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A model selection method based on tabu search is proposed to build support vector machines (binary
decision functions) of reduced complexity and efficient generalization. The aim is to build a fast and
efficient support vector machines classifier. A criterion is defined to evaluate the decision function quality
which blends recognition rate and the complexity of a binary decision functions together. The selection
of the simplification level by vector quantization, of a feature subset and of support vector machines
hyperparameters are performed by tabu search method to optimize the defined decision function quality
criterion in order to find a good sub-optimal model on tractable times.

1. Introduction

Data mining is considered as one of the challenging

research fields of the 21th century. Extracting knowl-

edge from raw data is a difficult problem which covers

several disciplines: Artificial Intelligence, Machine

Learning, Statistics, Data Bases. Machine learn-

ing methods aim at providing classification methods

which induce efficient decision functions. Among all

possible inducers, Support Vector Machine (SVM)

are founded on strong statistical learning theory1 and

have become very popular in the past few years be-

cause they delivered state-of-the-art performance in

many real world pattern recognition and data min-

ing applications2: text categorization, hand-written

character recognition, image classification, bioinfor-

matics, etc. However, decision functions provided

by SVM have a complexity which increases with

the training set size3,4,5. A recent theoretical re-

sult by Steinwart6 shows that the number of exam-

ples used by a given SVM decision function grows

as a linear function of the number of examples in

the SVM training set. Therefore, time decision with

SVM inducer to classify huge datasets is not directly

tractable; especially for application requiring high

classification speed7. For instance, Martin et al8 con-

clude that SVM are not well suited to edge detec-

tion. Indeed, the training time and complexity are

too high to be interesting as regards the huge dataset

they used. However, they use SVM as brute-force al-

gorithm whitout taking care of model selection both

training time and complexity. Our aim, in this pa-

per, is to tackle that problem.

In recent years, there has been a lot of interest

to improve learning methods using SVM. One way

is to optimize the SVM algorithm to solve the asso-

ciated quadratic problem more efficiently3,9,10 (less

time and less memory used). Other approaches fo-
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cus on simplifying the SVM decision function. Many

solutions were proposed to reduce the number of

examples in SVM decision functions: (1) A pre-

processing simplification step to reduce the size of

SVM training set4,11,12, (2) An incremental SVM

learning method with stopping criteria13,14,15, (3) A

bound on the number of support vectors of the de-

cision function16,17 or (4) A post-processing to re-

duce the number of support vectors of the decision

function18,19. Although SVM are less sensitive to the

curse of dimensionality20, dimensionality reduction

techniques can improve their efficiencies21,22. More-

over, this is another way to reduce complexity of

SVM decision functions23,22. For learning methods

using SVM, model selection is critical. Indeed stud-

ies have shown that SVM generalization efficiency

depends on the choices of SVM parameters24,25.

Other studies26,27 have shown that multiclass SVM

are efficient if an efficient model selection is per-

formed for each involved binary SVM. Therefore, as

regards these considerations, new approaches aim at

incorporating a simplification step into the model

selection11,5. Previous cited works highlight that

complete SVM model selection (reduction of both

the number of examples and features, and selection

of hyperparameters) is a hard and still unresolved

problem. Solution proposed in most of these works

focus only on a sub-problem of the complete model

selection problem. At our knowledge, there actually

exist no way in literature to achieve such difficult

SVM complete model selection: simultaneously tun-

ing the hyper parameters, selecting accurate features

and relevant examples (this is usually performed in

a sequential manner).

Our approach aims at unifying feature selection,

simplification of training set and hyperparameters

tuning as a global optimization problem is order to

produce efficient and low complexities Binary Deci-

sion Functions (BDF) with SVM28,29,30. For this,

a criterion named Decision Function Quality (DFQ)

is defined which takes into account the recognition

rate, the number of support vectors and the number

of selected features of BDF. The objectives, for an ef-

ficient BDF, are to have a high recognition rate, few

support vectors and few features used. The proposed

DFQ criterion is based on regularization theory31,32.

The fitting term is expressed in terms of recognition

rate. The smoothness term is expressed in terms of

model complexity (number of support vectors and

features used by a BDF). With this expression of

DFQ, one wants to find solutions that are simulta-

neously smooth (few support vectors and features)

and close to the initial data (high recognition rate) in

terms of a compromise. In the framework of Multi-

Objective Optimization (MOO)33,34, weighted sum

of objectives in one possibility to transform MOO

problem into a global single objective problem23.

Then, regularization theory can be regarded as one

way to transform the general problem of finding effi-

cient solutions in the paradigm of multi-objective op-

timisation into the paradigm of single-objective opti-

misation. Indeed, one can produce fast and efficient

decision SVM processes with a single-objective opti-

misation problem when DFQ criterion based on reg-

ularization theory is used to evaluate the produced

solution. With the proposed approach, the selection

of efficient values for all free parameters (feature se-

lection or rejection, level of simplification and SVM

hyperparameters) in order to optimize DFQ criterion

is designed by the generic term of model selection.

Training set simplification is produced by the

LBG (Linde, Buzo, Gray) algorithm used in vec-

tor quantization research field35. It has been re-

tained because it can produce good prototypes of

the initial dataset. Moreover, the simplification level

is controlled by a single integer parameter the val-

ues of which are few and can range from extreme

simplification with only one prototype by class to

no simplification at all (i.e. selection of all initial

examples in training set). However, the proposed

learning method is enough general to be extended

to other simplification methods36,37,38. To have a

relevant tuning of SVM hyperparameters and an ac-

curate selection of relevant features, an adapted tabu

search (TS) method is proposed which includes spe-

cific intensification and diversification strategies. TS

is relevant for SVM model selection since usual SVM

model selection have local minima39,19. Moreover,

TS has proved its suitability for other model selec-

tion problems40, in particular with SVM learning

problems41,42.

Our approach is tested on several benchmark

datasets and on an image segmentation problem. For

the latter, the development of a microscopic cellu-

lar image segmentation application was performed30.

This kind of application must be efficient for reli-

able analysis and fast to process huge quantity of

images. In contrast, recent studies have focused on
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improving segmentation quality43,44,45. Many seg-

mentation schemes can have good qualities but their

processing time is too expensive to deal with a great

number of images per day28,30. The main reason

is that pixel classification in a segmentation scheme

requires most of the processing time. Therefore, the

classifier design is crucial to produce fast and efficient

pixel classification. Presented results show that our

method satisfies those objectives for this cell segmen-

tation application. Moreover, experimental results

on benchmark datasets show that an efficient com-

promise between high generalization ability and low

complexity can be found with our TS model selec-

tion.

Section 2 gives overviews of methods used by our

TS model selection method. Section 3 describes the

proposed new method and Section 4 gives experi-

mental results. Last Sections conclude and propose

future works.

2. Overviews of the underlying methods

2.1. Support Vector Machines (SVM)

The SVM was developed by Vapnik et al1. They are

based on the structural risk minimization principle

from statistical learning theory1.

Let’s consider a binary classification problem with

training data {(xi, yi)}i∈{1,...,m} (xi ∈ R
n and yi ∈

{−1,+1}). A soft margin SVM1,46 classifies an ex-

ample x according to the sign of BDF h :

h(x) = sign(f(x)) (1)

with

f (x) =
∑

i∈{1,...,m}

αiyiK (xi, x) + b (2)

and K(·, ·) ≡ 〈φ (.) , φ (.)〉
H

the kernel function which

defines an inner product in H when mapping φ :

R
n → H is performed. The coefficients αi in (2)

are obtained by solving a quadratic optimization

problem1 (threshold b depends of αi values1). All

examples xi for which associated αi is not equal to

zero is called support vector. The set of all support

vectors is noted SV (i.e. SV = {i|αi > 0}) and cor-

responds to training set examples used by BDF (1)

to determine the class of each new example x. In soft

margin formulation all the coefficients are bounded

by a constant C (i.e. αi < C). C is the parameter

that determines the trade-off between training errors

and generalization capacities. An efficient algorithm

SMO3 and many refinements9,47 were proposed to

solve SVM quadratic optimization problem.

2.2. SVM probabilities estimation

The output (2) of an SVM is not a probabilistic

value, but an un-calibrated distance measurement of

an example x to the separating hyper-plane. Platt

proposed a method48 to map the SVM output into

a positive class posterior probability by applying a

sigmoid function to the SVM output:

p(y = +1|x) =
1

1 + ea1·f(x)+a2
(3)

This method is used in SVM combination schemes

based on probabilistic estimation.

2.3. SVM combination schemes

SVM are specifically designed for binary problems.

Several combination schemes have been developed

to take into account that specificity and deal with

multiclass problems49,50,51,52. Within all combina-

tion schemes, the one-versus-all scheme based on a

winner-takes-all strategy and the one-versus-one (or

pairwise) method based on a max-wins voting strat-

egy are generally used19,26. When class probabilities

on each binary problem are estimated (c.f. Section

2.2), the two above schemes have adapted decoding

strategies to estimate class probabilities for the mul-

ticlass problem53.

2.4. Vector Quantization (VQ)

VQ is a classification technique used in the compres-

sion field35. VQ maps a vector x to another vector x′

that belongs to m′ prototypes vectors which is called

codebook. The codebook S′ is built from a training

set St of size m (m >> m′). The algorithm must

produce a set S′ of prototypes which minimizes the

distorsion

d′ =
1

m

m
∑

i=1

min
1≤j≤m′

d(xi, xj) (4)

where d(., .) is a L2 norm. LBG is an iterative

algorithm35 which produces 2k prototypes after k it-

erations. Table 1 provides the synopsis of the LBG
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algorithm in which ǫj represents the added noise to

create two prototypes from existing ones. Those pro-

totypes are used to perform the clustering of dataset

S with respect to minimal distance (i.e x ∈ S[j] →
∀i ∈ [0, . . . , 2k − 1], d(x,E[j]) ≤ d(x,E[i])). In this

synopsis, the centroid function determines the grav-

ity center of a dataset S.

Table 1. Synopsis of LBG algorithm.

LBG(S, k)
S′[0] ⇐ centroid(S)
FOR i = 1 TO k
FOR j = 0 TO 2k−1

E[2j] ⇐ S′[j] + ǫj

E[2j + 1] ⇐ S′[j] − ǫj

ENDFOR
{S[0], . . . , S[2k − 1]} ⇐ clustering(S,E)
FOR j = 0 TO 2k − 1

S′[j] ⇐ centroid(S[j])
ENDFOR

ENDFOR
RETURN S′

2.5. Tabu Search (TS)

Many meta-heuristics approaches exist to solve hard

optimization problems, a set of them are called tabu

search40. Those ones belongs to iterative neighbour-

hood search methods. The general step, at the it

iteration, consists in searching, from a current so-

lution θit, the next best solution θit+1 in a given

neighborhood. This new solution may be less ef-

ficient than the previous one; however this avoids

local minimum trapping problems. That is why TS

uses short memory to avoid moves which might lead

to recently visited solutions (tabu solutions). TS

methods generally incorporate explicit strategies to

control the efficiency of the search space exploration.

These strategies are grouped in two terms: intensi-

fication and diversification. In a promising region

of space, the first strategy allows extensive search

of the path to find a best solution. However, if the

search is in a region of space for which the solutions

are poor or if the extensive search cannot produce

better solutions, the second strategy enables large

changes of the solution in order to find quickly an-

other promising region. These two strategies are

generally applied alternatively. Although the basic

idea of TS is straightforward, the choice of solution

coding, objective functions, neighborhood, tabu so-

lutions definition, intensification and diversification

strategies, all depend on the application problem.

3. TS Model Selection Method

By studying the SVM formulation problem, one

notices that the number of support vectors used by

BDF increases with the problem size6. As the objec-

tive of our model selection is to produce a fast and

efficient decision function, increasing the number of

support vectors is interesting only if it is linked to a

significant improvement in the recognition rate. For

the same reason, features selected in a BDF is de-

pendent of recognition rate improvement.

The idea of our method is to produce fast and ef-

ficient SVM BDF using few support vectors and few

features. To that aim, a new Decision Function Qual-

ity (DFQ) criterion, based on regularization theory,

has been defined which corresponds to a compromise

between efficiency and complexity (c.f. Section 3.1).

A SVM is therefore trained from a small dataset S′
t

representative of the initial training set St in order

to decrease the complexity of the BDF. The LBG al-

gorithm has been used to perform the simplification

of the initial dataset (c.f. Section 3.2). As the num-

ber of prototypes produced by LBG algorithm (2k by

class) cannot be easily fixed in an arbitrary way, a

significant concept in our method is to regard param-

eter k as a variable of the model selection problem.

The optimization of SVM DFQ thus requires, for a

given kernel function K, the choice of: the simplifica-

tion level k, the feature subset β, the regularization

constant C and kernel parameters (σ with gaussian

kernel). The search of the values of those variables is

called model selection. Let θ be a model, kθ, βθ, Cθ

and σθ be respectively the values of all the variables

to tune, and q(θ) be the value of the DFQ crite-

rion for a model θ (c.f. Section 3.1). The synopsis

in Section 3.3 gives the details of the estimation of

DFQ criterion from a model θ and a learning set Sl

with q(θ) ≡ SVM-DFQ(θ, Sl) the objective function

which must be optimized. The search for the exact θ∗

which optimizes q(θ) not being tractable, we decide

to define a specific TS metaheuristic method (c.f.

Section 3.4) for the model selection problem with

adapted intensification and diversification strategies

(cf. Sections 3.5 and 3.6).

3.1. Decision Function Quality (DFQ)
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We consider that the DFQ of a given model θ de-

pends on the recognition rate RR but also on the

complexity CP of the decision function hθ when pro-

cessing time is critical. Let q(θ) = RR(hθ)−CP (hθ)

be the DFQ. That definition is based on regular-

ization theory 31,32. The fitting term is expressed

in terms of recognition rate (RR). The smoothness

term is expressed in terms of model complexity (CP ).

For SVM, the complexity of the decision function de-

pends on the number of both support vectors and

selected features. The empirical model we propose

to model the complexity of a SVM BDF is:

CP (hθ) = cp1
log2(nSV ) + cp2

log2(cost(β)) (5)

β is a boolean vector of size n representing selected

features. Constants cp1
and cp2

fix the trade-off

between classification rate improvement and com-

plexity reduction. Let κi denote the cost for the

extraction of the ith feature, the value of cost(β)

linked to the subset of selected features is defined by:

cost(β) =
∑

βiκi. When those costs are unknown,

κi = 1 is used for all features. Strictly speaking, a

doubling of the number of support vectors (extrac-

tion cost) is accepted in our learning method if it is

related to a recognition rate increase by at least cp1

(respectively cp2
).

3.2. Simplification step

A natural way to reduce the complexity of SVM de-

cision functions is to reduce SVM training set size.

One possibility of doing that is to produce prototypes

which efficiently sum up examples close to them. The

LBG algorithm (c.f. Section 2.4) is used to produce

2k prototypes for each class into a two class prob-

lem. The reduced dataset is a more or less simplified

version of the initial one according to the parameter

k value. The algorithm in Table 2 gives the details

of this simplification (to speed up model selection, at

each new value of k, the simplification result is stored

for future steps which might use the same simplifi-

cation level).

Table 2. Synopsis of simplification step.

Simplification(S,k)
S′ ⇐ ∅
FOR c ∈ {−1,+1}

T = {x | (x, c) ∈ S}
IF 2k < |T | THEN T ′ ⇐ LBG(T, k)

ELSE T ′ ⇐ T
S′ ⇐ S′ ∪ {(x, c) | x ∈ T ′}

ENDFOR
RETURN S′

3.3. DFQ estimation

The Decision Function Quality (DFQ) criterion

of a specific model θ is evaluated from a learning

dataset Sl. The synopsis provided in Table 3 gives

details on how the value of that criterion is deter-

mined. Let St, Sv denote the datasets which are

produced by a random split (Split function in syn-

opsis SVM-DFQ) with |St| = 2
3 |Sl|, |Sv| = 1

3 |Sl|.
St, Sv are respectively indicate databases used for

training SVM (training dataset) and for recognition

rate estimation (validation dataset). This dissocia-

tion is essential to avoid the risk of overfitting when

empirical estimation is used. The SVM training step

is realized by using the SMO algorithm version of

the Torch library47. When SVM training is per-

formed with unbalanced class datasets, it is more

suitable to use Balanced Error Rate (BER) instead

of classical Error Rate for the estimation of recogni-

tion rate. Recognition rate formulation (noted RR)

in Table 3 corresponds to BER estimation where

my represents the number of examples in each class

(y ∈ {+1,−1}) and mcorrect
y the number of exam-

ples correctly identified. . The kernel functions Kβ

used for training SVM are defined from a distance

dβ : dβ(xi, xj) =

√

n
∑

l=1

βl(xl
i − xl

j)
2. By using dβ in

the kernel function, the feature selection problem is

embedded in the model selection problem. For this

study, only Gaussian kernels KG
β = exp(−d2

β/λ2
1) are

used.

Table 3. Synopsis of DFQ estimation for a specific model
θ.
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SVM-DFQ(θ,Sl)
(St, Sv) ⇐ Split(Sl)
S′

t ⇐ Simplification(St,kθ)
hθ ⇐ TrainingSVM(S′

t,Kβθ
,Cθ,σθ)

(mcorrect
−1 ,mcorrect

+1 ) ⇐ TestingBDF(hθ,Sv)

RR ⇐ mcorrect
−1

2m−1
+

mcorrect
+1

2m+1

CP ⇐ Complexity(hθ)
q(θ) ⇐ RR − CP

3.4. TS specification

The objective function q to be optimized rep-

resents the quality of the BDF hθ (c.f. Section

3.1). Our problem is to choose an optimal model

(good sub-optimal solution to be exact) θ∗ for a

function q when cp1 and cp2 are fixed. A model θ

can be represented by a set of n′ integer variables

θ = (θ1, . . . , θn′) = (β1, . . . , βn, k, C ′, σ′). Notations

kθ, βθ, Cθ and σθ used in Section 3.1 correspond

respectively to k, (β1, . . . , βn),
√

2
C′

and
√

2
σ′

in

that integer representation of θ model. One ba-

sic move in our TS method corresponds to adding

δ ∈ [−1, 1] to the value of a θi, while preserving the

constraints of the model which depend on it (i.e.

∀i ∈ [1, . . . , n′], θi ∈ [min(θi), . . . ,max(θi)] where

min(θi) and max(θi) respectively denote lower and

upper bound values of θi variable). From these con-

straints, the list of all possible neighborhood solu-

tions is computed. From these possible solutions,

the one which has the best DFQ and which is not

tabu is chosen. The set of all Θit
tabu solutions θ

which are tabu at the it iteration step of TS is de-

fined as follows: Θit
tabu = {θ ∈ Ω | ∃ i, t′ : t′ ∈

[1, . . . , t], θi 6= θit−1
i ∧ θi = θit−t′

i } with Ω the set

of all solutions and t an adjustable parameter for

the short memory used by TS (for experimental re-

sults t =
∑n′

i=1 max(θi) − min(θi)). The idea is that

a variable θi could be changed only if its new value

is not present in the short memory. Then, our TS

method does not go back to a value of θi previously

changed in short time, avoiding by that mechanism

undesirable oscillation effects. Tabu status of solu-

tions Θit
tabu may prohibit some attractive moves at

iteration it. Therefore, our TS uses an aspiration

criterion which consists in allowing a move (even if

it is tabu) if it results in a solution with an objective

value better than that of the current best-known so-

lution.

The initialisation of model θ with our TS model

selection is the following:

• kθ = ⌊log2 (max(m+1,m−1)) /3⌋,

• Cθ = 1 and σθ = 1,

• ∀i : βi = 1.

In the expression of kθ , m+1 and m−1 are respec-

tively the number of examples of positive and nega-

tive classes in binary sub-problems. The value of kθ

allows to start with sufficiently simplified datasets in

order to have low training times with SVM for the

first intensification step.

Using intensification and diversification strate-

gies can improve TS methods40. The model selection

such as it was defined has to deal with two kinds of

problems. First, testing all moves between two iter-

ations with a great number of features can be time

consuming. In particular, it is a waste of time to

explore moves which are linked to features when the

actual solution is not sufficiently promising. There-

fore, focusing on moves which are only linked to SVM

hyperparameters or simplification level is more effi-

cient to discover new promising regions. Second, it is

difficult for TS method to quickly escape from deep

valleys or big clusters of poor solutions while only

using the short memory and resulting in not tabu

solutions. Using more diversified solutions can over-

come this problem. This is dealt with by increasing

step size (δ > 1) of moves and by forcing the use of

all types of moves (except feature selection moves for

the reason stated above).

In our TS method, intensification and diversifica-

tion strategies are used alternatively and begin with

the intensification strategy. The next two subsec-

tions give details on these two strategies.

3.5. Intensification strategy

In the intensification algorithm sysnopsis shown

in Table 4, ExtensiveSearch explores all eligible ba-

sic moves, whereas FastExtensiveSearch explores

only eligible basic moves which are not related to

feature selection (i.e. changing the value of β).

ηpromising controls when the actual solution is consid-

ered as sufficiently promising and this one permits

to switch between the two functions stated above.

BestNotTabu corresponds to the move procedure se-

lection described in the previous Section (the best

tabu solution is chosen if all moves are tabu). In
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this synopsis, θintensification corresponds to the best

solution found into a same phase of intensification,

although θbest−known corresponds to the best solution

found in all intensification and diversification steps.

nmax is the maximum number of intensification iter-

ations for which no improvements of the last best

intensification solution (θintensification) are consid-

ered as failure of the intensification strategy. nfailure

counts the number of failures of intensification strat-

egy. If nfailure is higher than a fixed maximum num-

ber of failures max, our TS method stops and returns

the solution θbest−known. If a solution in Θnext has

a QDF which is better than θbest−known, aspiration

mechanism is used. That solution is selected as the

new θbest−known and nfailure is reset to zero.

Table 4. Synopsis of TS intensification strategy.

Intensification(θit)
IF q(θit) > ηpromising · q(θbest−known)
THEN Θnext ⇐ ExtensiveSearch(θit)
ELSE Θnext ⇐ FastExtensiveSearch(θit)

θit+1 ⇐ BestNotTabu(Θnext)
IF q(θit+1) > q(θintensification)
THEN

θintensification ⇐ θit+1

nWithoutImprove ⇐ 0
ELSE

nWithoutImprove ⇐ nWithoutImprove + 1
IF nWithoutImprove > nmax

THEN
nfailure ⇐ nfailure + 1
stategy ⇐ Diversification

IF nfailure > nmax
failureTHEN STOP

3.6. Diversification strategy

In the diversification algorithm sysnopsis shown

in Table 5, an eligible variable (one which

does not have a link with features) is selected

(SelectEligibleVariable) by random and a jump

of ±δ is performed by modifying the selected variable

in the actual solution. There are only two explored

moves (TwoMove) to force the diversification of ex-

plored solutions. The jump size increases with the

number of successive failures (nfailure) of the inten-

sification strategy in order to explore more and more

distant regions. During the diversification iterations,

the best visited solution is stored (θdiversification)

and selected as the starting solution for the next in-

tensification step (θit
intensification = θit−1

diversification).

At any time of TS exploration, if aspiration is in-

volved, the strategy automatically switches to in-

tensification and the number of failures is reset

(nfailure = 0).

Table 5. Synopsis of TS diversification strategy.

Diversification(θit)
δ ⇐ nfailure+1

i ⇐ SelectEligibleVariable

Θnext ⇐ TwoMove(θit, i, δ)
θit+1 ⇐ BestNotTabu(Θnext)
IF q(θit+1) > q(θdiversification)
THEN

θdiversification ⇐ θit+1

ndiversification ⇐ ndiversification + 1
IF ndiversification > nmax · nfailure

THEN
θit+1 ⇐ θdiversification
stategy ⇐ Intensification

4. Experimental results

Two types of experiments were performed. In

the first one, the abilities of our TS model selection

were tested on well-known benchmark datasets29. In

the second one, the goal was to produce a fast pixel

classification by combining several SVM inducers of

low complexities28. Pixel classifiers were used to de-

fine a fast and efficient segmentation scheme for cell

microscopic image30.

4.1. Benchmark datasets

For the experiments, datasets Adults, OpticDigit,

Letter and Shuttle are from UCI repository54; dataset

Web comes from Platt experiments3; and dataset

ClassPixel comes from our works30. Table 6 pro-

vides statistics on those datasets with m, nc and nf

respectively the number of examples, the number of

classes and the number of features (learning and test

sets respectively have 2/3 and 1/3 of datasets size.

Test sets are used to estimate recognition rate (RR)

after TS model selection step).

Table 6. Datasets description.

bases m nc nf

Adults 45222 2 103
OpticDigit 3823 10 64
Letter 20000 26 16
Shuttle 58000 6 9
Web 49749 2 300
ClassPixel 224636 3 27
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4.2. Influence of simplification level

To illustrate the importance of simplification step

in our model selection method, this one is tested

when the value of k is fixed for the TS process (fea-

ture selection possibility of our TS method is not

used by forcing FastExtensiveSearch in our intensi-

fication strategy). The idea is to observe the evolu-

tion of BDF recognition rate according to simplifi-

cation intensity. Table 7 summaries results obtained

with the OpticDigit dataset for k ∈ {0, 2, 4, 8} (this

corresponds to have respectively {1, 4, 16, 64} proto-

type examples by class). Those results show that

each individual binary sub-problem is more or less

sensitive to simplification level in a same multi-class

problem. For several binary sub-problems, few pro-

totypes (i.e. low values of k) are sufficient to produce

efficient BDF with SVM learners. The selection of

the simplification level (k value) is then dependent

on each binary sub-problem in a multi-class problem

when QFD criterion must be optimized. The choice

of complexity penalty coefficient (cp1
) also has an im-

pact on selection of the optimal simplification level.

For example with Table 7 results, if cp1
is fixed to

0.01, the k values which optimize DFQ criterion are

respectively {2, 4, 4, 4, 8} . If cp1
is changed to 0.002,

the k optimal values become {4, 6, 4, 8, 8}.

Table 7. Results with OpticDigit dataset for different
simplification levels (value of k) on some binary sub-
problems involved in an one-versus-all decomposition.
RRi

is the recognition rate on test set for produced BDF
in which i represents the digit in the binary sub-problem
to identify for the others. Cp1

is fixed to 0.01.

k RR0
RR2

RR5
RR8

RR9

0 98.4% 95.4% 92.8% 87.8% 88.5%
2 99.7% 97.3% 95.7% 91.5% 90.7%
4 100.0% 99.6% 99.1% 96.2% 92.6%
6 100.0% 99.8% 99.2% 96.4% 95.8%
8 100.0% 99.9% 99.2% 96.6% 97.7%

Similar results are obtained with other

datasets28,29. From all those experiments one can

conclude that increasing the training set size (num-

ber of prototypes) does not alway significantly im-

prove the recognition rate for a specific binary prob-

lem. The main reason of that effect is that the level

of redundancy in a dataset is variable. Moreover,

complexity of a produced BDF is directly linked to

training set size28,29. Those preliminary results show

the importance of using DFQ criterion as an objec-

tive function because several θ models have very

close recognition rates but great variations on their

complexities.

4.3. Tuning parameters of our TS method

The objective of our model selection method is

to automatically select efficiently all free parame-

ters (θ model) involded in the construction process

of SVM BDF in order to optimize DFQ, but our

TS method also has to introduce other free param-

eters (ηpromising, nmax, nmax
failure). Several experiments

have been realized to determine efficient setting for

them29. Results from: (1) ηpromising = 0.99 is an

efficient threshold value to determine if TS basic

moves must incorporate feature selection possibility,

(2) nmax = 5 and nmax
failure = 5 are a good compromise

between learning time reduction and the importance

of TS exploration for determining when TS must be

terminated.

4.4. Results with different datasets

We applied the TS model selection described in Sec-

tion 3 with settings given in Section 4.3. Two penalty

configurations are used: (1) cp1
= cp2

= 0.01, (2)

cp1
= 0.0001 and cp2

= 0. For the first configura-

tion, doubling the number of support vectors or the

number of features used is only profitable if recogni-

tion rate is increased of at least 1%. For the second

configuration, the idea is to be very close to classical

SVM training: SVM hyper-parameters selection cor-

responding to minimizing expected error rate (cp1
is

not equal to zero, but close to it, in order to avoid

intractable SVM training time) with no feature se-

lection possibility (i.e only FastExtensiveSearch with

Intensification strategy). Each penalty configuration

is used with datasets presented in Section 4.1.

Table 8. Total training time (
∑

TT ), mean of simplifica-
tion level (k̄), total number of support vectors (

∑

SV ),
average number of features (n̄f ) and recognition rate on
test set (R̄R) for the nc produced BDF (only one BDF
is produced when nc = 2) with our TS model selection
method. Two penalty configurations are used with the
benchmark datasets: cp1

= cp2
= 0.01 for config. 1 and

cp1
= 0.0001 and cp2

= 0 for config. 2.
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Config. 1
∑

TT k̄
∑

SV n̄f R̄R

Adult 5634 0 2 44 81.5%

OpticDigit 3569 3.7 143 20.6 97.4%

Letter 31478 4.7 237 9.3 92.8

Shuttle 628 2.3 27 1.3 99.9%

Web 25693 2 5 149 87.3%

ClassPixel 18557 3.3 33 6 84.8%

Config. 2
∑

TT k̄
∑

SV n̄f R̄R

Adult 21749 14 23698 103 84.8%

OpticDigit 134 8.6 134 64 99.0%

Letter 42127 9.3 5612 16 94.2%

Shuttle 128174 10.5 285 9 99.9%

Web 18127 11 730 300 90.4%

ClassPixel 31282 4.3 59 27 85.0%

Table 8 reports results obtained by each TS

model selection. Those results show that recognition

rate of BDF with configuration 1 are close to those

with configuration 2. Although, for the first one, the

model complexity is greatly decreased by reducing

both the number of support vectors and features

used by a BDF. More penalty configurations have

been also tested on those classification problems29;

results show that our TS model selection method

can produce a range of BDF which have different

trade-off between celerity and precision. Of course,

the good penalty trade-off is application dependant,

but results in Table 8 show that our method can

produce, for a same penalty configuration, fast BDF

which have globally efficient generalization capaci-

ties through datasets of different natures.

If training times are compared to the classical

grid-search technique (a grid points in the kernel-

parameter-and-C plane19) without simplification of

training set29, training time is greatly reduced (ex-

cept with very low penalty values). Moreover, our

method can also perform in addition feature and sim-

plification level selections. Results in Table 8 show

that the number of features used has been greatly

reduced when configuration 1 and configuration 2

are compared. Time to proceed at model selection

including feature selection (i.e. configuration 1) is

tractable with our TS method if penalty coefficients

are not too low (results, not presented here29, show

that model selection time increases quickly while

penalty coefficient decreases). In the other case (i.e.

configuration 2), feature selection possibility must

be discarded. Let nk be the number of solutions

θ examined by TS for which simplification level is

equal to k. Global SVM training time of our method

is O(
∑

nk(2k)γ) with 2 < γ < 3. The examination

of our TS method shows that nk decreases while k

increases. This effect increases when cp values in-

creases and explains the efficient training time of our

TS model selection.

4.5. Fast pixel classification problem

Pixel classification is commonly used as an ini-

tial step in color image segmentation schemes43,55,28

for the extraction of seeds. As for any classification

problem, the choice of an inducer which produces ef-

ficient decision functions having good generalization

performances is critical. Working with any machine

learning algorithm for pixel classification involves to

take into account not only the recognition rate of the

base inducer but also the processing time needed to

perform pixel classification of all the pixels in an im-

age. About millions of accesses to SVM inducers per

image are necessary for that kind of application30.

Therefore, our model selection method is adapted to

produce fast and efficient pixel classification. Vector

quantization is used in order to reduce the inherent

redundancy present in huge pixel databases. Feature

selection in our method is used to select an adapted

hybrid color space43,28.

The ClassPixel dataset is built from 8 microscopic

images of bronchial tumors where ground truth is

given by experts30 (see fig. 1(a) and 1(b) which show

respectively a cellular image and its corresponding

expert segmentation). Results in Table 8 show that

it is possible to produce efficient BDF with low com-

plexity for that problem. If decomposition of combi-

nation scheme is changed to one-versus-one (cp co-

efficients are also changed), it is possible to increase

recognition rate (RR = 86.7%) and decrease com-

plexity (
∑

SV = 10, n̄f = 3) of pixel classifiers. Fig-

ure 1(c) illustrates pixel classification for a cellular

image (fig. 1(a)) when one-versus-one combination

scheme is used. Comparing the pixel classification re-

sult (fig. 1(c)) to the expert segmentation (fig. 1(b))

shows that shapes of nucleus and cytoplasm are well

identified. Additional results show that pixel classi-

fication permits to produce a fast and efficient seg-

mentation scheme for cell microscopic image30.

5. Conclusion

A new learning method based on SVM inducers
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(a) (b) (c) pixel classification.

Figure 1: (a) Microscopic cellular image (RGB, 752x574 pixels) stained with international coloration of Papan-
icolaou. (b) expert segmentation of the microscopic image: background (black), cytoplasm (blue) and nuclei
(green). (c) pixel classification results with BDF produced by our TS model selection method.

is proposed to achieve a good compromise between

fast decision process and precision of that decision.

To that aim, we have proposed:

1. To use VQ technique, through the LBG algo-

rithm, to produce prototypes which resume ef-

ficiently examples in a training dataset. Mo-

tivation was that training datasets generally

have redundancy.

2. To include feature selection possibility to that

learning method in order to deal with more or

less correlation in the set of features describ-

ing training examples. The irrelevant features

for binary sub-problems induced by multi-class

decomposition can also be discarded by feature

selection process.

3. To realize the selection of efficient SVM hyper-

parameters in order to increase generalization

capacities of that type of inducers.

4. To define a quality criterion, called DFQ, which

corresponds to a trade-off between low com-

plexity and precision of a SVM decision pro-

cess.

5. To define an adapted TS model selection which

efficiently tunes parameters linked to the first

three key points in order to optimize the DFQ

criterion.

The objectives of the proposed learning method

based on TS model selection is to produce BDF

which have threefold advantages: high generalization

abilities, low complexities and selection of an efficient

features subsets. Experimental results on benchmark

datasets illustrate that our TS selection method real-

izes those objectives. It also shows how to efficiently

fix internal parameters of our TS method. Other

experimental results for a cellular microscopic seg-

mentation application shows that pixel classification

can be fast and efficient. Resulting segmentations

will be helpful for analysis, in particular for cancer-

ous diagnostic-helping.

6. Future works

Future works have to deal with two topics. In

the first one, we want to improve our model selec-

tion method with SVM inducers. In the second one,

we have to compare the proposed method with other

methodologies.

To improve the proposed TS model selection, several

directions could be explored:

• Taking into account multi-class recognition

rate and the total complexity of all BDF (in-

duced by the binary decomposition) in the

DFQ criterion. Recent results27 show that op-

timizing individually each BDF implied in a

combination scheme does not necessary pro-

duce the optimal multi-class scheme. More-

over, in our case, reducing the complexity of

a specific BDF could have a significant de-

crease of the binary recognition rate for that

BDF, but a lesser significant decrease of the

multi-class recognition rate for the combina-

tion scheme in which that BDF is used. More

generally, this problem refers to the question

on how to combine several classifiers together

in order to achieve improved performance56.
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• Extending TS model selection in order to have

an efficient feature selection for the global

multi-class problem. Indeed, feature selection

is independently well tuned for a specific BDF,

but the union of used features by all BDF in a

multi-class decomposition is generally more im-

portant than the average of those ones. New

type of TS moves must be defined to per-

form an efficient multi-class feature selection

which preserves the global multi-class recogni-

tion rate for a given combination scheme, but

makes sure that the union of every selected

feature subset has the smallest possible size.

Complexity term in the DFQ criterion must

be also changed to favor that possibility.

• The influence of other simplification

methods4,12,11 has to be quantized. In par-

ticular, QV methods can be time consuming

when datasets have million of examples. For

instance, using hierarchical clustering tree al-

gorithms can speed up this simplification step.

Another way is to directly work with several

pruned versions of hierarchical tree database

representations4. New moves for our TS model

selection must be defined in order to permit

to un-prune or prune the tree according to the

promising status of regions and the complexity

variations of DFQ criterion.

Comparison with other methodologies could be de-

vised in two ways:

• SVM algorithms have efficient generalization

propriety in the machine learning framework

but other learning algorithms like Neural Net-

works (NN) or decision trees also have that

propriety57,58,59,60,61. It will be interesting to

substitute SVM for one of them. The prob-

lem is how to compare complexity of those dif-

ferent inducers. For instance with NN, reduc-

ing the number of examples in training set has

no impact on NN complexity, but reducing the

number of neurons used with a NN has a great

impact.

• Other meta-heuristic methods exist to opti-

mize DFQ criterion like simulated annealing,

evolutionary, particle swarm or ant colony

algorithms33,34. It will be interesting to com-

pare them on the model selection problem. In

terms of process time. Another interesting

possibility, with meta-heuristic algorithms that

find multiple solution34, is that a set of efficient

models could then be produced in the frame-

work of multi-objective optimization. Differ-

ent realizations of the compromise between low

complexity and precision could be produced

without explicitly fixing cp coefficient values

in QDF criterion. The selection of the clas-

sifier which has the best compromise will be

determined later in function of application con-

straints.
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