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eAbstra
t. Asso
iation rule extra
tion from operational datasets often produ
es several tens ofthousands, and even millions, of asso
iation rules. Moreover, many of these rules are redundant andthus useless. Using a semanti
 based on the 
losure of the Galois 
onne
tion, we de�ne a 
ondensedrepresentation for asso
iation rules. This representation is 
hara
terized by frequent 
losed itemsetsand their generators. It 
ontains the non-redundant asso
iation rules having minimal ante
edentand maximal 
onsequent, 
alled min-max asso
iation rules. We think that these rules are themost relevant sin
e they are the most general non-redundant asso
iation rules. Furthermore, thisrepresentation is a basis, i.e., a generating set for all asso
iation rules, their supports and their
on�den
es, and all of them 
an be retrieved needless a

essing the data. We introdu
e algorithmsfor extra
ting this basis and for re
onstru
ting all asso
iation rules. Results of experiments 
arriedout on real datasets show the usefulness of this approa
h. In order to generate this basis when analgorithm for extra
ting frequent itemsets � su
h as Apriori for instan
e � is used, we also presentan algorithm for deriving frequent 
losed itemsets and their generators from frequent itemsetswithout using the dataset.Keywords: Data mining, Galois 
losure operator, frequent 
losed itemsets, generators, min-maxasso
iation rules, basis for asso
iation rules, 
ondensed representation.1. Introdu
tionThe purpose of asso
iation rule extra
tion, introdu
ed in (Agrawal et al., 1993),is to dis
over signi�
ant relations between binary attributes, 
alled items, in largedatasets. An example of asso
iation rule extra
ted from a dataset of supermarketsales is: `
ereals ∧ sugar → milk (support=7%, 
on�den
e=67%)'. This rule statesthat 
ustomers who buy 
ereals and sugar also tend to buy milk. The supportmeasure de�nes the range of the rule, i.e., the proportion of 
ustomers who boughtthe three items among all 
ustomers. The 
on�den
e measure de�nes the pre
isionof the rule, i.e., the proportion of 
ustomers who bought milk among those whobought 
ereals and sugar. Only rules with support and 
on�den
e above someminimal support and 
on�den
e thresholds, de�ned by the analyst a

ording tothe appli
ation, are extra
ted.Classi
al approa
hes for mining asso
iation rules operate in two phases:
© 2008 Kluwer A
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2 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal1. Extra
ting frequent itemsets and their support from the dataset. Frequent item-sets are sets of items 
ontained in a proportion of obje
ts above the minimumsupport threshold.2. Generating asso
iation rules from frequent itemsets and supports. Only ruleswith 
on�den
e above the minimum 
on�den
e threshold are generated.The �rst phase is the most 
omputationally intensive, sin
e the number of potentialfrequent itemsets is exponential in the size of the set of items and several datasets
ans, very expensive in exe
ution times, are required to 
ount their supports.Classi
al approa
hes 
an be 
lassi�ed into three main trends. Approa
hes in the�rst trend are based on the levelwise extra
tion of frequent itemsets (Agrawal andSrikant, 1994; Mannila et al., 1994). That is a breadth-�rst exploration of thesear
h spa
e where all potential frequent itemsets of a given size are 
onsideredsimultaneously (Mannila and Toivonen, 1997). These approa
hes are e�
ient formining asso
iation rules from weakly 
orrelated data, su
h as market basket data,but performan
es drasti
ally de
rease when data are dense or 
orrelated, su
h as sta-tisti
al data for instan
e. Approa
hes in the se
ond trend are based on the extra
tionof maximal1 frequent itemsets (Bayardo, 1998; Lin and Kedem, 1998; Zaki et al.,1997) to improve the e�
ien
y. On
e all maximal frequent itemsets are extra
ted,all frequent itemsets are derived and their support are 
ounted in the dataset. Inthe third trend, approa
hes are based on the extra
tion of frequent 
losed item-sets (Pasquier et al., 1998; Zaki and Ogihara, 1998) de�ned using the Galois 
losureoperator. These approa
hes �rst extra
t all frequent 
losed itemsets and then, bothfrequent itemsets and their support are derived from them, without dataset a

ess.In the 
ase of dense or 
orrelated data, there are mu
h fewer frequent 
losed itemsetsthan frequent itemsets and thus, these approa
hes improve the extra
tion e�
ien
y
ompared to approa
hes in the �rst trend. Compared to approa
hes in the se
ondtrend, appro
hes based on frequent 
losed itemsets 
an be more e�
ient in the 
aseof 
orrelated data due to the 
ost of generating all subsets of the maximal frequentitemsets and 
ounting their support in the dataset.Another major resear
h topi
 in data mining is the problem of relevan
e and useful-ness of extra
ted asso
iation rules. This problem is related to the number of extra
tedrules � that is most often very large � and to the important proportion of redundantrules, i.e. rules bringing the same information, among them. This problem be
omes
ru
ial when data are dense or 
orrelated, su
h as statisti
al data, tele
ommuni
a-tion data or nominative market basket data (Bayardo and al., 2000; Brin and al.,1997; Siverstein et al., 1998). For instan
e, using a 
ensus dataset sample 
onstitutedof 10,000 obje
ts, ea
h one 
ontaining values of 73 binary attributes, more than2,000,000 asso
iation rules with support and 
on�den
e above 90% were extra
ted.The analyst is then 
onfronted with the following problems: How to handle su
h alist of asso
iation rules ? Is it possible to redu
e its size without losing information ?Moreover, the inspe
tion of extra
ted asso
iation rules shown that redundant rulesrepresent the majority of them. Their suppression will thus 
onsiderably redu
ethe number of rules to be handled by the analyst. In the previous example, this1 All maximal and minimal sets 
onsidered are de�ned a

ording to the in
lusion relation.
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Generating a Condensed Representation for Asso
iation Rules 3suppression redu
ed the number of rules to a few thousands. In addition, redundantrules 
an be misleading as dis
ussed in example 1. Thus, the following questionarises: How to redu
e extra
ted asso
iation rules to a smaller list 
ontaining onlynon-redundant asso
iation rules ?Example 1. To illustrate the problem of redundant asso
iation rules, we presentnine rules extra
ted from the Mushrooms dataset des
ribing 
hara
teristi
s of8 416 mushrooms (Blake and Merz, 1998) in table I. These rules have identi
alsupports and 
on�den
es, of 51% and 54% respe
tively, and the item �free gills�in the ante
edent.Table I. Redundant asso
iation rules.1) free gills → edible 6) free gills, partial veil → edible, white veil2) free gills → edible, partial veil 7) free gills, white veil → edible3) free gills → edible, white veil 8) free gills, white veil → edible, partial veil4) free gills → edible, partial veil, white veil 9) free gills, partial veil, white veil → edible5) free gills, partial veil → edibleObviously, rules 1 to 3 and 5 to 9 do not add any information to rule 4 sin
e allthese rules have identi
al supports and 
on�den
es. We thus say that these rulesare redundant 
ompared to rule 4, the most relevant from the analyst's point ofview for it summarizes the nine rules. This rule has a minimal ante
edent (left-handside) and a maximal 
onsequent (right-hand side) among the nine rules. Moreover,examining only one of these eight rules, say for instan
e rule 9, the analyst willbelieve that a mushroom has 54% 
han
es to be edible if it has free gills and apartial white veil. As a matter of fa
t, it has 54% 
han
es to be edible and have apartial white veil if it has free gills. Redundant rules 
an therefore be misleadingand 
ause misinterpretations of the results. We believe that extra
ting only rule 4will improve the result relevan
e.In the rest of the paper, we di�erentiate exa
t asso
iation rules, noted l ⇒ l′, thathave a 100% 
on�den
e, and approximate asso
iation rules, noted l → l′, that havea 
on�den
e lower than 100%. Exa
t asso
iation rules are valid for all obje
ts in thedataset whereas approximate asso
iation rules are valid for a proportion of obje
tsequal to their 
on�den
e.1.1. Related WorkApproa
hes addressing this issue 
an be 
lassi�ed into three main trends. Approa
hesin the �rst trend provide me
hanisms for �ltering extra
ted asso
iation rules. In thetwo other trends, approa
hes �extend� the de�nition of asso
iation rules in order notto extra
t �similar� ones.Approa
hes in the �rst trend allow the analyst to de�ne some templates (Baralisand Psaila, 1997; Klemettinen and al., 1994), boolean operators (Bayardo and al.,2000; Ng et al., 1998; Srikant et al., 1997) or SQL-like operators (Meo et al., 1998)in order to sele
t rules a

ording to his/her preferen
es. In (Bayardo and al., 2000),
JIIS05.tex; 20/03/2008; 11:18; p.3



4 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalboolean operators are 
oupled with further measures of �usefulness� of the rules.By sele
ting a subset of all extra
ted asso
iation rules, these approa
hes redu
ethe number of rules to handle during the visualization, but redundan
ies are notsuppressed.In the se
ond trend, some approa
hes use a taxonomy of items to extra
t generalizedasso
iation rules (Han and Fu, 1999; Srikant and Agrawal, 1995), i.e., asso
iationrules between sets of items that belong to di�erent levels of the taxonomy. Someapproa
hes use statisti
al measures, su
h as Pearson's 
orrelation or χ2 test forinstan
e, instead of the 
on�den
e to determine the pre
ision of the rule (Brin andal., 1997; Morimoto et al., 1998; Siverstein et al., 1998). Other approa
hes in thistrend allow to extra
t only rules with maximal ante
edents among those with thesame supports and the same 
onsequents (Srikant and Agrawal, 1996; Toivonen etal., 1995). That is, a rule r will be pruned if another rule r′ has the same 
onsequentand an ante
edent that is a superset of the one of r. In example 1, rules 4, 6,8 and 9 have maximal ante
edents and will be extra
ted. Finally, the approa
hproposed in (Bayardo and Agrawal, 1999) identi�es optimal rules a

ording to severalinterestingness metri
s (
on�den
e, 
onvi
tion, lift, Lapla
e, gain, et
.) and a partialorder on the rules.Approa
hes in the third trend make use of the 
losure of the Galois 
onne
tionto extra
t bases, or redu
ed 
overs, for asso
iation rules. Informally, a basis is anon-redundant set that is minimal a

ording to some mathemati
al property andfrom whi
h all asso
iation rules are dedu
ible, with support and 
on�den
e, withouta

essing the dataset. These bases are adaptations of the Duquenne-Guigues basisfor global impli
ations (Duquenne and Guigues, 1986; Ganter and Wille, 1999) andthe Luxenburger basis for partial impli
ations (Luxenburger, 1991). They were in-trodu
ed in Formal Con
ept Analysis and their adaptation to the asso
iation ruleframework is studied in (Pasquier et al., 1999
; Taouil et al., 2000; Zaki, 2000). In theDuquenne-Guigues basis for exa
t asso
iation rules, ante
edents of rules are frequentpseudo-
losed itemsets and 
onsequents are frequent 
losed itemsets. In the Luxen-burger basis for approximate asso
iation rules, both ante
edents and 
onsequentsare frequent 
losed itemsets: We sele
t approximate rules with both a maximalante
edent and a maximal 
onsequent among rules having identi
al supports and
on�den
es. In example 1, rule 9 will be the only one extra
ted. The union of theDuquenne-Guigues and the Luxenburger bases is a basis for all asso
iation rules.This basis is minimal with respe
t to the number of rules and, sin
e for most datatypes there are mu
h fewer frequent 
losed and pseudo-
losed itemsets than thereare frequent itemsets, it is very small. However, it does not 
ontain non-redundantrules with minimal ante
edent and maximal 
onsequent.In previous works about the pruning of redundant impli
ation rules (fun
tionaldependen
ies), su
h as the 
anoni
al and the minimum 
overs de�nitions (Beeriand Bernstein, 1979; Maier, 1980), redundant rules are de�ned a

ording to aninferen
e system based on Armstrong axioms (Armstrong, 1974). However, theseresults 
annot be dire
tly applied to the asso
iation rule framework sin
e redundantasso
iation rules 
annot be de�ned a

ording to this system: Supports and 
on�-den
es are important information that must be 
onsidered to 
hara
terize redundantrules. Su
h an inferen
e system for asso
iation rules does not exist to our knowledge.
JIIS05.tex; 20/03/2008; 11:18; p.4



Generating a Condensed Representation for Asso
iation Rules 5The idea behind non-redundant asso
iation rules as de�ned hereafter is to identifythe most relevant rules, ea
h one bringing the same information as several others.1.2. ContributionOur goal is to improve asso
iation rules relevan
e and usefulness by extra
ting asfew rules as possible without losing information. To a
hieve this, we propose togenerate a 
ondensed representation (Mannila and Toivonen, 1996) by maximizingthe information brought by ea
h rule. As pointed out in example 1, we believethat the most relevant asso
iation rules are the most general2 non-redundant rules:Those with minimal ante
edent and maximal 
onsequent. Extra
ting su
h rules willimprove the result usefulness, while redu
ing its size. Therefore, in the following:
− We de�ne non-redundant asso
iation rules with minimal ante
edent and maxi-mal 
onsequent, 
alled min-max asso
iation rules. These rules are de�ned usingthe semanti
 for asso
iation rule extra
tion based on the Galois 
losure. Theirante
edents and 
onsequents are 
hara
terized by frequent 
losed itemsets andtheir generators (Pasquier et al., 1998).
− We show that the min-max asso
iation rules 
onstitute a basis, 
alled min-maxbasis for asso
iation rules. All asso
iation rules 
an be dedu
ed by generatingall the sub-rules of the min-max asso
iation rules, 
onsidering their supportsand 
on�den
es.
− We propose e�
ient algorithms to generate the min-max basis from frequent
losed itemsets and their generators, su
h as extra
ted by the Close (Pasquieret al., 1998; Pasquier et al., 1999b) and the A-Close (Pasquier et al., 1999a)algorithms. We also introdu
e algorithms to re
onstru
t all asso
iation rules, ora part of them, from this basis without having to a

ess the data.
− We present the Close+ algorithm that identi�es frequent 
losed itemsets, theirgenerators and their supports among frequent itemsets and their supports. Thisalgorithm is simple and e�
ient sin
e it does not require any dataset a

ess. Itenables the generation of the min-max basis when an algorithm for extra
tingall frequent itemsets, su
h as Apriori (Agrawal and Srikant, 1994) for instan
e,is used.Extra
ting min-max asso
iation rules minimizes as mu
h as possible the numberof rules while keeping the same information in the result: Only the most generalnon-overlapping asso
iation rules are extra
ted and therefore redundant rules arepruned. Sin
e for many real datasets redundant rules represent the majority ofextra
ted rules, the redu
tion will be almost always signi�
ant. This redu
tion willbe 
onsiderable in the 
ase of dense or 
orrelated data for whi
h the total number ofrules is very large and most are redundant (Bayardo and Agrawal, 1999; Brin andal., 1997; Siverstein et al., 1998).2 We say that a rule r : a → c is more general than a rule r′ : a′ → c′ if they have identi
alsupports and 
on�den
es, the ante
edent a of r is a subset of a′ and the 
onsequent c of r is asuperset of c′. r′ is then 
alled a sub-rule of r, and r a super-rule of r′.

JIIS05.tex; 20/03/2008; 11:18; p.5



6 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalWith the min-max basis, the analyst is presented a set of rules 
overing all theattributes of the dataset: All of the data-spa
e is 
hara
terized by the min-maxrules, over
oming an important de�
ien
y of most redu
tion methods where largesub-spa
es of the data-spa
e may be poorly 
hara
terized or even entirely un
har-a
terized (Bayardo and Agrawal, 1999). This property helps insuring that rules�surprising� for the analyst, that are important information (Piatetsky and Matheus,1994; Silbers
hatz and Tuzhilin, 1996), will be present. Moreover, the min-max basisdoes not represent any information loss for the analyst: all information brought bythe set of all asso
iation rules is brought by the min-max basis. This approa
h doesnot su�er of the problem of information loss � from the analyst's point of view � thatis an important drawba
k in asso
iation rule redu
tion methods (Liu and al., 1999).If the analyst so wishes, it is also possible to e�
iently dedu
e all other asso
iationrules, with supports and 
on�den
es, from the min-max basis alone.1.3. OrganizationIn se
tion 2, we re
all the semanti
 for asso
iation rules based on the Galois 
onne
-tion and the Close algorithm for extra
ting frequent 
losed itemsets and generators.We also present the Close+ algorithm for e�
iently deriving frequent 
losed item-sets, their generators and their supports from frequent itemsets and their supports.Min-max asso
iation rules and the min-max basis for asso
iation rules are de�nedin se
tion 3. Algorithms for generating this basis are also presented. In se
tion 4, wepresent simple methods and algorithms for deriving all asso
iation rules from themin-max basis. Results of experiments 
ondu
ted to evaluate the usefulness of thisapproa
h are given in se
tion 5 and se
tion 6 
on
ludes the paper.2. Semanti
 for asso
iation rules based on the Galois 
onne
tionThe asso
iation rule extra
tion is performed from a data mining 
ontext3, that is atriplet D = (O,I,R), where O and I are �nite sets of obje
ts and items respe
tively,and R ⊆ O×I is a binary relation. Ea
h 
ouple (o, i) ∈ R denotes the fa
t that theobje
t o ∈ O is related to the item i ∈ I. An itemset l is a set of items l ⊆ I, l 6= ∅.Example 2. A data mining 
ontext D 
onstituted of six obje
ts, ea
h one identi�edby its OID, and �ve items is represented in table II. This 
ontext is used as supportfor the examples in the rest of the paper.The Galois 
onne
tion of a �nite binary relation (Ganter and Wille, 1999) is a 
oupleof appli
ations (φ, ψ). φ asso
iates with a set of obje
ts O ⊆ O the items related toall obje
ts o ∈ O and ψ asso
iates with an itemset l ⊆ I the obje
ts related to allitems i ∈ l. When an obje
t o is related to all items i ∈ l, we say that o 
ontains l.We denote minsupp and min
onf the minimal support and 
on�den
e thresholds.De�nition 1. (Frequent itemsets) The support of an itemset l is the proportion ofobje
ts in the 
ontext 
ontaining l: supp(l) = |ψ(l)| / |O|. l is a frequent itemset if
supp(l) ≥ minsupp.3 We will use 
ontext and dataset inter
hangeably in the sequel.

JIIS05.tex; 20/03/2008; 11:18; p.6



Generating a Condensed Representation for Asso
iation Rules 7Table II. Data mining 
ontext D.OID Items1 A C D2 B C E3 A B C E4 B E5 A B C E6 B C EDe�nition 2. (Asso
iation rules) An asso
iation rule r is an impli
ation between twofrequent itemsets l1, l2 ⊆ I with the form l1 → (l2\l1) where l1 ⊂ l2. The support and
on�den
e of r are de�ned by: supp(r) = supp(l2), conf (r) = supp(l2) / supp(l1).The 
losure operator γ = φ◦ψ asso
iates with an itemset l the maximal set of items
ommon to all the obje
ts 
ontaining l: The 
losure of an itemset is equal to theinterse
tion of all the obje
ts 
ontaining it. Using this 
losure operator, we de�nethe frequent 
losed itemsets.De�nition 3. (Frequent 
losed itemsets) A frequent itemset l ⊆ I is a frequent 
loseditemset i� γ(l) = l. The minimal 
losed itemset 
ontaining an itemset l is its 
losure
γ(l).The set of frequent 
losed itemsets and their supports is a minimal non-redundantgenerating set for all frequent itemsets and their supports, and thus for all asso
iationrules, their supports and their 
on�den
es. This theorem relies on the propertiesthat the support of a frequent itemset is equal to the support of its 
losure and thatmaximal frequent itemsets are maximal frequent 
losed itemsets (Pasquier et al.,1998). In order to improve the e�
ien
y of frequent 
losed itemset extra
tion, theClose and A-Close algorithms 
ompute generators of frequent 
losed itemsets.De�nition 4. (Generators) An itemset g ⊆ I is a generator of a 
losed itemset l i�
γ(g) = l and ∄g′ ⊆ I with g′ ⊂ g su
h that γ(g′) = l. A generator of 
ardinality kis a k-generator.Generators are the minimal itemsets to 
onsider for dis
overing frequent 
loseditemsets, by 
omputing their 
losures. Based on the following lemma, Close andA-Close perform a breadth-�rst sear
h for generators in a levelwise manner.Lemma 1. All subsets s ⊆ I of a generator g ⊆ I are also generators. The 
losureof s is a 
losed subset of the 
losure of g: γ(s) ⊂ γ(g).Proof. See (Pasquier et al., 1999b).

JIIS05.tex; 20/03/2008; 11:18; p.7



8 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal2.1. Extra
ting frequent 
losed itemsets and generators with CloseTheClose algorithm is an iterative algorithm for extra
ting generators and frequent
losed itemsets in a levelwise manner. During an iteration k, a list of 
andidate k-generators is 
onsidered; their 
losures and their supports are 
omputed from thedataset and infrequent generators are dis
arded. Frequent generators are then usedto 
onstru
t 
andidate (k+1)-generators. The 
losures of frequent generators are thefrequent 
losed itemsets and the support of a generator is also the support of its
losure.During the kth iteration, a set FCk is 
onsidered. Ea
h element of this set 
onsists ofthree information: a k-generator, its 
losure and their support. The algorithm �rstinitializes the 
andidate 1-generators in FC1 with the list of 1-itemsets and then
arries out some iterations. During ea
h iteration k:1. Closures of all 
andidate k-generators and their supports are 
omputed: Thenumber of obje
ts 
ontaining a generator determines its support and their in-terse
tion generates its 
losure. Ea
h obje
t is 
onsidered on
e and this phaserequires only one s
an of the dataset.2. Infrequent k-generators, i.e., generators with support lower than minsupp, areremoved from FCk.3. The set of 
andidate (k+1)-generators is 
onstru
ted by joining the frequent
k-generators in FCk as follows.a) Two k-generators in FCk that have the same �rst k−1 items are joined to 
re-ate a 
andidate (k+1)-generator. For instan
e, the 3-generators {ABC} and{ABD} will be joined in order to 
reate the 
andidate 4-generator {ABCD}.b) Candidate (k+1)-generators that are infrequent or non-minimal are removed.One of the k-subsets of su
h a generator is either infrequent or non-minimaland thus does not belong to the set of frequent k-generators in FCk.
) The third phase removes (k+1)-generators whi
h 
losures were already 
om-puted. Su
h a generator g is easily identi�ed as it is in
luded in the 
losureof a frequent k-generator g′ in FCk: We have g′ ⊂ g ⊆ γ(g′).The algorithm stops when no new 
andidate generator 
an be 
reated. Then, ea
hset FCk stores the frequent k-generators, their 
losures and their supports.Example 3. Figure 1 shows the exe
ution of the Close algorithm on the 
ontext Dfor minsupp = 2/6. The set FC1 is initialized with the list of all 1-itemsets. Thealgorithm 
omputes supports and 
losures of the 1-generators in FC1 and infrequentones are dis
arded. Then, joining the frequent generators in FC1, six new 
andidate2-generators are 
reated: {AB}, {AC}, {AE}, {BC}, {BE} and {CE} in FC2. The2-generators {AC} and {BE} are removed form FC2 be
ause we have {AC} ⊆

γ({A}) and {BE} ⊆ γ({B}). The algorithm determines supports and 
losures of theremaining 2-generators in FC2 and suppresses infrequent ones. Then, the 
andidate3-generator {ABE} is 
reated by joining the frequent generators in FC2 but isremoved be
ause the 2-generator {BE} ⊂ {ABE} is not in FC2 and the algorithmstops.
JIIS05.tex; 20/03/2008; 11:18; p.8



Generating a Condensed Representation for Asso
iation Rules 9S
an
D
−→

FC1Generator Closed itemset Supp{A} {AC} 3/6{B} {BE} 5/6{C} {C} 5/6{D} {ACD} 1/6{E} {BE} 5/6 Pruninginfrequentitemsets
−→

FC1Generator Closed itemset Supp{A} {AC} 3/6{B} {BE} 5/6{C} {C} 5/6{E} {BE} 5/6S
an
D
−→

FC2Generator Closed itemset Supp{AB} {ABCE} 2/6{AE} {ABCE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6 Pruninginfrequentitemsets
−→

FC2Generator Closed itemset Supp{AB} {ABCE} 2/6{AE} {ABCE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6Figure 1. Extra
ting frequent 
losed itemsets in the 
ontext D with Close.The A-Close algorithm improves the e�
ien
y of the extra
tion in 
ase of weakly
orrelated data. It does not 
ompute 
losures of 
andidate generators during theiterations, but during an ultimate s
an 
arried out after the end of these iterationsif ne
essary. Experimental results show that Close and A-Close are parti
ularlye�
ient for mining asso
iation rules from dense or 
orrelated data. On su
h data,Close outperforms A-Close, and they both outperform algorithms for extra
t-ing frequent itemsets and maximal frequent itemsets. In that 
ase, algorithms forextra
ting maximal frequent itemsets su�er from the 
ost of the frequent itemsetsupports 
omputation that requires a

essing the dataset. On the 
ontrary, forweakly 
orrelated data, algorithms for extra
ting maximal frequent itemsets are themost e�
ient and algorithms for extra
ting frequent itemsets, as well as A-Close,outperform Close.The ChARM (Zaki and Hsiao, 1999) and Closet (Pei et al., 2000) algorithmsextra
t frequent 
losed itemsets. However, none of these algorithm extra
t gener-ators and 
an be used to generate the min-max basis for asso
iation rules. ThePas
al (Bastide and al., 2000) algorithm is an optimization of Apriori based oninferen
e 
ounting and equivalen
e 
lasses de�ned a

ording to itemset supports. It
an easily be extended to generate the min-max basis sin
e generators and 
loseditemsets are respe
tively bottom and top patterns of an equivalen
e 
lass.2.2. Deriving frequent 
losed itemsets and generators fromfrequent itemsetsThe Close+ algorithm identi�es frequent 
losed itemsets and generators amongfrequent itemsets without a

essing the dataset. It enables the e�
ient generationof the min-max basis when an algorithm for extra
ting frequent itemsets is used.Su
h an algorithm gives as result the sets Fk, ea
h set Fk 
ontaining all frequent
k-itemsets, with k varying from 1 to µ (the size of the longest maximal frequentitemsets). The frequent 
losed itemsets and generators are identi�ed among frequentitemsets using propositions 1 and 2 that are derived from the property that anitemset's support is equal to its 
losure's support. The 
ompleteness of the approa
h

JIIS05.tex; 20/03/2008; 11:18; p.9



10 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalis insured by the property that maximal frequent itemsets are maximal frequent
losed itemsets (Pasquier et al., 1998).Proposition 1. The support of a generator is smaller than the supports of all itssubsets.Proof. Let g be a k-generator and s a (k − 1)-subsets of g. We then have s ⊂ g
⇒ ψ(s) ⊇ ψ(g). If ψ(s) = ψ(g) then γ(s) = γ(g) and g is not a generator: Itis not a minimal itemset whose 
losure is γ(g). It follows that ψ(s) ⊃ ψ(g) ⇒
supp(g) > supp(s).Proposition 2. The support of a 
losed itemset is greater than the supports of all itssupersets.Proof. Let l be a 
losed k-itemset and s a superset of l. We then have l ⊂ s ⇒
ψ(l) ⊇ ψ(s). If ψ(l) = ψ(s) then γ(l) = γ(s) ⇒ l = γ(s) ⇒ s ⊆ l (absurd). It followsthat ψ(l) ⊃ ψ(s) ⇒ supp(l) > supp(s).The pseudo-
ode of the Close+ algorithm is given in �gure 2. It examines su

es-sively all frequent itemsets in ea
h set Fk, with k varying from 1 to µ. It generatesthe sets FCm, 1≤m≤ν, where ν is the size of the longest generators, 
ontaining the
m-generators, their 
losures and their supports. It �rst determines if a frequent k-itemset is a generator by examining all its (k−1)-subsets' supports; it then determineif it is a 
losed itemset by examining all its (k + 1)-supersets' supports and if so,identi�es its generators by examining all its subsets' supports. The boolean variablesis
losed and isgenerator are used to determine if an itemset l is a 
losed itemset oris a generator.At the beginning of the kth iteration (steps 1 to 21), the set FCk is empty (step 2). Insteps 3 to 20, frequent itemsets in Fk are 
onsidered su

essively. If an itemset l hasthe same support as one of its (k− 1)-subset l′ in Fk−1 (steps 5 to 7), then l is not agenerator (step 6). Otherwise, l and its support are inserted in FCk (step 8). Then,we test if l has the same support as one of its (k+1)-superset l” in Fk+1 (steps 10to 12). If so, we have l′ ⊆ γ(l) and then l 6= γ(l): l is not 
losed (step 11). Otherwise,
l is a frequent 
losed itemset and we determine the generators of l (steps 13 to 19)as follows. For ea
h generator g of size n, with 1 ≤ n ≤ k, that is a subset of l(steps 14 to 18), if the supports of g and l are equal then g is a generator of l and lis inserted in FCn as the 
losure of g (step 16). Thus, at the end of the algorithm,ea
h set FCk 
ontains all frequent k-generators, their 
losures and their supports.Corre
tness. The 
orre
tness of the 
omputation of sets FCk for 1 ≤ k ≤ µ relieson propositions 1 and 2. Using the �rst one, we determine if a frequent k-itemset lis a generator of a 
losed itemset by 
omparing its support and the supports of thefrequent (k−1)-itemsets in
luded in l. The se
ond proposition enables to determineif a frequent k-itemset l is 
losed by 
omparing its support and the supports ofthe frequent (k+1)-itemsets in whi
h l is in
luded. Sin
e a generator has the samesupport as its 
losure, the determination of the generators of a 
losed itemset is
orre
t.
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Generating a Condensed Representation for Asso
iation Rules 11Input : sets Fk of frequent k-itemsetsOutput : sets FCk of frequent k-generators, with 
losure and support1) for k = 1 to µ do2) FCk ← ∅3) forall itemsets l ∈ Fk do4) isgenerator← true5) forall subsets l′ ∈ Fk−1 of l do6) if (l′.supp = l.supp) then isgenerator← false7) end8) if (isgenerator = true) then insert l in FCk.generators with l.supp9) isclosed← true10) forall supersets l′′ ∈ Fk+1 of l do11) if (l′′.supp = l.supp) then isclosed← false12) end13) if (isclosed = true) then do14) for n = k to 0 step −1 do15) forall subsets g ∈ FCn.generators of l do16) if (g.supp = l.supp) then insert l in g.closure17) end18) end19) end20) end21) end22) return ⋃
FCkFigure 2. Close+ algorithm for deriving frequent 
losed itemsets and generators.Example 4. Figure 3 shows the exe
ution of the Close+ algorithm using the sets

F1 to F4 of frequent itemsets extra
ted from the 
ontext D with minsupp = 2/6. Allfrequent 1-itemsets are frequent 1-generators sin
e none of their subsets is a frequentitemset: The empty set is not 
onsidered as a frequent itemset. The 1-itemset {C}is also its own 
losure sin
e all its supersets in F2 have a smaller support. In F2,the 2-itemsets {AC} and {BE} are not generators sin
e they have the same supportas itemsets {A} and, {B} and {E} respe
tively. These two itemsets are 
losed sin
etheir support is lower than those of all their supersets in F3; {AC} is the 
losureof {A} and {BE} is the 
losure of {B} and {E}. No frequent 3-itemset in F3 is agenerator and {BCE}, that has the same support as {BC} and {CE} and a greatersupport than {ABCE} in FC4, is the 
losure of {BC} and {CE} in FC2. Finally,the 4-itemset {ABCE} is 
losed sin
e it is a maximal frequent itemset is the 
losureof {AB} and {AE}, and is inserted in FC2.Remark. As a simple optimization, the algorithm 
an stop testing if frequent k-itemsets are generators after the �rst iteration n during whi
h no frequent n-itemsetexamined is a generator. In example 4, the algorithm will not test if 4-itemsets in
F4 are generators sin
e no 3-itemset is a generator (FC3 is empty at the end of thethird iteration).
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12 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal
F1Itemset Supp{A} 3/6{B} 5/6{C} 5/6{E} 5/6

Generatorsof size 1
−→Closuresof size 1
−→

FC1Generator Closed itemset Supp{A} 3/6{B} 5/6{C} 5/6{E} 5/6
FC1Generator Closed itemset Supp{A} 3/6{B} 5/6{C} {C} 5/6{E} 5/6

F2Itemset Supp{AB} 2/6{AC} 3/6{AE} 2/6{BC} 4/6{BE} 5/6{CE} 4/6
Generatorsof size 2
−→Closuresof size 2
−→

FC2Generator Closed itemset Supp{AB} 2/6{AE} 2/6{BC} 4/6{CE} 4/6
FC1Generator Closed itemset Supp{A} {AC} 3/6{B} {BE} 5/6{C} {C} 5/6{E} {BE} 5/6

F3Itemset Supp{ABC} 2/6{ABE} 2/6{ACE} 2/6{BCE} 4/6
Generatorsof size 3
−→Closuresof size 3
−→

FC3Generator Closed itemset Supp
FC2Generator Closed itemset Supp{AB} 2/6{AE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6

F4Itemset Supp{ABCE} 2/6 Generatorsof size 4
−→Closuresof size 4
−→

FC4Generator Closed itemset Supp
FC2Generator Closed itemset Supp{AB} {ABCE} 2/6{AE} {ABCE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6Figure 3. Deriving frequent 
losed itemsets and generators with Close+.
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Generating a Condensed Representation for Asso
iation Rules 133. Min-max basis for asso
iation rulesWe �rst de�ne min-max asso
iation rules: The most general non-redundant asso
i-ation rules a

ording to their semanti
. Informally, an asso
iation rule is redundantif it brings the same information or less information than is brought by another ruleof same support and 
on�den
e. Then, the min-max asso
iation rules are the non-redundant asso
iation rules having minimal ante
edent and maximal 
onsequent: ris a min-max asso
iation rule if no other asso
iation rule r′ has the same support and
on�den
e, an ante
edent that is a subset of the ante
edent of r and a 
onsequentthat is a superset of the 
onsequent of r.De�nition 5. (Min-max asso
iation rules) Let AR be the set of asso
iation rulesextra
ted. An asso
iation rule r : l1 → l2 ∈ AR is a min-max asso
iation rule i�
∄ r′ : l′1 → l′2 ∈ AR with supp(r′) = supp(r), 
onf(r′) = 
onf(r), l′1 ⊆ l1 and l2 ⊆ l′2.Based on this de�nition, we 
hara
terize exa
t and approximate min-max asso
i-ation rules that 
onstitute respe
tively the min-max exa
t basis and the min-maxapproximate basis in the two following se
tions.3.1. Exa
t min-max asso
iation rulesFirst, noti
e that exa
t asso
iation rules, with the form r : l1 ⇒ (l2 \ l1), are rulesbetween two frequent itemsets l1 ⊂ l2 having the same 
losure: γ(l1) = γ(l2). Sin
e
conf (r) = 1 we have supp(l1) = supp(l2), and as l1 ⊂ l2 we see that γ(l1) = γ(l2).We de�ne min-max asso
iation rules among these exa
t rules.Let g be the generator of γ(l1) = γ(l2) su
h that g ⊆ l1. Sin
e g is minimal, we have
g ⊆ l1 ⊂ l2 ⊆ γ(l2). Furthermore, all itemsets in the interval [g, γ(l2)], de�ned byin
lusion4, have the same 
losure γ(l2) and thus the same support. The min-maxasso
iation rule among all rules with the form r : l1 ⇒ (l2 \ l1) with l1, l2 ∈ [g, γ(l2)]is the rule g ⇒ (γ(l2) \ g). This rule has a minimal ante
edent, g, and a maximal
onsequent, γ(l2), among all these rules that have the same support.We generalize this de�nition to all generators of the frequent 
losed itemset γ(l2).Let Genγ(l2) be the set of these generators. All exa
t min-max asso
iation rules
onstru
ted with γ(l2) are rules with the form g ⇒ (γ(l2)\g) with g ∈ Genγ(l2). Theextension of this property to all frequent 
losed itemsets de�nes the min-max exa
tbasis 
ontaining all exa
t min-max asso
iation rules 
hara
terized in de�nition 5.De�nition 6. (Min-max exa
t basis) Let Closed be the set of frequent 
losed item-sets extra
ted from the 
ontext and, for ea
h frequent 
losed itemset f , let's denote
Genf the set of generators of f . The min-max exa
t basis is:

MinMaxExact = {r : g ⇒ (f \ g) | f ∈ Closed ∧ g ∈ Genf ∧ g 6= f}.The 
ondition g 6= f dis
ards rules with the form g ⇒ ∅; it is equivalent to the
ondition l1 ⊂ l2 in the de�nition of asso
iation rules. We state in the followingproposition that the min-max exa
t basis does not lead to information loss.4 The interval [l1, l2] 
ontains all the supersets of l1 that are subsets of l2.
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14 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalThe pseudo-
ode of the algorithm for 
onstru
ting the min-max exa
t basis usingfrequent 
losed itemsets and their generators is presented in �gure 4. Ea
h elementof a set FCk 
ontains three �elds: a k-generator generator , its 
losure closure andtheir support supp. The algorithm returns the set MinMaxExact 
ontaining theexa
t min-max rules.Input : sets FCkOutput : set MinMaxExact1) MinMaxExact ← ∅2) for k = 1 to ν do3) forall k-generator g ∈ FCk do4) if (g 6= g.closure)5) then insert {r : g ⇒ (g.closure \ g), g.supp} in MinMaxExact6) end7) end8) return MinMaxExactFigure 4. Algorithm for generating the min-max exa
t basis.First, MinMaxExact is initialized with the empty set (step 1). Then, ea
h set FCk isexamined in in
reasing order of k values (steps 2 to 7). For ea
h k-generator g ∈ FCkof the frequent 
losed itemset γ(g) (steps 3 to 6), if g is di�erent from its 
losure
γ(g) (step 4), the rule r : g ⇒ (γ(g) \ g), whi
h support is equal to the support of gand γ(g), is inserted into MinMaxExact (step 5). Finally, the algorithm returns theset MinMaxExact 
ontaining all exa
t min-max asso
iation rules between generatorsand their 
losures (step 8).Example 5. The min-max exa
t basis extra
ted from 
ontext D for minsupp = 2/6 ispresented in table III. It 
ontains seven rules whereas the set of all exa
t asso
iationrules, presented in table IV, 
ontains fourteen rules.Table III. Min-max exa
t basis extra
ted from D.Generator Closure Exa
t rule Supp{A} {AC} A ⇒ C 3/6{B} {BE} B ⇒ E 5/6{C} {C}{E} {BE} E ⇒ B 5/6{AB} {ABCE} AB ⇒ CE 2/6{AE} {ABCE} AE ⇒ BC 2/6{BC} {BCE} BC ⇒ E 4/6{CE} {BCE} CE ⇒ B 4/6
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Generating a Condensed Representation for Asso
iation Rules 15Table IV. Exa
t asso
iation rules extra
ted from D.Exa
t rule Supp Exa
t rule SuppA ⇒ C 3/6 BC ⇒ E 4/6B ⇒ E 5/6 CE ⇒ B 4/6E ⇒ B 5/6 AB ⇒ CE 2/6AB ⇒ C 2/6 AE ⇒ BC 2/6AB ⇒ E 2/6 ABC ⇒ E 2/6AE ⇒ B 2/6 ABE ⇒ C 2/6AE ⇒ C 2/6 ACE ⇒ B 2/6Proposition 3. (i) All exa
t asso
iation rules and their supports 
an be dedu
ed fromthe min-max exa
t basis. (ii) All rules in the min-max exa
t basis are min-maxasso
iation rules.Proof. (i) Let r : l1 ⇒ (l2 \ l1) be an exa
t asso
iation rule between two frequentitemsets with l1 ⊂ l2. Sin
e conf (r) = 1, we have supp(l1) = supp(l2) and as anitemset's support is equal to its 
losure's support, we dedu
e that supp(γ(l1)) =
supp(γ(l2)) whi
h implies that γ(l1) = γ(l2) = f . The itemset f is a frequent 
loseditemset f ∈ FC and, obviously, there exists a rule r′ : g ⇒ (f \ g) ∈ MinMaxExactsu
h that g is a generator of f with g ⊆ l1 and g ⊂ l2. We show now that the rule rand its support 
an be dedu
ed from the rule r′ and its support. Sin
e g ⊆ l1 ⊂ l2 ⊆
f , rule r's ante
edent and 
onsequent 
an be derived from those of rule r′. From
γ(l1) = γ(l2) = f , we dedu
e that supp(r) = supp(l2) = supp(γ(l2)) = supp(f) =
supp(r′).(ii) Let r : g ⇒ (f \g) ∈ MinMaxExact . A

ording to de�nition 6, we have g ∈ Genfand f ∈ Closed . We demonstrate that there is no other rule r′ : l′1 ⇒ (l′2 \ l′1) ∈
MinMaxExact , su
h as supp(r′) = supp(r), 
onf(r′) = 
onf(r), l′1 ⊆ g and f ⊆ l′2.If l′1 ⊂ g then, a

ording to de�nition 4, we have γ(l′1) ⊂ γ(g) = f =⇒ l1 6∈ Genfand then r′ 6∈ MinMaxExact . If f ⊂ l′2 and a

ording to de�nition 3, we have
f = γ(f) = γ(g) ⊂ l′2 = γ(l′2). From de�nition 4 we dedu
e g 6∈ Gen l′

2
and we
on
lude that r′ 6∈ MinMaxExact .3.2. Approximate min-max asso
iation rulesApproximate asso
iation rules, with the form r : l1 → (l2 \ l1), are rules betweentwo frequent itemsets l1 ⊂ l2 su
h that γ(l1) ⊂ γ(l2). Sin
e conf (r) < 1 we have

supp(l1) > supp(l2) and we dedu
e that γ(l1) ⊂ γ(l2).We dedu
e the de�nition of approximate min-max asso
iation rules. Let g1 be agenerator of the frequent 
losed itemset f1 and g2 be a generator of the frequent
losed itemset f2 su
h that f1 ⊂ g2 ⊆ l2 ⊆ f2. All rules with the form r : l1 → (l2 \l1)where l1 ∈ [g1, f1] and l2 ∈ [g2, f2] have the same 
on�den
e and the same supportsin
e g1, l1 and f1 have the same support as well as g2, l2 and f2. We then dedu
ethat the min-max asso
iation rule among all these rules is g1 → (f2 \ g1). Indeed, g1is the minimal itemset in [g1, f1] and f2 is the maximal itemset in [g2, f2].
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16 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalThe generalization of this property to all 
ouples of frequent itemsets l1 and l2su
h that l1 ⊂ l2 and supp(l1) 6= supp(l2) de�nes the min-max approximate basis
ontaining all approximate min-max asso
iation rules 
hara
terized in de�nition 5.De�nition 7. (Min-max approximate basis) We denote Gen the set of generators ofthe frequent 
losed itemsets in Closed . The min-max approximate basis is:
MinMaxApprox = {r : g → (f \ g) | f ∈ Closed ∧ g ∈ Gen ∧ γ(g) ⊂ f}.The pseudo 
ode of the algorithm for generating the set MinMaxApprox of approxi-mate min-max rules using frequent 
losed itemsets and their generators is presentedin �gure 5.Input : sets FCk, 
on�den
e threshold minconfOutput : set MinMaxApprox1) MinMaxApprox ← ∅2) for k = 1 to ν − 1 do3) forall k-generator g ∈ FCk do4) forall frequent 
losed itemset f ∈ Fj>k | f ⊃ g.closure do5) if (f.supp/g.supp ≥ minconf )6) then insert {r : g → (f \ g), f.supp/g.supp, f.supp} in MinMaxApprox7) end8) end9) end10) return MinMaxApproxFigure 5. Algorithm for generating the min-max approximate basis.The algorithm examines the sets FCk in in
reasing order of k values (steps 2 to 9).For ea
h k-generator g ∈ FCk (steps 3 to 8), it 
onsiders all 
losed supersets f ofthe 
losure of g (steps 4 to 7). It 
omputes the 
on�den
e of the rule r : g → (f \ g)(step 5) and inserts r in MinMaxReduc if it is above the minconf threshold (step 6).Example 6. The min-max approximate basis extra
ted from 
ontext D for minsupp= 2/6 and min
onf = 2/5 is presented in table V. It 
ontains ten rules whereas theset of all approximate asso
iation rules, presented in table VI, 
ontains thirty-sixrules.Proposition 4. (i) All approximate asso
iation rules 
an be dedu
ed, with their sup-ports and 
on�den
es, from the min-max approximate basis. (ii) All rules in themin-max approximate basis are min-max asso
iation rules.Proof. (i) Let r : l1 → (l2 \ l1) be an asso
iation rule between two frequent itemsetswith l1 ⊂ l2. Sin
e conf (r) < 1 we also have γ(l1) ⊂ γ(l2). For any frequent itemsets

l1 and l2, there is a generator g1 su
h that g1 ⊂ l1 ⊆ γ(l1) = γ(g1) and a generator
g2 su
h that g2 ⊂ l2 ⊆ γ(l2) = γ(g2). Sin
e l1 ⊂ l2, we have l1 ⊆ γ(g1) ⊂ l2 ⊆ γ(g2)and the rule r′ : g1 → (γ(g2) \ g1) is in the min-max approximate basis. We show
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Generating a Condensed Representation for Asso
iation Rules 17Table V. Min-max approximate basis extra
ted from D.Generator Closure Closed superset Approximate rule Supp Conf{A} {AC} {ABCE} A → BCE 2/6 2/3{B} {BE} {BCE} B → CE 4/6 4/5{B} {BE} {ABCE} B → ACE 2/6 2/5{C} {C} {AC} C → A 3/6 3/5{C} {C} {BCE} C → BE 4/6 4/5{C} {C} {ABCE} C → ABE 2/6 2/5{E} {BE} {BCE} E → BC 4/6 4/5{E} {BE} {ABCE} E → ABC 2/6 2/5{AB} {ABCE}{AE} {ABCE}{BC} {BCE} {ABCE} BC → AE 2/6 2/4{CE} {BCE} {ABCE} CE → AB 2/6 2/4Table VI. Approximate asso
iation rules extra
ted from D.Approximate rule Supp Conf Approximate rule Supp Conf Approximate rule Supp ConfBCE → A 2/6 2/4 B → ACE 2/6 2/5 B → CE 4/6 4/5AC → BE 2/6 2/3 C → ABE 2/6 2/5 C → BE 4/6 4/5BC → AE 2/6 2/4 E → ABC 2/6 2/5 E → BC 4/6 4/5BE → AC 2/6 2/5 A → BC 2/6 2/3 A → B 2/6 2/3CE → AB 2/6 2/4 B → AC 2/6 2/5 B → A 2/6 2/5AC → B 2/6 2/3 C → AB 2/6 2/5 C → A 3/6 3/5BC → A 2/6 2/4 A → BE 2/6 2/3 A → E 2/6 2/3BE → A 2/6 2/5 B → AE 2/6 2/5 E → A 2/6 2/5AC → E 2/6 2/3 E → AB 2/6 2/5 B → C 4/6 4/5CE → A 2/6 2/4 A → CE 2/6 2/3 C → B 4/6 4/5BE → C 4/6 4/5 C → AE 2/6 2/5 C → E 4/6 4/5A → BCE 2/6 2/3 E → AC 2/6 2/5 E → C 4/6 4/5that the rule r, its support and its 
on�den
e 
an be dedu
ed from the rule r′, itssupport and its 
on�den
e. Sin
e g1 ⊂ l1 ⊆ γ(g1) ⊂ g2 ⊂ l2 ⊆ γ(g2), the ante
edentand the 
onsequent of r 
an be rebuilt starting from the rule r′. Moreover, wehave γ(l2) = γ(g2) and thus supp(r) = supp(l2) = supp(γ(g2)) = supp(r′). Sin
e
g1 ⊂ l1 ⊆ γ(g1), we have supp(g1) = supp(l1) and we thus dedu
e that: conf (r) =
supp(l1) / supp(l2) = supp(g1) / supp(γ(g2)) = conf (r′).(ii) Let r : g ⇒ (f \ g) ∈ MinMaxExact . A

ording to de�nition 7, we have f ∈
Closed , g ∈ Genf ′ and f ′ ⊂ f . We demonstrate that there is no other rule r′ : l′1 ⇒
(l′2 \ l′1) ∈ MinMaxApprox , su
h as supp(r′) = supp(r), 
onf(r′) = 
onf(r), l′1 ⊆ gand f ⊆ l′2. If l′1 ⊂ g then, a

ording to de�nition 4, we have γ(l′1) ⊂ γ(g) = f ′ andthen l1 6∈ Genf ′ . We dedu
e that supp(l′1) > supp(g) and then conf (r′) < conf (r).If f ⊂ l′2 then, a

ording to de�nition 3, we have f = γ(f) ⊂ l′2 = γ(l′2). We dedu
ethat supp(f) > supp(l′2) and we 
on
lude that conf (r) > conf (r′).
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18 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal3.3. Non-transitive approximate min-max asso
iation rulesWe 
an further redu
e the number of approximate asso
iation rules extra
ted with-out losing the ability to dedu
e all approximate asso
iation rules, with support and
on�den
e, by removing transitive min-max asso
iation rules.A min-max asso
iation rules g → (f \ g) with γ(g) ⊂ f is transitive if it existsa frequent 
losed itemset f ′ su
h that γ(g) ⊂ f ′ ⊂ f . Let g′ be the generator of
f ′ su
h that γ(g) ⊂ g′ ⊆ f ′ ⊂ f . Then, we have the two following approximatemin-max asso
iation rules: g → (f ′ \g) and g′ → (f \g′). The rule g → (f \g) is thetransitive 
omposition of the two previous rules; its support is equal to the se
ondrule's support and its 
on�den
e is equal to the produ
t of their 
on�den
es.We generalize this 
hara
terization to all triplets 
onsisting of a generators g, its
losure f and a 
losed superset f ′ of f to de�ne the non-transitive min-max approx-imate basis, that is the transitive redu
tion of the min-max approximate basis. Let'sdenote l1 ⋖ l2 when an itemset l1 is an immediate prede
essor of an itemset l2, i.e.
∄l3 su
h that l1 ⊂ l3 ⊂ l2. The non-transitive min-max approximate rules are of theform g → (f \ g) where f is a frequent 
losed itemset and g a frequent generatorsu
h that γ(g) is an immediate prede
essor of f .De�nition 8. (Non-transitive min-max approximate basis) The non-transitive min-max approximate basis is:

MinMaxReduc = {r : g → (f \ g) | f ∈ Closed ∧ g ∈ Gen ∧ γ(g) ⋖ f}.Remark. This transitive redu
tion de
reases the number of approximate rules ex-tra
ted, by sele
ting the most pre
ise rules, i.e. whith highest 
on�den
es, sin
etransitive rules have lower 
on�den
es than non-transitive rules.The algorithm presented in �gure 6 
onstru
ts the setMinMaxReduc of non-transitiveapproximate min-max rules using frequent 
losed itemsets and their generators. Forea
h generator g, it determines all frequent 
losed itemsets f that are immediatesu

essors of the 
losure of g and then, it generates all rules between g and f thathave a su�
ient 
on�den
e.First, MinMaxReduc is initialized with the empty set (step 1) and sets FCk aresu

essively examined in in
reasing order of k values (steps 2 to 19). For ea
h k-generator g ∈ FCk (steps 3 to 18), the set ImSuccg of immediate su

essors of g
losure is initialized with the empty set (step 4). The sets Sj of frequent 
losed
j-supersets of γ(g) for |γ(g)| < j ≤ µ are 
onstru
ted (steps 5 to 7). Then, sets
Sj are 
onsidered su

essively in as
ending order of j values (steps 8 to 17). Forea
h itemset f ∈ Sj that is not a superset of an immediate su

essor of γ(g) in
ImSuccg (step 10), f is inserted in ImSuccg (step 11) and the 
on�den
e of the rule
r : g → (f \ g) is 
omputed (step 12). If the 
on�den
e of r is above minconf , therule r is inserted in MinMaxReduc (steps 13 and 14). When all the generators of sizelower than ν− 1 have been 
onsidered, the algorithm returns the set MinMaxReduc(step 20).Example 7. The non-redundant min-max approximate basis extra
ted from 
ontext
D for minsupp = 2/6 and min
onf = 2/5 is presented in table VII. It 
ontains
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Generating a Condensed Representation for Asso
iation Rules 19Input : sets FCk, 
on�den
e threshold min
onfOutput : set MinMaxRedu
1) MinMaxReduc ← ∅2) for k = 1 to ν − 1 do3) forall k-generator g ∈ FCk do4) ImSuccg ← ∅5) for j = |g.closure| to µ do6) Sj ← {f ∈ FC.closure | f ⊃ g.closure ∧ |f | = j}7) end8) for j = |g.closure| to µ do9) forall frequent 
losed itemset f ∈ Sj do10) if (∄s ∈ ImSuccg | s ⊂ f) then do11) insert f in ImSuccg12) conf ← f.supp/g.supp13) if (conf ≥ minconf )14) then insert {r : g → (f \ g), conf , f.supp} in MinMaxReduc15) end16) end17) end18) end19) end20) return MinMaxReducFigure 6. Algorithm for generating the non-transitive min-max approximate basis.only seven rules, that is three rules less than the approximate min-max basis. Thesethree rules are B → ACE, C → BE and E → ABC that have minimal support and
on�den
e measures among the ten rules of the approximate min-max basis.Table VII. Non-transitive min-max approximate basis extra
ted from D.Generator Closure Closed superset Approximate rule Supp Conf{A} {AC} {ABCE} A → BCE 2/6 2/3{B} {BE} {BCE} B → CE 4/6 4/5{B} {BE} {ABCE}{C} {C} {AC} C → A 3/6 3/5{C} {C} {BCE} C → BE 4/6 4/5{C} {C} {ABCE}{E} {BE} {BCE} E → BC 4/6 4/5{E} {BE} {ABCE}{AB} {ABCE}{AE} {ABCE}{BC} {BCE} {ABCE} BC → AE 2/6 2/4{CE} {BCE} {ABCE} CE → AB 2/6 2/4
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20 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalProposition 5. All approximate asso
iation rules, with support and 
on�den
e, 
anbe dedu
ed from the non-transitive min-max approximate basis.First, we show that all approximate min-max asso
iation rules 
an be derived fromthe non-transitive min-max approximate asso
iation rules. Then, from proposition 4we 
on
lude that all approximate asso
iation rules 
an also be dedu
ed.Proof. Let r : g1 → (fn \ g1) be an approximate min-max asso
iation rule between agenerator g1 whose 
losure is f1 and a frequent 
losed superset fn of f1. If f1 ⋖ fnthen r is non-transitive: r ∈ MinMaxReduc. If f1 6⋖fn then r is transitive and there isa sequen
e f1, f2, . . ., fn of frequent 
losed itemsets su
h that g1 ⊆ f1 ⋖f2 ⋖ . . .⋖fnwith n ≥ 3. Ea
h fi has at least one generator gi su
h that γ(gi) = fi and sin
e
f1⋖f2⋖. . .⋖fn, there is a sequen
e of rules ri : gi → (fi+1\gi) for i ∈ [1, n−1] that arenon-transitive min-max rules. The ante
edent of r is the ante
edent g1 of the �rst rule
r1 of the sequen
e. The 
onsequent of r is (fn\g1) = (((fn\gn−1)∪gn−1)\g1), i.e. theunion of rule rn−1's ante
edent and 
onsequent minus rule r1's ante
edent. We nowshow that support and 
on�den
e of r 
an be dedu
ed of those of rules ri. We have
supp(r) = supp(g1 ∪ (fn \ g1)) = supp(fn) = supp(gn−1 ∪ (fn \ gn−1)) = supp(rn−1).The support of r is equal to the support of the last rule rn−1 of the sequen
e. We alsohave: conf (r) = supp(fn)/supp(g1) = supp(fn)/supp(gn−1) × supp(gn−1)/supp(g1)= supp(fn)/supp(gn−1) × supp(fn−1)/supp(gn−2) × . . .×supp(f2)/supp(g1) =
conf (rn−1)×conf (rn−2)× . . .×conf (r1). The 
on�den
e of r is equal to the produ
tof the 
on�den
es of the rules ri for i = 1 to n− 1.4. Deriving asso
iation rules from the min-max basesWe introdu
e in this se
tion simple te
hniques and algorithms to re
onstru
t all exa
tasso
iation rules, all approximate asso
iation rules and all transitive approximatemin-max asso
iation rules from the min-max bases.4.1. Deriving exa
t asso
iation rulesThe graph-oriented representation of the exa
t and the exa
t min-max asso
iationrules extra
ted from 
ontext D for minsupp = 2/6 and min
onf = 2/5 are given in�gure 7 and 8 respe
tively.Ea
h vertex vl represents a frequent itemset l that is a subset of the maximal frequentitemset {ABCE}. Ea
h edge between two verti
es va and vc represents the exa
tasso
iation rule a ⇒ c \ a. A 
losed interval is a sub-graph 
ontaining all verti
esrepresenting itemsets of the intervals [gi, f ] where ea
h gi is a generator of thefrequent 
losed itemset f . Sin
e all itemsets in a 
losed interval have the samesupport, all rules in this interval also have the same support.In the graph representation, deriving all exa
t rules means adding all possible edgesbetween two verti
es of the same 
losed interval. Ea
h edge in �gure 8 between twoverti
es vg and vf represents a rule between a generator g and its 
losure f . Then,
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closed interval


generator itemset
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Figure 7. Exa
t asso
iation rules extra
ted from D.

closed interval


generator itemset
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Figure 8. Exa
t min-max asso
iation rules extra
ted from D.we add all edges between two verti
es, one representing a superset of g and the othera subset of f .
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22 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalThe algorithm re
eives the set MinMaxExact of exa
t min-max rules as input andit returns the set AllExact 
ontaining all exa
t asso
iation rules. Its pseudo-
ode ispresented in �gure 9. It 
onsiders all exa
t min-max rules r1 : a1 ⇒ c1 with |c1| > 1(steps 2 to 8). For all subset c2 of c1 (steps 3 to 7), it generates all rules with theform r2 : a1 ⇒ c2 and r3 : a1 ∪ c2 ⇒ c1 \ c2 (steps 4 and 6). These rules have thesame support as r1. Sin
e rule r3 
an be generated several times, the algorithm �rsttests if it has not already been inserted in AllExact (step 5).Input : set MinMaxExactOutput : set AllExact1) AllExact ← ∅2) forall rule {r1 : a1 ⇒ c1, r1.supp} ∈ MinMaxExact with |c1| > 1 do3) forall subset c2 ⊂ c1 do4) insert {r2 : a1 ⇒ c2, r1.supp} in AllExact5) if {r3 : a1 ∪ c2 ⇒ c1 \ c2, r1.supp} /∈ AllExact6) then insert r3 in AllExact7) end8) end9) return AllExactFigure 9. Algorithm for re
onstru
ting all exa
t asso
iation rules.Example 8. Consider rule AB ⇒ CE represented in �gure 4 by the edge betweenverti
es {AB} and {ABCE}. From this rule we dedu
e rules AB ⇒ C, AB ⇒ E,ABC ⇒ E and ABE ⇒ C and from rule AE ⇒ BC, we dedu
e rules AE ⇒ B,AE ⇒ C, ABE ⇒ C and ACE ⇒ B. All these rules have the same support.Remark. For 
onstru
ting all exa
t rules using sets FCk of generators and frequent
losed itemsets, we 
onsider ea
h generator g and its 
losure f . We generate all rules
r : g ⇒ l\g and r : l ⇒ f \ l for l ∈ [g, f [. For instan
e, from the generator {AB} andits 
losure {ABCE}, we generate rules AB ⇒ CE, AB ⇒ C, AB ⇒ E, ABC ⇒ Eand ABE ⇒ C. Their support is equal to the support of g and f , i.e. the support of{AB} and {ABCE}.4.2. Deriving approximate asso
iation rulesFigures 10 and 11 depi
t the graph-oriented representations of the approximate andthe approximate min-max asso
iation rules extra
ted from 
ontext D for minsupp= 2/6 and min
onf = 2/5. Ea
h edge between two verti
es va and vc represents theapproximate rule a→ c \ a.In �gure 11, ea
h edge between two verti
es vg and vf represents the min-maxapproximate rule g → f \ g where g is a generator and f a frequent 
losed supersetof g. That is to say an edge between a minimal vertex of a 
losed interval and themaximal vertex of another 
losed interval above the �rst one. For instan
e, the edgebetween verti
es 
ontaining {A} and {ABCE} represents the rule A → BCE.

JIIS05.tex; 20/03/2008; 11:18; p.22



Generating a Condensed Representation for Asso
iation Rules 23

generator itemset
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Figure 10. Approximate asso
iation rules extra
ted from D.
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Figure 11. Approximate min-max asso
iation rules extra
ted from D.To derive all approximate rules, when there is an edge between two verti
es of two
losed intervals we 
reate all possible edges between ea
h vertex of the �rst intervaland ea
h vertex of the se
ond interval. All these rules have the same support and
on�den
e. In �gure 11 for instan
e, we add all edges between verti
es of the 
losed
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24 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalinterval {{A},{AC}} and the 
losed interval {{AB}, {AE}, {ABC}, {ABE}, {ACE},{ABCE}}. These rules have the same support and 
on�den
e as rule A → BCE.A simple and e�
ient method to derive all approximate rules is to pro
eed in twophases. First, we generate all rules with the form g1 → li \ g1 between a generator
g1 and all its frequent supersets li ∈ [gi, fi] where gi is a generator of fi and g1 ⊂ gi.Se
ond, we �extend� these rules by repla
ing their ante
edent by all itemsets l1 ∈
[g1, f1] where f1 is the 
losure of g1.The input of the algorithm are the sets MinMaxApprox and MinMaxExact of ap-proximate and exa
t min-max rules. Its result is the set AllApprox 
ontaining allapproximate rules. Its pseudo-
ode is presented in �gure 12.Input : set MinMaxApprox , set MinMaxExactOutput : set AllApprox1) AllApprox ← MinMaxApprox2) for i = 2 to µ− 1 do3) forall rule {r1 : a1 → c1, r1.supp, r1.conf } ∈ MinMaxApprox with |c1| = i do4) forall subset c2 ⊂ c1 do5) if ({r2 : a1 → c2, r2.supp, r2.conf } /∈ AllApprox)6) and ({r3 : a1 ⇒ c2, r3.supp} /∈ MinMaxExact)7) then insert {r2 : a1 → c2, r1.supp, r1.conf } in AllApprox8) end9) end10) end11) forall rule {r1 : a1 → c1, r1.supp, r1.conf} ∈ AllApprox do12) forall rule ({r2 : a1 ⇒ c2, r2.supp} ∈ MinMaxExact) do13) forall subset c3 ⊆ c2 do14) insert {r3 : a1 ∪ c3 → c1 \ c3, r1.supp, r1.conf } in AllApprox15) end16) end17) end18) return AllApproxFigure 12. Algorithm for re
onstru
ting approximate min-max asso
iation rules.In the �rst phase (steps 2 to 10), it 
onsiders min-max approximate rules a1 → c1with |c1| > 1 in in
reasing order of their 
onsequent's size (steps 3 to 9). For ea
hmin-max rule a1 → c1, all rules with the form a1 → c2 with c2 ⊂ c1 are generated ifthey were not previously generated and there is no exa
t rule a1 ⇒ c2 (steps 4 to 8).All these rules have the same support and 
on�den
e. In the se
ond phase(steps 11to 17), it 
onsiders all approximate rules a1 → c1 and for ea
h min-max exa
t rule
a1 ⇒ c2 (steps 12 to 16), it generates all rules with the form a1 ∪ c3 → c1 \ c3 for allsubset c3 of c2 (steps 13 to 15).Example 9. Considering rule A→ BCE in �gure 11, we dedu
e rules A → B, A → E,A → BC, A → BE, A → CE. Rule A → C is not generated sin
e A ⇒ C is an exa
trule, i.e. {A} and {AC} belong to the same 
losed interval. Then, sin
e we have
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Generating a Condensed Representation for Asso
iation Rules 25A ⇒ C, extending all rules with A as ante
edent we obtain rules AC → B, AC → E,AC → BE.In order to generate all approximate rules using sets FCk of generators and frequent
losed itemsets, we 
onsider ea
h 
ouple of intervals {[g1, f1], [g2, f2]} with γ(g1) = f1and γ(g2) = f2 su
h that g1 ⊂ g2. We generate all rules r : l1 → l2 \ l1 for l1 ∈ [g1, f1]and l2 ∈ [g2, f2]. The support of these rules is supp(f2) and their 
on�den
e is
supp(f2)/supp(f1). For instan
e, from the generator {B} and its 
losure {BE} andthe generator {BC} and its 
losure {BCE}, we generate the rules B → C, B → CEand BE → C.4.3. Deriving transitive approximate min-max asso
iation rulesThe graph-oriented representation of the non-transitive approximate min-max as-so
iation rules extra
ted from 
ontext D for minsupp = 2/6 and min
onf = 2/5 isgiven in �gure 13.

closed interval


generator itemset


AC
 AB
 BC
BE
 CE


ABCE


A
 C
 B
 E


ABC
 ABE
 ACE
 BCE


AE


Figure 13. Non-transitive approximate min-max asso
iation rules extra
ted from D.Ea
h edge between two verti
es vg and vf represents the non-transitive approximaterule g → f \ g where g is a generator and f a frequent 
losed immediate su

essorof the 
losure of g. That is an edge between a minimal vertex of a 
losed intervaland the maximal vertex of an immediately above 
losed interval.An edge in �gure 11 represents a transitive rule if it is an edge between a minimalvertex of a 
losed interval and the maximal vertex of another 
losed interval thatis not immediately above the �rst one: There is a 
losed interval �intermediate�between these two intervals. For instan
e, the rule C → ABE between the 
losed
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26 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalintervals {{C}} and {{AB},{AE},{ABC},{ABE},{ACE}, {ABCE}} is transitivesin
e we have rules C → A and A → BCE and the 
losed interval {{A},{AC}} isintermediate, i.e., {C} ⊂ {AC} ⊂ {ABCE}. The 
on�den
e of C → ABE is equalto the produ
t of rules C → A and A → BCE 
on�den
es.In order to derive all transitive rules, we �rst add all rules that are 
ompositionsof two non-transitive rules, we then derive from them rules that are 
ompositionsof three non-transitive rules and so on until no new rule 
an be derived. The threetransitive min-max rules re
onstru
ted are C → ABE, B → ACE and E → ABC.They are all 
ompositions of two non-transitive rules, that have the form gi → fj \giwith gi ⊆ γ(gi) = fi ⋖ fj, represented in �gure 7.The algorithm presented in �gure 14 generates the set MinMaxApprox of approx-imate min-max rules using the set MinMaxReduc of non-transitive approximatemin-max rules and the minconf threshold as its input.Input : set MinMaxReduc, 
on�den
e threshold minconfOutput : set MinMaxApprox1) Test ← MinMaxReduc2) MinMaxTrans ← ∅3) while (Test 6= ∅) do4) forall rule {r1 : a1 → c1, r1.supp, r1.conf} ∈ Test do5) forall rule {r2 : a2 → c2, r2.supp, r2.conf} ∈ MinMaxReduc6) with a2 ⊂ a1 ∪ c1 ⊂ a2 ∪ c2 do7) if (r1.conf × r2.conf ≥ minconf )8) and ({r3 : a1 → (a2 ∪ c2) \ a1} /∈ MinMaxTrans) then9) MinMaxTrans ← MinMaxTrans ∪ {r3, r2.supp, r1.conf × r2.conf }10) Test ← Test ∪ {r3, r2.supp, r1.conf × r2.conf }11) end12) end13) Test ← Test \ {r1}14) end15) end16) return MinMaxApprox ← MinMaxReduc ∪MinMaxTransFigure 14. Algorithm for re
onstru
ting transitive approximate min-max asso
iation rules.The approa
h is in
remental: We iteratively add new transitive min-max rules untilno new rule has been 
reated (steps 3 to 15). During ea
h iteration, the Test set
ontains all rules examined to generate new transitive rules and the algorithm stopswhen Test is empty. This set is initialized with all non-transitive rules (step 1) andall rules r1 it 
ontains, that have the form gi → fj \ gi, are su

essively examined(steps 4 to 14). For ea
h non-transitive rule r2 in MinMaxReduc with the form
gj → fm \ gj su
h that gj ⊂ fj ⊂ fm (steps 5 and 6 to 12), the transitive rule r3with the form gi → fm \ gi is generated in MinMaxTrans and Test (steps 9 and 10)if its 
on�den
e is su�
ient and it is not already present in MinMaxTrans (steps 7
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Generating a Condensed Representation for Asso
iation Rules 27and 8). Then, rule r1 is removed from Test (step 13) sin
e it is not needed anymore:Only transitive rules generates from r1 will be examined in the following iterations.Example 10. The transitive rule B → ACE is derived from rules B → CE andBC → AE whose ante
edent {BC} is a subset of {B} ∪ {CE} = {BCE}, and {BCE}is itself a subset of {BC} ∪ {AE} = {ABCE}. The rule E → ABC is derived fromE → BC and CE → AB. The rule C → ABE 
an be derived from rules C → A andA → BCE, or from rules C → BE and BC → AE or CE → AB.5. Experimental resultsWe used the four following datasets during these experiments: T10I4D100K5 is asyntheti
 dataset built a

ording to sales data properties. It 
ontains 100,000 obje
tswith an average obje
t size of 10 items and an average size of potential maximalfrequent itemsets of 4 items. The Mushrooms dataset des
ribes 23 
hara
teristi
s(attributes) of 8,416 mushrooms (obje
ts): Ea
h obje
t is related to 23 items andwe have 127 items on the whole. The C20D10K and C73D10K (Hetti
h and Bay,1999) datasets are samples of the 1990 
ensus in Kansas, ea
h 
ontaining 10,000obje
ts 
orresponding to the �rst 10,000 listed people. Ea
h obje
t is des
ribed by20 attributes (20 items by obje
ts and 386 items on the whole) in C20D10K and 73attributes (73 items by obje
ts and 2,178 items on the whole) in C73D10K.Running times of the generation of all asso
iation rules and of the min-max basesare not shown sin
e they are insigni�
ant 
ompared to exe
ution times of the itemsetextra
tion. Indeed, no dataset s
an is required for this phase and all 
omputationstake pla
e in main memory. As a data-point, the largest running time obtained was46.27 se
onds for the generation of the 2,053,936 approximate asso
iation rules forC73D10K on a Pentium II at 333MHz with 256MB of main memory.Number of exa
t asso
iation rules extra
ted. The total number of exa
tasso
iation rules and the number of min-max exa
t asso
iation rules are presentedin table VIII. No exa
t asso
iation rule is extra
ted from T10I4D100K sin
e, forthis minsupp value, all frequent itemsets are frequent 
losed itemsets. Thus, theyare themselves their own unique generator and 
onsequently, there is no exa
t as-so
iation rule l1 ⇒ (l2 \ l1) between two frequent itemsets l1 ⊂ l2 having identi
al
losures γ(l1) = γ(l2). The three other datasets are made up of 
orrelated data,and the total number of exa
t rules is important, making it di�
ult to dis
overinteresting information. For these datasets, the min-max exa
t basis redu
es thenumber of rules by a fa
tor varying from 13 to 50. Sin
e there is no information loss,it brings a 
omplete summary of relevant information that is easier to exploit forthe analyst.Number of approximate asso
iation rules extra
ted. The total number ofapproximate asso
iation rules and the number of approximate and non-transitiveapproximate min-max rules are presented in table IX. The number of approximate5 http://www.almaden.ibm.
om/
s/quest/syndata.html
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28 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalTable VIII. Number of exa
t asso
iation rules extra
ted.Dataset minsupp Exa
t rules Min-max basisT10I4D100K 0.5% 0 0Mushrooms 30% 7,476 543C20D10K 50% 2,277 457C73D10K 90% 52,035 1,369rules is very signi�
ant for the four datasets, up to more than 2,000,000. Redu
-ing this number is thus essential in order to make it usable by the analyst. ForT10I4D100K, all frequent itemsets are both 
losed and their own generators and theapproximate min-max basis is identi
al to the set of all rules. The non-transitivebasis represents a redu
tion by a fa
tor of 5 approximately of the number of rules.For the three other datasets, the total number of approximate rules is mu
h moreimportant than for the syntheti
 dataset sin
e they 
ontain dense and 
orrelateddata: The number of frequent itemsets is mu
h more important and thus, it is thesame for the number of approximate rules. However, the fra
tion of frequent itemsetsthat are 
losed is small and the bases redu
e 
onsiderably the number of rules, by afa
tor of varying from 10 to 50 for the approximate min-max basis and, from 40 to500 for the non-transitive basis.Table IX. Number of approximate asso
iation rules extra
ted.Dataset min
onf Approximate Approximate Non-transitive(minsupp) rules min-max basis min-max basisT10I4D100K 70% 20,419 20,419 4,004(0.5%) 30% 22,952 22,952 4,519Mushrooms 70% 37,671 2,961 1,221(30%) 30% 71,412 6,571 1,578C20D10K 70% 89,601 10,116 1,957(50%) 30% 116,791 13,634 1,957C73D10K 90% 2,053,896 43,171 5,718(90%) 80% 2,053,936 43,175 5,718Examining rules generated in the min-max approximate basis and its transitiveredu
tion for the Mushrooms dataset, we veri�ed that rule 4 of example 1 inse
tion 1 is the only one generated among the nine rules. Indeed, the itemsets {freegills} and {free gills, edible, partial veil, white veil} are frequent 
losed itemsets andthe �rst is an immediate prede
essor of the se
ond. Moreover, they are the onlyfrequent 
losed itemsets in the interval [∅, {free gills, edible, partial veil, white veil}℄and the frequent 
losed itemset {free gills} is itself its own unique generator. Thus,rule 4 is the only min-max approximate rule among the nine rules and is non-transitive.
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Generating a Condensed Representation for Asso
iation Rules 296. Con
lusionThe problem of asso
iation rules relevan
e o

urs for most operational datasets. Thisproblem is related to the huge number of rules generated and the presen
e of manyredundan
ies. The approa
h proposed in this paper 
onsists in generating bases forasso
iation rules that minimize as mu
h as possible the number of extra
ted ruleswhile bringing the same information to the end-user. Using a semanti
 based onthe Galois 
onne
tion, we �rst 
hara
terized min-max asso
iation rules as the non-redundant rules with minimal ante
edent and maximal 
onsequent. Ea
h min-maxrule summarizes several other rules, suggesting that these rules are the most relevantfrom the analyst's point of view. From this 
hara
terization, we de�ned the min-maxbasis for exa
t asso
iation rules, the min-max basis for approximate asso
iation rulesand its transitive redu
tion � whi
h we believe is more useful for the analyst as itretains only the most pre
ise rules. The union of the former and one of the latterof these bases 
onstitutes a min-max basis for asso
iation rules that is a generatingset for all asso
iation rules, their supports and their 
on�den
es.We presented algorithms for generating these bases from the frequent 
losed itemsetsand their generators, su
h as extra
ted by the Close and A-Close algorithms.When all frequent itemsets have been mined, the Close+ algorithm identi�es fre-quent 
losed itemsets and their generators among frequent itemsets. We also in-trodu
ed simple methods and algorithms to derive all exa
t rules, all approximaterules and all transitive approximate min-max rules from the bases. None of thesealgorithms requires a

essing the dataset and their exe
ution times are thus insignif-i
ant 
ompared to the running times of the frequent itemsets, or the frequent 
loseditemsets, extra
tion.Experimental results 
ondu
ted on both syntheti
 and operational datasets showthat the extra
tion of these bases 
onsiderably redu
es the number of rules, parti
u-larly in the 
ase of dense or 
orrelated data. The result is easier to browse and sin
eredundant � and often misleading � rules are suppressed, its usefulness is improved.Moreover, all of the data-spa
e is 
hara
terized by the min-max rules and thisapproa
h does not su�er from poorly 
hara
terized or un
hara
terized sub-spa
esof the data-spa
e, an important weakness of many redu
tion methods. Anotherinteresting feature of this approa
h is the possibility to 
onstru
t a graph-orientedrepresentation of the min-max bases that is easily understandable for the end-user.It provides a natural, simple and 
lear graphi
al representation of asso
iation rules
overing all the data-spa
e and from whi
h the dedu
tion of all other rules is dire
t.An interesting perspe
tive of future work is the de�nition of an inferen
e system forasso
iation rules equivalent to the Armstrong axioms for impli
ations. As pointedout in se
tion 1.1, up to now no 
omplete and sound inferen
e system that takessupports and 
on�den
es into 
onsideration has been proposed. Another attra
tiveperspe
tive of future work is the introdu
tion of the min-max bases in the dataanalysis and the Formal Con
ept Analysis domains. Indeed, the min-max asso
iationrule de�nition is valid within the global and partial impli
ation rule frameworks.Hen
e, the de�nitions of the min-max bases for exa
t and approximate asso
iationrules are also valid for global and partial impli
ation rules respe
tively. Sin
e thesebases represent no information loss and are 
onstituted of the most relevant rules
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