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UNIVERSAL INEQUALITIES FOR THE EIGENVALUES

OF A POWER OF THE LAPLACE OPERATOR

SAÏD ILIAS AND OLA MAKHOUL

Abstract. In this paper, we obtain a new abstract formula re-
lating eigenvalues of a self-adjoint operator to two families of sym-
metric and skew-symmetric operators and their commutators. This
formula generalizes earlier ones obtained by Harrell, Stubbe, Hook,
Ashbaugh, Hermi, Levitin and Parnovski. We also show how one
can use this abstract formulation both for giving different and sim-
pler proofs for all the known results obtained for the eigenvalues of
a power of the Laplace operator (i.e. the Dirichlet Laplacian, the
clamped plate problem for the bilaplacian and more generally for
the polyharmonic problem on a bounded Euclidean domain) and
to obtain new ones. In a last paragraph, we derive new bounds for
eigenvalues of any power of the Kohn Laplacian on the Heisenberg
group.

1. Introduction

Let Ω be a bounded domain of an n-dimensional Euclidean space Rn

and consider the following eigenvalue problem for the polyharmonic
operator :







(−∆)lu = λu in Ω,

u =
∂u

∂ν
= · · · = ∂l−1u

∂νl−1
= 0 on ∂Ω,

(1.1)

where ∆ is the Laplace operator and ν is the outward unit normal.
It is known that this eigenvalue problem has a discrete spectrum,

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ . . . → +∞
In this paper we will be interested in ”Universal”(i.e. not depending
on the domain) inequalities for the eigenvalues of such a polyharmonic
problem and especially we will show how to derive them from a general
abstract algebraic formula in the spirit of the work of Harrell, Stubbe,
Ashbaugh and Hermi.

Let us begin by giving a short and non-exhaustive presentation of
the known results in this field.

Date: 09 novembre 2009.
2000 Mathematics Subject Classification. 35P15;58C40.
Key words and phrases. eigenvalues, Laplacian, polyharmonic operator, bihar-

monic operator, clamped plate, Payne-Polya-Weinberger inequality, Hile-Protter
inequality, Yang inequality, universal inequalities, commutators, Kohn Laplacian,
Heisenberg group.
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2 SAÏD ILIAS AND OLA MAKHOUL

The first result concerns the Dirichlet Laplacian (i.e. when l = 1).
In this case, Polya, Payne and Weinberger (henceforth PPW) proved
in 1955 the following bound (see [26] for dimension 2 and [27] for all
dimensions), for k = 1, 2, . . .

λk+1 − λk ≤
4

nk

k
∑

i=1

λi, (1.2)

This result was improved in 1980 by Hile and Protter [20] (henceforth
HP) who showed that, for k = 1, 2, . . .

nk

4
≤

k
∑

i=1

λi

λk+1 − λi

. (1.3)

In 1991, H.C.Yang (see [29] and more recently [12]) proved

k
∑

i=1

(λk+1 − λi)
2 ≤ 4

n

k
∑

i=1

λi(λk+1 − λi), (1.4)

which is, until now, the best improvement of the PPW inequality. From
inequality (1.4), we can infer a weaker form

λk+1 ≤ (1 +
4

n
)
1

k

(

k
∑

i=1

λi

)

. (1.5)

We shall refer to inequality (1.4) as Yang’s first inequality (or simply
Yang inequality) and to inequality (1.5) as Yang’s second inequality.
The comparison of all these inequalities (see [2]) can be summarized in

Yang 1 =⇒ Yang 2 =⇒ HP =⇒ PPW

When l = 2, the eigenvalue problem (1.1) for the bilaplacian is the
clamped plate problem. In the same paper as before [26], Polya, Payne
and Weinberger proved the following analog of the formula (1.2)

λk+1 − λk ≤ 8(n+ 2)

n2k

k
∑

i=1

λi. (1.6)

And as was noticed by Ashbaugh (see [1] inequality (3.56)), there is a
better inequality which was implicit in the PPW work,

λk+1 − λk ≤
8(n + 2)

n2k2

( k
∑

i=1

λ
1

2

i

)2

.

In 1984, Hile and Yeh [21] extended the approach used for the Laplacian
in [20] and proved the sharpest bound

n2k
3

2

8(n+ 2)
≤
( k
∑

i=1

λ
1

2

i

λk+1 − λi

)( k
∑

i=1

λi

)
1

2

. (1.7)
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Then in 1990, Hook [22], Chen and Qian [7] proved independently the
following stronger inequality which was again implicit in the work of
Hile and Yeh (see also [1], [8], [9] and [6])

n2k2

8(n+ 2)
≤
( k
∑

i=1

λ
1

2

i

λk+1 − λi

)( k
∑

i=1

λ
1

2

i

)

. (1.8)

Using Chebyshev inequality, Ashbaugh (see [1] inequality (3.60)) de-
duces from the preceding inequality (1.8), the following HP version
which is weaker and more esthetically appealing,

n2k

8(n+ 2)
≤

k
∑

i=1

λi

λk+1 − λi
. (1.9)

Recently, Cheng and Yang [11] established the following Yang version

k
∑

i=1

(λk+1 − λi) ≤
[

8(n+ 2)

n2

]
1

2
k
∑

i=1

[

λi(λk+1 − λi)
]

1

2

. (1.10)

For any l, the PPW inequality is given by

λk+1 − λk ≤
4l(2l + n− 2)

n2k2

( k
∑

i=1

λ
1

l

i

)( k
∑

i=1

λ
l−1

l

i

)

.

Its HP improvement was proved independently by Hook [22] and Chen
and Qian [7], it reads

n2k2

4l(2l + n− 2)
≤

k
∑

i=1

λ
1

l

i

λk+1 − λi

k
∑

i=1

λ
l−1

l

i . (1.11)

As in the case l = 2 (inequality (1.9)), this reduces to the weaker form

n2k

4l(2l + n− 2)
≤

k
∑

i=1

λi

λk+1 − λi

. (1.12)

In 2007, Wu and Cao [28] generalized the inequality (1.10) of Cheng
and Yang to the polyharmonic problem and obtained

k
∑

i=1

(λk+1 − λi) ≤ (1.13)

1

n
(4l(n + 2l − 2))

1

2

( k
∑

i=1

(λk+1 − λi)
1

2λ
l−1

l

i

)
1

2
( k
∑

i=1

(λk+1 − λi)
1

2λ
1

l

i

)
1

2

.

This inequality is sharper than inequality (1.11)(see [28]).
Very recently, Cheng, Ichikawa and Mametsuka [10] derived the follow-
ing Yang type inequality for the polyharmonic operator (i.e. such that
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for l = 1, we have the Yang inequality (1.4))

k
∑

i=1

(λk+1 − λi)
2 ≤ 4l(2l + n− 2)

n2

k
∑

i=1

(λk+1 − λi)λi. (1.14)

All the classical proofs of these inequalities are based on tricky and
careful choices of trial functions. For a more comprehensive and general
approach, it is important to see if all these inequalities can be deduced
using purely algebraic arguments involving eigenvalues and eigenfunc-
tions of an abstract self-adjoint operator acting on a Hilbert space. In
the case of the Laplacian (i.e. l = 1), this was done by Harrell [14, 17],
Harrell and Michel [16, 15], Harrell and Stubbe [19], and Ashbaugh and
Hermi [4].
For the polyharmonic problem (i.e. general l), Hook [22] generalized
the argument of Hile and Protter [20] in an abstract setting. Later,
this abstract formulation of Hook was simplified and improved by Ash-
baugh and Hermi [3]. In fact, they obtained the following inequality
relating eigenvalues of a self-adjoint operator A, to two families of sym-
metric operators B′

ps, skew-symmetric operators T ′

ps, p = 1, . . . , n and
their commutators (for a precise statement with detailed assumptions,
see Theorem 2.2 of [3]),

1

4

(

∑k
i=1

∑n
p=1

〈[Bp, Tp]ui, ui〉
)2

∑k
i=1

∑n
p=1

〈[A,Bp]ui, Bpui〉
≤

k
∑

i=1

n
∑

p=1

〈Tpui, Tpui〉
λk+1 − λi

. (1.15)

But this abstract inequality, as was observed by Ashbaugh and Hermi
in the end of the third paragraph of their article [3], could not recover
more than the HP version of the universal inequalities (i.e. inequalities
(1.11) and (1.12)).
The main goal of the present paper is to prove the following abstract in-
equality (with the same assumptions as those for the Ashbaugh-Hermi
inequality (1.15))which generalizes (1.15) and fills this gap

( k
∑

i=1

n
∑

p=1

f(λi)〈[Tp, Bp]ui, ui〉
)2

(1.16)

≤ 4

( k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉
)( k

∑

i=1

n
∑

p=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
‖Tpui‖2

)

,

where f and g are two functions satisfying some functional conditions
(see Definition (2.1)). The family of such couples of functions is large
and particular choices for f and g give many of the known universal
inequalities. For instance, in the case of the polyharmonic problem,
if we take f(x) = g(x) = (λk+1 − x)2, then we obtain the Yang type
inequality (1.14) proved by Cheng, Ichikawa and Mametsuka and when
we take f(x) = (g(x))2 = (λk+1−x), we obtain the Wu-Cao inequality
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(1.13).
On the other hand, we observe that by taking Tp = [A,Bp], we obtain
the following new formula (see Corollary 2.1), where only one family
of symmetric operators Bp is needed

[ k
∑

i=1

n
∑

p=1

f(λi)〈[A,Bp]ui, Bpui〉
]2

≤
[ k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉
][ k
∑

i=1

n
∑

p=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
‖ [A,Bp] ui‖2

]

.

(1.17)

Using this last inequality, with particular choices of f and g as before,
one can recover many of the known universal inequalities for eigenval-
ues of Laplace or Schrödinger operators.

In the last section of this paper, we show how one can use the inequal-
ity (1.16) to derive new universal bounds, of Yang type, for eigenvalues
of the Kohn Laplacian on the Heisenberg group, with any order. These
bounds are stronger than the earlier bounds obtained by Niu and Zhang
in [25].

2. The abstract formulation

Before stating the main result of this section, we introduce a special
family of couples of functions which will play an important role in our
formulation.

Definition 2.1. Let λ > 0. A couple (f, g) of functions defined on
]0, λ[ belongs to ℑλ provided that

1. f and g are positive,
2. f and g satisfy the following condition,

for any x, y ∈]0, λ[ such that x 6= y,

(f(x)− f(y)

x− y

)2

+
(

(

f(x)
)2

g(x)(λ− x)
+

(

f(y)
)2

g(y)(λ− y)

)(g(x)− g(y)

x− y

)

≤ 0.

(2.1)

A direct consequence of our definition is that g must be nonincreas-
ing.
If we multiply f and g of ℑλ by positive constants the resulting func-
tions are also in ℑλ. In the case where f and g are differentiable, one
can easily deduce from (2.1) the following necessary condition:

[

(

ln f(x)
)

′

]2

≤ −2

λ− x

(

ln g(x)
)

′

.
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This last condition helps us to find many couples (f, g) satisfying the

conditions 1) and 2) above. Among them, we mention
{(

1, (λ− x)α
)

/ α ≥ 0
}

,
{(

(λ− x), (λ− x)β
)

/ β ≥ 1

2

}

,
{(

(λ− x)δ, (λ− x)δ
)

/ 0 < δ ≤ 2
}

.

and
{(

(λ− x)α, (λ− x)β
)

/ α < 0, 1 ≤ β, andα2 ≤ β
}

.

Let H be a complex Hilbert space with scalar product 〈., .〉 and
corresponding norm ‖.‖. For any two operators A and B, we denote
by [A,B] their commutator, defined by [A,B] = AB −BA.

Theorem 2.1. Let A : D ⊂ H −→ H be a self-adjoint operator defined
on a dense domain D, which is semibounded below and has a discrete
spectrum λ1 ≤ λ2 ≤ λ3.... Let {Tp : D −→ H}np=1 be a collection of
skew-symmetric operators, and {Bp : Tp(D) −→ H}np=1 be a collection
of symmetric operators, leaving D invariant. We denote by {ui}∞i=1

a
basis of orthonormal eigenvectors of A, ui corresponding to λi. Let
k ≥ 1 and assume that λk+1 > λk. Then, for any (f, g) in ℑλk+1

( k
∑

i=1

n
∑

p=1

f(λi)〈[Tp, Bp]ui, ui〉
)2

(2.2)

≤ 4

( k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉
)( k

∑

i=1

n
∑

p=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
‖Tpui‖2

)

.

Proof of Theorem 2.1. For each i, we consider the vectors φp
i , given by

φp
i = Bpui −

k
∑

j=1

apijuj

where apij := 〈Bpui, uj〉, p = 1, ..., n. We have

〈φp
i , uj〉 = 0, (2.3)

for all j = 1, ..., k. Taking φp
i as a trial vector in the Rayleigh-Ritz

ratio, we obtain

λk+1 ≤
〈Aφp

i , φ
p
i 〉

〈φp
i , φ

p
i 〉

. (2.4)
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Since Bp is symmetric, for all p = 1, ..., n, we have apij = apji. Moreover,
using the orthogonality conditions (2.3), we obtain

‖φp
i ‖2 = 〈φp

i , Bpui −
k
∑

j=1

apijuj〉 = 〈φp
i , Bpui〉

= 〈Bpui −
k
∑

j=1

apijuj, Bpui〉 = ‖Bpui‖2 −
k
∑

j=1

apij〈Bpui, uj〉

= ‖Bpui‖2 −
k
∑

j=1

∣

∣apij
∣

∣

2
(2.5)

and

〈Aφp
i , φ

p
i 〉 = 〈ABpui −

k
∑

j=1

λja
p
ijuj, φ

p
i 〉

= 〈ABpui, φ
p
i 〉

= 〈ABpui, Bpui〉 −
k
∑

j=1

apij〈ABpui, uj〉

= 〈[A,Bp]ui, Bpui〉+ 〈BpAui, Bpui〉 −
k
∑

j=1

λj

∣

∣apij
∣

∣

2

= 〈[A,Bp]ui, Bpui〉+ λi‖Bpui‖2 −
k
∑

j=1

λj

∣

∣apij
∣

∣

2
. (2.6)

Hence, inequality (2.4) reduces to

λk+1‖φp
i ‖2 ≤ 〈[A,Bp]ui, Bpui〉+ λi‖Bpui‖2 −

k
∑

j=1

λj

∣

∣apij
∣

∣

2
. (2.7)

On the other hand, we observe that, for p = 1, · · · , n,

− 2〈Tpui, φ
p
i 〉 = −2〈Tpui, Bpui〉+ 2〈Tpui,

k
∑

j=1

apijuj〉

= 2〈ui, TpBpui〉+ 2
k
∑

j=1

apij〈Tpui, uj〉

= 2〈ui, TpBpui〉+ 2

k
∑

j=1

apijc
p
ij , (2.8)

where cpij = 〈Tpui, uj〉.
Note that, since Tp is skew-symmetric, we have cpij = −cpji for 1 ≤ p ≤ n.
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Therefore, using (2.3) and taking the real part of both sides of (2.8),
we obtain, for any constant αi > 0,

2Re〈TpBpui, ui〉+ 2
k
∑

j=1

Re
(

apijc
p
ij

)

= −2Re〈φp
i , Tpui〉

= 2Re〈φp
i ,−Tpui +

k
∑

j=1

cpijuj〉

≤ αi‖φp
i ‖2 +

1

αi
‖ − Tpui +

k
∑

j=1

cpijuj‖2

= αi‖φp
i ‖2 +

1

αi

(

‖Tpui‖2 −
k
∑

j=1

∣

∣cpij
∣

∣

2
)

.

(2.9)

Multiplying (2.9) by f(λi) and taking αi =
α(λk+1 − λi)g(λi)

f(λi)
, where

α is a positive constant and i ≤ k, we infer from (2.7)

2f(λi)

(

Re〈TpBpui, ui〉+
k
∑

j=1

Re
(

apijc
p
ij

)

)

≤ αif(λi)‖φp
i ‖2 +

1

αi

f(λi)

(

‖Tpui‖2 −
k
∑

j=1

∣

∣cpij
∣

∣

2

)

= α(λk+1 − λi)g(λi)‖φp
i ‖2 +

1

α

(

f(λi)
)2

(λk+1 − λi)g(λi)

(

‖Tpui‖2 −
k
∑

j=1

∣

∣cpij
∣

∣

2

)

≤ αg(λi)〈[A,Bp]ui, Bpui〉+ αg(λi)λi‖Bpui‖2 − αg(λi)

k
∑

j=1

λj

∣

∣apij
∣

∣

2 − αg(λi)λi‖φp
i ‖2

+
1

α

(

f(λi)
)2

(λk+1 − λi)g(λi)

(

‖Tpui‖2 −
k
∑

j=1

∣

∣cpij
∣

∣

2

)

. (2.10)
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Summing over i = 1, · · · , k and using (2.5), we get

2

k
∑

i=1

f(λi)Re〈TpBpui, ui〉+ 2

k
∑

i,j=1

f(λi)Re
(

apijc
p
ij

)

≤ α

k
∑

i=1

g(λi)〈[A,Bp]ui, Bpui〉+ α

k
∑

i=1

λig(λi)‖Bpui‖2

− α
k
∑

i,j=1

λjg(λi)|apij |2 − α
k
∑

i=1

λig(λi)‖φp
i ‖2

+
1

α

k
∑

i=1

(

f(λi)
)2

(λk+1 − λi)g(λi)

(

‖Tpui‖2 −
k
∑

j=1

|cpij|2
)

= α

k
∑

i=1

g(λi)〈[A,Bp]ui, Bpui〉+ α

k
∑

i,j=1

(λi − λj)g(λi)|apij |2

+
1

α

k
∑

i=1

(

f(λi)
)2

(λk+1 − λi)g(λi)

(

‖Tpui‖2 −
k
∑

j=1

|cpij|2
)

. (2.11)

Since apij = apji and cpij = −cpji, we have

2Re

(

k
∑

i,j=1

f(λi)a
p
ijc

p
ij

)

= Re
(

k
∑

i,j=1

(f(λi)− f(λj))a
p
ijc

p
ij

)

(2.12)

Using that |cpij |2 = |cpji|2, we find

− 1

α

k
∑

i,j=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
|cpij|2 =

−1

2α

k
∑

i,j=1

[

(

f(λi)
)2

g(λi)(λk+1 − λi)
+

(

f(λj)
)2

g(λj)(λk+1 − λj)

]

|cpij|2.

(2.13)
Moreover,

α
k
∑

i,j=1

g(λi)(λi − λj)|apij|2 =
α

2

k
∑

i,j=1

(

g(λi)− g(λj)
)

(λi − λj)|apij|2.

(2.14)
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Thus we infer from (2.11),(2.12),(2.13) and (2.14)

2

k
∑

i=1

f(λi)Re〈TpBpui, ui〉+
k
∑

i,j=1

(

f(λi)− f(λj)
)

Re
(

apijc
p
ij

)

≤ α
k
∑

i=1

g(λi)〈[A,Bp]ui, Bpui〉+
1

α

k
∑

i=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
‖Tpui‖2

+
α

2

k
∑

i,j=1

(

g(λi)− g(λj)
)

(λi − λj)|apij |2

− 1

2α

k
∑

i,j=1

[

(

f(λi)
)2

g(λi)(λk+1 − λi)
+

(

f(λj)
)2

g(λj)(λk+1 − λj)

]

|cpij|2. (2.15)

But
k
∑

i,j=1

(

f(λj)− f(λi)
)

Re
(

apijcij

)

≤ α

2

k
∑

i,j=1

(

g(λj)− g(λi)
)

(λi − λj)|apij|2

+
1

2α

k
∑

i,j=1

(

f(λj)− f(λi)
)2

(λi − λj)2
λi − λj

g(λj)− g(λi)
|cpij |2.

(2.16)

From the condition (2.1) satisfied by f and g, we infer

k
∑

i=1

(

f(λj)−f(λi)
)

Re
(

apijc
p
ij

)

≤ α

2

k
∑

i,j=1

(

g(λj)− g(λi)
)

(λi − λj)|apij|2

+
1

2α

k
∑

i,j=1

(

(f(λi))
2

g(λi)(λk+1 − λi)
+

(f(λj))
2

g(λj)(λk+1 − λj)

)

|cpij|2.

(2.17)

Hence, taking sum on p, from 1 to n, in (2.15), we find

2

k
∑

i=1

n
∑

p=1

f(λi)Re〈TpBpui, ui〉

≤ α
k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉+
1

α

k
∑

i=1

n
∑

p=1

(

f(λi)
)2

(λk+1 − λi)g(λi)
‖Tpui‖2.

(2.18)

Since Bp is symmetric and Tp is skew-symmetric, we have for all p ≤ n,

2Re〈TpBpui, ui〉 = 〈TpBpui, ui〉+ 〈TpBpui, ui〉
= 〈TpBpui, ui〉 − 〈ui, BpTpui〉
= 〈[Tp, Bp]ui, ui〉
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and inequality (2.18) becomes

k
∑

i=1

n
∑

p=1

f(λi)〈[Tp, Bp]ui, ui〉

≤ α
k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉+
1

α

k
∑

i=1

n
∑

p=1

(

f(λi)
)2

(λk+1 − λi)g(λi)
‖Tpui‖2,

(2.19)

or equivalently

α2

k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉

− α

k
∑

i=1

n
∑

p=1

f(λi)〈[Tp, Bp]ui, ui〉+
k
∑

i=1

n
∑

p=1

(

f(λi)
)2

(λk+1 − λi)g(λi)
‖Tpui‖2 ≥ 0.

(2.20)

To prove inequality (2.2), it suffices to show that

k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉 ≥ 0. (2.21)

In fact, if this is the case, the discriminant of the quadratic polynomial
(2.20) must be nonpositive, i.e.

( k
∑

i=1

n
∑

p=1

f(λi)〈[Tp, Bp]ui, ui〉
)2

− 4

( k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉
)( k

∑

i=1

n
∑

p=1

(

f(λi)
)2

(λk+1 − λi)g(λi)
‖Tpui‖2

)

≤ 0.

(2.22)

which yields the theorem. We note that if we replace Tp by −Tp,
inequality (2.20) holds. Thus we can deduce that it holds for all real α
and not only α > 0 proving that the coefficient of the quadratic term,
i.e.

∑k
i=1

∑n
p=1

g(λi)〈[A,Bp]ui, Bpui〉, is nonnegative. If it is equal to

zero, then
∑k

i=1

∑n
p=1

f(λi)〈[Tp, Bp]ui, ui〉 is also equal to 0 and the
theorem trivially holds. �

Remark 2.1. • In the definition of ℑλ, the functions f and g
can be defined only on a discrete set of eigenvalues.

• One can formulate Theorem 2.1 as in [19] for z ∈]λk, λk+1] (it
suffices to replace, in the hypothesis and in the inequality, λk+1

by z).
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• The result of Theorem 2.1 can also be stated, as in [19] or [18],
in the general situation where the spectrum of A is not purely
discrete and its point spectrum is nonempty.

• Taking f = g = 1 in (2.2), we obtain inequality (1.15) of Ash-
baugh and Hermi.

If the operators Tp are chosen such that Tp = [A,Bp], then [Tp, Bp] =
[[A,Bp] , Bp]. Applying Theorem 2.1 in this context and using the ob-
vious identity 〈[A,Bp] ui, Bpui〉 = −1

2
〈[[A,Bp] , Bp] ui, ui〉, we obtain

Corollary 2.1. Let A : D ⊂ H −→ H be a self-adjoint operator
defined on a dense domain D, which is semibounded below and has a
discrete spectrum λ1 ≤ λ2 ≤ λ3.... Let {Bp : A(D) −→ H}np=1 be a
collection of symmetric operators, leaving D invariant. We denote by
{ui}∞i=1

a basis of orthonormal eigenvectors of A, ui corresponding to
λi. If for k ≥ 1 we have λk+1 > λk, then for any (f, g) ∈ ℑk,

[ k
∑

i=1

n
∑

p=1

f(λi)〈[A,Bp]ui, Bpui〉
]2

≤
[ k
∑

i=1

n
∑

p=1

g(λi)〈[A,Bp]ui, Bpui〉
][ k
∑

i=1

n
∑

p=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
‖ [A,Bp] ui‖2

]

.

(2.23)

Remark 2.2. • As for Theorem 2.1, Corollary 2.1 can be stated
in the general case where the spectrum of A is not totally dis-
crete.

• For f(x) = g(x) = (λk+1 − x)2, inequality (2.23) becomes the
abstract inequality which gives the Yang type inequalities for
Laplacians and Schrödinger operators (see [4], [13], [19] and
[24]).

• For f(x) = g(x) = (λk+1−x)α,with α ≤ 2, we recover a Harrell
and Stubbe inequality ([19], [5])).

• We can easily deduce from the inequality (2.23) new universal
inequalities in many different geometric situations (Dirichlet
Laplacian on domains of Submanifolds of Euclidean (or sym-
metric) spaces as in [13], Hodge de Rham Laplacian or the
square of a Dirac operator,and more generally a Laplacian act-
ing on sections of a Riemannian vector bundle on a submanifold
of a Euclidean (or symmetric) space).

3. Application to the polyharmonic operators

In this section, using Theorem 2.1, we will show how to derive uni-
versal inequalities for the eigenvalues of a polyharmonic problem. For
a power of the Laplacian and with a particular choice of f and g, one
can derive inequality (1.13) and inequality (1.14).
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In fact, throughout this section we assume that A = Ql, such that Q
is a symmetric self-adjoint operator given by

Q = −
n
∑

p=1

T 2
p ,

where Tp are skew-symmetric operators for p = 1, ..., n, with [Q, Tp] = 0
and [Tm, Bp] = δmp.
First we need to calculate the following expressions

n
∑

p=1

〈[A,Bp]ui, Bpui〉 (3.1)

and
n
∑

p=1

〈Tpui, Tpui〉 = 〈Qui, ui〉. (3.2)

For this purpose the following two results of Hook (see proposition 3
in [22] and Theorem 1 in [23]) will be useful.
The first one is

Lemma 3.1. Under the circumstances stated above, we have

[A,Bp] = [Ql, Bp] = −2lQl−1Tp

and
n
∑

p=1

[Bp, [A,Bp]] = 2l(2l + n− 2)Ql−1.

And the second one is the following

Theorem 3.1. Let V be a real or complex inner product space with
inner product 〈., .〉. Let D be a linear submanifold of V and let Q :
D −→ V be a linear operator in V . Suppose l is a positive integer and
u is a fixed vector such that for all 0 ≤ r ≤ q ≤ l,

|〈Qqu, u〉| = |〈Qq−ru,Qru〉|.
Then, for all integers 0 ≤ r ≤ q ≤ l, when q is even, we have

|〈Qru, u〉| ≤ |〈Qqu, u〉|r/q〈u, u〉1−r/q. (3.3)

This inequality is satisfied for q odd and 0 ≤ r ≤ q ≤ l, if in addition
to the above, there is a family of operators {Tp}np=1 such that

|〈Qqu, u〉| = |
n
∑

p=1

〈TpQ
q−ru, TpQ

r−1u〉|

holds for all 0 ≤ r ≤ q ≤ l.
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Applying Lemma 3.1, we obtain
n
∑

p=1

〈[A,Bp]ui, Bpui〉 =
1

2

n
∑

p=1

〈[Bp, [A,Bp]]ui, ui〉

= l(2l + n− 2)〈Ql−1ui, ui〉.
Therefore, if l is odd, then we have

n
∑

p=1

〈[A,Bp]ui, Bpui〉 = l(2l + n− 2)‖Q l−1

2 ui‖2

and if l is even, then
n
∑

p=1

〈[A,Bp]ui, Bpui〉 = l(2l + n− 2)

n
∑

p=1

‖TpQ
l−2

2 ui‖2

The conditions of Theorem 3.1 are satisfied by our operator Q. So
inequality (3.3) is valid for all 0 ≤ r ≤ q ≤ l without parity condition
on q. Applying this inequality (3.3) with r = l−1 and q = l, we obtain

n
∑

p=1

〈[A,Bp]ui, Bpui〉 = l(2l + n− 2)〈Ql−1ui, ui〉

≤ l(2l + n− 2)〈Qlui, ui〉
l−1

l 〈ui, ui〉1−
l−1

l

= l(2l + n− 2)λ
l−1

l

i (3.4)

and with r = 1 and q = l, we obtain
n
∑

p=1

‖Tpui‖2 = 〈Qui, ui〉 ≤ 〈Qlui, ui〉
1

l 〈ui, ui〉1−
1

l ≤ λ
1

l

i . (3.5)

Since [Tp, Bp] = 1, one gets

〈[Tp, Bp]ui, ui〉 = 1. (3.6)

Then using inequalities (3.4), (3.5) and (3.6) together with inequality
(2.2), we obtain

n2

[ k
∑

i=1

f(λi)

]2

≤ 4l(2l + n− 2)

( k
∑

i=1

g(λi)λ
l−1

l

i

)( k
∑

i=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
λ

1

l

i

)

or equivalently

k
∑

i=1

f(λi) ≤
2

n

√

l(2l + n− 2)

( k
∑

i=1

g(λi)λ
l−1

l

i

)
1

2
( k
∑

i=1

(

f(λi)
)2

g(λi)(λk+1 − λi)
λ

1

l

i

)
1

2

.

(3.7)

Now the operators A = (−∆)l, Q = −∆, Bp = xp, p = 1, . . . , n, where
x1, . . . , xn are Euclidean coordinates, and Tp =

∂
∂xp

fit the setup of this
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section. Thus, taking f(x) =
(

g(x)
)2

= (λk+1 − x), we can obtain

inequality (1.13) of Wu and Cao.

Remark 3.1. For the special case l = 2 (i.e the clamped plate problem)
and the same values of f and g as above, we obtain inequality (1.10) of
Cheng and Yang. We observe that this inequality can also be obtained
easily by a simple calculation from our inequality (2.2). In fact, taking
A = ∆2, Bp = xp, p = 1, . . . , n and Tp = ∂

∂xp
, we first observe that

[Tp, Bp] = 1. Hence, we have

n
∑

p=1

〈[Tp, Bp]ui, ui〉 = n, (3.8)

moreover

[A,Bp]ui = [∆2, xp]ui = 4
∂

∂xp

∆ui.

Then

[Bp, [A,Bp]]ui = 4[xp,
∂

∂xp

∆]ui

= −4
(

∆+ 2
( ∂

∂xp

)2
)

ui.

It follows that

n
∑

p=1

〈[A,Bp]ui, Bpui〉 =
1

2

n
∑

p=1

〈[Bp, [A,Bp]]ui, ui〉

= 2(n+ 2)〈−∆ui, ui〉

≤ 2(n+ 2)
(

‖∆ui‖2‖ui‖2
)

1

2

(3.9)

= 2(n+ 2)λ
1

2

i . (3.10)

Now
n
∑

p=1

〈Tpui, Tpui〉 = 〈−∆ui, ui〉 ≤ λ
1

2

i , (3.11)

where we used the Cauchy-Schwarz inequality to derive (3.9) and (3.11).
Substituting (3.8), (3.10) and (3.11) into (2.2) and taking f(x) =
(

g(x)
)2

= (λk+1 − x), we obtain inequality (1.10).

On the other hand, if we take f(x) = g(x) = (λk+1 − x)2, in (3.7),
we get the following inequality obtained in [10] (see inequality (2.27)
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therein)

[ k
∑

i=1

(λk+1 − λi)
2

]2

≤ 4l(2l + n− 2)

n2

( k
∑

i=1

(λk+1 − λi)
2λ

l−1

l

i

)( k
∑

i=1

(λk+1 − λi)λ
1

l

i

)

. (3.12)

Using the following variant of Chebyshev inequality (see Lemma 1 in
[10]), one can deduce a generalized Yang inequality

Lemma 3.2. Let Ai, Bi and Ci, i = 1, . . . , k, verify A1 ≥ A2 ≥ . . . ≥
Ak ≥ 0, 0 ≤ B1 ≤ B2 ≤ . . . ≤ Bk and 0 ≤ C1 ≤ C2 ≤ . . . ≤ Ck,
respectively. Then, we have

k
∑

i=1

A2
iBi

k
∑

i=1

AiCi ≤
k
∑

i=1

A2
i

k
∑

i=1

AiBiCi.

In fact if we apply this Lemma to the right side of inequality (3.12),

with Ai = λk+1 − λi, Bi = λ
l−1

l

i and Ci = λ
1

l

i , we obtain,

k
∑

i=1

(λk+1 − λi)
2 ≤ 4l(n + 2l − 2)

n2

k
∑

i=1

(λk+1 − λi)λi. (3.13)

which, in the case where A = (−∆)l, Q = −∆, Bp = xp, p = 1, . . . , n
and Tp =

∂
∂xp

, gives us inequality (1.14) of Cheng, Ichikawa and Mamet-

suka (see inequality (1.11) in [10]).
Finally, we note that considering other choices of values for the couple
(f, g) lead to many new inequalities.

4. Applications to the Kohn Laplacian on the Heisenberg

group

In this section, we consider the 2n+1-dimensional Heisenberg group
H

n, which is the space R2n+1 equipped with the non-commutative group
law

(x, y, t)(x′, y′, t′) =

(

x+ x′, y + y′, t+ t′ +
1

2

)

(〈x′, y〉Rn − 〈x, y′〉Rn),

where x, x′, y, y′ ∈ R
n, t and t′ ∈ R. We denote by Hn its Lie

algebra, it has a basis formed by the following vector fields T = ∂
∂t
,

Xp =
∂

∂xp
+ yp

2

∂
∂t

and Yp =
∂

∂yp
− xp

2

∂
∂t
. We note that the only non-trivial
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commutators are [Yp, Xq] = Tδpq. Let ∆Hn denote the real Kohn-
Laplacian in the Heisenberg group H

n. It is given by

∆Hn =
n
∑

p=1

X2
p + Y 2

p

= ∆R
2n

xy +
1

4
(|x|2 + |y|2) ∂

2

∂t2
+

∂

∂t

n
∑

p=1

(

yp
∂

∂xp

− xp
∂

∂yp

)

.

We are concerned here with the following eigenvalue problem:






(−∆Hn)lu = λu in Ω,

u =
∂u

∂ν
= . . . =

∂l−1u

∂νl−1
= 0 on ∂Ω,

(4.1)

where Ω is a bounded domain in H
n, with smooth boundary ∂Ω, ν is

the unit outward normal to ∂Ω and l ≥ 1 is any positive integer. We
denote by L = −∆Hn and ∇Hn = (X1, . . . , Xn, Y1, . . . , Yn).
We let

0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . → +∞
denote the eigenvalues of problem (4.1) with corresponding eigenfunc-

tions u1, u2, . . . , uk, . . . in Sl,2
0 (Ω). Here Sl,2(Ω) is the Hilbert space

of the functions u in L2(Ω) such that Xpu, Ypu, X
2
pu, Y

2
p u, . . . , X

l
p(u),

Y l
p (u) ∈ L2(Ω), and Sl,2

0 denotes the closure of C∞

0 (Ω) with respect to
the Sobolev norm

‖u‖2Sl,2 =

∫

Ω

( l
∑

d=1

(

n
∑

p=1

|Xd
pu|2 +

n
∑

p=1

|Y d
p u|2

)

+ |u|2
)

dxdydt.

We orthonormalize the eigenfunctions ui so that; ∀ i, j ≥ 1,

〈ui, uj〉L2 =

∫

Ω

uiujdxdydt = δij .

In all this paragraph, our results can be stated in a general form
using functions f and g ∈ ℑλk+1

as in the first part of this paper, but
we limit ourselves to the case f(x) = g(x) = (λk+1 − x)2. This gives
us new bounds of the Yang type for eigenvalues of problem (4.1) which
improve earlier ones obtained by Niu and Zhang [25].
We also note that we must treat the three following cases indepen-
dently: the case when l = 1, the case when l = 2 and the case when
l ≥ 3. This is essentially due to the difference of the calculations in
these three cases.

4.1. The case when l = 1. In this subsection, we are concerned with
the case where l = 1. The result we obtain is a result proved earlier
by the first author, El Soufi and Harrell in [13] and for which we give
here a different proof, more easily adapted to the other cases l = 2 and
l ≥ 3.
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Theorem 4.1. For any k ≥ 1

k
∑

i=1

(λk+1 − λi)
2 ≤ 2

n

k
∑

i=1

(λk+1 − λi)λi. (4.2)

Proof. We will prove this theorem by applying inequality (2.2) with
A = L = −∆Hn , B1 = x1, . . . , Bn = xn, Bn+1 = y1, . . . , B2n = yn,
T1 = X1, . . . , Tn = Xn, Tn+1 = Y1, . . . , T2n = Yn and f(x) = g(x) =
(λk+1 − x)2, namely,

[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
2

(

〈[Xp, xp]ui, ui〉L2 + 〈[Yp, yp]ui, ui〉L2

)

]2

≤ 4

[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
2

(

〈[L, xp]ui, xpui〉L2 + 〈[L, yp]ui, ypui〉L2

)

]

×

[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
(

‖Xpui‖2L2 + ‖Ypui‖2L2

)

]

. (4.3)

By a straightforward calculation, we obtain [L, xp]ui = −2Xpui and
[L, yp]ui = −2Ypui.
Hence

〈[L, xp]ui, xpui〉L2 = −2

∫

Ω

Xpui.xpui = 2

∫

Ω

ui.Xp(xpui)

= 2

∫

Ω

u2
i + 2

∫

Ω

xpui.Xpui

and

〈[L, yp]ui, ypui〉L2 = −2

∫

Ω

Ypui.ypui = 2

∫

Ω

ui.Yp(ypui)

= 2

∫

Ω

u2
i + 2

∫

Ω

ypui.Ypui,

then

〈[L, xp]ui, xpui〉L2 = 〈[L, yp]ui, ypui〉L2 = 1. (4.4)

On the other hand, we have

[Xp, xp]ui = [Yp, yp]ui = ui (4.5)

and
n
∑

p=1

‖Xpui‖2L2 +
n
∑

p=1

‖Ypui‖2L2 =

∫

Ω

|∇Hnui|2 = λi. (4.6)

Thus incorporating (4.4), (4.5) and (4.6) in (4.3), we obtain (4.2). �
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Remark 4.1. Inequality (4.2) improves the following inequality proved
by Niu and Zhang in [25] (see Remark 5.1 in [13])

λk+1 − λk ≤
2

nk

k
∑

i=1

λi.

4.2. The case when l = 2. In this subsection, we will derive the
following

Theorem 4.2. We have, for each k = 1, 2, . . .,

k
∑

i=1

(λk+1 − λi)
2 ≤ 2

√
n + 1

n

[ k
∑

i=1

(λk+1 − λi)λ
1

2

i

]
1

2
[ k
∑

i=1

(λk+1 − λi)
2λ

1

2

i

]
1

2

.

(4.7)

Proof. The key observation here is to apply Theorem 2.1 with A =
L2 = (−∆Hn)2, and as before B1 = x1, B2 = x2, · · · , Bn = xn, Bn+1 =
y1, · · · , B2n = yn, T1 = X1, · · · , Tn = Xn, Tn+1 = Y1, · · · , T2n = Yn and
f(x) = g(x) = (λk+1 − x)2. Thus we have

[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
2

(

〈[Xp, xp]ui, ui〉L2 + 〈[Yp, yp]ui, ui〉L2

)

]2

≤ 4

[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
2

(

〈[L2, xp]ui, xpui〉L2 + 〈[L2, yp]ui, ypui〉L2

)

]

×
[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
(

‖Xpui‖2L2 + ‖Ypui‖2L2

)

]

(4.8)

but
n
∑

p=1

‖Xpui‖2L2 +
n
∑

p=1

‖Ypui‖2L2 =

∫

Ω

|∇Hnui|2 =
∫

Ω

Lui.ui

≤
(
∫

Ω

u2
i

)
1

2
(
∫

Ω

(

Lui

)2
)

1

2

= λ
1

2

i ,

(4.9)

thus

n
∑

p=1

k
∑

i=1

(λk+1 − λi)
(

‖Xpui‖2L2 + ‖Ypui‖2L2

)

=
k
∑

i=1

(λk+1 − λi)λ
1

2

i . (4.10)

Using (4.5), we get

〈[Xp, xp]ui, ui〉L2 = 〈[Yp, yp]ui, ui〉L2 = 1. (4.11)
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Thus,

[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
2 (〈[Xp, xp]ui, ui〉L2 + 〈[Yp, yp]ui, ui〉L2)

]2

(4.12)

= 4n2

[ k
∑

i=1

(λk+1 − λi)
2

]2

.

On the other hand

[L2, xp]ui = L2(xpui)− xpL
2ui = L(xpLui − 2Xpui)− xpL

2ui

= −2XpLui − 2L(Xpui) (4.13)

and the same identity holds with yp and Yp.
We infer, using identities (4.5) and (4.13)

〈[L2, xp]ui, xpui〉L2 = −2

∫

Ω

XpLui.xpui − 2

∫

Ω

L(Xpui).xpui

= −2

∫

Ω

XpLui.xpui − 2

∫

Ω

Xpui.xpLui + 4

∫

Ω

Xpui.Xpui

= 2

∫

Ω

Lui.Xp(xpui)− 2

∫

Ω

xpXpui.Lui − 4

∫

Ω

X2
pui.ui

=2

∫

Ω

Lui.ui − 4

∫

Ω

X2
pui.ui. (4.14)

Similarly, we have

〈[L2, yp]ui, ypui〉L2 = 2

∫

Ω

Lui.ui − 4

∫

Ω

Y 2
p ui.ui. (4.15)

Since

−
n
∑

p=1

∫

Ω

X2
pui.ui −

n
∑

p=1

∫

Ω

Y 2
p ui.ui =

n
∑

p=1

‖Xpui‖2L2 +
n
∑

p=1

‖Ypui‖2L2

=

∫

Ω

Lui.ui,
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we have
[ n
∑

p=1

k
∑

i=1

(λk+1 − λi)
2
(

〈[L2, xp]ui, xpui〉L2 + 〈[L2, yp]ui, ypui〉L2

)

]

= 4(n+ 1)

k
∑

i=1

(λk+1 − λi)
2

∫

Ω

Lui.ui

≤ 4(n+ 1)

k
∑

i=1

(λk+1 − λi)
2

(
∫

Ω

u2
i

)
1

2
(
∫

Ω

(

Lui

)2
)

1

2

= 4(n+ 1)
k
∑

i=1

(λk+1 − λi)
2λ

1

2

i . (4.16)

Incorporating (4.10), (4.12) and (4.16) in (4.8), we get the result. �

We can easily obtain from inequality (4.7) of Theorem 4.2 an in-
equality of Yang-type.

Corollary 4.1. We have, for each k ≥ 1,
k
∑

i=1

(λk+1 − λi)
2 ≤ 4(n + 1)

n2

k
∑

i=1

(λk+1 − λi)λi. (4.17)

Proof. Inequality (4.7) is equivalent to
[ k
∑

i=1

(λk+1−λi)
2

]2

≤ 4(n+ 1)

n2

[ k
∑

i=1

(λk+1−λi)λ
1

2

i

][ k
∑

i=1

(λk+1−λi)
2λ

1

2

i

]

.

Now applying Lemma 3.2 with Ai = λk+1 − λi and Bi = Ci = λ
1

2

i , we
obtain inequality (4.17). �

Remark 4.2. Inequality (4.7) is sharper than the following one found
by Niu and Zhang [25]

λk+1 − λk ≤
4(n + 1)

n2k2

( k
∑

i=1

λ
1

2

i

)2

.

Proof. We infer from inequality (4.7) and the Chebyshev inequality
[ k
∑

i=1

(λk+1 − λi)
2

]2

≤ 4(n+ 1)

n2k2

[ k
∑

i=1

(λk+1 − λi)

][ k
∑

i=1

(λk+1 − λi)
2

][ k
∑

i=1

λ
1

2

]2

,

or equivalently

k
∑

i=1

(λk+1 − λi)
2 ≤ 4(n+ 1)

n2k2

[

k
∑

i=1

(λk+1 − λi)
][

k
∑

i=1

λ
1

2

]2

.
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Thus

k
∑

i=1

(λk+1 − λi)

[

(λk+1 − λi)−
4(n+ 1)

n2k2

[

k
∑

i=1

λ
1

2

i

]2
]

≤ 0. (4.18)

Hence, since λi ≤ λk, for all i ≤ k, we can easily deduce the inequality
of Niu and Zhang from (4.18). �

4.3. The case when l ≥ 3. We are now concerned with the problem
(4.1) for any l ≥ 3. The result depends on the parity of l. In fact, we
prove the following

Theorem 4.3. For any odd l ≥ 3, we have

k
∑

i=1

(λk+1 − λi)
2 ≤ 1

n

[ k
∑

i=1

(λk+1 − λi)λ
1

l

i

]
1

2

×

{ k
∑

i=1

(λk+1 − λi)
2

[

(

2l(n+ l − 1)
)

λ
l−1

l

i + c1(n, l)
(

λi + λ
l−2

l

i

)

]}
1

2

(4.19)

and for any even l ≥ 4, we have

k
∑

i=1

(λk+1 − λi)
2 ≤ 1

n

[ k
∑

i=1

(λk+1 − λi)λ
1

l

i

]
1

2

×

{ k
∑

i=1

(λk+1 − λi)
2

[

(

2ln + 4(l − 1)
)

λ
l−1

l

i + c2(n, l)λ
l−1

l

i

)

]}
1

2

,

(4.20)

where c1(n, l) and c2(n, l) are two constants depending on n and l.

Proof. If we apply inequality (2.2) with A = Ll = (−∆Hn)l, B1 =
x1, . . . , Bn = xn, Bn+1 = y1, . . . , B2n = yn, T1 = X1, . . . , Tn = Xn, Tn+1 =
Y1, . . . , T2n = Yn and f(x) = g(x) = (λk+1 − x)2, then we obtain

[ k
∑

i=1

n
∑

p=1

(λk+1 − λi)
2

(

〈[Xp, xp]ui, ui〉L2 + 〈[Yp, yp]ui, ui〉L2

)

]2

≤ 4

[ k
∑

i=1

n
∑

p=1

(λk+1−λi)
2

(

〈[Ll, xp]ui, xpui〉L2 + 〈[Ll, yp]ui, ypui〉L2

)

]

×

[ k
∑

i=1

n
∑

p=1

(λk+1 − λi)
(

‖Xpui‖2L2 + ‖Ypui‖2L2

)

]

. (4.21)

And as before, we have

〈[Xp, xp]ui, ui〉L2 = 〈[Yp, yp]ui, ui〉L2 = 1. (4.22)
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On the other hand, to calculate
∑n

p=1

(

‖Xpui‖2L2 + ‖Ypui‖2L2

)

, we need

the following result obtained by Niu and Zhang (see Lemma 2.3 in [25])
inspired by that of Chen and Qian [7] for the Laplacian:

Lemma 4.1. For any d ≥ 1, we have
(
∫

Ω

|∇d
Hnui|2

)
1

d

≤
(
∫

Ω

|∇d+1

Hn ui|2
)

1

d+1

(4.23)

where ∇d =

{

L
d
2 if d is even,

∇HnL
d−1

2 if d is odd.

And as a consequence (see Corollary 2.1 in [25]), we can easily obtain,
for any d ≥ 1

(
∫

Ω

|∇Hnui|2
)

≤
(
∫

Ω

|∇d
Hnui|2

)
1

d

. (4.24)

Therefore we have
n
∑

p=1

(

‖Xpui‖2L2 + ‖Ypui‖2L2

)

=

∫

Ω

Lui.ui ≤
(
∫

Ω

Llui.ui

)
1

l

= λ
1

l

i .

(4.25)
Now we have to calculate

n
∑

p=1

(

〈[Ll, xp]ui, xpui〉L2 + 〈[Ll, yp]ui, ypui〉L2

)

.

For this purpose, we use the following lemma also obtained by Niu and
Zhang in [25]

Lemma 4.2. For any positive integer d, 1 ≤ d ≤ l, we have

Ld(xpui) = xpL
dui − 2

d
∑

q=1

Ld−qXpL
q−1ui,

i = 1, . . . , k, p = 1, . . . , n. This is also true for yp and Yp.

We infer, using Lemma 4.2,

[Ll, xp]ui = Ll(xpui)− xpL
lui = −2

l
∑

q=1

Ll−qXpL
q−1ui.

Therefore

〈[Ll, xp]ui, xpui〉L2 = −2

l
∑

q=1

∫

Ω

Ll−qXpL
q−1ui.xpui

= −2
l
∑

q=1

∫

Ω

XpL
q−1ui.L

l−q(xpui).



24 SAÏD ILIAS AND OLA MAKHOUL

The same identities hold with yp and Yp.
Hence we obtain

n
∑

p=1

(

〈[Ll, xp]ui, xpui〉L2+〈[Ll, yp]ui, ypui〉L2

)

= −2
n
∑

p=1

l
∑

q=1

(
∫

Ω

XpL
q−1ui.L

l−q(xpui)+

∫

Ω

YpL
q−1ui.L

l−q(ypui)

)

.

(4.26)

Applying Lemma 4.2 once again to (4.26), we obtain

n
∑

p=1

(

〈[Ll, xp]ui, xpui〉L2 + 〈[Ll, yp]ui, ypui〉L2

)

= −2
n
∑

p=1

l
∑

q=1

∫

Ω

xpL
l−qui.XpL

q−1ui + 4
n
∑

p=1

l−1
∑

q=1

∫

Ω

XpL
l−q−1ui.XpL

q−1ui

+ 4

n
∑

p=1

l−2
∑

q=1

l−q−1
∑

r=1

∫

Ω

Ll−q−rXpL
r−1ui.XpL

q−1ui

−2

n
∑

p=1

l
∑

q=1

∫

Ω

ypL
l−qui.YpL

q−1ui + 4

n
∑

p=1

l−1
∑

q=1

∫

Ω

YpL
l−q−1ui.YpL

q−1ui

+ 4

n
∑

p=1

l−2
∑

q=1

l−q−1
∑

r=1

∫

Ω

Ll−q−rYpL
r−1ui.YpL

q−1ui. (4.27)

As in the proof of Theorem 5.1 in [25] (see the calculation of the terms
I2 and I ′2), we can easily obtain, for any odd l ≥ 3,

n
∑

p=1

(

〈[Ll, xp]ui, xpui〉L2 + 〈[Ll, yp]ui, ypui〉L2

)

≤
(

2l(n+ l − 1)
)

λ
l−1

l

i +c1(n, l)

(

λi + λ
l−2

l

i

)

(4.28)

and for any even l ≥ 4,

n
∑

p=1

(

〈[Ll, xp]ui, xpui〉L2 + 〈[Ll, yp]ui, ypui〉L2

)

≤
[

(

2ln + 4(l − 1)
)

+c2(n, l)

]

λ
l−1

l

i (4.29)

where c1(n, 3) = 4,

c1(n, l) = 2
l−2
∑

q=1

l−q−1
∑

r=1

{ l−q−r
∑

s=1
s odd

2snCs
l−q−r

(2n− 1)
s+1

2

+

l−q−r
∑

s=2
s even

2sCs
l−q−r

(2n− 1)
s
2

}

for any odd
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l ≥ 5 and c2(n, l) = 4
l−2
∑

q=1

l−q−1
∑

r=1

{ l−q−r
∑

s=1
s odd

2snCs
l−q−r

(2n− 1)
s+1

2

+

l−q−r
∑

s=0
s even

2sCs
l−q−r

(2n− 1)
s
2

}

.

Incorporating (4.22), (4.25) and (4.28) in (4.21), we obtain (4.19).
Similarly, to obtain (4.20), we incorporate (4.22), (4.25) and (4.29)
in (4.21). �

Remark 4.3. The inequality (4.19) is not homogeneous in the eigen-
values λi (i.e. it is not invariant under the change L → aL, λi → alλi

for a > 0). Therefore, using inequality (4.19) for alLl, we obtain that
for any a > 0,

k
∑

i=1

(λk+1 − λi)
2 ≤ 1

n

[ k
∑

i=1

(λk+1 − λi)λ
1

l

i

]
1

2

×

{ k
∑

i=1

(λk+1 − λi)
2

[

2l(n+ l − 1)λ
l−1

l

i + c1(n, l)
(

aλi +
1

a
λ

l−2

l

i

)

]}
1

2

,

(4.30)

for any odd l ≥ 3.
Optimising with respect to a, we find the following improvement of the
inequality (4.19)

k
∑

i=1

(λk+1 − λi)
2 ≤ 1

n

(

2l(n + l − 1) + c1(n, l)
)

1

2

[ k
∑

i=1

(λk+1 − λi)λ
1

l

i

]
1

2

×

[ k
∑

i=1

(λk+1 − λi)
2λ

l−1

l

i

]
1

2

(4.31)

which is homogeneous on the eigenvalues λi.

As for the case when l = 2, we can deduce inequalities of Yang-type
for l ≥ 3.

Corollary 4.2. We have, for any odd l ≥ 3,

k
∑

i=1

(λk+1 − λi)
2 (4.32)

≤ 1

n2

k
∑

i=1

(λk+1 − λi)

[

(

2l(n+ l − 1)
)

λi + c1(n, l)
(

λ
l+1

l

i + λ
l−1

l

i

)

]

and for any even l ≥ 4

k
∑

i=1

(λk+1 − λi)
2 ≤ 2ln+ 4(l − 1) + c2(n, l)

n2

k
∑

i=1

(λk+1 − λi)λi. (4.33)

where c1(n, l) and c2(n, l) are explicit constants depending only on n
and l.
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Proof. Applying Lemma 3.2 with Ai = λk+1 − λi, Bi = 2l(n + l −
1)λ

l−1

l

i + c1(n, l)(λi + λ
l−2

l

i ) and Ci = λ
1

l

i , we obtain

[ k
∑

i=1

(λk+1 − λi)λ
1

l

i

]{ k
∑

i=1

(λk+1 − λi)
2

[

2l(n + l − 1)λ
l−1

l

i

+c1(n, l)

(

λi + λ
l−2

l

i

)]}

≤
k
∑

i=1

(λk+1 − λi)
2×

k
∑

i=1

(λk+1 − λi)λ
1

l

i

[

2l(n+ l − 1)λ
l−1

l

i + c1(n, l)

(

λi + λ
l−2

l

i

)]

=

k
∑

i=1

(λk+1 − λi)
2

k
∑

i=1

(λk+1 − λi)

[

2l(n+ l − 1)λi + c1(n, l)

(

λ
l+1

l

i + λ
l−1

l

i

)]

(4.34)

Inequality (4.32) can be deduced from (4.19) and (4.34), for any odd
l ≥ 3.
We proceed in the same way to obtain (4.33), i.e. applying Lemma

3.2 but with Ai = λk+1 − λi, Bi =
(

2ln + 4(l − 1) + c2(n, l)
)

λ
l−1

l

i and

Ci = λ
1

l

i . �

Remark 4.4. Inequalities (4.19) and (4.20) are sharper than the fol-
lowing inequalities, proved by Niu and Zhang ([25]),

λk+1−λk ≤
∑k

i=1
λ

1

l

i

n2k2

[

(

2l(n+ l−1)
)

k
∑

i=1

λ
l−1

l

i +c1(n, l)

k
∑

i=1

(

λi+λ
l−2

l

i

)]

(4.35)
if l ≥ 3 is odd and

λk+1 − λk ≤
∑k

i=1
λ

1

l

i

n2k2

[

(

2ln + 4(l − 1)
)

k
∑

i=1

λ
l−1

l

i + c2(n, l)

k
∑

i=1

λ
l−1

l

i

]

,

(4.36)
if l ≥ 4 is even,
c1(n, l) and c2(n, l) are as in the proof of Theorem 4.3.

Proof. By the Chebyshev inequality, we infer from (4.19), for any odd
l ≥ 3

[ k
∑

i=1

(λk+1 − λi)
2

]2

≤ 1

n2k2

[ k
∑

i=1

(λk+1 − λi)

][ k
∑

i=1

(λk+1 − λi)
2

]

×

[ k
∑

i=1

λ
1

l

i

][

2l(n+ l − 1)
k
∑

i=1

λ
l−1

l

i + c1(n, l)
k
∑

i=1

(

λi + λ
l−2

l

i

)]
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or equivalently

k
∑

i=1

(λk+1 − λi)
2 ≤ 1

n2k2

[ k
∑

i=1

(λk+1 − λi)

][ k
∑

i=1

λ
1

l

i

]

×

[

2l(n+ l − 1)
k
∑

i=1

λ
l−1

l

i + c1(n, l)
k
∑

i=1

(

λi + λ
l−2

l

i

)]

.

Thus

k
∑

i=1

(λk+1−λi)

[

λk+1 − λi −
1

n2k2

( k
∑

i=1

λ
1

l

i

)

×

(

2l(n+ l − 1)
k
∑

i=1

λ
l−1

l

i + c1(n, l)
k
∑

i=1

(

λi + λ
l−2

l

i

)

)

]

≤ 0

(4.37)

which implies (4.35), since λi ≤ λk for i ≤ k.
Similarly, we prove that inequality (4.20) is sharper than (4.36). �
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