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On some exotic Schottky groups

Marc Peigné (1)

May 2010

Abstract. We contruct a Cartan-Hadamard manifold with pinched negative curvature whose

group of isometries possesses divergent discrete free subgroups with parabolic elements who do not

satisfy the so-called “parabolic gap condition” introduced in [DOP]. This construction relies on

the comparaison between the Poincaré series of these free groups and the potential of some transfer

operator which appears naturally in this context.

1. Introduction

Throughout this paper, X will denote a complete and simply connected Riemannian
manifold of dimension N ≥ 2 whose sectional curvature is bounded between two negative
constants −B2 ≤ −A2 < 0. We denote by d the distance on X induced by the Riemannian
metric and by ∂X the boundary at infinity ; the isometries of X act as conformal transfor-
mations on ∂X when it is endowed by the so-called Gromov-Bourdon metric.

A Kleinian group of X is a non elementary torsion free and discrete subgroup Γ of
orientation preserving isometries of X ; this group Γ acts freely and properly discontinuously
on X and the quotient manifoldM := X/Γ has a fundamental group which can be identified
with Γ. One says that Γ is a lattice when the Riemannian volume of X/Γ is finite.

The limit set ΛΓ of a Kleinian group Γ is the least non empty Γ-invariant subset of ∂X
; this is also the set of accumulation points of some (any) orbit Γ · x of x ∈ X . This set is
of interest for further reasons ; in particular, if (φt)t denotes the geodesic flow on the unit
tangent bundle T 1(X/Γ) of X/Γ, its non-wandering set ΩΓ coincides with the projection on
T 1(X/Γ) of the set of unit tangent vectors on X whose points at infinity in both directions
belong to ΛΓ.

Note that the convex-hull C(ΛΓ) of ΛΓ is a Γ-invariant closed subset of X and that the
projection of ΩΓ onto the manifold X/Γ is in fact equal to C(ΛΓ)/Γ.The group Γ is said con-
vex cocompact when it acts co-compactly on C(ΛΓ) and more generally geometrically finite
when it acts like a lattice on some (any) ǫ-neigbourhood Cǫ(ΛΓ) of C(ΛΓ) (in otherwords,
when vol(Cǫ(ΛΓ)/Γ) < +∞ for some (any) ǫ > 0).

It is shown in [1] that the existence and unicity of a measure of maximal entropy
for the geodesic flow restricted to ΩΓ is equivalent to the finiteness of a natural invariant
Radon measure on T 1(X/Γ) with support ΩΓ, the so-called Patterson-Sullivan measure
mΓ. In this paper, we construct examples of isometry groups Γ for which the restriction of
the geodesic flow (φt)t to the set ΩΓ exhibits particular properties with respect to ergodic
theory. In particular, for those groups, the Patterson-Sullivan measure may be infinite and
the associated dynamical system (φt,ΩΓ) will thus have no measure of maximal entropy.

We now recall briefly the construction of the Patterson-Sullivan measure associated
with a Kleinian group Γ. The critical exponent of Γ is the exponential growth of its orbital
function defined by

δΓ := lim sup
r→∞

1

r
log card{γ ∈ Γ/d(x, γ · x) ≤ r}.

It does not depend on x ∈ X and coincides with the exponent of convergence of the Poincaré
series of Γ defined by PΓ(s,x) :=

∑

γ∈Γ e
−sd(o,γ·o) ; this series converges if s > δΓ and

diverges when s < δΓ. The group Γ is divergent when the Poincaré series diverges at the
critical exponent ; otherwise Γ is convergent.

A construction due to Patterson in constant curvature provides a family of δΓ-conformal
measures σ = (σx)x∈X supported on the limit set ΛΓ. D. Sullivan showed also how to assign
to σ an invariant measure for the geodesic flow (φt)t restricted to ΩΓ. This construction
has been extended by several people to the situation of a variable curvature space X and
an arbitrary Kleinian group Γ acting on it [K1], [Y].
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It is important to recall that the family of measures σ associated with Γ is unique if and
only if Γ is divergent (see [Ro] for a complete statement). In this case, the corresponding
(φt)t-invariant measure constructed by Sullivan depends only on Γ, it is the Patterson-
Sullivan measure mΓ of Γ.

We review now some basic results concerning the finiteness of the measure mΓ. When
Γ is convex-coccompact, this measure is of course finite since it is a Radon measure with
compact support. The same property holds when Γ is a geometrically finite group acting
on a locally symmetric space [Su2], [CI] ; nevertheless, there exist non-geometrically finite
groups with finite Bowen-Margulis measure [P].

The situation is much more complicated in the general variable curvature case, even for
geometrically finite groups, because of the existence of parabolic subgroups.

There exist in particular criteria which ensure that a geometrically finite group Γ is
divergent, for instance when its Poincaré exponent δΓ is strictly greater than the one of each
of its parabolic subgroups [DOP, Théorème A]. This is the so-called parabolic gap condition
(PGC), which is satisfied in particular when the parabolic subgroups of Γ are themselves
divergent. Furthermore, the Patterson-Sullivan measure mΓ of a divergent geometrically
finite group Γ is finite if and only if, for any parabolic subgroup P of Γ, one has

(1)
∑

p∈P
d(o, p · o)e−δPd(o,p·o) < +∞,

where δP denotes the critical exponent of P [DOP, Théorème B] ; this holds in particular
when the critical gap property is satisfied and in this case, by the Poincaré recurrence
theorem, the geodesic flow (φt)t is completely conservative with respect to mΓ.

When Γ is convergent, the Patterson-Sullivan measure mΓ is infinite and the geodesic
flow (φt)t is completely dissipative with respect to mΓ. On may choose the metric in such a
way there exist non elementary geometrically finite groups of convergent type ; in this case,
the parabolic gap condition is not satisfied and the parabolic subgroups of Γ of maximal
Poincaré exponent are convergent. In [DOP] an explicit construction of such groups is
proposed.

As far as we know, there were no examples of geometrically finite groups Γ of divergent
type which do not satisfy the critical gap property ; this contruction is really of interest
because it gives examples of geometrically finite manifolds for which the geodesic flow is
completely conservative with respect to mΓ but this measure is infinite. We have the

Theorem 1.1. There exist Hadamard manifolds with pinched negative curvature whose
group of isometries contains geometrically finite Schottky groups Γ of divergent type which
do not satisfy the parabolic gap condition PGC. Furthermore, the Patterson-Sullivan measure
mΓ may be finite or infinite.

The paper is organized as follows : Section §2 deals with the construction of convergent
parabolic groups ; we recall in particular the results presented in [DOP]. Section §3 is de-
voted to the construction of Hadamard manifolds containing convergent parabolic elements
and whose groupe of isometries is non elementary. In section §4 we construct Schottky
groups with convergent parabolic factor and we explain how to choose the metric inside the
corresponding cuspidal end to prove Theorem 1.1.

We fix here once and for all some notation about asymptotic behavior of functions :

Notations 1.2. Let f, g be two functions from R+ to R+. We shall write f
c
� g (or simply

f � g) when f(R) ≤ cg(R) for some constant c > 0 and R large enough. The notation

f
c
≍ g (or simply f ≍ g) means f

c
� g

c
� f.

Analogously, we whall write f
c
∼ g (or simply f ∼ g) when |f(R)− g(R)| ≤ c for some

constant c > 0 and R large enough.

2. On the existence of convergent parabolic groups

2.1. The real hyperbolic space. We first consider the real hyperbolic space of di-
mension N ≥ 2, identified to the upper half-space HN := RN−1 × R∗+. In this model,
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the Riemannian hyperbolic metric is given by
dx2 + dy2

y2
where dx2 + dy2 is the classical

euclidean metric on RN−1 × R∗+. We denote by i the origin (0, · · · , 0, 1) of HN and by ‖.‖
the euclidean norm in RN .

Let p be a parabolic isometry of HN fixing∞ ; its induces on RN−1 an euclidean isometry
which can be decomposed as the product p = Rp ◦ Tp = Tp ◦ Rp of an affine rotation Rp
and a translation Tp with vector of translation ~sp. By an elementary calculous in hyperbolic
geometry, one may check that the sequence (d(i, pn · i)− 2 lnn‖~sp‖)n≥1 converges to 0. The
Poincaré exponent of the group 〈p〉 is thus equal to 1

2 and 〈p〉 is divergent.

More generally, for any parabolic subgroup P of the group of isometries of HN , the
sequence (d(i, p · i) − 2 ln ‖~sp‖)p converges to 0 as p → ∞ in P . By one of Bieberbach’s
theorems, the group P contains a finite index abelian subgroup Q which acts by translations
on a subspace Rk of RN−1 ; in other words, there exist k linearly independant vectors
~s1, · · · , ~sk and a finite set F ⊂ P such that any p ∈ P may be decomposed as p = pn1

~s1
· · · pnk

~sk
f

with n1, · · · , nk ∈ Z and f ∈ F so that

PP(s) = 1 +
∑

p∈P∗

e−sd(i,p·i) = 1 +
∑

p∈P∗

eso(p)

‖~sp‖2s

= 1 +
∑

f∈F

∑

n̄=(n1,··· ,nk)∈(Zk)∗

eso(n)

‖n1~s1 + · · ·+ nk~sk‖2s
.

The Poincaré exponent of P is thus equal to k
2 and the group is divergent.

All these calculous may be done in the following (less classical) model : using the natural
diffeomorphism between HN and RN defined by (x, y) 7→ (x, t) := (x, ln y) one may endow
RN with the hyperbolic metric ghyp := e−2tdx2 + dt2.

In this model, we fix the origin o = (0, · · · , 0) and the vertical lines {(x, t)/t ∈ R} are
clearly geodesics. For any t ∈ R, we denote by Ht the hyperplane {(x, t) : x ∈ RN−1} ;
this corresponds to the horosphere centered at +∞ and passing through (0, · · · , 0, t). For
any x, y ∈ RN−1, the distance between xt := (x, t) and yt := (y, t) for the metric e−2tdx2

induced by ghyp on Ht is equal to e−t‖x − y‖ ; furthermore, if t is choosen in such a way
that this distance is equal to 1 (namely t = ln ‖x − y‖), then the union of the 3 segments
[x0,xt], [xt,yt] and [yt,y0] lies at a bounded distance of the hyperbolic geodesic joigning x0

and y0 which readily implies that d(x0,y0)− 2 ln ‖x− y‖ is bounded.
This crucial fact is the key to understand geometrically the estimations above ; it first

appeared in [DOP] and allowed the authors to construct negatively curved manifolds with
convergent parabolic subgroups, we recall in the following subsection this construction.

2.2. The metrics Ta,u on RN . We consider on RN−1×R a Riemannian metric of the
form g = T 2(t)dx2 + dt2, where dx2 is a fixed euclidean metric on RN−1 and T : R → R∗+

is a C∞ non-increasing function. The group of isometries of g contains the isometries of
RN−1 × R fixing the last coordinate. The sectionnal curvature at (x, t) = (x1, ..., xN−1, t)

does not depend on x : it is K(t) = −
T ′′(t)

T (t)
on any plane 〈

∂

∂Xi
,
∂

∂t
〉, 1 ≤ i ≤ N − 1, and

−K2(t) on any plane 〈
∂

∂Xi
,
∂

∂Xj
〉, 1 ≤ i < j ≤ N − 1 (when N ≥ 2).

It is convenient to consider the non-decreasing function u : R∗+ → R satisfying the
following implicit equation

(2) T (u(s)) =
1

s
.

Then, the value of the curvature of g is :

(3) K(u(s)) := −
T ′′(u(s))

T (u(s))
= −

2u′(s) + su′′(s)

s2(u′(s))3
.

Note that g has negative curvature if and only if T is convex. For instance, we have seen
in the previous subsection that for u(s) = log s one gets T (t) = e−t and obtains a model of
the hyperbolic space of constant curvature −1.
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As it was seen in [DOP], the function u is of interest since it gives precise estimates (up
a bounded term) of the distance between points lying on the same horosphere Ht := {(x, t) :
x ∈ RN−1} where t ∈ R is fixed. Namely, the distance between xt := (x, t) and yt := (y, t)
for the metric T 2(t)dx2 induced by g on Ht is equal to T (t)‖x− y‖ ; for t = u(‖x− y‖), this
distance is thus equal to 1, and the union of the 3 segments [x0,xt], [xt,yt] and [yt,y0] lies
at a bounded distance of the hyperbolic geodesic joigning x0 and y0 (see [DOP], lemme 4)
: this readily implies that d(x0,y0)− 2u(‖x− y‖) is bounded.

In the sequel, we will assume that the function u coincides with the function s 7→ ln s
on ]0, 1] ; in otherwords, the restriction to the set ]0, 1] of the corresponding function Tu(t)
satisfying (2) is equal to t 7→ e−t. More generally, we will “enlarge ” the area where Tu(t)
and e−t coincides to the domain RN−1×]−∞, a] with a arbitrary, introducing the following

Notation 2.1. Let a ∈ R and u : R∗+ → R be a C2 non decreasing function such that

• u(s) = ln s for any s ∈]0, 1]
• K(u(s)) ∈ [−B2,−A2] ⊂ R∗− for any s > 0.

We endow RN−1 × R with the metric T 2
a,u(t)dx

2 + dt2, where Ta,u is given by

(4) ∀t ∈ R Ta,u(t) :=
{

e−t if t ≤ a
e−a

u−1(t− a)
if t ≥ a

.

Note that this metric has constant curvature −1 on the domain RN−1×]−∞, a].

2.3. On the existence of metrics with convergent parabolic groups. In this
paragraph, we fix a ∈ R and endow RN−1 × R with the metric T 2

a,u(t)dx
2 + dt2 where

u(s) = ln s+ α ln ln s for s large enough and some constant α > 0 ; in this case, the
curvature varies, nevertheless one has lim

s→∞
K(u(s)) = −1 and all derivatives of K(u(s))

tend to 0 as s→ +∞ . We will first need the following

Lemma 2.2. Fix κ ∈]0, 1[. For any α ≥ 0, there exists a constant sα ≥ 1 and a non
decreasing C2 function uα : R∗+ → R such that

• uα(s) = ln s if 0 < s ≤ 1
• uα(s) = ln s+ α ln ln s if s ≥ sα.

• K(uα(s)) := −
2u′α(s) + su′′α(s)

s2(u′α(s))
3

≤ −κ2.

Proof. We first fix a C2 non decreasing function φ : R → [0, α], which vanishes on R− and
is equal to α on [1,+∞[. For any ǫ > 0, we consider the function vǫ : [e,+∞[→ R defined
by

∀s ≥ 1 vǫ(s) := ln s+ φǫ(s) ln ln s

where φǫ(s) := φ(ǫ ln ln s). A straightforward computation gives, for any s ≥ e

2v′ǫ(s) + sv′′ǫ (s)

s2(v′ǫ(s))
3

=
Nǫ(s)

Dǫ(s)

with

• Nǫ(s) := 1 +
φǫ(s)

ln s
−

φǫ(s)

(ln s)2
+ 2φ′ǫ(s)

(

s ln ln s+
s

ln s

)

+ φ′′ǫ (s)s
2 ln ln s,

• Dǫ(s) :=
(

1 +
φǫ(s)

ln s
+ φ′ǫ(s)s ln ln s

)3

,

• φ′ǫ(s) =
ǫ

s ln s
φǫ(s) and φ

′′
ǫ (s) =

ǫ2 − ǫ(1 + ln s)

(s ln s)2
φǫ(s).

For any continuous function g : [e,+∞[ converging to 0 at infinity, one gets gφǫ → 0
uniformly on [e,+∞[ ; consequently, one obtains, as ǫ→ 0 and uniformly on [e,+∞[

φ′ǫ(s)
(

s ln ln s+
s

ln s

)

= ǫ
( ln ln s

ln s
+

1

(ln s)2

)

φǫ(s) → 0
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and

φ′′ǫ (s)s
2 ln ln s =

ln ln s

(ln s)2

(

ǫ2 − ǫ(1 + ln s)
)

φǫ(s) → 0,

so that
2v′ǫ(s) + sv′′ǫ (s)

s2(v′ǫ(s))
3

→ 1. One may thus choose ǫ0 > 0 such that

∀s ≥ e −
2v′ǫ0(s) + sv′′ǫ0(s)

s2(v′ǫ0(s))
3

≤ −κ2

and one sets

uα(s) :=
{ ln s if 0 < s ≤ e
vǫ0(s) if s ≥ e,

with sα := exp(exp(1/ǫ0)). �
We thus fix a, α ≥ 0 and endow RN = RN−1 × R with the metric T 2

a,uα
(t)dx2 + dt2

where uα is given by Lemma 2.2. This metric has pinched negative curvature less than −κ2

and constant negative curvature in the domain {(x, t) : t ≤ a}.
Now, let P be a discrete group of isometries of RN−1 of rank k ∈ {1, · · · , N − 1}, i.e

generated by k linearly independent translations p~τ1 , · · · , p~τk in RN−1. In order to simplify
the notations, n̄ = (n1, · · · , nk) ∈ Zk will represent the translation of vector n1~τ1+· · ·+nk~τk
and |n̄| will denote its euclidean norm. These translations are also isometries of RN endowed
with the metric Ta,uα

(t)2dx2 + dt2 given above and the corresponding Poincaré series of P
is given by

PP(s) = 1 +
∑

p∈P∗

e−sd(o,p·o) = 1+
∑

n̄∈(Zk)∗

e−2sua,α(|n̄|)−sO(n̄)

= 1+
∑

n̄∈(Zk)∗

e−sO(n)

|n̄|2s
(

ln |n̄|
)2sα .

We have thus prove the

Proposition 2.3. Let RN be endowed with the metric T 2
a,uα

(t)dx2 + dt2 where uα is given

by Lemma 2.2. If P is a discrete group of isometries of RN−1 of rank k, its critical Poincaré
exponent is equal to k/2 ; furthermore, the group P is convergent if and only if α > 1.

Remark 2.4. One may also choose u is such a way that u−1(t) = et/2−
√
t. If r = 1,

the critical exponent of the associated Poincaré series is equal to 1
2 and the group P is also

convergent ; this last example appears in [Sch], where some explicit results are given, in
terms of the Poincaré series of the parabolic groups, which guarantee the equidistribution of
the horocycles on geometrically finite negatively curved surfaces.

3. Weakly homogeneous Hadamard manifolds of type (a, uα)

In the previous section, we have endowed RN with a metric Ta,u(t)
2dx2 + dt2 ; unfortu-

nately, in this construction, excepted for some particular choice of u, all the isometries fix the
same point at infinity and the group Is(RN ) is thus elementary. We need now to construct
an Hadamard manifold with a metric of this inhomogeneous type in the neighbourhood of
some points at infinity but whose group of isometries is non elementary.

3.1. Metric of type (a, u) relatively to some group Γ and some horoball H.

Consider first a non uniform lattice Γ of isometries of HN . The manifold M := HN/Γ has
finite volume but is not compact ; it thus possesses finitely many cusp C1, · · · , Cl, each cusp
Ci being isometric to the quotient of some horoball Hi of H

N (centered at a point ξi) by a
Bieberbach group Pi with rank N − 1. Each group Pi also acts by isometries on RN−1 ×R

endowed with one of the metrics Ta,u(t)
2dx2 + dt2 given by Notation 2.1.

Now, we endow RN−1 × R with one of these metrics Ta,u(t)
2dx2 + dt2 and choose a in

such a way we may paste the quotient (RN−1 × [0,+∞[)/P1 with M \C1. The Riemannian
manifold M remains negatively curved with finite volume. By construction, the group Γ
acts isometrically on the universal covering X ≃ RN of M endowed with the lifted metric
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ga,u ; note that ga,u coincides with the metric T 2
a,u(t)dx

2 + dt2 on the preimage by Γ of the

cuspidal end C1
(2).

All this discussion gives sense to the following definition :

Definition 3.1. Fix a, α ≥ 0, let uα be the function given by Lemma 2.2 and (X, g) a
negatively curved Hadamard manifold whose group of isometries contains a non uniform
lattice Γ.

Assume that X/Γ has one cusp C, let P be a maximal parabolic subgroup of Γ corre-
sponding to this cusp, with fixed point ξ and let H be an horoball centered at ξ such that the
γ · H, γ ∈ Γ, are disjoints or coincide.

One endows the manifold X with the metric ga,u defined by

(1) ga,u has constant curvature −1 outside the set
⋃

γ∈Γ γ · H

(2) ga,u coincides with the metric Ta,u(t)
2dx2 + dt2 inside each horoball γ · H, γ ∈ Γ.

One says that the Riemannian manifold (X, ga,u) has type (a, u) relatively to

the group Γ and the horoball H. More generally, one says that (X, g) has type u
when, for some a ∈ R, some lattice Γ and some horoball H, it has type (a, u) relatively to Γ
and H.

Remark 3.2. If the metric g has type (a, u) relatively to Γ and H, the curvature remains
equal to −1 in the stripe RN−1 × [0, a] ⊂ H. In the limit case “a = +∞”, one refinds the
hyperbolic metric of constant curvature −1.

By construction, the elements of Γ are isometries of (X, ga,u). It is a classical fact that
the group of isometries of HN is quite large since in particular it acts transitively on the
hyperbolic space (and even on its unit tangent bundle). This property remains valid when X
is symmetric, otherwise its isometry group is discrete ([E], Corollary 9.2.2) ; consequently, if
g has type (a, uα) with α > 0, the group of isometries of (X, g) does not inherit this property
of transitivity, it is is discrete and has Γ as finite index subgroup ([E], Corollary 1.9.34).

We fix now one and for once the following

Notation 3.3. From now on, we consider an Hadamard manifold X, with origin o, whose
group of isometries contains a non uniform lattice Γ ; we fix a maximal parabolic subgroup
P of Γ with fixed point ξ ∈ ∂X and an horoball H centered at ξ such that the horoballs
γ · H, γ ∈ Γ, are disjoints or coincide.

We fix α ≥ 0 and we assume that, for any a ≥ 0, the manifold X may be

endowed with a metric ga := ga,uα
of type (a, uα) relatively to Γ and H, where uα

is given by Lemma 2.2.
We denote by da the corresponding distance on X.

Note that, by construction, the sectional curvature of ga is pinched between two non
positive constants and is less than −κ2 for somme constant κ > 0 which does not depend on
a. Furthermore, using the fact that uα is non negative and uniformly continuous on [1,+∞[,
one obtains the

Property 3.4. For any a, a′ and α ≥ 0, there exists a constant K = Ka,a′,α ≥ 1 with
Ka,a′,α → 1 as a′ → a such that

1

K
ga ≤ ga′ ≤ Kga,

so that
1

K
da ≤ da′ ≤ Kda.

Remark 3.5. Note that if a′ > a, one has in fact ga ≥ ga′ and so da ≥ da′ . It will be used
in the last section.

2By the choice of C1, the horoballs γ · H1, γ ∈ Γ, are disjoint or coincide, they are also isometric to
RN−1×R+ endowed with the hyperbolic metric e−2tdx2+dt2 ; another way to endow RN with the new metric
ga,u is to replace inside each horoball γ · H1 the hyperbolic metric with the restriction of T 2

a,u(t)dx
2 + dt2

to the half space RN−1 × R+
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3.2. On the metric structure of the boundary at infinity. In this paragrah we
describe the metric structure of the boundary at infinity of X ; we need first to consider the

Busemann function B
(a)
· (·, ·) defined by :

for any x ∈ ∂X and any p,q in X

B(a)
x (p,q) = lim

x→x
da(p,x)− da(q,x).

The Gromov product on ∂X , based at the origin o, between the points x and y in ∂X is
defined by

(x|y)(a) :=
B
(a)
x (o, z) + B

(a)
y (o, z)

2

where z is any point on the geodesic (x, y) (note that the value of (x|y)(a) does not depend
on z). By [Bou], the function

Da : ∂X × ∂X → R
+

(x, y) 7→ Da(x, y) :=
{

exp
(

−κ(x|y)(a)
)

if x 6= y

0 if x = y
.

is a distance on ∂X ; furthermore, the cocycle property satisfied by the Busemann functions
readily implies that for any x, y ∈ ∂X and γ ∈ Γ

(5) Da(γ · x, γ · y) = exp(−
κ

2
B(a)
x (o, γ−1.o)) exp(−

κ

2
B(a)
y (o, γ−1.o))Da(x, y).

In other words, γ acts on (∂X,Da) as a conformal transformation with coefficient of confor-
mality

|γ′(x)|a = exp(−κB(a)
x (o, γ−1.o))

at the point x, since equality (5) may be rewrite

(6) Da(γ · x, γ · y) =
√

|γ′(x)|a|γ′(y)|aDa(x, y).

We will need to control the regularity with respect to a of the Busemann function

x 7→ B
(a)
x (o, z). By Property 3.4, the spaces (X, d0) and (X, da) are quasi-isometric and, for

any a0 > 0, there exist a constant K0 ≥ 1 such that

(7) ∀a ∈ [0, a0]
1

K0
d0 ≤ da ≤ K0d0.

Note that, by [GH], one also gets

(8)
1

Ka,a′,α
(y|z)a ≤ (y|z)a′ ≤ Ka,a′,α(y|z)a.

The corresponding distances Da on ∂X are thus Hölder equivalent ; more precisely, we
have the

Property 3.6. For any a0 > 0, there exists a real ω0 ∈]0, 1] such that, for all a ∈ [0, a0],
one gets

D
1/ω0

0 ≤ Da ≤ Dω0
0 .

The regularity of the Busemann function x 7→ B
(a)
x (o,p) where p is a fixed point in X

is given by the following Fact, which precises a result due to M. Bourdon.

Fact 3.7. [BP] Let E ⊂ ∂X and F ⊂ X two sets whose closure E and F in X ∪ ∂X

are disjoint. Then the family of functions x 7→ B
(a)
x (o,p), with p ∈ F , is equi-Lipschitz

continuous on E with respect to Da.
In particular, for a0 > 0 fixed, there exist ω ∈]0, 1[ and C > 0 such that, for all

a ∈ [0, a0], one gets

(9) ∀x, y ∈ E, ∀p ∈ F
∣

∣

∣
B(a)
x (o,p)− B(a)

y (o,p)
∣

∣

∣
≤ D0(x, y)

ω.
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4. Divergent Schottky groups without PGC

4.1. On the existence of convergent Schottky groups when α > 1. The fact
that α > 1 ensures that any subgroup of P is convergent. In [DOP], it is proved that Γ
possesses also non elementary subgroups of convergent type ; we first recall this construction
and precise the statement.

Proposition 4.1. There exist Schottky subgroups G of Γ and a0 ≥ 0 such that

• G has Poincaré exponent 1
2 and is convergent on (X, g0)

• G has Poincaré exponent > 1
2 and is divergent on (X, ga) for a ≥ a0.

Note that the group G necessarily contains a parabolic element, otherwise it would be
convex co-compact and thus of divergent type, whatever metric ga endows X .
Proof. We first work in constant negative curvature −1 and fix a parabolic isometry p ∈ P .
Since Γ is non elementary, there exists an hyperbolic isometry q ∈ Γ whose fixed points are
distinct from the one of p. If necessary, one may shrink the horoball H in such a way that
the projection of the axis of h on the manifold M = HN/Γ remains outside the cuspidal end
C ≃ H/P ; in others words, one may fix o on the axis of q and assume that for any n ∈ Z∗

the geodesic segments [o, qn · o] lie outside the set
⋃

γ∈Γ

γ · H (so that in the area where the

curvature is constant when X will be endowed with the metric ga).
By the dynamic of the elements of HN there exist two compact sets Up and Uq in X∪∂X

as follows :

(1) Up is a neigbourhood of the fixed point ξp of p ;
(2) Uq is a neigbourhood of the fixed points ξ+q and ξ−q of q ;

(3) there exists θ > 0 such that for any x ∈ Up and y ∈ Uq the angle x̂ o y is greater
than θ ;

(4) for all k ∈ Z∗ one has

qk
(

(X ∪ ∂X) \ Uq

)

⊂ Uq and pk
(

(X ∪ ∂X) \ Up

)

⊂ Up.

By the Klein’s tennis table lemma, the group 〈p, q〉 generated by p and q is free. There-
fore each element γ ∈ 〈p, q〉, γ 6= Id, may be decomposed in a unique way as a product
αn1
1 αn2

2 . . . αnk

k with αi ∈ {p, q}, ni ∈ Z∗ and αi 6= αi+1 ; the integer k is the length of γ
and αk is its last letter.

Let us now endow X with the metric g0 = g0,uα
. If x ∈ Up and y ∈ Uq, the path

which is the disjoint union of the geodesic ray (x,o] and [o,y) is a quasi-geodesic in (X, g0);
therefore there exists a constant C > 0 which only depends on the sets Up and Uq and
on the bounds on the curvature - that is, on the choice of the function uα - such that
d0(x,y) ≥ d0(x,o) + d0(o,y)− C The Poincaré series of this group equals

P〈p,h〉(s) = 1 +
∑

l≥1

∑

mi,ni∈Z∗

e−sdo(o,p
m1qn1 ···pmlqnl ·o).

It follows that

P〈p,q〉(s) ≤ 1 +
∑

l≥1

(

e2sC
∑

m∈Z∗

e−sd0(o,p
m·o)

∑

n∈Z∗

e−sd0(o,q
n·o) )l.

Recall that d0(o, p
m · o) = 2 lnm+ 2α ln ln |m|+ a bounded term ; since α > 1, the series

∑

m∈Z∗ e−sd0(o,p
m·o) converges at its critical exponent δ〈p〉 =

1
2 . We may now replace q by

a sufficient large power qk in order to get

eC
∑

m∈Z∗

e−
1
2 d0(o,p

m·o)
∑

n∈Z∗

e−
1
2d0(o,q

kn·o) < 1.

It comes out that the critical exponent of the group G generated by p and h := qk is less
than 1

2 and that PG(
1
2 ) < +∞ ; since p ∈ G, one also gets δG ≥ δ〈p〉 =

1
2 . Finally δG = 1

2
and G is convergent, with respect to the metric d0 on X .
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Let us now prove that for a large enough the group G is divergent on (X, da). By the
triangular inequality one first gets

∑

g∈G
e−sda(o,g·o) ≥

∑

l≥1

∑

ni,mi∈Z∗

e−sda(o,p
m1hn1 ···pmlhnl ·o)

≥
∑

l≥1

(

∑

n∈Z∗

e−sda(o,p
m·o)

∑

m∈Z∗

e−sda(o,h
n·o)

)l

.

Recall first that, when the curvature is constant and equal to −1 (that is to say ”a = +∞”
in the definition of ga), the quantity dHN (o, pm · o)− 2 log |m| is bounded, so the parabolic
group 〈p〉 is divergent with critical exponent 1

2 . There thus exists ǫ0 > 0 such that, for
ǫ ∈]0, ǫ0], one gets

(10)
∑

m∈Z∗

e−( 1
2+ǫ)dHN (o,pm·o)

∑

n∈Z∗

e−( 1
2+ǫ)dHN (o,hn·o) > 1,

which proves that the critical exponent of G is strictly greater than 1
2 for a = +∞.

The same property holds in fact for finite but large enough values of a. Indeed, there
exists ma ≥ 1, with ma → +∞ as a → +∞, such that the geodesic segments [o, pm · o] for
−ma ≤ m ≤ ma remain inside the stripe RN−1 × [0, a] ⊂ H corresponding to the cuspidal
end of type (a, α) ; since ga has curvature −1 in this stripe (see Remark 3.2), the quantities
da(o, p

m · o) − 2 ln |m| remain also bounded for these values of m, uniformly in a ([DOP],
lemme 4). In the same way, for any a ≥ 0 the geodesic segments [o, hn · o] lie in the area of
constant curvature of the metric ga so that da(o, h

n · o) = dHN (o, hn · o). So, by (10), for
ǫ ∈]0, ǫ0], one gets

lim inf
a→+∞

∑

|m|≤ma

e−( 1
2+ǫ)da(o,p

m·o)
∑

n∈Z∗

e−( 1
2+ǫ)da(o,h

n·o) > 1.

There thus exists a0 > 0 such that, for a ≥ a0 one gets
∑

g∈G
ǫ−( 1

2+ǫ)da(o,g·o) = +∞. This last

inequality implies that δG > 1
2 when a ≥ a0 ; by ([DOP], Proposition 1), the group G is

thus divergent since δ〈p〉 =
1
2 .�

We now want to check that there exists some a ∈]0, a0[ such that the groupG is divergent
with δG = 1

2 when X is endowed with the metric ga ; to prove this, we need to compare
the Poincaré series PG(s) with the potential of some Ruelle operator La,s associated with
G that we introduce in the following paragraph.

From now on, we fix a Schottky group G = 〈p, h〉 satisfying the conclusions of

Proposition 4.1 and subsets Up and Uh in X ∪ ∂X satisfying conditions (1), (2), (3)
and (4) above.

4.2. Spectral radius of the Ruelle operator and Poincaré exponent. We intro-
duce the family (La,s)(a,s) of Ruelle operators associated with G = 〈p, h〉 defined formally
by : for any a ∈ [0, a0], s ≥ 0, x ∈ ∂X and any bounded Borel function φ : ∂X → R

(11) La,sφ(x) =
∑

γ∈{p,h}

∑

n∈Z∗

1x/∈Uγ
e−sB

(a)
x (γ−n·o,o)φ(γn · x).

The sequence (pn · o)n accumulates at ξp. So, for any x ∈ Uh the angle at o of the triangle

̂x o pn · o is greater than θ/2 for n large enough and the sequence (B
(a)
x (p−n ·o,o)−da(o, pn ·

o))n is bounded uniformly in x ∈ Uh and a ≥ 0. In the same way, the sequence (B
(a)
x (h−n ·

o,o) − da(o, h
n · o))n is bounded uniformly in x ∈ Up and a ≥ 0. It readily implies that

La,sφ(x) is finite when s ≥ max(δ〈p〉, δ〈h〉) = 1
2 and that it acts on the space L∞(∂X) of

bounded Borel functions on ∂X .
By a similar argument, for any k ≥ 1, the quantities

(

B(a)
y ((pm1hn1 · · · pmkhnk)−1 · o,o)− da(o, p

m1hn1 · · · pmkhnk · o)
)

n

and
(

B(a)
x ((hn1pm1 · · ·hnkpmk)−1 · o,o)− da(o, h

n1pm1 · · ·hnkpmk · o)
)

n
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are bounded uniformly in m1, n1, · · · ,mk, nk ∈ Z∗ and x ∈ Up, y ∈ Uh. One thus gets
∑

m1,···nk∈Z∗

exp(da(o, p
m1hn1 · · · pmkhnk · o)) ≍ |L2k

a,s1|∞

which states that the series PG(s) and
∑

k≥1

|L2k
a,s1|∞ diverge or converge simultaneously.

Now, the fact that La,s is a non negative operator implies that the limit lim
k→+∞

(

|L2k
a,s1|∞

)
1
2k

is equal to the spectral radius ρ∞(La,s) of La,s on L∞(∂X). We have thus established the

Fact 4.2. The Poincaré series PG(s) and the potential
∑

k≥1

|Lka,s1|∞ diverge or converge

simultaneously. In particular, if δa denotes the Poincaré exponent of G for the metric ga,
one gets

δa = sup
{

s ≥ 0 : ρ∞(La,s) ≥ 1
}

= inf
{

s ≥ 0 : ρ∞(La,s) ≤ 1
}

.

Consequently, since G satisfies the conclusions of Proposition 4.1, one gets

• the series
∑

k≥1

|L2k
0,1/21|∞ converges ;

• for a0 large enough, the series
∑

k≥1

|L2k
a0,1/2

1|∞ diverges

which implies in particular ρ∞(L0,1/2) ≤ 1 and ρ∞(La0,1/2) ≥ 1.
We will prove that for some value a∗ ∈]0, a0[ one gets ρ∞(La∗,1/2) = 1 ; the unicity of

a∗ will be specified in the last section.
We first need to control the regularity of the function a 7→ ρ∞(La0,1/2). It will be

quite simple to check that the function a 7→ L0,1/2 is continuous from R+ to the space of
bounded operators on L∞(∂X) ; unfortunately, the function L 7→ ρ∞(L) is in general only
lower semi-continuous. In the case of the family of Ruelle operators we consider here, this
function will be in fact continuous, because of the very special form of the spectrum in this
situation.

4.3. On the spectrum of the Ruelle operators. Throughout this section, we will
use the following

Notation 4.3. For any a ∈ [0, a0], x ∈ ∂X and γ ∈ G, we will set

• La = La,1/2 and ρ∞(a) = ρ∞(La,1/2).

• ba(γ, x) = B
(a)
x (γ−1o,o)

Furthermore, δa will denote the Poincaré exponent of G with respect to the metric ga
and, for γ ∈ {p, h} and n ∈ Z∗, the “weight” function wa(γ

n, .) is defined by

wa(γ
n, .) : ∂X → R

+

x 7→ 1x/∈Uγ
e−δaba(γ

n,x)

With these notations, the Ruelle operator La introduced in the previous paragraph may
be expressed as follows : for any φ ∈ L∞(∂X) and any x ∈ ∂X ,

(12) Laφ(x) =
∑

γ∈{p,h}

∑

n∈Z∗

wa(γ
n, x)φ(γn · x).

The iterates of La are given by

(13) Lkaφ(x) =
∑

γ∈G(k)

wa(γ, x)φ(γ · x)

where G(k) is the set of γ = αn1
1 · · ·αnk

k ∈ G of length k (with αi+1 6= α±1
i ) and wa(γ, x) =

1x/∈Uαk
e−δGba(γ,x) when γ has last letter αk ; observe that we have the following “multiplica-

tive cocycle property” :

(14) wa(γ, x) =

k
∏

i=1

wa(α
ni

i , α
ni+1

i+1 · · ·αnk

k · x).
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We will see that the La, a ≥ 0, act on the space C(∂X) of real valued continuous
functions on ∂X and that the map a 7→ La is continuous. Nevertheless, the function
a 7→ ρ∞(a) is only lower semi-continuous in general and may present discontinuities. The
main idea to avoid this difficulty is to introduce a Banach space on which the La act quasi-
compactly.

In the sequel, we will consider the restriction of the La to some subspace of C(∂X) of
Hölder continuous functions.

Notation 4.4. We denote La,ω(∂X) the space of Hölder continuous functions on ∂X
defined by

La,ω(∂X) := {φ ∈ C(∂X)/|φ|a,ω = |φ|∞ + [φ]a,ω < +∞}

where [φ]a,ω = sup
γ∈{p,h}

sup
x,y∈Uγ

x 6=y

|φ(x) − φ(y)|

Da(x, y)ω
denotes the ω-Hölder coefficient of φ with respect

to the distance Da.
When a = 0 we will omit the index D0 and set Lω(∂X) := L0,ω(∂X).

The spaces (La,ω(∂X), |.|) are C-Banach space and the identity map from (La,ω(∂X), |.|a,ω)
to (C(∂X), |.|∞) are compact.

We now want to prove that each operator La acts on La,ω(∂X); in fact, we need a
stronger result, i.e that each La, for 0 ≤ a ≤ a0, acts on Lω(∂X). It will be a direct
consequence of the following :

Lemma 4.5. There exists ω0 ∈]0, 1[ such that for any ω ∈]0, ω0], any γ ∈ {p, h}, any
a ∈ [1, a0] and any n ∈ Z∗, the function wa(γ

n, .) belongs to Lω(∂X); furthermore, the
sequence

(

eδGda(o,γ
n·o)|wa(γn, .)|ω

)

n
is bounded.

Proof. The cluster points of the sequence (γn · o)n belong to Uγ . Since the curvature is
pinched, the quantity ba(γ

n, x))−d(o, γn ·o) is bounded uniformly in n ∈ Z∗, x ∈ ∂X\Uγ and

a ∈ [0, a0] ; so is the sequence
(

eδGda(o,γ
n·o)|wa(γn, .)|∞

)

n
. In order to control the ω-Hölder

coefficient of wa(γ
n, .), we use Fact 3.7 : the functions x 7→ B

(a)
x (o, γ−n ·o) are equi-Lipschitz

continuous on ∂X\Uα with respect to Da, since once again the cluster points of the sequence
(γn · o)n belong to Uγ . More precisely, the sequence

(

eδGda(o,γ
n·o)|wa(γn, .)|ω

)

n
is bounded

for any a ∈ [0, a0] and for ω given by inequality (9) .�
From now and for once , we fix ω0 ∈]0, 1[ satisfying the conclusion of the

above Lemma. We know that, for a ∈ [0, a0], the operator La acts on Lω(∂X) whenever
ω ∈]0, ω0] ; let ρω(a) denote the spectral radius of La on Lω(∂X). We have the

Proposition 4.6. For any ω ∈]0, ω0] and a ∈ [1, a0], one gets

• ρω(a) = ρ∞(a)
• ρω(a) is a simple eigenvalue of the operator La acting on Lω(∂X) and the associated
eigenfunction is non negative on ∂X.

Furthermore, the operator La is quasi-compact on Lω(∂X) : there exists r < 1 such that
the essential spectral radius of La on Lω(∂X) is less than rρω(a).

In particular the eigenvalue ρω(a) is isolated in the spectrum of La, it is simple and the
corresponding eigenfunction is non-negative.

Proof. Fix x, y ∈ ∂X ∩ Up ; one gets

|Lkaφ(x) − Lkaφ(y)| ≤
∑

γ∈G(k)

wa(γ, x)|φ(γ · x) − φ(γ · y)|

+
∑

γ∈G(k)

|wa(γ, x)− wa(γ, y)| × |φ|∞.

Note that in these sums, it is sufficient to consider the γ ∈ G(k) with last letter αk 6= p.
For such γ the quantity ba(γ, x) is greater than da(o, γ · o)− C for some constant C which
depends only on the angle θ0 and the bounds on the curvature ; in particular ba(γ, x) ≥ 1 for
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all but finitely many γ ∈ G with last letter 6= p. It readily follows that lim inf
γ∈G(k)

k→+∞

ba(γ, x)

k
> 0,

uniformly in x ∈ Up. In other words, there exists 0 < r < 1 and C > 0 such that

|γ′(x)|a ≤ Crk

for any k ≥ 1, x ∈ Up and γ ∈ G(k) with last letter 6= p. The same argument works when
x, y ∈ ∂X ∩ Uh.

We thus obtain the inequality

[Lkaφ]ω ≤ rk[φ]ω +Rk|φ|∞

with rk = CK2
ωr
k|Lka|∞ and Rk =

∑

γ∈G(k)[wa(γ, .)]ω.

Note that La is a non-negative operator, so that the quantity lim supk |L
k
a1|

1/k
∞ is equal

to the spectral radius ρ∞(a) of La on C(Λ). Using a version due to H. Hennion of the
Ionescu-Tulcea-Marinescu’s theorem concerning quasi-compact operators, one may conclude
that the essential spectral radius of La on Lω(∂X) is less than rρ∞(a) ; in other words, the
spectral values of La with modulus ≥ rρ∞(a) are isolated eigenvalues with finite multiplicity
in the spectrum of La. This implies in particular that ρω(a) = ρ∞(a). The inequality
ρω(a) ≥ ρ∞(a) is obvious since the function 1 belongs to Lω(∂X). Furthermore, the strict
inequality would imply the existence of a function φ ∈ La such that Laφ = λφ for some
λ ∈ C of modulus > ρ∞(a) ; this would give |λ||φ| ≤ La|φ| so that |λ| ≤ ρ∞(a), which is a
contradiction.

It remains to control the value ρω(a) in the spectrum of La. The operator La being non
negative and compact on Lω(∂X), its spectral radius ρω(a) is an eigenvalue with associated
eigenfunction φa ≥ 0.

Assume that φa vanishes at x0 ∈ ∂X and let g ∈ {p, h} such that x0 ∈ Ug; the equality
Laφa(x0) = ρω(a)φa(x0) implies that φa(γ · x0) = 0 for any γ ∈ G with last letter 6= g.
By minimality of the action of G on ∂X one thus has φa = 0 on ∂X . Consequently, the
function φa is non negative.

Let us now check that ρω(a) is a simple eigenvalue of La. Consider the operator P

defined formaly by P (f) =
1

ρω(a)φa
La(fφa) ; this operator is well defined on Lω(∂X) since

φa does not vanish, it is non negative, quasi-compact with spectral radius 1 and Markovian
(that is to say P1 = 1). If f ∈ Lω(∂X) satisfies the equality Pf = f one considers a
point x0 ∈ ∂X such that |f(x0)| = |f |∞ and g ∈ {p, h} such that x0 ∈ Ug. An argument
of convexity applied to the inequality P |f | ≤ |f | readily implies |f(x0)| = |f(γ · x0)| for
any γ ∈ G with last letter 6= g ; by minimality of the action of G on ∂X it follows that
the modulus of f is constant on ∂X . Applying again an argument of convexity and the
minimality of the action of G on its limit set, one proves that f is in fact constant on ∂X ;
it follows that Cφa is the eigenspace associated with ρω(a) on Lω(∂X).�

4.4. Regularity of the function a 7→ La. In this section we will establish the fol-
lowing

Proposition 4.7. For any 0 < ω < ω0, the function a 7→ La is continuous from [1, a0] to
the space of continuous linear operators on (Lω(∂X), |.|ω).

Proof. It suffices to check that, for γ ∈ {h, p}, a, a′ ∈ [1, a0] and 0 < ω < ω0 one has

lim
a′→a

sup
n∈Z

eδGd0(o,γ
n·o)|wa′(γ

n, .)− wa(γ
n, .)|ω = 0.

First one gets

|wa′(γ
n, .)− wa(γ

n, .)| = e−δGba(γ
n,.)|e−δG(ba′(γn,.)−ba(γn,.)) − 1|

≤ Ce−δGda(γ
no,o)|e−δG(ba′ (γn,.)−ba(γn,.)) − 1|

where the constant C depends only one the bounds on the curvature.
Since the axis of h lies in the area of X where the curvature is −1, the quantity da(o, h

n ·
o)− |n|lh, where lh denotes the hyperbolic lenght of the closed geodesic associated with h,
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is bounded uniformly in a ∈ [0, a0] and n ∈ Z∗ ; the same holds for the quantity da(p
n ·

o,o)− d0(p
n · o,o). Consequently

|wa′(γ
n, .)− wa(γ

n, .)| ≤ C′e−δGd0(γ
no,o)|e−δG(ba′ (γn,.)−ba(γn,.)) − 1|

and we have to study the regularity of the function a 7→ ba(γ
n, x), for any point x /∈ Uγ . By

inequalities (8), one gets

(y|z)a′ → (y|z)a as a′ → a,

when (y|z)a remains bounded. There are thus two cases to consider:

• We first consider the case γ = p. For any n ∈ Z∗ let yn be the point in ∂X
such that o belongs to the geodesic ray [pn · o, yn) (for the metric ga) ; this ray
is in fact a quasi-geodesic for any a′ ∈ [0, a0], so the point o belongs to some
bounded neigbourhood of the geodesic ray (for ga′) from pn · o to xn ( note that
inf
n∈Z∗

D0(yn, ξp) > 0 by convexity of the horospheres). For any n ∈ Z∗ and a′ ∈

[0, a0] one gets

ba′(p
n, x) = (pn · x|yn)a′ − (x|p−n · yn)a′ − ba′(p

n, p−n · yn).

Since pn · x→ ξp as |n| → +∞ and inf
n∈Z∗

D0(yn, ξp) > 0, one gets

(pn · x|yn)a′ → (pn · x|yn)a

as a′ → a, uniformly in n ∈ Z∗ and x /∈ Up. In the same way, since inf
n∈Z∗

D0(yn, ξp) > 0,

the sequence (p−n · yn)n converges to ξp as |n| → +∞ so that (x|p−n · yn)a′ →
(x|p−n · yn)a uniformly in n ∈ Z∗ and x /∈ Up. Atlast one has ba′(p

n, p−n · xn) =

B
(a′)
xn (o, pn · o) = da′(o, p

n · o) ; the geodesic segment [o, pn · o] is included in the
horosphere H, so that

ba′(p
n, p−n · xn) → ba(p

n, p−n · xn)

as a′ → a, uniformly in n ∈ N∗.
• Consider now the case when γ = h ; for any n ≥ 1, one gets

ba(h
n, x) = (hn · x|hn · ξ+h )a − (x|ξ+h )a − ba(h

n, ξ+h )

with ba(h
n, ξ+h ) = nlh. The facts that x /∈ Uh and ξ+h ∈ Uh readily implies

(x|ξ+h )a′ → (x|ξ+h )a as a′ → a. On the other hand hn · x→ x+ as n→ +∞ so that

(hn ·x|hn ·ξ+h )a → (x+|ξ
+
h )a ; since ξ

+
h 6= x+, the Gromov product (x+|ξ

+
h )a is equal

to − log da(o, (x+ξ
+
h )) up to a bounded term and the sequence ((hn ·x|hn ·ξ+h )a)n≥1

is bounded uniformly in a ∈ [0, a0], x /∈ Uh and n ∈ N. It readily follows that
(hn · x|hn · ξ+h )a′ → (hn · x|hn · ξ+h )a as a′ → a, for any n ≥ 1. A similar argument
holds for n ≤ −1. Finally, ba′(h

n, x)−ba(h
n, x) → 0 uniformly in n ≥ 0 and x /∈ Uh

and the lemma is proved for γ = h.

Finally one has proved that for γ ∈ {h, p} and a, a′ ∈ [0, a0] one has

lim
a′→a

sup
n∈Z

eδGd0(o,γ
n·o)|wa′(γ

n, .)− wa(γ
n, .)|∞ = 0.

To achieve the Proof., we use the classical fact that if a bounded sequence (fn)n in Lω0(∂X)
converges uniformly to some (continuous) function f , then the convergences remains valid
in Lω(∂X) for any 0 < ω < ω0 : namely, we may fix ǫ > 0 and note that, for 0 < ω ≤ ω0,
the following inequality holds

[wa′(γ
n, .)− wa(γ

n, .)]ω ≤
2|wa′(γ

n, .)− wa(γ
n, .)|∞

ǫω
+ [wa′(γ

n, .)− wa(γ
n, .)]ω0ǫ

ω0−ω

which immediately gives

|wa′ (γ
n, .)−wa(γ

n, .)|ω ≤
( 2

ǫω
+1

)

|wa′(γ
n, .)−wa(γ

n, .)|∞+ |wa′(γ
n, .)−wa(γ

n, .)|ω0ǫ
ω0−ω.

One achieves the Proof. letting a′ → a and ǫ→ 0.�
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4.5. Proof. of the Main Theorem. We are now able to achieve the Proof. of the
Main Theorem. We fix ω ∈]0, ω0[.

Since the spectral radius ρω(a) of the operator La acting on Lω is an eigenvalue and is
isolated is the spectrum of La, the function a 7→ ρω(a) has the same regularity than a 7→ La
; it is thus continuous on [1, a0]. Furthermore, for any a ∈ [1, a0], the eigenfunction φa
associated with ρω(a) is non negative on ∂X . So one has φa ≍ 1, which readily implies that

|L2k
a φa|∞ ≍ |L2k

a 1|∞ uniformly in k ≥ 1. By the equality Laφa = ρω(a)φa, it follows that
ρω(a) = ρ∞(a).

By the choice of the metrics ga, we have ρ∞(0) ≤ 1 and ρ∞(a0) ≥ 1 ; so there exists
a∗ ∈]0, a0[ such that ρω(a∗) = ρ∞(a∗) = 1.

On the other hand, the function s 7→ ρω(La∗,s) is strictly decreasing on R+. Fix s > δ〈p〉
; one has ρω(a∗) < 1 and the series PG(s) thus converges when X is endowed with the metric
ga∗ . This proves that for the value a∗ of the parameter a the critical exponent of G is less
than δ〈p〉; since p ∈ G, one has in fact δG = δ〈p〉.

Atlast, since φa∗ ≍ 1, one has
∑

k≥1

|L2k
a∗,δ〈p〉

1|∞ ≍
∑

k≥1

|L2k
a∗,δ〈p〉

φa∗ |∞ ; these two series

diverge in fact because of the equality La∗,δ〈p〉φa∗ = φa∗ . By the Fact 4.2, it follows that for

the value a∗ of the parameter a, the series PG(δG) diverges.
By criteria (1), one easily sees that mΓ is finite when α > 2 and infinite when α ∈]1, 2].
This achieves the Proof. of the Main Theorem. �

4.6. Complement. A natural question is the one of unicity of the value a∗ of the
parameter a such that the spectral radius ρ∞(a) of La is equal to 1; this unicity is not
necessary to prove the main Theorem but nevertheless it is of interest to describe for instance
the behavior of the orbital function of G when a varies. It will be the subject of a forecoming
work.

By the continuity of the function a 7→ ρ∞(a), the unicity of a∗ is a direct consequence
of the strict monotonicity of this function. We thus have to prove that ρ(La) < ρ(La′) for
any a, a′ in [0, a0] such that a < a′. Note first that, for any fixed x ∈ X one gets

ρ(La) = ρ∞(La) = lim
k→+∞

(
∥

∥

∥

∑

γ∈Γ2k
l(γ)=h

e−
1
2B

(a)
. (γ−1·x,x)

∥

∥

∥

∞

)
1
2k

= lim
k→+∞

(

∑

γ∈Γ2k
l(γ)=h

e−
1
2da(x,γ·x)

)
1
2k

and we have thus to check that there exists C > 0 and ρ := ρ(a, a′) < 1 such that, for any
n ≥ 1, one gets

(15)
∑

γ∈Γ2k
l(γ)=h

e−
1
2da(x,γ·x) ≤ Cρk

∑

γ∈Γ2k
l(γ)=h

e−
1
2da′(x,γ·x).

For any x ∈ ∂X and y, we will denote by H
(a)
x (y) the horoball (with respect to the metric

ga) centered at x and passing through y ; furthermore, for any x ∈ X we denote by ψx,y(x)

its projection (with respect to ga) on the horosphere ∂H
(a)
x (y).

In order to simplify the argument, one first assume that the two following

conditions hold

• (C1) for any x ∈ Up∩∂X the points hn ·o, n ∈ Z∗, lie outside the horoball H(a)
x (o).

• (C2) for any x ∈ Uh∩∂X the points pm ·o,m ∈ Z∗, lie outside the horoballH(a)
x (o).

Fix k ≥ 1 and γ ∈ Γ2k with last letter in h. Let us decompose γ into a2ka2k−1 · · ·a1 with
a2i = pmi and a2i−1 = hni for 1 ≤ i ≤ k ; set γ0 := Id and γj := aj · · · a1 for 1 ≤ j ≤ 2k.
We fix x ∈ Up ∩ ∂X ; by the ping-pong dynamic, there exists c > 0 independent of γ such
that the distances da(o, ψx,o(γ

−1 · o)) and da′(o, ψx,o(γ
−1 · o)) are both ≤ c.
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The cocycle property of the Busemann function thus leads to the following

da(o, γ · o) ≥ da(o, ψx,o(γ
−1 · o))− c

= B(a)
x (γ−1 · o,o)− c

=

2k−1
∑

j=0

B(a)
x (γ−1

j+1 · o, γ
−1
j · o)− c

=

2k−1
∑

j=0

B
(a)
γj ·x(a

−1
j+1 · o,o)− c,

and one may thus write, as in (13)

(16)
∑

γ∈Γ2k
l(γ)=h

e−
1
2da(x,γ·x) ≤ e

c
2L2k

a 1(x).

By the previous assumption, all the quantities B
(a)
x (γ−1

j+1 · o, γ
−1
j · o) above are non negative

and we want to compare them with a similar one involving ga′ . For any x ∈ ∂X and
x,y ∈ X , the quantity Bx(x,y) is equal to the ”signed” length ( for ga) of [x, ψx,y(x)]a, the
geodesic segment (for ga) joigning x and ψx,y(x) ; in otherwords, with obvious notations,
one gets

B(a)
x (x,y) =

∫

[x,ψx,y(x)]a

dga

where the integral is non negative when x is outside H
(a)
x (y) and negative when it lies inside.

Similarly, we introduce the quantity βx(x,y) defined by

βx(x,y) = β(a,a′)
x (x,y) :=

∫

[x,ψx,y(x)]a

dg′a.

Note that for any x,y, z in X and γ ∈ Γ one gets βx(x,y) + βx(y, z) = βx(x, z) and
βx(x,y) = βγ·x(γ · x, γ · y).

Since da′(o, ψx,o(γ
−1 · o)) is ≤ c, we may write, as above

da′(o, γ · o) ≤ da′(o, ψx,o(γ
−1 · o)) + c

≤ βx(γ
−1 · o,o) + c

=

2k−1
∑

j=0

βx(γ
−1
j+1 · o, γ

−1
j · o) + c

=

2k−1
∑

j=0

βγj ·x(a
−1
j+1 · o,o) + c.

which leads to the following inequality

(17)
∑

γ∈Γ2k
l(γ)=h

e−
1
2da′ (x,γ·x) ≥ e−

c
2K2k1(x),

where Kφ(y) :=
∑

γ∈{p,h}

∑

n∈Z∗

1x/∈Uγ
e−

1
2βy(γ

−n·o,o)φ(γn · y) for any function φ ∈ L∞(∂X) and

any y ∈ ∂X . To prove (15) it is thus sufficient to compare the spectral radius of La and K
; we will use the following

Fact 4.8. For any y ∈ ∂X and x,y ∈ X one gets
∣

∣

∣
βy(x,y)

∣

∣

∣
≤

∣

∣

∣
B(a)
y (y,y)

∣

∣

∣
.

Furthermore, for any n ∈ Z∗, there exists η(n) ≥ 0, with η(n) > 0 when |n| is large enough,
such that

∀y ∈ Uh 0 ≤ βy(p
n · o,o) ≤ B(a)

y (pn · o,o)− η(n).
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Proof. The first large inequality is a direct consequence of the Remark after Property 3.4,
namely ga′ ≤ ga. To prove the second one, we note that for any y ∈ Uh and any n ∈ Z

with |n| large enough, the geodesic segment [pn ·o, ψx,o(p
n ·o)]a inters sufficiently inside the

horoball H centered at ξp and in particular in the area where ga and ga′ differ (ie ga′ > ga)

; consequently βy(p
n · o,o) − B

(a)
y (pn · o,o) > 0. the existence of η(n) > 0 follows by an

argument of continuity with respect to y.�
By this Fact, if y ∈ Up, one gets

La1(y) =
∑

n∈Z∗

e−
1
2B

(a)
y (h−n·o,o) ≤

∑

n∈Z∗

e−
1
2βy(h

−n·o,o) = K1(y).

Assume now y ∈ Uh and fix n0 ≥ 1 such that η(n0) > 0. By Property 3.4, one gets
0 ≤ βy(p

−n0 · o,o) ≤ K0d0(p
−n0 · o,o) where K0 is the constant which appears in (7) ;

consequently

e−
1
2βy(p

−n0 ·o,o) ≥ δ0 := e−
K0
2 d0(p

−n0 ·o,o).

On the other hand, by the above
∑

n∈Z∗

e−
1
2βy(p

−n·o,o) ≤
∑

n∈Z∗

e−
1
2 (da′ (p−n·o,o)−c) ≤ ∆0 :=

∑

n∈Z∗

e
− 1

2K0
(d0(p

−n·o,o)−c)
.

It follows

La1(y) = e−
1
2B

(a)
y (p−n0 ·o,o) +

∑

n∈Z∗

n6=n0

e−
1
2B

(a)
y (p−n·o,o)

≤ e−
η(n0)

2 × e−
1
2βy(p

−n0 ·o,o) +
∑

n∈Z∗

n6=n0

e−
1
2βy(p

−n·o,o)

≤ ρ
∑

n∈Z∗

e−
1
2βy(p

−n·o,o) = ρK1(y),

with ρ := 1−
(

1− e−
η(n0)

2

)

δ0
∆0

∈]0, 1[.

Combining the two inequalities La1(y) ≤ K1(y) for y ∈ Up and La1(y) ≤ ρK1(y) for
y ∈ Uh, one obtains by iteration

∀k ≥ 1 L2k
a 1(.) ≤ ρkK2k1(.)

We put together this inequality with (16) and (17) and obtain finally
∑

γ∈Γ2k
l(γ)=h

e−
1
2da(x,γ·x) ≤ ecρk

∑

γ∈Γ2k
l(γ)=h

e−
1
2d

′
a(x,γ·x).

This gives the expected inequality (15), in the case when conditions (C1) and (C2) hold.
When one or both of these conditions do not hold, one replaces the family {hn : n ∈ Z∗}

(resp. {pn : n ∈ Z∗}) by the countable set H := {g ∈ Γ2N+1/l(g) = h} (resp. P := {g ∈
Γ2N+1/l(g) = p}), where N is choosen large enough such that

• for any x ∈ Up ∩ ∂X , the points g · o, g ∈ H, lie outside the horoball H
(a)
x (o).

• for any x ∈ Uh ∩ ∂X , the points g · o, g ∈ P, lie outside the horoball H
(a)
x (o).

Any γ in Γ2k(2N+1) with last letter h may be decomposed into γ = a2k · · · a1 with a2i ∈ P
and a2i−1 ∈ H for 1 ≤ i ≤ k ; the same argument as above, with obvious modifications,
leads to the inequality

∑

γ∈Γ2k(2N+1)

l(γ)=h

e−
1
2da(x,γ·x) ≤ ecρk

∑

γ∈Γ2k(2N+1)

l(γ)=h

e−
1
2d

′
a(x,γ·x),

and (15) follows again.



Bibliography
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[P] M. Peigné On the Patterson-Sullivan measure of some discrete group of isometries, Israel J. Math.

133 (2003), 77–88.
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