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BOUNDING THE EIGENVALUES OF THE

LAPLACE-BELTRAMI OPERATOR ON COMPACT

SUBMANIFOLDS

BRUNO COLBOIS, EMILY B. DRYDEN, AND AHMAD EL SOUFI

Abstract. We give upper bounds for the eigenvalues of the La-
place-Beltrami operator of a compact m-dimensional submanifold
M of R

m+p. Besides the dimension and the volume of the sub-
manifold and the order of the eigenvalue, these bounds depend on
either the maximal number of intersection points of M with a p-
plane in a generic position (transverse to M), or an invariant which
measures the concentration of the volume of M in R

m+p. These
bounds are asymptotically optimal in the sense of the Weyl law.
On the other hand, we show that even for hypersurfaces (i.e., when
p = 1), the first positive eigenvalue cannot be controlled only in
terms of the volume, the dimension and (for m ≥ 3) the differential
structure.

1. Introduction

Let M be a compact, connected submanifold without boundary of
dimension m ≥ 2 immersed in a Euclidean space R

m+p with p ≥ 1;
that is, M is the image of a compact smooth manifold M̄ of dimen-
sion m by an immersion X : M̄ → R

m+p of class C2. We denote by
g the Riemannian metric naturally induced on M̄ (that is, the first
fundamental form of the submanifold M) and by ∆ the corresponding
Laplace-Beltrami operator whose spectrum consists in an unbounded
sequence of eigenvalues

Spec(∆) = {0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ · · · ≤ λk(M) ≤ · · · }.
Consider the k-th eigenvalue as a functional

M 7→ λk(M)

on the space of all immersed m-dimensional submanifolds of fixed vol-
ume of R

m+p; alternatively, consider the normalized dilation-invariant

2000 Mathematics Subject Classification. 58J50, 58E11, 35P15 .
Key words and phrases. Laplacian, eigenvalue, upper bound, submanifold.
The third author has benefitted from the support of the ANR (Agence Nationale

de la Recherche) through FOG project ANR-07-BLAN-0251-01.
1



2 BRUNO COLBOIS, EMILY B. DRYDEN, AND AHMAD EL SOUFI

functional

M 7→ λk(M)Vol(M)2/m

on the space of all immersed m-dimensional submanifolds of R
m+p. Of

course, these two functionals have the same variational properties.
Hersch [16] was the first to obtain a result on these functionals. In-

deed, let S
2 be the standard 2-sphere naturally embedded in R

3. Hersch
proved that if M is any 2-dimensional immersed surface of genus zero
of R

2+p (that is, M = X(S2), where X : S
2 → R

2+p is an immersion),
then

λ1(M)Vol(M) ≤ λ1(S
2)Vol(S2) = 8π.

Moreover, the equality holds if and only if M has constant Gaussian
curvature.

One decade later, Yang and Yau [30] proved that if M is an ori-
entable immersed surface of genus γ (that is, M = X(M̄) where M̄

is an orientable compact surface of genus γ and X : M̄ → R
2+p is an

immersion), then λ1(M)Vol(M) ≤ 8π(γ + 1). This bound has been
improved by Ilias and the third author [9] as follows:

λ1(M)Vol(M) ≤ 8π

⌊

γ + 3

2

⌋

,

where ⌊·⌋ denotes the floor function.
A similar upper bound was obtained in the nonorientable case by Li

and Yau [22]. However, these upper bounds are not optimal in general
and the exact value of the supremum of λ1(M)Vol(M) among sur-
faces of fixed topology is known only in the following cases: immersed
spheres (Hersch [16]), tori (Nadirashvili [25]), projective planes (Li and
Yau [22]) and Klein bottles ([19] and [12]). A conjecture concerning
orientable surfaces of genus 2 is stated in [18].

The extension of the result of Yang and Yau to higher order eigenval-
ues was obtained by Korevaar in [20]: there exists a universal constant
C > 0 such that for any integer k ≥ 1 and any compact orientable
surface M of genus γ, we have

λk(M)Vol(M) ≤ C(γ + 1)k.

Note that the estimates given above for the first nonzero eigenvalue
λ1 are based on “barycentric type methods,” i.e., the use of coordinate
functions as test functions after a suitable transformation that puts the
barycenter at the origin; for a typical example of this classical method,
see [9] or [16]. These barycentric methods do not apply to higher order
eigenvalues, and Korevaar’s proof required new techniques.



SPECTRUM OF SUBMANIFOLDS 3

In dimensions three and higher, the situation differs significantly
from the 2-dimensional case. Indeed, it follows from the Nash embed-
ding theorem and the result of Dodziuk and the first author [5] that in
dimension m ≥ 3, we have

sup
M

λ1(M)Vol(M)2/m = ∞,

where the supremum is taken over all compact submanifolds M with
fixed smooth structure (that is, M = X(M̄), where M̄ is a fixed com-
pact smooth manifold of dimension m ≥ 3 and X : M → R

m+p is a
smooth immersion from M into R

m+p for some p ≥ 1).
To study extremal properties of the spectrum, it is therefore nec-

essary to impose additional constraints, either of an intrinsic or an
extrinsic nature. For example, we can assume that the induced metric
g preserves a conformal class of metrics [7, 10, 20], a symplectic or a
Kähler structure [27, 2], the action of a Lie group [1, 6, 14], etc. Re-
garding results with constraints of extrinsic type, a well-known example
is given by Reilly’s inequality [29, 11]:

λ1(M) ≤ m

Vol(M)
‖H(M)‖2

2,

where ‖H(M)‖2 is the L2-norm of the mean curvature vector field of
M . More generally, it follows from results of Harrell, Ilias and the third
author [13] and the recursion formula of Cheng and Yang [4, Corollary
2.1] that for any positive integer k,

λk(M) ≤ R(m)‖H(M)‖2
∞ k2/m,

where ‖H(M)‖∞ is the L∞-norm of H(M) and R(m) is a constant
depending only on m.

In this paper, we will focus on other extrinsic constraints. The first
one is related to the following invariant: For a compact immersed sub-
manifold M of dimension m in R

m+p, almost all the p-planes Π in
R

m+p are transverse to M so that the intersection Π ∩M consists of a
finite number of points. We define the intersection index of M as the
supremum

i(M) = sup
Π

#M ∩ Π,

where Π runs over the set of all p-planes which are transverse to M in
R

m+p; if M is not embedded, we count multiple points of M according
to their multiplicity. For instance, the intersection index of a hyper-
surface M is the “maximal” number of collinear points in M . Note
that the invariant i(M) is related to the notion of width introduced by
Hass, Rubinstein and Thompson [15, Definition 1].
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We begin by obtaining an estimate involving the intersection index
for the lowest positive eigenvalue λ1. Note that Bm denotes the Eu-
clidean ball of radius 1 in R

m and S
m denotes the unit sphere in R

m+1.

Theorem 1.1. For every compact m-dimensional immersed submani-
fold M of a Euclidean space R

m+p we have

λ1(M)Vol(M)2/m ≤ A(m)

(

i(M)

2

)1+ 2

m

λ1(S
m)Vol(Sm)2/m,

where λ1(S
m) = m and A(m) = m+2

2
Vol(Sm)

Vol(Sm−1)
= m+2

2

√
π

Γ(m
2

)

Γ(m+1

2
)
.

The proof of this theorem again uses the barycenter method.
The result of Theorem 1.1 extends to higher order eigenvalues but

with a less explicit upper bound.

Theorem 1.2. For every compact m-dimensional immersed submani-
fold M of R

m+p and every positive integer k, we have

λk(M)Vol(M)2/m ≤ c(m)i(M)2/mk2/m,

where c(m) is a constant depending only on the dimension m of M

which is given explicitly by (8) and (9).

The exponent of k in the estimate is asymptotically best possible as
follows from the Weyl law. The estimate itself is not sharp, because
the constants are not optimal.

For a convex hypersurface we clearly have i(M) = 2. Thus,

Corollary 1.1. If M is a compact convex hypersurface of R
m+1, then

λ1(M)Vol(M)2/m ≤ A(m) λ1(S
m)Vol(Sm)2/m

and, for all k ≥ 2,

λk(M)Vol(M)2/m ≤ c(m) 22/m k2/m.

When M is a real algebraic hypersurface defined by a polynomial
equation of degree N , it is easy to show that i(M) ≤ N . This implies

Corollary 1.2. Let P be a real polynomial in m + 1 variables and of
degree N such that M = P−1(0) ⊂ R

m+1 is a compact hypersurface.
Then, for all k ≥ 1,

λk(M)Vol(M)2/m ≤ c(m)N2/mk2/m.

A more general result, in arbitrary codimension, will be given in Corol-
lary 4.1.

These results tell us that to the extent that the intersection index of
M is controlled, the spectrum of M is also controlled. In fact, Theorem
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1.2 can be understood as a consequence of a more abstract result given
in Theorem 1.3 below. It turns out that control of the intersection index
i(M) suffices to give control on the “concentration of the volume” of
M in R

m+p in the sense of the following definition.

Definition 1.1. Let m ≥ 2 and p ≥ 1 be two integers and let L be
a positive real number. We denote by M(m, p, L) the class of all m-
dimensional compact immersed submanifolds of R

m+p such that, for all
x ∈ R

m+p and all r > 0,

Volm(B(x, r) ∩ M) ≤ L rm,

where B(x, r) denotes the Euclidean ball of center x and radius r > 0
in R

m+p.

The eigenvalues of submanifolds in M(m, p, L) are uniformly con-
trolled. Indeed, one has the following

Theorem 1.3. Let m ≥ 2 and p ≥ 1 be two integers and let L be a
positive real number. For all M ∈ M(m, p, L) and all k ≥ 1, we have

λk(M)Vol(M)2/m ≤ C(m)L2/mk2/m,

where C(m) is a constant depending only on m given explicitly in (8).

The result of Dodziuk and the first author [5] together with Theorem
1.1, Theorem 1.3 and Reilly’s inequality tell us that, given a smooth
manifold M̄ of dimension m ≥ 3, there exist Riemannian metrics g of
volume one on M̄ such that any immersion of M̄ into a Euclidean space
R

m+p which preserves g must have a very large intersection index, very
large total mean curvature, and volume which concentrates into a small
Euclidean ball. More precisely,

Corollary 1.3. Let M̄ be a compact smooth manifold of dimension
m ≥ 3. For every integer K > 0, there exists a Riemannian met-
ric gK of volume one on M̄ such that, for any isometric immersion
X from (M̄, gK) into a Euclidean space R

m+p (with arbitrary p), the
submanifold M = X(M̄) satisfies the following conditions:

(1) there exists a p-plane Π ⊂ R
m+p transverse to M which inter-

sects M at least K times.
(2) ‖H(M)‖2 > K

(3) there exists a Euclidean ball B(x, r) ⊂ R
m+p such that the vol-

ume of the portion of M lying in B(x, r) is larger than the
volume of K Euclidean balls of radius r and dimension m, that
is

1 ≥ Volm(B(x, r) ∩ M) > KVolm(Bm)rm.



6 BRUNO COLBOIS, EMILY B. DRYDEN, AND AHMAD EL SOUFI

In the three theorems above, there is no restriction on the codimen-
sion of the submanifold. Therefore, our bounds on the eigenvalues
depend on purely extrinsic assumptions, in the sense that all differ-
ential structures and Riemannian metrics are allowed. An interesting
question is to know what happens if the codimension is assumed to be 1.

Is the first eigenvalue bounded upon the set of all compact hypersurfaces
of R

m+1 of fixed volume and (for m ≥ 3) fixed smooth structure?

We conclude by providing a negative answer to this question. Indeed,
putting together results from the literature, we prove the following:

Theorem 1.4. (1) There exists a sequence of compact orientable
surfaces Mn embedded in R

3 such that

λ1(Mn)Vol(Mn)−→∞
as n → ∞.

(2) Let p0 be a positive integer and let M be any compact smooth
submanifold of dimension m ≥ 3 of R

m+p0. Then there exists
a sequence Mn of smooth submanifolds embedded in R

m+p0 all
diffeomorphic to M , such that

λ1(Mn)Vol(Mn)2/m−→∞
as n → ∞.

In other words, for any fixed compact submanifold M of dimension
m ≥ 3 of R

m+p0 ,

sup
X

λ1(X(M))Vol(X(M))2/m = ∞

where the supremum is taken over all embeddings from M into R
m+p0.

The structure of the paper is as follows. In section 2 we study the
volume of the projection of an m-dimensional submanifold onto an m-
plane and explain how the control on the intersection index implies a
control on the volume concentration. In section 3 we prove Theorem 1.1
using the barycenter method and estimates from section 2. In section 4
we give the proofs of Theorem 1.3 and Theorem 1.2. In the last section
we explain how we get Theorem 1.4.

2. Volume of orthogonal projections onto m-planes

Let M be an immersed submanifold of dimension m ≥ 2 in R
m+p.

In this section, we do not need to assume that M is compact but only
that M has finite volume and finite intersection index i(M).
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We begin by proving that there exists an m-dimensional linear sub-
space H ⊂ R

m+p such that the volume of the image of M under the
orthogonal projection on H is bounded below in terms of Vol(M) and
i(M).

Let G := G(m, m+p) be the Grassmannian of m-planes through the
origin in R

m+p. To each m-plane H in G we associate the orthogonal
projection πH : M ⊂ R

m+p → H . From the definition of i(M) it is
immediate that, generically, at most i(M) points on M have the same
image under πH . The volumes of πH(M) and of M are related as in
the following lemma.

Lemma 2.1. We endow G with its O(n)-invariant Radon measure of
total volume one (see, e.g., [23]). Then,

∫

G

Vol(πH(M))dH ≥ 2

i(M)

Vol(Bm)

Vol(Sm)
Vol(M),

with Vol(Bm)
Vol(Sm)

= 1
m
√

π

Γ(m+1

2
)

Γ(m
2

)
.

Proof. Let H ∈ G be an m-plane through the origin endowed with its
standard volume element vH . Let θH be the function on M defined by

π∗
HvH = θHvM ,

where vM is the Riemannian volume element of M . If ξ1, . . . , ξm con-
stitute an orthonormal basis of the tangent space to M at a point x,
then

θH(x) = ± det(πH(ξ1(x)), . . . , πH(ξm(x))),

where the determinant is taken with respect to an orthonormal basis
of H .

Since a generic point in πH(M) has at most i(M) preimages under
the map πH : M → πH(M) ⊂ H , one easily checks that

∫

M

|π∗
HvH | =

∫

M

|θH(x)|vM ≤ i(M)

∫

πH(M)

vH = i(M)Vol(πH(M)).

Integrating over G we get

i(M)

∫

G

Vol(πH(M))dH ≥
∫

G

dH

∫

M

|θH(x)|vM (1)

=

∫

M

(
∫

G

|θH(x)|dH

)

vM .

Now, from the definition of θH and the invariance of the measure of
G, we easily deduce that the integral I(G) =

∫

G
|θH(x)|dH does not

depend on the point x. Indeed, if ρ ∈ O(n) is such that ρ · TyM =
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TxM , then for all H ∈ G and V ∈ TyM , ρ · πH(V ) = πρ·H(ρ · V ) and
|θH(y)| = |θρ·H(x)|. Hence,

i(M)

∫

G

Vol(πH(M))dH ≥ I(G)Vol(M). (2)

To determine the value of I(G), we consider the case of the sphere
S

m ⊂ R
m+p. In this case, i(Sm) = 2 and, for all H ∈ G,

∫

Sm

|θH(x)|vSm =

∫

Sm

|π∗
HvH | = 2Vol(πH(Sm)) = 2Vol(Bm).

Hence,

I(G)Vol(Sm) =

∫

G

dH

∫

Sm

|θH(x)|vSm = 2Vol(Bm).

Substituting into (2) we obtain the desired inequality. �

Remark 2.1. One can prove that the preceding lemma holds for more
general functions than projections. However, this makes both the state-
ment and the proof of the result more complicated, and we will not need
this full generality in what follows.

Corollary 2.1. There exists an m-plane H ∈ G such that

Vol(πH(M)) ≥ 2

i(M)

Vol(Bm)

Vol(Sm)
Vol(M).

It is possible to apply these considerations to the intersection of M

with a Euclidean ball B(x, r) of center x and radius r > 0 in R
m+p.

Therefore, there exists an m-plane H ∈ G (depending on x and r) such
that

Vol(πH(M ∩ B(x, r))) ≥ 2

i(M)

Vol(Bm)

Vol(Sm)
Vol(M ∩ B(x, r)).

On the other hand, πH(M ∩ B(x, r)) is contained in πH(B(x, r)),
which is an m-dimensional Euclidean ball of radius r in the m-plane
H ; thus

Vol(πH(M ∩ B(x, r))) ≤ rmVol(Bm).

Hence, we have also proved the following

Proposition 2.1. For all x ∈ R
m+p and all r > 0, we have

Vol(M ∩ B(x, r)) ≤ i(M)

2
Vol(Sm) rm.

Roughly speaking, the control of i(M) ensures that M cannot con-
centrate in small parts of R

m+p.
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3. Estimating λ1 : proof of Theorem 1.1

In this section, we prove the estimate of Theorem 1.1 using the
barycenter method. Recall that M = X(M̄) is an m-dimensional com-
pact immersed submanifold in R

m+p. We denote by dm+p and dm the
usual “distance to origin” functions in R

m+p and R
m, respectively.

Up to a displacement, we can assume that the center of mass of M

is at the origin so that, for 1 ≤ i ≤ m + p,
∫

M

xivM = 0

where vM denotes the induced volume element on M . Hence, for each
1 ≤ i ≤ m + p, we have

λ1(M)

∫

M

x2
i vM ≤

∫

M

|∇xi|2vM . (3)

Let {ξk}m
k=1 be an orthonormal basis for the tangent space to M at

a point x, and let {ei}m+p
i=1 be the standard orthonormal basis of R

m+p.
Then we have

m+p
∑

i=1

|∇xi|2 =

m+p
∑

i=1

m
∑

k=1

< ∇xi, ξk >2

=
m

∑

k=1

m+p
∑

i=1

< ei, ξk >2= m.

Summation in (3) thus gives

λ1(M)

∫

M

|x|2vM ≤ mVol(M). (4)

The key now is to obtain a lower bound for the integral
∫

M
|x|2vM , of-

ten called “moment of inertia,” which may also be written
∫

M
d2

m+p(x)vM .
To this aim, we will use Corollary 2.1 and the following

Lemma 3.1. Let Ω be a domain in R
m. Then

∫

Ω

d2
m(x)dx ≥

∫

Ω∗

d2
m(x)dx,

where Ω∗ denotes the Euclidean ball in R
m centered at the origin and

with the same volume as Ω.

A short proof of this classical result (see, e.g., [28, p.153]), kindly
communicated by Asmaa Hasannezhad, goes as follows: if Ω∗ is a ball
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of radius R we have Ω = (Ω ∩ Ω∗) ∪ (Ω \ Ω∗), and
∫

Ω

d2
m(x)dx =

∫

Ω∩Ω∗

d2
m(x)dx +

∫

Ω\Ω∗

d2
m(x)dx

≥
∫

Ω∩Ω∗

d2
m(x)dx +

∫

Ω\Ω∗

R2dx

≥
∫

Ω∗

d2
m(x)dx,

since Vol(Ω \ Ω∗) = Vol(Ω∗ \ Ω).

Proof of Theorem 1.1. From Corollary 2.1, there exists an m-plane H ∈
G such that

Vol(πH(M)) ≥ 2

i(M)

Vol(Bm)

Vol(Sm)
Vol(M). (5)

The idea is to compare the situations on M and on Ω = πH(M). Since
the projection πH is length-decreasing, we have

∫

M

d2
m+p(x)vM ≥

∫

M

d2
m(πH(x))vM .

Note that there is a substantial loss of information when we perform
the projection πH ; in particular, this inequality can be seen to be strict
even in the case M = S

m.
On the other hand, since M is compact, almost every point of Ω =

πH(M) admits at least two preimages in M . Thus

2

∫

Ω

d2
m(x)vH ≤

∫

M

d2
m(πH(x))|π∗

HvH | ≤
∫

M

d2
m(πH(x))vM ,

where the inequality on the right is due to the fact that πH is volume
decreasing (with the notation of §2, π∗

HvH = θHvM with |θH | ≤ 1).
Consequently,

∫

M

d2
m+p(x)vM ≥ 2

∫

Ω

d2
m(x)dx.

Applying Lemma 3.1 we get, through obvious identification of H with
R

m,
∫

M

d2
m+p(x)vM ≥ 2

∫

Ω

d2
m(x)dx ≥ 2

∫

Ω∗

d2
m(x)dx, (6)

where Ω∗ is the ball in H centered at the origin with Vol(Ω∗) = Vol(Ω).
If we denote by ρ the radius of the ball Ω∗, then we have

∫

Ω∗

d2
m(x)dx = ρm+2

∫

Bm

|x|2dx
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and
Vol(Ω∗) = ρmVol(Bm).

Hence,

ρ =

(

Vol(Ω∗)

Vol(Bm)

)
1

m

=

(

Vol(πH(M))

Vol(Bm)

)
1

m

and
∫

Ω∗

d2
m(x)vH =

(

Vol(πH(M))

Vol(Bm)

)1+ 2

m
∫

Bm

|x|2dx.

Combining this last equality with (6) and (5) above, we get the follow-
ing lower bound for

∫

M
d2

m+p(x)vM :

∫

M

d2
m+p(x)vM ≥ 2

(

2Vol(M)

i(M)Vol(Sm)

)1+ 2

m
∫

Bm

|x|2dx. (7)

When we put this estimate into (4) we get

2λ1(M)

(

2Vol(M)

i(M)Vol(Sm)

)1+ 2

m
∫

Bm

|x|2dx ≤ mVol(M);

rearranging terms gives

λ1(M)Vol(M)2/m ≤ Vol(Sm)

2
∫

Bm |x|2dx
mVol(Sm)2/m

(

i(M)

2

)1+ 2

m

,

which completes the proof of Theorem 1.1 since
∫

Bm

|x|2dx =
1

m + 2
Vol(Sm−1).

�

4. Proofs of Theorem 1.2 and Theorem 1.3

A classical way to construct test functions for the Rayleigh quotient
on a Riemannian manifold is to consider a family of k mutually dis-
joint geodesic balls of radius 2r, and a corresponding family of cut-off
functions. Each cut-off function takes the value 1 on one geodesic ball
of radius r and 0 outside the corresponding ball of radius 2r. To esti-
mate the Rayleigh quotient we need some information about the local
geometry of M , in general in terms of a lower bound on the Ricci curva-
ture so that Bishop-Gromov volume comparison holds. This method is
not convenient for the eigenvalues of the Neumann Laplacian on a do-
main or for the eigenvalues of a compact submanifold. In [8], Maerten
and the first author introduced a more elaborate family of sets. The
construction that they propose is a metric one and can be adapted to
various situations. We explain the method in the case of submanifolds.
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Let M be a compact, connected immersed submanifold of dimension
m ≥ 2 in R

m+p and let L > 0 be such that M ∈ M(m, p, L). We
endow R

m+p with the Euclidean distance d and the Borel measure µ

with support in M defined by:

µ(A) := Volm(M ∩ A).

The hypotheses (H1) and (H2) of section 2 of [8] are satisfied. In the
present situation, (H1) states that we can cover a ball in R

m+p of radius
4r by a bounded number of balls of radius r, while (H2) states that
the measure of the r-balls tends uniformly to zero with the radius r.
Indeed, in R

m+p, the number C(r) of balls of radius r we need to cover
a ball of radius 4r is controlled independently of r; for example, we can
take C(r) ≤ 8m+p (see Example 2.1 of [8] for a more general estimate).
On the other hand, the fact that M is in M(m, p, L) implies that for
each x ∈ R

m+p and r > 0,

µ(B(x, r)) ≤ Lrm.

Thus µ(B(x, r)) tends to zero with r uniformly with respect to x.
Therefore, Corollary 2.3 of [8] enables us to state the following

Proposition 4.1. Let K be a positive integer and α a positive real
number with α ≤ ω

2·8m+pK
, where ω = µ(Rm+p) = Vol(M). Let r > 0 be

such that

2 sup
{

8m+pµ(B(x, r)) ; x ∈ R
m+p

}

≤ α.

Then there exist K measurable subsets A1, . . . , AK ⊂ R
m+p such that

µ(Ai) ≥ α and, for each i 6= j, d(Ai, Aj) ≥ 3r.

Proof of Theorem 1.3. Our ultimate goal is to construct k+1 disjointly
supported test functions on M whose Rayleigh quotients are controlled
in terms of L and k. First, let K = 2k + 1 and let A1, . . . , AK be K

disjoint measurable subsets in R
m+p satisfying Proposition 4.1 with

α = ω
6·8m+pk

= Vol(M)
6·8m+pk

. Denote by Ar
i = {x ∈ R

m+p ; d(x, Ai) < r} the
r-neighborhood of Ai. A priori, we have no control over the volume of
the portion of M contained in Ar

i , so we will make a choice of k + 1
sets amongst our disjoint 2k + 1 measurable subsets. Namely, since
d(Ai, Aj) ≥ 3r for i 6= j, the Ar

i are mutually disjoint and it is clear
that the number

Q = #

{

i ∈ 1, . . . , 2k + 1 ; µ(Ar
i ) ≥

Vol(M)

k

}

is less than k. Therefore, there exist at least k+1 subsets, say A1, . . . , Ak+1,

amongst A1, . . . , AK with the property that µ(Ar
i ) <

Vol(M)
k

. From the
definition of µ, the k+1 disjoint measurable sets Ar

1∩M, . . . , Ar
k+1∩M
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also satisfy this estimate. By abuse of notation, we will refer to these
sets on M as Ar

i as well.
As in [8], we construct a family of test functions ϕ1, . . . ϕk+1 on M

as follows: for i ≤ k + 1, ϕi is equal to 1 on Ai, vanishes outside the

r-neighborhood Ar
i of Ai and ϕi(x) = 1− d(x,Ai)

r
on Ar

i \Ai. Observing
that |∇ϕi(x)| ≤ 1

r
almost everywhere in Ar

i \ Ai, a straightforward
calculation shows that the Rayleigh quotient of ϕi is given by

R(ϕi) ≤
1

r2

µ(Ar
i )

µ(Ai)
<

1

r2

Vol(M)
k

α
=

6

r2
8m+p.

Recall that the number r must be chosen such that

2 · 8m+pµ(B(x, r)) ≤ Vol(M)

6k8m+p
.

But, since M ∈ M(m, p, L),

µ(B(x, r)) ≤ Lrm

and we can take

r =

(

Vol(M)

Lk

1

12 · 82(m+p)

)1/m

.

Therefore, the estimate of the Rayleigh quotient above becomes

R(ϕi) ≤
(

k

Vol(M)

)2/m

L2/mC(m, p)

with C(m, p) = 6 · 8m+p(12 · 82(m+p))2/m.
Invoking the min-max principle, one deduces the estimate

λk(M) ≤ max
i≤k+1

R(ϕi) ≤
(

k

Vol(M)

)2/m

L2/mC(m, p).

Since λk(M) is an intrinsic invariant, the Nash embedding theorem [26]
says that one can assume without loss of generality that the codimen-
sion p is uniformly bounded above in terms of m. Hence the constant
C(m, p), which is increasing in p, can be replaced by a constant C(m)
which depends only on the dimension m. In particular, we may take
[26] p = 2m2 + 5m to get

C(m) = 6 · 122/m · 82m2+14m+24. (8)

This concludes the proof of Theorem 1.3. �
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Proof of Theorem 1.2. Thanks to Proposition 2.1, Theorem 1.2 can
be immediately derived as a consequence of Theorem 1.3 with L =
i(M)Vol(Sm)

2
. This gives

c(m) = C(m) ·
(

Vol(Sm)

2

)2/m

. (9)

�

Combining Theorem 1.2 with a result of Milnor [24] gives

Corollary 4.1. Let P1, . . . , Pp be p real polynomials in m + p vari-
ables of degrees N1, . . . , Np, respectively, such that M = P−1

1 (0)∩ · · · ∩
P−1

p (0) ⊂ R
m+p is a compact m-dimensional submanifold. Then, for

all k ≥ 1,

λk(M)Vol(M)2/m ≤ c(m)N
2/m
1 · · ·N2/m

p k2/m.

Proof of Corollary 4.1. A p-plane Π in R
m+p is defined as the common

zero set of m linearly independent polynomials Pp+1, . . . , Pp+m, each
of degree 1. The zero-dimensional variety Π ∩ M is then given by the
m + p polynomial equations P1 = 0, · · · , Pp+m = 0. According to [24,
Lemma 1], the number of points in Π ∩ M is at most equal to the
product (deg P1) · · · (deg Pp+m) = N1N2 · · ·Np, which implies

i(M) ≤ N1N2 · · ·Np.

Applying Theorem 1.2, we get the result. �

5. Submanifolds of unit volume and large λ1

The proof of Theorem 1.4 relies on the following C1 isometric em-
bedding result due to Kuiper [21]: If a compact m-dimensional smooth
manifold M admits a C1 embedding as a submanifold of R

m+p, p ≥ 1,
then, given any Riemannian metric g on M , there exists a C1 isometric
embedding from (M, g) into R

m+p.

Proof of Theorem 1.4. Let M be a compact smooth submanifold of di-
mension m ≥ 3 of R

m+p, p ≥ 1, and let K be any positive number.
According to the result by Dodziuk and the first author [5], there exists
a Riemannian metric g on M with

λ1(g)Vol(g)2/m ≥ 2K.

Applying Kuiper’s result cited above, there exists a C1 isometric em-
bedding Y from (M, g) into R

m+p. According to standard density theo-
rems (e.g., [17, p. 50]), the map Y can be approximated, with arbitrary
accuracy with respect to the C1-topology, by a smooth embedding X.
The smooth metric g1 induced by X is then quasi-isometric to g with
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a quasi-isometry ratio arbitrarily close to 1. Consequently, there exists
a smooth embedding X satisfying

λ1(X(M))Vol(X(M))2/m = λ1(g1)Vol(g1)
2/m ≥ K.

This proves assertion (2).
To prove assertion (1) we use a similar argument. The result of

Colbois-Dodziuk is not valid in dimension 2, so we instead apply a
result due to Buser et al. [3]: they use an arithmetic construction
involving subgroups of the modular group to obtain noncompact hy-
perbolic surfaces. After a suitable compactification, these are compact
orientable hyperbolic surfaces with large genus and with large first
eigenvalue (see also [7, Thm. C]). �
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