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Abbreviations

PPE, porcine pancreatic elastase; HNE, human neutrophil elastase;  ; Abz, O-aminobenzoyl;

EDDnp,  N - ( 2 , 4 - d i n i t r o p h e n y l )  e t h y l e n e d i a m i n e ;  I g e p a l  C A - 6 3 0 ,

(octylphenoxy)polyethoxyethanol;; OMTKY-III, turkey ovomucoid trypsin inhibitor third

domain; α1-Pi, human α1- protease inhibitor; SLPI, human secretory leucocyte protease inhibitor;

DEAE, diethylaminoethyl; p-NA, p-nitroanilide ; rp-h.p.l.c, reverse phase high pressure liquid

chromatography ; TBE, thiobenzyl ester
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Synopsis (230 words) : We have purified to homogeneity two forms of a new serine protease

inhibitor specific for elastase/chymotrypsin from the ovary gland of the desert locust

Schistocerca gregaria. This protein, greglin, has 83 amino acid residues and bears putative

phosphorylation sites. Amino acid sequence alignments revealed no homology with pacifastin

insect inhibitors and only a distant relationship with Kazal-type inhibitors. This was confirmed by

computer-based structural studies. The most closely related homologue is a putative gene product

from Ciona intestinalis with which it shares   38% sequence homology.  Greglin is a fast-acting

and tight binding inhibitor of human neutrophil elastase (kass = 1.2 x 107 M-1s-1 ; Ki = 3.6 nM) and

subtilisin. It also bind neutrophil cathepsin G, pancreatic elastase and chymotrypsin with a lower

affinity (26 nM ≤ Ki ≤ 153 nM), but do not inhibit neutrophil protease 3 or pancreatic trypsin.

The capacity of greglin to inhibit neutrophil elastase was not significantly affected by exposure to

acetonitrile, high temperature (90°C), low or high pH (2.5-11.0), N-chlorosuccinimide-mediated

oxidation or the proteolytic enzymes trypsin, papain and pseudolysin from Pseudomonas

aeruginosa.

Greglin efficiently inhibits the neutrophil elastase activity of sputum supernatants from cystic

fibrosis patients. Its biological function in the locust ovary gland is presently unknown, but its

physicochemical properties suggest that it can be used as a template to design a new generation

of highly resistant elastase inhibitors for treating inflammatory diseases.

Key words: serine protease; kinetics; kazal inhibitor; neutrophil elastase; insect.
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 INTRODUCTION

Neutrophil elastase is thought to be the major protease involved in tissue destruction during

inflammation. This is especially true for lung diseases such as cystic fibrosis, chronic obstructive

pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS), which are

accompanied by considerable recruitment of neutrophils. Anti-inflammatory therapy using

protease inhibitors may be an efficient means of reducing the unopposed proteolytic activity (e.g

HNE activity) that occurs when neutrophils invade inflammatory sites (reviewed in [1]). A

number of studies using natural and recombinant inhibitors have had mixed results due to

ineffective administration, or the inactivation of the inhibitor by mechanical or physicochemical

constraints in the local environment [1]. There is thus a need for molecular structures that possess

the physicochemical and mechanical properties required for use in vivo.

At least 2500 sequences homologous to those of known protease inhibitors can be retrieved from

data banks, and assigned to one of 48 families [2]. The classical inhibitors of HNE and other

neutrophil proteases are members of families I1 (Kazal), I2, I3, (Kunitz), I4 (serpin), I17 (elafin).

The most prominent physiological inhibitor of HNE is α1-Pi (I4 family), the recombinant form of

which has been given by inhalation or intravenously to treat cystic fibrosis and α1-Pi deficiency.

Several other inhibitors, including MNEI, SLPI and elafin/pre-elafin, have also been given as

aerosols or systemically to inhibit neutrophil elastase. Most of these natural inhibitors are

sensitive to oxidation and/or proteolytic degradation by other proteases that are present at

inflammatory sites [1]. Recombinant protease inhibitors based on the sequences of natural

endogenous inhibitors have been developed to overcome some of these drawbacks and a few

have proved to have beneficial anti-inflammatory properties [3].

Synthetic low Mr elastase inhibitors have also been developed, but their side effects and limited

efficacy are barriers to further work on them [1].

Insects have many more serine proteases than do humans, but they have relatively few serine

protease inhibitors [4] [5].  A new family of low Mr protease inhibitors, the pacifastins, was

found recently in arthropods [6].They all have 6 cysteine residues arranged in a conserved

disulfide pattern [6]. Most of them preferentially inhibit chymotrypsin and trypsin. Five

pacifastin inhibitors have been purified from the ovary of the desert locust Schistocerca gregaria
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[7]. We have now isolated and purified to homogeneity two forms of a novel inhibitor of higher

Mr, greglin, from the same material. The protein is a powerful neutrophil elastase inhibitor that

also inhibits pancreatic elastase and chymotrypsin-like proteases.   

We used computational tools to look for sequence homologies with other proteinaceous inhibitors

and to predict the secondary and tertiary structures of greglin.

  EXPERIMENTAL

 Materials

Schistocerca gregaria ovaries were obtained as previously described [7, 8]. Porcine pancreatic

elastase (PPE; EC 3.4.21.36), human neutrophil elastase (HNE; EC 3.4.21.31), protease 3 (EC

3.4.21.76), cathepsin G (EC 3.4.21.20) and human α1-Pi were purified [9, 10] or obtained from

Athens Research and Technology (Athens, GA, USA). Porcine pancreatic trypsin (EC 3.4.21.4)

and subtilisin Carlsberg (EC 3.4.21.62) were obtained from Sigma (St Quentin Fallavier, France).

Bovine pancreatic chymotrypsin (EC 3.4.21.1) was purchased from Worthington (Lakewood, NJ,

USA) and papain (EC 3.4.22.2) from Roche Diagnostics (Meylan, France). The active sites of all

the above proteases were titrated using published methods  [11 , 12-14]. The concentrations given

here refer to active protein concentrations.  Pseudolysin (E.C 3.4.24.26), endoprotease Glu-C (EC

3.4.21.19) were from  Calbiochem (VWR, Strasbourg, France) and Sigma respectively. Succinyl-

Ala-Ala-Ala-p-nitroanilide [Suc-(Ala)3-p-NA], methoxysuccinyl-Ala-Ala-Pro-Ala-thiobenzyl

ester [MeOsuc-(Ala)2-Pro-Ala-TBE], benzoyl-Arg-p-nitroanilide (BAPNA), succinyl-Ala-Ala-

Pro-Phe-p-nitroanilide [Suc-(Ala)2-Pro-Phe-p-NA] and methoxysuccinyl-Lys(2-picolinoyl)-Ala-

Pro-Val-p-nitroanilide [MeOsuc-Lys-(pico)-Ala-Pro-Val-p-NA, the chromogenic substrates of

the various proteases were purchased from Bachem (Bubendorf, Switzerland). The HNE

fluorogenic substrate Abz-Ala-Pro-Glu-Glu-Ile-Met-Arg-Arg-Gln-EDDnp (Abz-APEEIMRRQ-

EDDnp) was used as described [15].

Sputum samples were collected from adult cystic fibrosis patients after informed consent.

Approval was obtained from the Ethics Committee of our Institution.

 Purification of greglin   

The detailed  purification procedure is reported in the “Supplementary material section”. Briefly,

an homogenate of 150 S gregaria ovaries was precipitated between 50-80% solid ammonium
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sulphate and the resulting pellet suspended and fractionated by gel filtration. The collected

fractions were checked for their anti-elastase activity using Suc-(Ala)3-p-NA as a substrate. The

elastase-inhibiting fractions were pooled and chromatographed on an anion exchange column.

The bound material was eluted with 0 to 300 mM gradient of NaCl and the fractions containing

inhibitor detected as above and further chromatographed on a Mono Q HR 5/5 column. The two

major peaks were further purified by chromatography on the same column and their purity

checked by SDS   gel (12% ) electrophoresis and rp-h.p.l.c. using a C4 Brownlee  cartridge.

 Kinetic measurements

 Experimental details related to the measurements of enzymes activities on chromogenic and

fluorogenic substrates are given in the “Supplementary material” section.

 Determination of active inhibitor concentrations

The active concentration of each inhibitor was determined with active site-titrated HNE.

Increasing quantities of inhibitor were incubated with 0.38 µM enzyme in 990 µl reaction

mixtures for 10 min. The remaining enzyme activities were measured by adding 10 µl 50 mM

Suc-(Ala)3-p-NA. Under these conditions the decrease in HNE activity as a function of both

inhibitor concentrations was linear up to about 90 % inhibition. We used the linear portion of the

inhibition curve to deduce the active concentration of both inhibitory species assuming a 1 : 1

binding stoichiometry.

 Determination of Ki, the equilibrium dissociation constant for the complexes formed between

greglin and various proteases

Constant amounts of a given protease were reacted with increasing amounts of inhibitor in 990

µL buffered reaction mixtures for 20 min.  The remaining enzymic activities were measured by

adding 10 µL of appropriate substrate solution [16]. Further details are given in the

“Supplementary material” section.

 Determination of kass and kdiss, the association and dissociation rate constants for the interaction

of HNE with greglin
 

The association and dissociation kinetics for the reaction of HNE with greglin 1 and 2 were

investigated by the progress curve method [16] using a stopped-flow apparatus (SFM3, Bio-
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Logic, Claix, France) [16, 17]. Data acquisition and processing were done with the

manufacturer’s BioKine software.

 Assessment of the residual greglin inhibitory activity after incubation with non-target proteolytic

enzymes

2.8 nM HNE was incubated with 14 nM native or protease-treated inhibitor for 10 min at 37 ° C

in 212 µL buffer. The residual enzyme activity was measured by adding 2 µl 0.2 mM Abz-

APEEIMRRQ-EDDnp.

 Inhibition by greglin of  the HNE activity in cystic fibrosis sputum supernatant

The sputum samples collected from adult cystic fibrosis patients were homogenized in 10 mM

phosphate-buffered saline (PBS), pH 7.4 (3 mL/g sputum) and centrifuged at 10,000 x g for 10

min at 4°C. The concentrations of active HNE in these samples were deduced by comparing their

enzyme activities with that of pure, active-site-titrated HNE using Abz-APEEIMRRQ-EDDnp

(1.33 µM final). Buffered reaction mixtures containing greglin (3 to 36 nM final) were incubated

with samples of sputum supernatant containing HNE (30 nM final) for 10 min. at 37°C. Residual

HNE activity was measured spectrofluorometrically using Abz-APEEIMRRQ-EDDnp as

substrate.

 Determination of the primary structure of greglin

The complete amino acid sequences of the two reduced and alkylated greglin isoforms were

determined by automated N-terminal sequencing of the purified inhibitors and the enzymatically

and chemically cleaved forms using an Applied Biosystems Procise pulsed liquid sequencer with

the chemicals and program recommended by the manufacturer. Inhibitor (1 nanomol) was

reduced with dithiothreitol and alkylated with 2 µL 4-vinyl pyridine (see Supplementary

Materials). Samples were desalted by rp-h.p.l.c. and incubated (final concentration: 4.6 nM) with

trypsin (2.0 nM final) or chymotrypsin (1.5 nM final) in appropriate buffers. The products were

separated by rp-h.p.l.c, freeze-dried and sequenced.  .

The reduced, alkylated inhibitors (1.5 nM final) were also incubated in the dark at 20°C for 18

hours with 75 mg/mL cyanogen bromide in 70 % formic acid. The products were separated by rp-

h.p.l.c,  freeze-dried and sequenced.
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C-terminal sequences were determined by mass spectrometry using a Bruker BIFLEX III TM mass

spectrometer (Bremen, Germany) in linear positive ion mode. Samples were prepared by the

sandwich method [18]. Purified peptides were incubated at 25 °C for 3 hours with 10 ng/µL

carboxypeptidase P (Sigma) in 10 µL 50 mM sodium citrate buffer , pH 4.0.

 Prediction of the secondary and tertiary structures of greglin

 Sequence analysis tools

The BLAST (http://www.ebi.ac.uk/blastall/) and MEROPS (http://merops.sanger.ac.uk/) suites

of programs were used to look for homologies in the sequence databases. We used T-coffee

(http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi) to generate multiple sequence

alignments, and NetPhos (http://www.cbs.dtu.dk/services/NetPhos/) to predict phosphorylation

sites.

 Secondary structure prediction

Seconday structural elements were predicted using sspro[19],  nnpredict [20], psipred, sam, jufo

through the Robetta server [21], sable and profsec through the GeneSilico metaserver

(http://genesilico.pl/meta).

These programs were selected to cover the whole range of methods (neural network, hidden

Markov chain, position specific and profile matrices, etc.) and parameters (solvent representation,

amino acid properties, etc.) that are currently available.

 Tertiary structure prediction

To predict the tertiary structure of greglin, we used the automated GeneSilico metaserver

(http://genesilico.pl/meta) that uses results from the inbgu, 3dpssm, ffas, mgenthreader, sam,

sparks, fugues, and 3dpssm servers. The Robetta server was used to build the structure of greglin

starting from its primary sequence alone [21].

SwissPdbViewer (http://au.expasy.org/spdbv/) was used to generate multiple structural

alignments and to superimpose themodels obtained.

 Greglin physicochemical properties

 Oxidation by N-chlorosuccinimide

Greglin (13 µM final) was incubated at room temperature with N-chlorosuccinimide (125 µM

final) in 50mM Hepes buffer pH 7.4, 150 mM NaCl, 0.05% Igepal CA-630 for 20 min. Excess
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oxidant was removed by rp-h.p.l.c. on a C4 column and oxidation was checked by mass

spectrometry using a M@LDI L/R  Waters micromass apparatus. The anti-PPE activity of the

desalted inhibitor was assayed as above.

Effect of  pH and temperature on inhibitor activity

  Greglin was incubated for 20 hours at 37°C in 0.5 M glycine-HCl buffer pH 2.5; 50mM hepes

buffer pH 7.4; and in 0.5 M Tris–base pH 11.0, and its residual inhibitory activity assayed in the

hepes buffer. The effect of temperature was investigated by incubating greglin (3.85 µM) in

hepes buffer pH 7.4 for one hour at temperatures from 37°C to 90°C and then measuring its

residual inhibitory activity at 37° C.

Reaction of greglin with PPE and HNE under acidic conditions

The greglin reactive bond (P1-P1’) was tentatively identified by incubating the inhibitor with

target enzymes at low pH and looking for putative cleavage sites by N-terminal sequencing, as

described for soya-bean trypsin inhibitor [22]. Experimental details are provided in the

“Supplementary Material” section.

 Susceptibility of greglin activity to proteolytic enzymes

The susceptibility of greglin anti-elastase activity was investigated by incubating the inhibitor

with serine (trypsin, endoprotease Glu-C), cysteine (papain) and metallo (pseudolysin) proteases.

The mixtures were then separated by rp-h.p.l.c. and the inhibitory properties of the eluted peaks

analysed (see Supplementary Materials).

 RESULTS

 Purification of two greglin isoforms from a crude homogenate of S gregaria ovaries:

We isolated two forms of an anti-PPE protein referred to as “greglin”  from the Schistocerca

gregaria ovaries using a combination of salt precipitation, size-exclusion and anion exchange

chromatographies. The inhibitory activity of greglin was used to monitor its presence along the

purification procedure.  The protein was eluted from the Mono Q column as two close peaks that

were further purified by rp-h.p.l.c on a Brownlee C4 column for sequence analysis, and gave a

single band when run on a SDS gel (Figure 1A). A homogenate of 150 ovaries gave about 4 mg

of purified greglin.

Biochemical Journal Immediate Publication. Published on 13 Jul 2006 as manuscript BJ20060437

Copyright 2006 Biochemical Society



10

Primary structure:

The sequence of each greglin isoform was obtained by sequencing overlapping peptides produced

by cleaving the reduced alkylated rp-h.p.l.c.-purified proteins with cyanogen bromide (Met 14

and Met 68), trypsin (Lys 52, Lys 70 and Lys 81) and chymotrypsin (Leu 27, Tyr42 and Tyr 6)

(Figure 1B). Both sequences contained 83 identical amino-acid residues except that one sequence

had no identifiable residues at positions 8, 11 and 15, whereas the other had seryl residues at

these positions. This strongly suggests that the seryl residues in the first sequence are

glycosylated or phosphorylated. The molecular mass calculated from the greglin sequence was

9,229 Da, while mass spectrometry gave a minimal mass of 9,600 Da for and a maximal mass of

9,844 Da, consistent with a triphosphorylation. Intermediate masses consistent with mono and

diphosphorylation were also recorded. The Net Phos program of the Expasy server predicted the

phosphorylation of the Ser residues at positions 6, 8, 11 and 15 and 37 in agreement with

sequence data that found no seryl residues at positions 8, 11 and 15 in one isoform, i.e. those with

the best predictive scores. But there may well be additional post translational modifications that

could explain the differences between the mass deduced from amino acid analysis and those

obtained experimentally. We identified 6 Cys residues unambiguously by N-terminal sequencing

after 4-vinyl-pyridine alkylation. The C-terminal sequence was confirmed by carboxypeptidase P

digestion plus mass spectrometric analysis of the products. The data indicated a 303 Da decrease

in the molecular mass, consistent with the KSS C-terminal sequence. In addition, cleavage of the

native inhibitor with trypsin gave a molecule of lower mass (-175 Da), in agreement with the

release of the two C-terminal seryl residues. Incubation of the trypsin-reacted products with

carboxypeptidase P reduced the molecular mass by a further 128 Da, confirming the presence of

a lysine residue at position 81.   

We found no significant relationship between the whole sequence of greglin and any of the

protease inhibitors searching the MEROPS database [23]. However using only part of the

sequence (residues P26 to C69), the program retrieved two putative inhibitors from Ciona

intestinalis (O97362) and from Drosophila melanogaster (Q9VE57) which share 38% and 36%

homology, respectively, with this part of the greglin sequence.

We tentatively aligned the greglin sequence with those of these two peptides and with ovomucoid

domain 3 (OMTKY-III), a typical Kazal inhibitor [24], and with the Kazal-related peptide PEC-

60 [25], identified by fold recognition methods as the closest structural homologue to greglin (see
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next paragraph). The best scores were obtained with the C intestinalis and D melanogaster

peptides; these were the only two that gave significant E-values (Table I).  However, only three

of six Cys residues in greglin aligned with those in the Kazal-related molecules (Figure 1C). This

suggests a different disulfide bridge pattern, but we failed to identify this pattern due to the

resistance of greglin to proteolysis. We then used computer-based structural studies to tentatively

assign greglin to a family of peptidase inhibitors.

 Secondary and tertiary structure predictions:

The secondary structure elements of the full-length greglin sequence (83 amino acids) were

predicted using 7 different programs (Fig. 2A). All the programs except SABLE agreed on the

presence of three main beta strands in greglin at positions 27-35, 41-45 and 59-64. They also

predicted an alpha helix starting at R66 up to L76. The characteristic scaffold of the Kazal family

of inhibitors consists of a central alpha helix, an adjacent three-stranded beta-sheet and a

proteinase-binding loop cross-connected through disulfide bridges 1-5, 2-4 and 3-6, whereas

inhibitors of the pacifastin family have beta strands only as secondary structure elements [26].

The predicted secondary structure of greglin is thus more closely related to that of Kazal

inhibitors than to that of pacifastin inhibitors.

Because few sequence homologies were found by searching sequence databases (max 38%), we

used protein fold recognition methods via the “GeneSilico” metaserver.  The folding of greglin is

predicted to contain alpha helices and beta sheets (“a+b” group of the SCOP classification;

http://scop.mrc-lmb.cam.ac.uk/scop/). Most of the fold-recognition programs identified PEC-60

(PDB ID: 1PCE) as the closest structural homologue of greglin. Intermediate models (those not

containing the variable loops) that correspond to the best hits of the fold recognition searches

were aligned structurally to PEC-60 using the tool “Domain fit” of “SwissPdbViewer“ (Fig 2B).

The cores are readily superimposed, but there are deviations in the loops and the N-terminal

region of 1PCE could only be aligned with one model (Figure 2C). We manually improved the

structural alignment of greglin using insertions and deletions (Figure 2B). However, only one

disulfide bridge was generated by this approach while there are 3 disulfide bridges in the folds of

the Kazal-type inhibitors. Therefore, greglin appears to be only distantly related to the Kazal-type

inhibitors and it could well have a novel folding pattern.

Biochemical Journal Immediate Publication. Published on 13 Jul 2006 as manuscript BJ20060437

Copyright 2006 Biochemical Society



12

Inhibition of serine proteases by greglin

The inhibitory activity of greglin was assayed toward a series of serine protease to delineate its

specificity. In addition to PPE used to monitor its purification, those included the related human

neutrophil proteases Cat G and protease 3, porcine trypin, bovine pancreatic chymotrypsin and

subtilisin Carlsberg. Preliminary experiments showed that both greglin isoforms reacted similarly

with the enzymes tested, so that both were equally used in the following kinetic experiments.

Preliminary experiments also showed that HNE forms a much tighter complex with greglin than

does PPE. We used this property to titrate the inhibitor. Increasing quantities of the inhibitor were

reacted with 0.38 µM HNE as describe in the experimental section. The residual enzyme activity

decreased linearly with the greglin concentration up to about 90 % inhibition, indicating that the

inhibitor binds the enzyme tightly under the experimental conditions used (Figure 3), and

suggesting a value of Ki at least two orders of magnitude lower than the HNE concentration used,

in accordance with theory [20]. This experiment could not be used to determine Ki but allowed

accurate titration of the inhibitor by fitting the data of the linear portion of the curve to the best

theoretical straight line, whose intercept with the x axis was used to calculate the concentration of

the active greglin (Figure 3A). Since the present titration data could not be used to measure Ki,

the equilibrium dissociation constant for the greglin : HNE complex, this parameter was obtained

from kass and k diss, the association and dissociation rate constants. These parameters were

measured using the progress curve method. Enzyme and inhibitor were reacted under pseudo-first

order conditions ([I]0 ≥ 10 x [E]0) in the presence of 0.2 mM MeOsuc-(Ala)2-Pro-Ala-TBE with

stopped flow mixing and detection. The rate of HNE inhibition was investigated at various

inhibitor concentrations (Figure 3B).

The inset of Figure 3B shows a typical progress curve used to follow the time course of HNE

inhibition. In all cases a pre-steady-state of product accumulation preceded its release at a

constant rate, indicating a reversible interaction between enzyme and inhibitor. Non-linear

regression analysis of the progress curves (Figure 3B) yielded k, the apparent pseudo-first order

rate constant for the approach to equilibrium [20].

k increased linearly as a function of the inhibitor concentration (Fig 3B), suggesting that no

reaction intermediate accumulates over the range of inhibitor concentrations used. Inhibition was

therefore analysed assuming that HNE and greglin associate via a simple bimolecular
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mechanism: the second order rate constant kass was calculated from the slope of the straight line

on Figure 3B, its intercept with the ordinate yielding kdiss. We found kass = 1.23 ± 0.16 x 107 M-

1.s-1 and kdiss = 0.043 ± 0.010 s-1. Ki = 3.49 ± 1.25 x 10-9 M was deduced from Ki = kdiss/kass..

The Ki for the complexes between greglin and the other enzymes were obtained from

equilibrium titration experiments with experimental conditions compatible with concave

inhibition curves. The effects of increasing greglin concentrations on PPE activity (18 nM final)

are illustrated in Figure 4. The residual enzyme activity was assessed by adding the substrate

(Suc-(Ala)3-p-NA) to the equilibrium reaction mixtures. The rate of product release accelerated

for about 30 s and reached a steady state. This time course of substrate breakdown indicates three

things: first, that the enzyme partially dissociates from a reversible complex with inhibitor as a

result of disturbance by substrate of the initial equilibrium; second, that substrate and inhibitor

compete for binding to PPE; and third, that a new equilibrium between PPE, greglin, substrate

and their complexes is reached. The plot of the steady state rate of substrate hydrolysis versus the

inhibitor concentration was analyzed [16] to obtain Ki(app), the substrate-dependant equilibrium

dissociation constant for  the greglin : PPE complex  (Figure 4). The true Ki value was obtained

from K i = Ki(app)/(1+[S]0/Km), where [S]0 is the initial substrate concentration and Km the

Michaelis constant obtained by classical means.

This procedure was used to study the interaction of greglin with bovine chymotrypsin, subtilisin

Carlsberg and the human cathepsin G. The Ki for all enzyme : inhibitor pairs are shown in Table

II. Porcine trypsin and protease 3 were not inhibited under these conditions.  

Greglin physicochemical properties

Resistance to proteolysis: Greglin was incubated with HNE and PPE at low pH to locate the

enzyme-binding site   through a peptide bond cleavage [22]. Sequence analysis of the rp-h.p.l.c.-

fractionated mixtures revealed that greglin had been N-terminally truncated at E10, Q12 and L27

by PPE and at M14 by HNE. The N-terminally cleaved inhibitor (minus 26 residues) retained full

inhibitory activity towards PPE or HNE at pH 7.4. The observation that P1-P26 N-terminal

segment is not involved in inhibition agrees with the total lack of homology between this

segment and the sequences of other protease inhibitors.

Native greglin was also incubated with other proteases, including serine (trypsin and Glu-C),

cysteine (papain) and metallo (pseudolysin) proteases, at various molar ratio. The resulting
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mixtures were fractionated by rp-h.p.l.c. and the main peaks sequenced and analysed for their

HNE-inhibitory properties. Again the cleavage sites were located within the N-terminal segment

(P1-P26), except that trypsin cleaved at K81 before the penultimate C-terminal residue of the

protein. Greglin remained a potent HNE inhibitor even after prolonged incubation and

fractionation by rp-h.p.l.c., whatever the protease used.  We conclude that N-terminal (minus 26)

and C-terminal (minus 3) truncations of greglin do not alter its inhibitory properties.

The resistance of greglin anti-HNE activity to pseudolysin was also compared to that of α1-Pi, the

major physiological inhibitor of HNE. Figure 6A shows the effect of incubating greglin and α1-PI

with various amounts of pseudolysin for 15 min on their anti-HNE activity. Greglin retained most

of its inhibitory capacity even at the highest enzyme concentration used, whereas α1-Pi activity

was reduced by 80 %  at E = 50 nM or completely lost  at E = 500 nM (Figure 5A).

pH and temperature stability: The recovery of inhibitory activity after rp-h.p.l.c. demonstratesd

that the two forms of greglin resist denaturation by acid and acetonitrile. We investigated the

resistance of the inhibitor to low and high pH by incubating it overnight at pH 2.5 and at pH 11.0.

The inhibitory properties were not significantly altered (Figure 5B). Similarly, we found no

significant loss of activity when the inhibitor was incubated in hepes buffer for one hour at

temperatures from 37 to 90°C (data not shown).

Sensitivity to oxidation and reduction : Chemical and physiological oxidizing system can alter the

biological activity of many proteins by converting their exposed methionyl residues to

methionine sulfoxide. This can dramatically lower the activity of protein protease inhibitors,

especially those having a methionyl residue at position P1 or P1’ of their reactive site [27-29].

Since greglin contains 3 methionyl residues, its activity might be altered by oxidants. The

inhibitor was incubated with N-chlorosuccinimide and its oxidation checked by mass

spectrometry. The observed molecular mass was consistent with the oxidation of the three Met

residues but HNE-inhibitory capacity of oxidized greglin  was unaltered (Figure 5C). This

absence of significant change in the greglin anti-HNE property suggests that no methionyl

residue occupies a critical position in the inhibitor reactive site. But greglin lost all its inhibitory

capacity once its disulfide bridges had been reduced by 10mM dithiothreitol and alkylated with

iodoacetamide. The greglin tertiary structure therefore is essential for inhibition, which suggests

that the sequence from the first to the last Cys residues (Cys33 to Cys76) is required for

inhibitory activity.
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Iinhibition of HNE in cystic fibrosis sputum: Purulent sputum is a complex biological medium

containing elements (oxidants, proteolytic enzymes) able to depress the activity of local

physiological inhibitors [30]. We reacted increasing amounts of greglin with fixed amounts of

cystic fibrosis sputum supernatant to delineate the anti-HNE efficiency of the inhibitor in sputum.

The remaining HNE-activity was measured by adding the fluorescent substrate Abz-

APEEIMRRQ-EDDnp to the equilibrium mixtures. The relative enzyme activity decreased

curvilinearly with the quantity of inhibitor (Figure 6), as anticipated from the Ki value in hepes

buffer (Table II), the greglin concentration, and the protease concentration (30nM) that gave a

[HNE]/Ki ≈ 8.5 [16]. Since inhibition of HNE by greglin in sputum is best described by the Ki

measured in this environment, we analyzed the inhibition data as indicated in the legend of figure

4 to determine this parameter. The concave inhibition curve shown in figure 6 was generated

using the best estimate of Ki(app). After correction for the substrate (Km = 15 µM, determined by

classical methods), we found Ki = 3.1 ± 0.43 nM, a value close to that determined by stopped-

flow kinetics with the purified enzyme:inhibitor system. Thus the sputum components did not

inactivate the anti-HNE function of greglin during the time of the experiment and did not

dissociate the enzyme-inhibitor complex.

 

 DISCUSSION

 

Anti inflammatory therapy using protease inhibitors has long been suggested as an efficient

means of controlling the unopposed proteolytic activity that occurs at inflammatory sites.

Neutrophil elastase is one of the main proteases released from activated and dying PMNs and it is

involved in tissue destruction and inflammation.  A variety of natural, recombinant and synthetic

inhibitors have been used as anti-inflammatory drugs to target HNE but the results to date have

not been entirely satisfactory [1]. New elastase inhibitors that have different structural and/or

physicochemical properties from those described so far could lead to new, therapeutically useful

elastase inhibitors.

Arthropods and other invertebrates are a rich source of protease inhibitors.  Several belonging to

the Kunitz and serpin families have been isolated, especially from haemolymph [31]. Two new
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families of low molecular weight serine protease inhibitors were discovered recently: one in

silkworms [32] and the other in locusts [6, 7, 17 , 33]  and crayfish [34]. The function of these

serine protease inhibitors and their distribution in invertebrate, especially arthropods, remains a

matter of debate; but this could be due to the far larger number of serine proteases in insects than

in human and other vertebrates [4]. Five serine protease inhibitors, designated SGPI 1-5, have

been isolated from the ovaries of the locust (S. gregaria) [7]; they are members of the pacifastin

family of peptidase inhibitors. These low Mr (about 35 residues) inhibitors are found only in

invertebrates and they all have a similar cysteine array [5]. Aqueous homogenates of mature

locust ovaries also contain potent trypsin, chymotrypsin and elastase inhibitory activities. The

trypsin and chymotrypsin inhibitor is a 14 kDa, heat stable peptide that has been purified and

characterized [8], but the protein(s) responsible for the anti-elastase activity is still unidentified.   

The protease inhibitors we have purified from the locust ovary are two forms of a single protein,

greglin. They have similar inhibitory behaviors towards all the tested proteases. Greglin

reversibly inhibits enzymes of the elastase and chymotrypsin families. It forms tight complexes

with subtilisin and HNE, but has no effect on the activities of trypsin or protease 3. To our

knowledge, no other potent HNE inhibitor has been purified from locusts. Most of the known

locust inhibitors belong to the pacifastin family and preferentially inhibit trypsin and

chymotrypsin [8, 17]. The sequence of greglin is only distantly related to that of any other

protease inhibitor. The putative Kazal-type inhibitor of Ciona intestinalis is the most closely

related, as the C-terminal region of the sequence is 38% homologous. The function of the greglin

N-terminal extension that takes no part in inhibition remains unexplained, but its sensitivity to

proteolysis contrasts with that of the inhibitory C-terminal domain. Though this domain has some

physicochemical properties in common with members of other low Mr inhibitors, it also has

features that can be exploited in drug development.

The stopped–flow kinetics of HNE inhibition by greglin show that the latter is a fast acting

inhibitor that binds the enzyme via a simple bimolecular mechanism under the experimental

conditions used. The HNE : greglin complex formation is governed by the second order rate

constant kass = 1.23 x 107 M-1s-1, a value that is similar to, or higher than that reported for the

main physiological inhibitors of this enzyme: α1-PI (1.3 x 107 M-1s-1
 [35], which irreversibly

inhibits its target proteases, and the reversible inhibitors SLPI (6.4 x 106 M-1s-1
 [36]) and elafin
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(3.6 x 106 M-1s-1 [37]). The rate of HNE inhibition by greglin is also similar to that measured for

eglin c (kass = 1.3 x 107 M-1s-1 [38]), another elastase inhibitor from the leech. The Ki for the HNE

: greglin complex is significantly higher than those for the interactions between HNE and the

reversible inhibitors SLPI (0.3 nM [36] and elafin (0.2nM [37]). Despite this relatively low

affinity, greglin concentrations of about 10-8 molar efficiently inhibit the elastase activity in

purulent sputum.

Greglin also resists oxidation, while α1-PI, SLPI and elafin, the major protease inhibitors of the

lung, do not. The HNE-inhibitory activity of these three human proteins is reduced by their

interaction with the oxidant species produced by the myeloperoxidase – hydrogen peroxide

system of triggered neutrophils [39], or with N-chlorosuccinimide [27, 28]. Oxidative

inactivation of the inhibitors is due to the conversion of a methionyl residue involved in protease

binding to methionine sulfoxide. As greglin is not inactivated by incubation with N-

chlorosuccinimide, it probably has no methionyl residue in such a critical position (P1 or P’1) in

its reactive site. This also suggests that greglin would retain its anti-elastase activity in a chronic

inflammation environment with high concentrations of oxidant species and lysosomal proteinases

produced by continuously recruited neutrophils.

Pseudolysin, a metalloenzyme that contributes to the virulence of P aeruginosa, can break down

many proteins, including α1-PI and secretory leukocyte protease inhibitor.  Both inhibitors are

inactivated by limited cleavage in their reactive site regions [40, 41]. This mechanism, in which

inhibitors behave as substrates, may cause a significant loss of active inhibitors and promote the

breakdown of lung connective tissues by neutrophil proteases. We find that greglin resists

inactivation by several proteolytic enzymes, including high concentrations of trypsin, papain and

pseudolysin. This is important for the development of a therapeutic system, since P aeruginosa

infection accompanies the inflammation of airways in patients with cystic fibrosis [42].

The predicted secondary and tertiary structures suggest that greglin is more closely related

to the Kazal inhibitors than to pacifastin inhibitors. However the distribution of Cys residues

within the greglin sequence does not fit the disulfide pattern found in classical Kazal inhibitors,

which all contain three disulfide bridges. Though the inhibitory site of Kazal inhibitors lies

within the Cys2-Cys4 disulfide loop, computer-based analysis predicts that the greglin inhibitory

site lies in the N-terminal extended strand, part of which is not necessary for inhibition. We

therefore believe that greglin is folded in a manner different from that of classical Kazal-type
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inhibitors. However, non-classical Kazal-type inhibitors with different folding [43] or different

positioning of their cysteine residues [44] have been described. Our results and observations

suggest that it is difficult to assign a fold to the greglin sequence using computer-based methods

alone. For example, none of the ab initio models constructed by the Robetta server

(http://robetta.bakerlab.org/) was folded like any known inhibitor (not shown).

The resolution of the greglin 3D structure or the production of recombinant forms with single

mutation points at the putative inhibitory site will be needed before we can assign this inhibitor to

a family and understand the molecular basis of its physicochemical properties.
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 Figure Legends

Figure 1:  Purification of greglin: (A) SDS gel electrophoresis of purified greglin after ion

exchange chromatography (B) Complete amino-acid sequence of greglin obtained from N-

terminal sequencing of overlapping peptides produced by chemical and proteolytic cleavages

followed by rp-h.p.l.c separation of each greglin isoform after reduction and alkylation.

Proteolytically-cleaved and chemically-cleaved fragments are underlined.

(C)Alignment of the sequences of greglin (gre) and kazal-related homologues calculated using T-

coffee (http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi)[45]. (OMTKY-III (turkey

ovomucoid domain 3) (ovo), porcine PEC-60 (pec), C intestinalis  (cio) and D melanogaster

(dro)). The inhibitory site of OMTKY-III (P4 to P3') is underlined. The scores resulting from the

the multiple sequence analysis are identified as bad, average and good.

Figure 2: Prediction of the greglin secondary and tertiary structures :

(A) The full amino acid sequence of greglin is displayed on the first line. Each of the other 7 lines

reports the secondary structure predicted by the different programs used. The residues predicted

to be involved in beta-strands are annotated with the letter “E “. The residues that are predicted to

be in helical regions are annotated with the letter “H”.

 (B) Fold recognition sequences and fold recognition structural alignments.  Sequence alignments

were based on the structural alignment between 1PCE and a subset of “intermediate” models

generated by the Genesilico server from the best hits of the fold recognition search. The first line

is the greglin sequence, which was fitted manually to the template structure (1PCE). The

identifier at the beginning of each line refers to the program (ffas, inbgu, sam) and the structure

(1PCE, 1BUS, 1OVO, 1ROT) used to build each of the  “intermediate” models.

SwissPdbViewer (Domain Fit) was used to calculate the structural superimposition and generate

the corresponding alignment. Residues in light grey are the residues of the intermediate models

that were aligned with those of the template 1PCE by the fitting operations.
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(C) Superimposition of PEC-60 (1PCE, black) and the 6 best intermediate models for the greglin

sequence.   Only the carbon-alpha (traces) of the polypeptides are displayed. The colors used are

as follows: ffas-1HPT, yellow; inbgu-1BUS, green; ingbu-1OVO, purple; sam-1ROT, blue. The

structures corresponding to ffas-1PCE and ingbu-1PCE can be superimposed on those

represented, and are not visible. The secondary structures of the template 1PCE are identified by

the letter “H” for the alpha helix and “β” for the beta-strands.

 

Figure 3:

(A) Effect of increasing quantities of greglin on the activity of 0.38 µM HNE. The enzyme

relative activity is the ratio of the steady state rate of Suc-(Ala)3-p-NA hydrolysis (see text)

measured in the presence of inhibitor to the rate measured in its absence. The straight line drawn

through the data is theoretical. It shows that greglin titrates the enzyme under the experimental

conditions used. Its intercept with the x axis was used to calculate the concentration of the active

inhibitor.

(B) Linear dependence of k, the pseudo-first order rate constant for HNE inhibition as a function

of the greglin concentration, indicating that I and E interact according to a bimolecular

mechanism. kass and kdiss could therefore be obtained from a linear fit of the data to equation 1

[16].

€ 

k = kdiss + kass[I]0 1+ [S]0 /Km( ) (1)

The theoretical straight line shown was generated using the best estimate of kass and kdiss (1.23 ±

0.15 x 107 M-1.s-1 and 4.30 ± 0.97 x 10-2 s-1, respectively) with Km = 20.9 µM for the MeOsuc-

(Ala)2-Pro-Ala-TBE : HNE interaction.

Inset: stopped-flow trace showing product accumulation as a function of time for the reaction of

0.32 µM greglin with 30 nM HNE in the presence of 0.2 mM MeOsuc-(Ala)2-Pro-Ala-TBE. The

best estimate of the rate constant k was obtained, as published [16], by fitting the progress curve

data to equation 2:

[ ] ( ) ( )ktszs ekvvtvP −−−+= 1/ (2)

where [P] stands for the product concentration at any time t and  vz and vs are the velocity at t = 0

and the steady state velocity, respectively. The best theoretical curve represented by a smooth

line was generated with k = 0.45 ± 0.035 s-1, vz = 2.98 ± 0.14 µM.s-1 and vs = 0.29 ± 0.013 µM.s-1.
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Figure 4:

Effect of increasing quantities of greglin on the activity of 18 nM PPE. The residual enzyme

activity was measured with (Suc-(Ala)3-p-NA) as indicated in the text. Ki(app), the substrate-

dependant Ki, was obtained by fitting the experimental equilibrium titration data to equation 3

[16]:

( )( ) ( )( ) 000
2

appi00appi00 ][2][][4][][][][1 EIEKIEKIEa 



 −++−++−= (3)

where a is the enzyme relative activity as defined in the legend of figure 3. [E]0 and [I]0 are the

initial enzyme and inhibitor concentration, respectively. The theoretical curve was generated with

Ki(app) = 0.102 µM.

Figure 5 :

(A) Effect of pseudolysin on the anti-HNE activities of greglin and α1-Pi :  Inhibitors (4µM final)

were incubated with pseudolysin (0.5 nM-0.5 µM) as indicated in the text. Results show the

median and maximal values (n ≥ 2)

(B) Resistance of greglin activity to oxidation and acetonitrile: Greglin 2 (77 µM final) was

incubated with 125 µM N-chlorosuccinimide. Residual greglin inhibitory activity was then

measured and compared with those of the untreated inhibitor and inhibitor after rp-h.p.l.c. The

HNE concentration was adjusted so that inhibition by native greglin was incomplete (90%).

Results show the median and maximal values (n ≥ 2)

(C) Resistance of greglin activity to acid and base conditions: Solutions of purified greglin were

incubated at pH 2.5, pH 7.4 and pH 11.0 at 37°C overnight and their capacity to inhibit

neutrophil elastase measured. Results show the median and maximal values (n ≥ 2)

 Figure 6:

Inhibition of sputum elastase activity by greglin. Aliquots of homogenized sputum containing a

constant concentration of HNE were reacted with increasing quantities of greglin. The final

enzyme concentration (30nM) was estimated as described in the text and Abz-APEEIMRRQ-

EDDnp was used as the substrate. Under the experimental conditions used, the decrease of HNE

activity vs the inhibitor concentration is concave, therefore the data could be analyzed as
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described in the legend of figure 4 to obtain Ki(app). The curve was generated using equation 3 and

Ki(app) =  3.28 nM.

 Table I :

Sequence alignments of greglin residues P26 to C 69 with  Kazal-related inhibitors from Ciona

intestinalis (Swiss-Prot ID: 097362), Drosophila melanogaster (Swiss-Prot ID: Q9VE57), pig

PEC-60  (Swiss-Prot ID: P37109) and OMTKY3 (Swiss-Prot ID: P68390) (using the LALIGN

program from Fasta.E value* : homologous proteins were taken to be those for which the aligned

amino acid   sequences were related with an E value of 0.001 or less

sequence comparison % alignment E Value

greglin-O97362 36 0.0005

greglin-Q9VE57 33 0.00091

O97362-Q9VE57 27 0.014

greglin-P37109 34 1.7

Greglin-P68390 27 1.400
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Table II:

Equilibrium dissociation constant (Ki) for the interaction of greglin with the various proteases.

Enzyme Ki (nM)

PPE 58.3 ± 12

HNE 3.6 ± 2.1a

PR 3 NIb

cathepsin G 153.5 ± 10

chymotrypsin 26.7 ± 10.8

subtilisin 0.68 ± 0.10

trypsin NIb

acalculated from kass and kdiss (see text)
bNI, no inhibition
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                                                                      Chymotrypsin                                Chymotrypsin

                        10                       20                    30                         40                        50                       60                         70                        80
                                                                          SEDDGSVSPE  SQEMSYLELP  LPSISPLIYA  PVCVEDSNSD  FYLFVNECEV  KCGCEAGFV  YTFVPREMCK  ATTSLCPMQT  KSS                                  

                         Trypsin         Trypsin
                       CNBr                                                                                             CNBr

          

(C) BAD AVG GOOD

gre SEDD---GSVSPESQEMSVL-------------------------------------ELPLPSIS-------PLIYAPVCVEDSNSDFYLFVNECEVRKCGCEAGFVYTFVPREMCCPMQTKSS
ovo ---------------------------------DC---------------------SEYPKPAC--------TLEYRPLCGSDN----KTYGNKCNFCNAVVESNGTLTLSHFGKC--------
pec --------------------------------------------------KQVESRM----PICEHMTSPDCSRIYDPVCGTDG----VTYESECKLCLARIENKQDIQIVKDGEC--------
cio --------------------------------------------------------L----PKC----FIPCPRNINPVCGSDG-TNLVLYANECGMRVAACELGSTITEVDKATCFGRGN---
dro AQDELFRCSVQYKCSDVKELVAMSDERCHVFHNDCLLKVEQCARKNSGRSELIETTREICKPSCT---KECCPDIYDPVCAQIFQEEYLTFSNECEMRNYICTNERPYSFISVGECVG------

Brillard-Bourdet et al : Figure 1

(kDa)
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(A)

1   .   10     .  20     .  30     .  40    .   50    .   60    .   70    .   80
SEDDGSVSPESQEMSYLELPLPSISPLIYAPVCVEDSNSDFYLEVNECEVRKCGCEAGFVYTFVPREMCKATTSLCPMQTKSS
--------------EEEE--------EEEEEEEEE-----EEEEE---EEEE-------EEEE--HHHHHHHHHH--------    PSIPRED (1)
----------H-----E----------EEEEEEEE-----EEEEEE--E---------EEEEEE-HHHH--------------    SAM (2)
----------------HH---------EEEEEEEE-----EEEE-----HHH------EEEEEE-HHHHH-------------    JUFO (3)
--------------EE----------EEE--EEEE-----EEEEE---EE--------EEEEE--HHHHHHH-----------    SSPRO (4)
--------------------------------E-------EEEE---------------------HHHHH-------------    SABLE (5)
-------------EEEEE---------EE--EEEE-----EEEEEEEEEEEE------EEEEE--HHHHH-------------    PROFSEC (6)
---------------H-----------E-------------EEE--------------EEEE----HHHH-------------    NNPREDICT (7)

(B)

Greglin  SEDDGSVSPESQEM--SYLELPLPSISPLIYAP-VCVEDSNSDFYLFVNECEVRKCGCEAGF--VYTFVPREMCKATTSLCPMQT
1PCE     EKQVFSRMPICEHM-------TESPDCSRIYDP-VCGTDG--VTYE--SECKLCLARIENKQ--DIQIVKDGEC
ffas-1HPT                          SPLIYAP-VCVEDS--NSFV--NECEVRKCGCEAGF--VYTFVPREMC
ffas-1PCE                              YAP-VCVEDS--NSFV--NECEVRKCGCEAGF--VYTFVPREMC
inbgu-1BUS                       PISPLIYAP-VCDSNS--DFYL--NECEVRKCGCEAGF--VYTFVPREMC
ingbu-1OVO                        ISPLIYAP-VCDSNS--DFYL--NECEVRKCG--CEAGFVYTFVPREMC
ingbu-1PCE DDGSVSPESQEM-------PLPSISPLIYAP-VCDSNS--DFYL--NECEVRKCGCEAGF--VYTFVPREMC
sam-1ROT       EDDGSVSPESQEMSLPLPSISPLIYAP-VCNSDF--YLEV--NECEVRKCGCEAGF--VYTFV

(C)

Brillard-Bourdet et al : Figure 2

Biochemical Journal Immediate Publication. Published on 13 Jul 2006 as manuscript BJ20060437

Copyright 2006 Biochemical Society



[greglin] (μM)
0 0.4 0.8 1.2

k 
(s

-1
)

0

0.5

1

1.5

Time (s)
0 5 10 15A

bs
or

ba
nc

e 
at

 3
24

 n
m

0.2

0.3

0.4

A

B

[greglin]/[HNE] (M/M)
0 0.5 1 1.5

E
nz

ym
e 

re
la

tiv
e 

ac
tiv

ity

0

0.5

1

Brillard-Bourdet et al: figure 3
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Brillard-Bourdet et al: figure 4

Biochemical Journal Immediate Publication. Published on 13 Jul 2006 as manuscript BJ20060437

Copyright 2006 Biochemical Society



(C) native + hplc
native

oxidized + hplc
(B)

pH 2.5

pH 7.4

pH 11

(A) α1-Pigreglin
In

hi
bi

to
ry

 a
ct

iv
ity

 (
%

)

Pseudolysin (M)

0

20

40

60

80

100

5. 10-10 5. 10-9 5. 10-8 5. 10-7

In
hi

bi
to

ry
 a

ct
iv

ity
 (

%
)

0

20

40

60

80

100

0

20

40

60

80

100

In
hi

bi
to

ry
 a

ct
iv

ity
 (

%
)

Biochemical Journal Immediate Publication. Published on 13 Jul 2006 as manuscript BJ20060437

Copyright 2006 Biochemical Society



[greglin] (nM)
0 20 40

E
nz

ym
e 

re
la

tiv
e 

ac
tiv

ity

0

0.5

1

[greglin]/[HNE] (M/M)
0 0.5 1

Brillard-Bourdet et al: figure 6

Biochemical Journal Immediate Publication. Published on 13 Jul 2006 as manuscript BJ20060437

Copyright 2006 Biochemical Society




