the feature dimension vector
is proportional to the number of classes. For example, for the 26-class
Letter dataset, there are (26×25)/2 = 325 predictions for each of 16000
examples. This can be a serious drawback. Figure 2 shows the size of
the decision tree induced according to the number of classes for our
second approach to stacking (dashed lined), one can see that this size
rapidly grows with the number of classes and can be very large. This
is also the case when using our first approach to stacking whatever the
used combination rule (see Figure 2). However, the size of the feature
vector is in this case exactly equal to the number of classes. Since no
real difference in the size of the induced tree is observed, none of the
two approaches to stacking can be preferred, the first being less costly
in terms of stacking database size.
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16 Olivier Lezoray

Figure 2. C4.5 Tree size according to the number of classes for the proposed stacking
approach: first approach (Hastie, Price, LBD and Min-Max decoding) and second
approach (all the pairwise networks outputs).

5. Conclusion

In this paper, we reviewed and evaluated classical methods for multi-
class classification based on binary neural networks according to the
one-against-one formalism. We have also introduced a new standard
decoding method (Min-Max) and a new elimination decoding which are
both as suitable as the classical methods presented in the literature as
proved by the experiments. The LBD and Min-Max decoding methods
have appeared to be the best ones among the tested databases. We
show that elimination decoding reduces the error bound of standard
decoding methods but standard decoding is more suitable in terms of
performance. We also evaluated a technique using stacking decoding
where the basic idea is to replace either solely the selection scheme or
both the combining rule and selection scheme by a single Meta Classifier
that combines therefore either the membership class estimates or all
the predictions of the binary classifiers. Using stacking decoding leads
to substantial gain in the recognition rate. Future work will concern
the use of the set of one-against-one classifiers as a new input sample
generator [42] to increase the size of the training dataset of the Meta
Classifier when the latter is unbalanced; preliminary results having also
shown a new gain in the recognition rate. As regards the results and
as it was stated by Furnkranz [12], binary classifiers have now to be
considered as an ensemble method such as boosting. Some works have
considered this issue in the case of the elimination decoding: since the
structure of a DAG is difficult to optimize, it is worth to try to combine
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an ensemble of DAG. As stated in [9], since any system of nested
dichotomies is biased by imposing a certain order on the set of classes,
the class probability estimations will usually differ for two different
systems of nested dichotomies. To reduce the error variance, one can
build an ensemble of nested dichotomies. A similar work with ensemble
of Neural Network Induction Graphs leads to the same results [26].
Pairwise classification has therefore to be considered as an ensemble
method and future works will concern this issue: theories from multiple
classifier systems have to be used to enhance once again pairwise en-
semble classifiers accuracies. Several issues can be considered. First, one
can try to combine the outputs of several standard decoding schemes.
Second, one can consider the problem as a global optimization one: the
tuning of each binary classifier can be performed simultaneously with
the optimization of the decoding scheme to cope with the problem of
irrelevant classifiers. These research directions place the problem of
combining pairwise classifier in the research field of classifier selection
and fusion which has not been extensively studied for this particular
case.
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