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Quantum Monte Carlo Simulation of the two-dimensional ionic Hubbard model

Bernard Martinie
Département de Physique, UFR Sciences et Techniques,

Parc Grandmont, 37200 Tours, France

(Dated: February 1, 2010)

The Quantum Monte Carlo simulations of the ionic Hubbard model on a two-dimensional square
lattice at half filling were performed. The method based on the direct-space, proposed by Suzuki and
al., Hirsch and al., was used. Cycles of increasing and decreasing values of the Coulomb interaction
U were performed for fixed temperature (kT = 0.01). Results indicate that, at low temperature,
the two insulator phases are separated by a metallic phase for weak to intermediate values of the
staggered potential ∆. For large Coulomb repulsion the system is in a Mott insulator with an
antiferromagnetism order. On increasing and decreasing the Coulomb interaction U the metal-Mott
insulator transition shows an hysteresis phenomenon while the metal-band insulator transition is
continue. For large ∆ it seems that the metallic region shrinks to a single metallic point. However,
the band insulator to the Mott insulator transition is not direct for the studied model. A phase
diagram is drawn for the temperature kT = 0.01. For ∆ = 0.5 cycles of increasing and decreasing
temperature were programmed for different values of the Coulomb interaction U . A behaviour
change appears for U ≃ 1.75. This suggests that a crossover line divides the metallic region of the
phase diagram.

PACS numbers: 71.27.+a, 71.10.Fd, 71.30.+h

I. INTRODUCTION

Recently some theoretical and numerical studies were
published which investigate the metal-insulator transi-
tions and the transition between the two insulator phases
of the ionic Hubbard model [1–5]. The numerical re-
sults are obtained with the DMFT (at zero temperature)
and the determinant quantum Monte Carlo method. The
existence of an intermediate metallic phase between the
band and the Mott insulators seems confirmed by all the
authors but the nature of this phase and of the metal-
insulator transitions are still under debate.
In this paper, we present results on the two-dimensional
ionic Hubbard model obtained with a method based on
the direct-space proposed by Suzuki and al.[6, 7] and
Hirsch and al.[8, 9]. This quantum Monte Carlo method
is presented in references [10, 11]. At fixed temperature,
this method allows to generate some of the most repre-
sentative occupation number basis states of the model.
These states are used to compute average values of en-
ergy, molar specific heat, occupancy, structure factor and
rough static electric conductivity.

II. IONIC HUBBARD MODEL

The Hamiltonian of the ionic Hubbard model can be
written

H = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ + hc
)

+ U
∑

i

ni↓ni↑

+∆
∑

i∈A

ni −∆
∑

i∈B

ni (1)

The square lattice is a bipartite lattice with two sublat-

tices A and B. c†i,σ and ci,σ are the fermion creation
and destruction operators at the lattice site i with spin

σ. ni,σ = c†i,σci,σ is the number operator. t is the hop-
ping term between nearest-neighbor sites, U denote the
on-site Coulomb repulsion, ∆ is the staggered potential
between the A and B sublattices.

III. SIMULATION PARAMETERS

The square lattice contains 6 × 6 sites with periodic
boundary conditions. Each elementary cell contains two
sites A and two sites B. There are 18 spin up and 18
spin down (half filling). The hopping parameter t is
fixed at a value 1 except for the simulations of the
atomic limit where t = 0. The model is decomposed
in sub-systems which contain four sites. These sub-
systems are grouped together in two sub-hamiltonians.
The imaginary-time interval is divided into twenty slices.
For each simulation five decreasing-increasing temper-
ature cycles or decreasing-increasing interaction U cy-
cles were programmed.There are one hundred points by
curves.

IV. THE ATOMIC LIMIT (t = 0)

Simulations were performed for the simple case of the
atomic limite where t = 0. For this value the Hamilto-
nian is diagonal, so there is no problem due to the non-
commutativity, in consequence the number of slides can
be one, and there is no sign problem. Cycles of increas-
ing and decreasing values of U were programmed at the
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FIG. 1: (Color online). The energy at kT = 0.01 for different
values of ∆.
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FIG. 2: (Color online). The molar specific heat at kT = 0.01
for different values of ∆.

fixed temperature kT = 0.01 for different values of the
staggered potentiel ∆. The conductivity is always zero,
so the model is an insulator whatever the values of the
interactions. The Figs. 1, 2 and 3 display the results. As
it is expected, one remarks that the electronic transition
happens for Uc = 2∆ without hysteresis phenomenon.
There is one spin by site for U & 2∆ whereas only the
sites of the sublattices B are occupied for U . 2∆. In
this domain the energy of the model is E ≃ 18 (U − 2∆),
while it is zero for U & 2∆. There is not magnetic order.
The Figs. 4, 5 and 6 show the influence of the tem-

perature on the energy curves, the molar specific heat
curves and the occupancies curves versus interaction U .
The occupancies curves for the different temperatures
have very little error bars and cross almost exactly at
U = 2∆. This is in good agreement with the zero value
of the specific heat for this value of U . At this point the
site A occupancy is near 0.66 while the site B occupancy
is about 1.32. In this special state 12 sites A are each
occupied by one spin, 12 sites B are occupied equally
by one spin and 6 sites B are occupied by two spins.
The energy of this state is E = 6U − 12∆ = 0. Indeed,
the three energy curves in Fig. 4 pass through the same
point (U = 1, E = 0) so ∂E/∂T = 0.
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FIG. 3: (Color online). The site occupancies at kT = 0.01 for
∆ = 0.5, ∆ = 2 and ∆ = 4.The solid lines corespond to sites
A and the dashed lines correspond to sites B.
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FIG. 4: (Color online). Energy in the atomic limit
(t = 0,∆ = 0.5) for different temperatures.

One remarks that all the specific heat curves of the
Fig. 5 match exactly for the abscisse U/kT . The specific
heat curves for four sizes of the model, at half filling,
are shown in Fig. 7. One remarks that these curves are
similar.

V. MODEL WITH HOPPING INTERACTION
(t = 1)

A. Simulations at T = constant

The Figs. 8, 9, 10 and 11 show the DC conductivity,
the structure factor and the double occupancy curves for
different values of the staggered potential ∆ at kT =
0.01.
For ∆ & 1 the model undergoes a transition between

two insulator states. During the transition the system
becomes conductor. In the low U insulator state, only the
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FIG. 5: (Color online). Molar specific heat in the atomic limit
(t = 0,∆ = 0.5) for different temperatures.
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FIG. 6: (Color online). Site occupancies in the atomic limit
(t = 0,∆ = 0.5) for different temperatures. Solid line (black)
correspond to kT = 0.005, the dashed line (red) correspond
to kT = 0.01, the dotted line (green) correspond to kT = 0.02
and the dot-dash line (blue) correspond to kT = 0.05.

B sites are occupied by two spins. It is a band insulator
(BI). All the sites are occupied by one spin in the hight
U insulator state. This last insulator state presents an
antiferromagnetic structure, it is a Mott insulator (MI).
This transition between the two insulator states with an
intermediate metallic phase was already observed [1–5]
with other simulation methods at T = 0 and T 6= 0. Our
results are in good agreement with those obtained within
the other methods.
Fig. 12 shows the DC conductivity for ∆ = 1 and ∆ = 2
for decreasing and increasing values of U . An hysteresis
phenomenon appears for the transition from the metal to
the Mott insulator while the the curves fit for the metal-
band insulator transition. This behaviour is observed for
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FIG. 7: (Color online). Molar specific heat in the atomic limit
(t = 0,∆ = 0.5) for four model sizes.
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FIG. 8: (Color online). Conductivity for low and hight values
of U and different values of ∆. (t = 1, kT = 0.01) .
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FIG. 9: (Color online). DC Conductivity for low values of U
and different values of ∆. (t = 1, kT = 0.01) .



4

0 5 10 15 20 25 30 35
U

0

0,2

0,4

0,6

0,8

1

St
ru

ct
ur

e 
fa

ct
or

∆=0.0
∆=0.5
∆=1.0
∆=2.0
∆=3.0
∆=4.0
∆=5.0
∆=6.0
∆=7.0
∆=8.0
∆=10

FIG. 10: (Color online). Structure factor for different values
of ∆. (t = 1, kT = 0.01) .
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FIG. 11: (Color online). Double occupancy for different val-
ues of ∆. (t = 1, kT = 0.01) .

all the values of ∆. One can deduce that the MI-to-metal
phase transition is a first order transition, while the BI-
to-metal phase transition is continuous. This is in good
agreement with the result of reference [2].
One observes that the structure factor decreases for large
∆ while the behaviour of the double occupancy is similar
for all the values of ∆ & 1.0. The caracteristcs of the BI
phase ( null structure factor and double occupancy≈ 0.5)
are the same for all values of ∆ whereas the insulator
phase induce by increasing value of U is not a purely MI.
Moreover, the conductivity of this phase is not null for
∆ & 5.

B. Simulations at U = constant

The Figs. 13 and 14 show the conductivity curves
at low and hight temperatures for ∆ = 0.5 and differ-
ent values of U . One observes metallic behaviour for
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FIG. 12: (Color online). DC conductivity for ∆ = 1 and
∆ = 2 for decreasing and increasing values of U at kT = 0.01.
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FIG. 13: (Color online). Conductivity curves at hight tem-
peratures for ∆ = 0.5 and different values of the coulombian
repulsion U .

kT & 0.1. At low temperature, for decreasing temper-
ature (Fig 14), the system becomes insulator with be-
haviour change for U ≃ 1.75. This behaviour change can
be observed equally on the double occupancy curves of
Fig. 15. For U & 1.75 the metal-insulator transition
occurs with hysteresis phenomenon (Fig. 16). One can
deduce that this transition is a first order transition. On
the contrary, for U . 1.75 the conductivity curves for
increasing and decreasing temperature are similar.

C. Phase diagram

The conductivity curves of Figs. 8 and 9 can be used
to drawn the phase diagram at the constant tempera-
ture kT = 0.01. For large ∆ one can consider that the
metallic region shrinks to a single metallic point. For
each value of ∆ . 5.0, the coulombian interactions Uc1

and Uc2 which correspond with the metal-insulator tran-
sitions are determined at mid-height of the maximum
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FIG. 14: (Color online). Conductivity curves at low tem-
peratures for ∆ = 0.5 and different values of the coulombian
repulsion U .
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FIG. 15: (Color online). Double occupancy curves at low tem-
peratures for ∆ = 0.5 and different values of the coulombian
repulsion U .
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FIG. 16: (Color online). Conductivity curves at low temper-
atures for increasing and decreasing temperature for U = 2.0,
U = 2.5 and U = 3.0 (∆ = 0.5). One observes an hysteresis
phenomenon.
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FIG. 17: Phase diagram of the 2D IHM at kT = 0.01.
The dot-dash line is the transition line at the atomic limit
(Uc = 2∆). The symbol plus is the point at which behaviour
changes. The dotted line correspond to the set of points for
which double occupancy is 0.25.

conductivity. The phase diagram of the ionic Hubbard
model is shown in Fig. 17.
The behaviour change observed on the double occu-
pancy curves of Fig. 15 corresponds to the point
(∆ = 0.5, U ≃ 1.75) in the phase diagram. This suggests
that a cross-over line exists in the metallic region. This
line can correspond approximatly to the set of points for
which the double occupancy is 0.25. For this double oc-
cupancy value 9 sites A and 9 sites B are occupied by
one spin and 9 sites B are occupied by two spins.
One remarks, on the phase diagram, that the transition
lines for t = 0 and t = 1 are parallel for large ∆. The
gap between these two lines is △U ≈ 2t.

VI. CONCLUSION

Most results presented in references [1–5] are obtained
for T = 0 whereas, by principle, our simulation method
works for not null temperature. However the results and
the phase diagram are similar. Our results confirm the
existence of a metallic region between Mott and band in-
sulator phases. The natures of the metal-insulator tran-
sitions are different. The MI-metal transition is discon-
tinuous while the BI-metal transistion is continuous like
it is told in reference [2]. The metallic phase shrinks to
a line for large coulombian interaction U , but the BI-MI
transition is not direct. Moreover, the insulator phase
for U > Uc is not a purely Mott insulator phase. Studies
with increasing and decreasing temperature show that
there is a behaviour change in the metallic region which
divides it into two regions. These two regions correspond
to the precursor phases of MI and BI phases.
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