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Abstract 

A solid can be regarded as a set of contiguous elementary units. The distribution within the 

solid of any properties, measurable within each elementary unit, can be characterized using 

two parameters. These parameters are built using the constitution and distribution 

heterogeneities of P. Gy (1982, 1988). The former account for the granularity of the 

elementary units, whereas the latter assess the spatial distribution of the property. A texture 

which definition involves several properties can be described using a diagram where both 

parameters work as variables. Potential applications encompass: (i) the textural classification 

of soils, ore, breccia and concrete and (ii) the monitoring of textural transformation during 

process like dolomitization, metamorphism, weathering, deformation or annealing. 

 

Keywords: texture, homogeneity, characteristic distribution, constitution heterogeneity, 

distribution heterogeneity 

 

1. Introduction 

Hereinafter, the texture of a coherent solid is defined: (i) by the characterization of each 

component of the solid using various characteristics such as: the mineralogical composition, 

grain and pore size, shape, orientation, … and (ii) by the spatial distribution of these 

characteristics within the solid. The nine 2D solids in Figure 1 illustrate the purpose of this 

work (For convenience 2D solids are used, nevertheless this method can be applied to 3D 
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solids). These solids are composed of black and white squares or rectangles that could 

represent respectively: valuable and gangue minerals in an ore, pores and solid grains in a soil 

or aggregate and cement in a concrete. These nine solids differ in the proportion, size 

distribution and spatial distribution of black polygons. According to the definitions given 

above, the textures of the nine solids can be characterised by: (i) the amount and size of black 

and white polygons, (ii) the spatial distribution of black polygons. The size of polygons and 

the black and white polygons content are intrinsic properties of a given solid independent of 

their spatial distributions. In consequence, solids displaying the same intrinsic properties can 

differ by their spatial distribution. Then from the textural analysis point of view, a given 

characteristic, as the black polygon amount, operates: (i) as an intrinsic characteristic and (ii) 

through its spatial distribution. As delineated in Figure 1, it is proposed to characterize the 

textural contribution of a given characteristic using two parameters: (i) the granularity 

parameter (the reason for a such denomination is given in the next section) related to its 

intrinsic part, (ii) the distribution parameter which accounts for its spatial distribution. 

The proposed method quantifies the granularity and distribution parameters of a characteristic 

by respectively the constitution heterogeneity (HC) and distribution heterogeneity (HD) of 

this characteristic. HC and HD are functions defined by Gy (1982, 1988) in his “Theory of 

particule material sampling”. We use these functions because: (i) the quantification of 

heterogeneities within a granular material as sand, is conceptually similar to the quantification 

of texture in coherent solids and (ii) the meaning of these functions are familiar to engineers 

working in mineral industry. 

Let now consider a way to characterize granularity and distribution parameters of a 

characteristic φ using HC and HD. 

Abbreviations and variables meaning are given in the appendix. 
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2. Evaluation of granularity parameter using constitution heterogeneity 

The first step is to split up the “real solid” into elementary units (EU). EUs are the most little 

undividable compounds used to describe the "real solid". They are defined at convenience by 

the users according to the structure of the "real solid". For example, in an ore, it is convenient 

to consider individual grains of valuable mineral and gangue as EUs. The set of EUs 

constitutes the "model solid". According to the definition of the EU, a given "real solid" can 

be resolved in different "model solids". For instance, in a breccia it exists at least two 

definitions for EUs: EUs can correspond to each mono crystalline grains belonging either to 

the elements or the cement; but EUs can also match with each of the elements and each of the 

mono crystalline grains component of the cement. 

The studied characteristic φ must be measurable within each EU. The model solid can be 

described as an array of points corresponding to the barycentre of the EUs, each of one 

bearing the following information: coordinates of the barycentre, volume Vi of the ith EU and 

value aφ,i of φ in the EU i. 

The contribution of the ith EU to the heterogeneity of the model solid with respect to φ can be 

evaluated (Gy 1982, 1986) by:  

hφ,i =
aφ,i − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

Vi

V 
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = n ⋅

aφ,i − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ vi        (1) 

where: n is the number of EU; Vi the volume of the ith EU; VΣ = Vi
i=1

n

∑  the volume of the solid; 

vi = Vi /VΣ the relative volume of i; V = 1/n( )⋅ Vi
i=1

n

∑ = VΣ /n, average of Vi; aφ,i the measure of 

φ in the ith EU; aφ = aφ,i ⋅ vi( )
i=1

n

∑  the value of φ in the solid. 

hφ,i is an intrinsic characteristic of the ith EU: the involvement of the ith EU in the 

determination of  φ in the whole solid. The measure of hφ,i is the product of an intensive term 
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aφ,i − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  accounting for the relative difference with respect to φ between the ith EU and the 

solid by a term Vi

V 
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  or n ⋅ vi( ) standing for the volume contribution of the ith EU within the 

solid. Others expressions for the extensive term can be choose, for example vi; 
Vi

V 
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  was 

preferred because: (i) it corresponds to a former definition (Gy, 1982, 1986) and (ii) it offers 

the possibility to treat the case of solids where n cannot be determined, as did Gy (1982, 

1986) for granular materials. If aφ,i = aφ , the contribution of i to the heterogeneity of the solid 

is nil. If aφ,i is high, but if the volume of the ith EU is very small compared to the others, the 

contribution of this EU to the value of aφ is negligible (the volume contribution is very little). 

On the other hand, a EU with high values for intensive term and volume contribution will 

have a considerable involvement in the determination of aφ in the solid and consequently his 

contribution to the heterogeneity of φ will be important. 

According to Gy (1982, 1988) the constitution heterogeneity of the solid with respect to φ 

(HCφ) is the variance of hφ,i:  

HCφ = n ⋅
aφ,i − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

⋅ vi
2

i=1

n

∑ .          (2) 

Note that if ∀i, aφ,i = aφ , then HCφ = 0, the solid is homogeneous with respect to φ. HC can be 

seen as a measure of the grade of similarity between the EU with regard to φ: for decreasing 

value of HCφ the similarity between the EU increases, at least with respect to the 

characteristic φ. 

HCφ is an intrinsic characteristic of the solid taking into account the magnitude of φ in the 

solid and the size and φ content of each EU; therefore, as show the comparison between solids 

1, 4 and 7 (or 2, 5 and 8, or 3, 6 and 9) in Figure 1, HCφ can work as an estimate of the 
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granularity parameter. Now, the reason for such name appears more clearly. In physics, the 

granularity account for the smallest undividable unit used to describe a system: molecule in a 

gas or atom in a molecule. More over, this term is also used in civil engineering about the size 

distribution of particle making up an aggregate. These two meanings apply in our case 

because: (i) EUs are the smallest undividable units in the model solid and (ii) HCφ takes into 

account the EU's volume. 

There is a special case when 0 and 1 are the only permitted values for aφ. This occurs for 

instance, if φ is the porosity, then EUs correspond to solid grains ( aφ,i = 0) and pores ( aφ,i =1); 

equation 2 can be rewritten as: 

HCφ = n ⋅
1− aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

c=1

C

∑
2

⋅ vc
2 + n ⋅ vm

2

m=1

n−C

∑ = HCφ,c + HCφ,m .      (3) 

The term HCφ,c  represents the contribution to the heterogeneity of the EUs bearing the 

studied parameter (i.e. if i is a pore, aφ,i =1), the number of these EU is C and these EUs are 

indexed c in (3). The term HCφ,m  expresses the contribution to heterogeneity of the "matrix", 

i.e. the set of EU for which aφ,i = 0 (i.e. solid grains), they are (n – C) and indexed m in (3). 

Values of constitution heterogeneity from 2D model solids are given in Figure 1 and Table 1. 

These solids display a binary mineralogical composition i.e. black (c phase) and white (m 

phase) polygons. The studied characteristic φ is the volumetric "black polygons" content. If 

all EU have the same size, HCφ decreases as aφ increases, i.e. as the "black polygons" content 

raises (compare solids 1 and 4 in Figure 1 or the solids which data appear in the three lines at 

the top of Table 1), more EU are similar, the solid becomes more homogeneous and HCφ 

tends to zero. Obviously this variation is more effective for HCφc than for HCφm. At constant 

aφ, granulometric scattering within black or white polygons produces an increase, respectively 
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in HCφc and HCφm (compare solids 4 and 7 in Figure 1 or the solids which data appear in the 

three lower lines of Table 1). 

Note that if the studied characteristic is different, for example if φ is the EU's volume, solid 1 

to 6 (Fig. 1) are homogeneous and the corresponding HCφ is nil. 

 

3. Evaluation of distribution parameter using distribution heterogeneity 

HCφ is independent of the spatial distribution of φ in the solid. On account for this factor, let 

consider a network devoted to gather information on the spatial distribution of φ. This 

network would be designed in a way insuring homogeneity during collection of data. This 

could be done with a shape cell more isotropic as possible. For convenience we use a cubic 

periodic lattice characterised by: (i) the volume VMO of the cell and (ii) the scale α of 

observation ( α = VΣ /VMO ). Note that α is the number of cell in a network of scale α. 

Unbiased condition is realized if the lattice strictly fits the solid. 

We can apply (1) and (2) at this new problem, considering the cell content as the EU and Vi 

as the volume Uj of matter assigned to the cell j. If nj is the number of EU assigned to the cell 

j, then: U j = Vi
i=1

n j

∑ . As previously, the contribution of a cell j to the heterogeneity of φ in the 

model solid can be evaluated by: 

hφ,α, j =
aφ,α, j − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

U j

U (α)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟          (4) 

where aφ,α,j is the value of φ within the matter assigned to the jth cell belonging to a lattice of 

scale α: aφ,α, j =
1

U j

⋅ aφ,i ⋅ Vi
i=1

n j

∑  and U (α)  average of Uj
 depending on α. Note that, if VMO = 

V∑  (i.e. if the lattice contains only one cell to which the total volume of the solid is assigned) 

⇒ α = 1, nj = n and Uj = V∑, then aφ,α=1, j = aφ . 
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To distinguish an aggregate of EU identical in φ from one EU displaying the same value for φ 

and a volume equal to that of the aggregate (Fig. 2), the following rule is adopted: all EU 

which barycentre belong to the jth cell are assigned to this cell. As the sum of Uj is equal to 

V∑, a result of this rule is that Uj can be greater than VMO and consequently some cells can be 

empty (Fig. 2). This procedure could be seen complicate, but it insures that HC and HD are 

evaluated using strictly the same set of EU, i.e. the same model solid. It can be seen as a 

consequence of the indivisible character of the EU with respect to the limits of the cells. 

Let β(α) the number of cell devoid of matter, the number of cell bearing matter is [α - β(α)] 

and the average of matter volume assigned to the [α - β(α)] "filled" cells is: 

U α( )=
1

α −β α( )
⋅ U j

j=1

α−β α( )

∑ .  As U j = VΣ
j=1

α−β α( )

∑ , U α( )=
VΣ

α −β α( )
. Note that U α( )is calculated 

using only the "filled" cells, i.e. the cells bearing information about the spatial distribution of 

φ. Our purpose is to distinguish a "filled" cell where aφ,j = 0 from a cell devoid of matter (cells 

coded ∅ in Figure 2). In the line of Gy (1982, 1988), at the scale α, the distribution 

heterogeneity of the solid with respect to φ (i.e. HDφ,α) is the variance of hφ,α,j. 

HDφ,α =
1

α −β α( )( )
⋅

aφ,α, j − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

U j

U α( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ j=1

α−β α( )

∑
2

= α −β α( )( )⋅
aφ,α, j − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ uj

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ j=1

α−β α( )

∑
2

            (5) 

where uj = U j /VΣ is the relative volume of matter assigned to the jth cell, aφ,α,j the value of φ 

within the matter assigned to the jth cell of a α-scale lattice. aφ,α, j =
1

U j

⋅ aφ,i ⋅ Vi
i=1

n j

∑  , where nj is 

number of EU assigned to the cell j. Note that: aφ = aφ,i ⋅ vi( )= aφ,α, j ⋅ uj( )
j=1

α−β α( )

∑
i=1

n

∑ . 

HDφ,α is a function of: (i) the scale α of the lattice, (ii) the spatial distribution of φ.  
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Let first consider a model solid where: ∀i, aφ,i = aφ. Obviously in this case HCφ = 0. As all EU 

display the same value for φ, the spatial distribution of φ in the model solid is homogeneous, 

i.e. ∀α, HDφ,α = 0. 

For HCφ > 0, HDφ,α displays two useful properties: 

(i) If VMO = VΣ ⇒ α =1⇒ aφ,α, j = aφ ⇒ HDφ,α = 0. 

(ii) Let nj be the number of EU assigned to the cell j. There is a value αc of α such as ∀j, 

nj = 0 or 1. If nj = 1, the cell j is "filled" by one and only one EU labelled i, then aφ,α,j = 

aφ,i, where aφ,i is the value of φ in the EU i bellowing to cell j. If nj = 0, the cell is 

devoid of matter. Then for α = αc, HDφ,α = HCφ. For α > αc, the number of cells for 

which nj = 1 is the same as the former case (i.e. α = αc) and the number of cells for 

which nj = 0 increase. In these conditions, for α ≥ αc, HDφ,α = HCφ. Note that, in this 

case: α−β(α) = n. This latter relation justifies the way we use to calculate U α( ). 

Therefore a diagram HDφ,α/HCφ versus α (distribution curve) can be used to compare the 

spatial distributions of φ in distinct solids (Figures 3 and 4). If ∀α < αc HDφ,α = 0, the solid is 

homogeneous with respect to the spatial distribution of φ (Figure 3b). If HCφ = 0 ⇒ HDφ,α = 

0. If HDφ,α/HCφ increases continuously with α, several model functions can be proposed 

(Table 2). The purpose of these model functions is to fit the experimental distribution curve 

as geostatisticians do for experimental variograms. The form of the proposed model function 

(first and second column of Table 2) is drawn from the classical model variograms (see for 

example, Isaaks and Srivastava 1989). Note that variograms (γ =f(h)) and distribution curves 

(HDφ,α/HCφ = f(α)) present some similarities: they display a variance and a variance ratio (γ 

and HDφ,α/HCφ respectively) versus a scale of observation (h and α respectively). 

Distribution curves consider a discretized volume and then take into account the 
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morphological properties of the components through the EU volume, while variogram 

describes the spatial variations of a characteristic in a continuous media. 

Distribution curves for different sets of squares and rectangles are given in Figure 4. 

Note that, if Vmin is the volume of the smallest unit cell that can be used to describe the 

structure of a periodically ordered solid displaying a cubic symmetry, then HDφ,α = 0 if 

V∑/Vmin is an integer. 

For a given model solid, the integral Aφ =
HDφ,α

HCφ

⋅ dα
1

αc

∫  is defined without ambiguity (Figure 

3a), so Aφ can work as an estimate of the distribution parameter. Aφ can be seen as the 

departure from a homogeneous spatial distribution (Figure 3). For each model function in 

Table 2, the value of the integral between α = 1 and α = αc (i.e. Aφ) has been calculated. The 

results are given in the third column of Table 2. 

 

Note that an unbiased comparison of Aφ between several solids requires the use of the same 

network. This condition is realised if samples exhibit equal volume V∑ and identical shape. 

 

4. Representation of texture using HCφ and Aφ 

According to the definition given at the beginning of section 1, if a texture can be 

characterized with just one characteristic φ, a representation of this texture can be done in a 

diagram HCφ (granularity parameter) versus Aφ (distribution parameter). Examples are given 

in Figure 5 for the nine solids drawn in Figure 1. A textural description involves generally 

several properties. Let consider a texture characterised by K properties. In a HCφ versus Aφ 

diagram the set of K points represents the texture and a textural change appears as K different 

translations working on the initial K points. 
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If HCφ and Aφ could be used to assess a texture, other parameters defined above, as αc and 

β(α), characterise the geometry of the EUs. As showed in Figure 6, β(α) is a function of 

morphology, orientation, volume Vi, size distribution of Vi and α. So, a diagram β(α) versus 

α can give granularity and/or morphology and/or orientation information on the components 

of the model solid. 

 

5 Conclusion 

Based on the concept of heterogeneity defined by Gy (1982, 1988), two parameters, HCφ and 

Aφ have been defined to characterize the distribution of a given characteristic φ in a coherent 

solid. The first is an intrinsic characteristic of the solid, independent of the spatial distribution 

of the characteristic, but taking into account the granularity of the EUs making up the model 

solid. The second parameter measures the spatial distribution of the characteristic. These two 

parameters are defined without ambiguity for any characteristic measurable within each 

constituent of the model solid. To compare different model solids, unbiased conditions are 

realized if the volume and the shape of the samples are identical. Then, HCφ and Aφ appear as 

suitable tools to describe the texture and textural changes. 

The possibility to calculate HCφ and Aφ for numerous properties confers to the method a high 

grade of adaptability, allowing the use of a large number of characteristics to compare 

textures.  

Aφ and HCφ parameters can be used for two main types of applications: textural classifications 

and monitoring of textural transformation during processes like dolomitization, 

metamorphism, deformation, weathering or annealing. Note that the texture of any composite 

such as concrete or breccia can be assessed by the proposed method. 

The field of textural classification encompasses a great diversity of solids and problems. 

Some of them are: concrete (through, for example, the granularity and distribution of 



11/26 

aggregate); porosity in coherent solids or soils (for each EUi, aφ,i = 1 if the ith EU is a pore and 

aφ,i = 0 if the ith EU is a solid grain); soils (in this case, at least, three characteristics φ1, 

φ2, and φ3, can work: the sand (φ1), silt (φ2) and clay (φ3) size fractions used by pedologists to 

characterize a soil); a quantized classification of breccia based on the granularity and 

distribution of the characteristics (for example: mineralogical composition, size, shape) of 

elements and cement; classification of ore texture where granularity and distribution refer to 

the valuable mineral  (aφ,i = 1 if the ith EU is a grain of valuable mineral and aφ,i = 0 if the ith 

EU is a gangue mineral). In the latter case, as HCφ refers to the liberation size, a classification 

of ore texture would also be a classification of the cost of mineral processing. 

 

At last, using the Shannon theory of information in the same way as Martin and Rey (2000) 

and Martin and al. (2005), it is likely to give to Aφ a more relevant significance in term of 

relative entropy. 
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Appendix: definitions of parameters follow the text 

§2. Evaluation of granularity parameter using constitution heterogeneity 

EU, elementary unit, undividable component of the model solid. 

n, number of EU. 

φ, a characteristic measurable in each EU. 

HC, constitution heterogeneity. 

HD, distribution heterogeneity. 

Vi , volume of the ith EU. 

V∑ solid volume, V∑ = Vi
i=1

n

∑ . 

V average of Vi , V = 1
n

⋅ Vi
i=1

n

∑ . 

vi , relative volume of the ith EU, vi =
Vi

V∑

. 

aφ,i , measure of φ in the ith EU. 

aφ , measure of φ in the solid, aφ = aφ,i ⋅ vi
i=1

n

∑ . 

hφ,i , contribution of ith EU to the scattering of φ within the solid, 

hφ,i =
aφ,i − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

Vi

V 
= n ⋅

aφ,i − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ vi  

HCφ, constitution heterogeneity in the solid with respect to the characteristic φ, 

HCφ = var(hφ,i ) =
1
n

⋅ hφ,i
2

i=1

n

∑ = n ⋅
aφ, j − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

⋅ vi
2

i=1

n

∑ . 
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HCφ,c = n ⋅
1− aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

c=1

C

∑
2

⋅ vc
2  If aφ,i = 0 or 1, HCφ,c  represents the contribution to heterogeneity 

of the EUs bearing the studied characteristic  (i.e. these for which aφ,i =1). These EUs 

are C and indexed c. 

HCφ,m = n ⋅ vm
2

m=1

n−C

∑  If aφ,i = 0 or 1, HCφ,m  represents the contribution to heterogeneity of the 

EUs belonging to the "matrix"  (i.e. these for which aφ,i = 0). These EUs are (n-C) and 

indexed m. 

HCφ = HCφ,c + HCφ,m 

 

§3. Evaluation of distribution parameter using distribution heterogeneity 

VMO , volume of the cell of the network devoted to gather information on the distribution of φ. 

α = VΣ /VMO  , observation scale, i.e. the scale of the network devoted to gather information on 

the distribution of φ, α is also the number of cells. 

nj , number of EU in the cell j. 

aφ,α,j , measure of φ in the jth cell belonging to a lattice of scale α, aφ,α, j =
1

U j

⋅ aφ,i ⋅ Vi
i=1

n j

∑ . 

Uj , volume of matter assigned to the jth cell. 

β(α), number of cell (network at scale α) devoid of matter. 

U (α) =
1

α −β(α)
⋅ U j

j=1

α−β(α)

∑ =
VΣ

α −β(α)
, average of Uj

 depending on α. 

u j = U j /VΣ , relative volume of matter assigned to the cell j. 

hφ,α, j =
aφ,α, j − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

U j

U (α)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , contribution of jth cell to the scattering of φ within the solid. 

HDφ,α , distribution heterogeneity at the scale α, 
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HDφ,α = var hφ,α, j( )= α −β α( )( )⋅
aφ,α, j − aφ

aφ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ uj

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ j=1

α−β α( )

∑
2

. 

αc , value of α such as ∀j, nj = 0 or 1. For α ≥ αc , HDφ,α = HCφ. 

Aφ =
HDφ,α

HCφ

⋅ dα
1

αc

∫  measure of the spatial distribution of φ. Aφ can be seen as the departure 

from a homogeneous spatial distribution of φ. 
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Captions of figures and tables 

Figure 1.  

Definition of granularity and distribution parameters illustrated by nine 2D solids labelled by 

encircled numbers. The studied characteristic φ is the black polygon content (i.e. aφ). 

Granulometric information about solids is given in the table. In all solids, white EUs have the 

same shape (square) and size. The three solids 1, 2 and 3 possess the same granularity, value 

for aφ and consequently the same heterogeneity of constitution with respect to φ (i.e. HCφ). 

The same remark is valid for group 4, 5 and 6 and group 7, 8 and 9. Distribution 

heterogeneity increases from 1 to 3, 4 to 6 and 7 to 9. 

 

Figure 2. 

Attribution's rule of EUs to a given cell. Bold and double lines represent respectively the limit 

of EUs and the boundary of cells. Left column show a special case where the volume of cell is 

equal to the volume of EUs. Then, inside each cell there is one and only one barycentre of a 

EU and all cells are "filled" (i.e. β(α) = 0). In this case, HDφ = HCφ, so α=αc. The "grey 

content" in solids draw in the right and left column is equal, but in the right column there is 

only one grey EU with a volume four times higher than the volume of grey EUs in the left 

column. The barycentre of this unique EU belong to one cell to which all the matter of this 

EU is assigned. This implies that three cells are devoid of matter (i.e. cells coded by ∅, thus 

β(α) = 3). Note that: U j = VΣ
j=1

α−β(α)

∑  and thus U α( )=
1

α −β(α)
⋅ U j

j=1

α−β(α)

∑ =
VΣ

α −β(α)
. 

 

Figure 3. 

Distribution curves and definition of Aφ, (a): general case, (b): homogeneous distribution 

case.  
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Figure 4. 

Distribution curves for "2D solids" depicted on the right of the diagrams. The studied variable 

is the black polygons content. Characteristics of the nine solids are given in Figure 1 and 

Table 1. Bracketed numbers are the values of Aφ. Note that Aφ increases with the clustering of 

EUs (i.e. when spatial homogeneity decreases). 

 

Figure 5. 

Textural representation using HCφ versus Aφ diagram. Numbers refer to the nine solids 

depicted in Figures 1 and 4 and Table 1.  

 

Figure 6. 

Sketches highlight factors controlling the value of β(α). Simple and double lines represent 

respectively the limit of EUs and the boundary of cells. First column: solids; second column: 

solids and lattices; third column: lattice, numbers correspond to the volume of matter assigned 

to each cell; cells coded ∅ are devoid of matter. 

 

Table 1. 

Constitution heterogeneity. Data from the three lines at the top of the table emphasize the 

effect of aφ variation on HC. Data in the three lines at the foot of the table point to the 

influence of granularity on HC. The last column refers to the solids depicted in Figure 1. The 

solid depicted in the first row is similar to solids 1 to 6 in Figure 1, but contains only 5 black 

squares. For the significance of  HCφ,c , HCφ,m and HCφ see text or appendix. 
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Table 2 

Models for distribution curve (in the case where HDφ,α/HCφ increases continuously with α) 

with the corresponding values of Aφ, a is a fitting parameter, for the significance of αc, see 

text or appendix. "erf" is the error function: erf x( )=
2
π

exp −u2( )⋅ du
0

x

∫ . "erf" is classically 

used to calculate integrals such as exp r ⋅ x2( )
s

t

∫ ⋅ dx through the change of variable u. For 

example, in the case considered: u =
a

α c

⋅ α  . 

 



19/26 

 

 
 
 

Solids 1, 2, 3  4, 5, 6  7, 8, 9 
Proportion of 
black area = aφ 
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2 black 
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4 units area 
3 black 

rectangles 
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area 
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ck
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ua
re

s 10 black 
squares of 1 

unit area 

 

20 black 
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6 black 
squares of 
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istribution 
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Figure 1. 
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Constitution Heterogeneity 

n aφ 
Volumetric 

distribution of vc 
(EU with aφ,i = 1) 

Volumetric 
distribution of vm 
(EU with aφ,i = 0) 

HCφ,c HCφ,m  HCφ  

Solids 
showed 

in 
figures 
1 and 4

144 0.03 5 EU c of 1 unit 
volume 26.83 0.97 27.80  

144 0.07 10 EU c of 1 unit 
volume 12.47 0.93 13.40 1, 2, 3 

144 0.14 20 EU c of 1 unit 
volume 

All EU m have the 
same volume 

Vi = 1 unit volume
5.34 0.86 6.20 4, 5, 6 

2 EU c have a 
volume of 

4 units volume 
3 EU c have a 
volume of 

2 units volume 
135 0.14 

6 EU c have a 
volume of 

1 unit volume 

All EU m have the 
same volume 

Vi = 1 unit volume
12.51 0.81 13.32 7, 8, 9 

20 EU m have a 
volume of 

4 units volume 

 

84 0.14 
20 EU c have a 

volume of 
1 unit volume 44 EU m have a 

volume of 
1 unit volume 

3.11 1.47 4.58  

 
 

Table 1 
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Some models for distribution curve 

Models HDφ,α HCφ  Aφ  

Linear 
HDφ,α

HCφ

=
1

α c −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ α −

1
αc −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
αc −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

α c
2

2
− α c −

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Power 
HDφ,α

HCφ

=
α −1
α c −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

a

 
α c −1( )a +1

a +1( )⋅ α c −1( )a  

Exponential 
HDφ,α

HCφ

=
1− exp a

α c

⋅ 1− α( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1− exp a ⋅
1

α c

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 
αc −1

1− exp a ⋅
1

α c

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−
α c

a
 

Gaussian 
HDφ,α

HCφ

=
1− exp a

α c
2 ⋅ 1− α2( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1− exp a ⋅
1

α c
2 −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

αc −1−
αc

2
⋅

π
a

⋅ exp a
α c

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ erf a( )− erf a

αc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1− exp a ⋅
1

αc
2 −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 
 
 
 

Table 2 
 

 
 

 
 


