-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL Université de Tours

HAL

archives-ouvertes

Initial trace of positive solutions of a class of degenerate
heat equation with absorption
Tai Nguyen Phuoc, Laurent Veron

» To cite this version:

Tai Nguyen Phuoc, Laurent Veron. Initial trace of positive solutions of a class of degenerate
heat equation with absorption. Discrete and Continuous Dyn. Syst. 33, 2033-2063 (2013).
2011. <hal-00553633v2>

HAL Id: hal-00553633
https://hal.archives-ouvertes.fr /hal-00553633v2
Submitted on 31 Jan 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/54025339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00553633v2

Initial trace of positive solutions of a class of
degenerate heat equation with absorption

Tai Nguyen Phuoc Laurent Véron

Laboratoire de Mathématiques et Physique Théorique,
Université Francois Rabelais, Tours, FRANCE

Contents
1 Introduction
2 Isolated singularities

2.1 The semigroup approach . . . . . . . . . . . ... ...
2.2 The Barenblatt-Prattle solutions . . . . . . . ... ... ... .. ......
2.3 Fundamental solutions . . . . . . . . . . ... ...
2.4 Strong singularities . . . . . ... oL

Non-Uniqueness

Estimate and stability
4.1 Regularity Properties. . . . . . . . . . ..o
4.2 Stability . . . ..

Initial trace
5.1 The dichotomy theorem . . . . . .. .. .. ... ... ... ... ...,
5.2 The Keller-Osserman condition does not hold . . . . . . . .. ... ... ..

Abstract

We study the initial value problem with unbounded nonnegative functions or
measures for the equation dyu — Apu + f(u) = 0 in RN x (0,00) where p > 1,
Apu = div(|Vul? -2 Vu) and f is a continuous, nondecreasing nonnegative function
such that f(0) = 0. In the case p > J\?—fl, we provide a sufficient condition on f for
existence and uniqueness of the solutions satisfying the initial data kdy and we study
their limit when k — oo, according f~! and F~'/P are integrable or not at infinity,
where F(s) = fos f(o)do. We also give new results dealing with non uniqueness for

the initial value problem with unbounded initial data. If p > 2, we prove that, for a

BEREmm= =



large class of nonlinearities f, any positive solution admits an initial trace in the class
of positive Borel measures. As a model case we consider the case f(u) = u® In’(u+41),
where o > 0 and 8 > 0.

1 Introduction
The aim of this article is to study some qualitative properties of the positive solutions of
Ou — Apu+ f(u) =0 (1.1)

in Qoo := RY x (0,00) where p > 1, Aju = div(|VuP"? Vu) and f is a continuous,
nondecreasing function such that f(0) = 0 = f~1(0). The properties we are interested in
are mainly: (a) the existence of fundamental solutions i.e. solutions with kdy as initial data
and the behaviour of these solutions when k& — oo; (b) the existence of an initial trace
and its properties; (c¢) uniqueness and non-uniqueness results for the Cauchy problem.
This type of questions have been considered in a previous paper of the authors [[[F] in the
semilinear case p = 2. The breadcrumbs of this study lies in the existence of two types of
specific solutions of ([.1). The first ones are the solutions ¢ := ¢, of the ODE

¢+ f(¢) =0 (1.2)

defined on [0, 00) and subject to ¢(0) = a > 0; it is given by

¢ ds
/¢>(t)f(5). (1.3)

The second ones are the solutions of the elliptic equation

— Apw + f(w) =0, (1.4)

defined in RY or in R™ \ {0}. It is well-known that the structure of the set of solutions of
([.2) depends whether the following quantity

* ds

1 (s)

is finite or infinite. If J < oo there exists a maximal solution ¢, to ([.g) defined on (0, 00)
while no such solution exists if J = oo since limg_ 00 ¢o(t) = 0o. This maximal solution
plays an important role since, by the maximum principle, it dominates any solution u of

(L)) which satisfies

J =

(1.5)

lim w(z,t) =0 (1.6)

|z| =00



for all ¢ > 0, locally uniformly on (0, 00). Concerning ([L.4) we associate the quantity

*  ds
K.:/1 W. (1.7)

It is a consequence of the Vézquez’s extension of the Keller-Osserman condition (see [L7],
[[2)) that if K < oo, equation ([L4) admits a maximal solution Wgy in RN\ {0}. This
solution is constructed as the limit, when R — oo and ¢ — 0 of the solution W :=
Wer of (L4) in g := Br\ Be, subject to the conditions limy e We r(z) = oo and
lim,1g We r(7) = oco. On the contrary, if K = oo, such functions W g and Wgn do
not exist, a situation which will be exploited in Section 3 for proving existence of global
solutions of ([L.4) in RY. An additional natural growth assumption of f that will be often
made is the super-additivity

fls+s) = f(s)+f(s) Vs s' =0, (1.8)

which, combined with the monotonicity of f, implies a minimal linear growth at infinity

liminfﬁ > 0. (1.9)

5—00 s

If p > 2, K < oo jointly with ([.§) implies .J < oo, but this does not hold when 1 <
p < 2. When p > 2 and f satisfies J < oo and K < oo, Kamin and Vazquez proved
universal estimates for solutions which vanish on RY x {0}\ {(0,0)} (see [d]]). By a slight
modification of the proof in [[5, Proposition 2.3 and Proposition 2.6], it is possible to
extend their result to the case p > 1. O

Proposition (Universal estimates) Assume p > 1 and f satisfies K < oo. Let u €
C(Qoo \{(0,0)}) be a solution of ([1)) in Quo, which vanishes on RN x {0}\ {(0,0)}. Then

u(z,t) < W () V(z,t) € Qoo (1.10)

If we suppose moreover J < oo and that ([[.§) holds, then

u(e,t) < min{Gu(t), Way ()} V(5,1) € Q. (1.11)
When K = oo, no such estimate exists since the function w, solution of ([L.1€¢) is a
stationnary solution of (@) with unbounded initial data.

In Section 2 we study the existence of the fundamental solutions u; and their behaviour
when k — co. Kamin and Vazquez proved in [[J], Lemma 2.3 and Lemma 2.4], that if
p > 2 and

/Oospﬁf(s)ds < o0, (1.12)
1
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then for any k£ > 0, there exists a unique positive solution u := u; to problem

{ Oru—Apu+ f(u) =0 in Qo

1.13
u(.,0) =kdp  in RN, (1.13)

Furthermore the mapping k +— uy is increasing. Their existence proof heavily relies on the
fact that, if we denote by v := vy, the fundamental (or Barenblattt-Prattle) solution of

{ Ov—Apy =0 in Q

(1.14)
v(.,0) =kdy  inRY,

then vy(.,t) is compactly supported in some ball By, (1), where d;,(t) is explicit. Since vy, is
a natural supersolution for ([[.13), condition (L.12)) states that f(vx) € L} (Qc). When
2N/(N +1) < p < 2, vp(z,t) > 0 for all (7,t) € Quno. It is already proved in [[[4] that,
when p = 2, condition ([L19) yields to f(vx) € L'(Qr). We prove here that this result
also holds when 2N/(N + 1) < p < 2 and more precisely,

Theorem 1.1 Assumep > ]\2,—]_‘\_[1 and f satisfies (L.12). Then there exists a unique positive
solution u := uy, to problem ([[.13).

In view of this result and the a priori estimates ([[.10) and (JL.11]), it is natural to study
the limit of u, when k — co. We denote by Uy the set of positive u € C(Qu \ {(0,0)})
which are solutions of ([[.T) in Qu, vanishes on the set {(x,0) : z # 0} and satisfies

lim [ w(z,t)de =00 Ve > 0.
t—0 Be

Theorem 1.2 Assume p > 2N/(N + 1), J < oo, K < oo and ([[.1) holds. Then
U = klim uy exists and it is the smallest element of Uy.
— 00

When one, at least, of the above properties on J and K fails, the situation is much
more complicated and fairly well understood only in the case where f has a power-like or
a logarithmic-power-like growth. We first note that
(A) If f(s) ~ s* (a > 0), then J < oo if and only if o > 1, while K < oo if and only if
a > p — 1. Moreover ([L12) holds if and only if o < p(1 + +) — 1.

(B) If f(s) ~ s*In’(s + 1) (a,8 > 0), then J < oo if and only if @ > 1 and § > 0, or
a=1and f > 1while K <occifandonlyifa >p—1and f>0,ora=p—1and 5 > p.
Moreover ([.12) holds if and only if @ < p(1+ %) — 1 and 8 > 0.

Theorem 1.3 Assume p > 2 and f(s) = s*In’(s + 1) where o € (1,p — 1) and 8 > 0.
Let uy, be the solution of (.13). Then klim up(z,t) = ¢oo(t) for every (x,t) € Quo-
—00
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When o =1 the following phenomenon occurs.

Theorem 1.4 Assume p > 2 and f(s) = sIn®(s + 1) with 8 > 0. Let uy, be the solution
of (L.13). Then
(i) If B > 1 then klim up(x,t) = doo(t) for every (z,t) € Quo,
—00
(17) If 0 < B < 1 then klim ug(x,t) = oo for every (x,t) € Quo.
— 00

Section 3 is devoted to study non-uniqueness of solutions of ([[.]) with unbounded
initial data. The starting observation is the following global existence result for solutions

of (L.4):

Theorem 1.5 Assume p > 1, f is locally Lipschitz continuous and K = oo. Then for
any a > 0, there exists a unique solution w := w, to the problem

- (TN71|wr|p72wr)r + TN?lf(w) =0 (1'15)

defined on [0,00) and satisfying w(0) = a, w,-(0) = 0. It is given by
we(r) =a +/ H, (sl_N/ TN_lf(’wa(T))dT> ds (1.16)
0 0

where Hy, is the inverse function of t — |t[P~2¢.

This result extends to the general case p > 1 a previous theorem of Vazquez and Véron
[[§] obtained in the case p = 2. The next theorem extends to the case p # 2 a previous
result of the authors in the case p = 2.

Theorem 1.6 Assume p > 2N/(N + 1), f is locally Lipschitz continuous, J < oo and
K = oco. For any function uy € C(Qs) which satisfies

wa(|z]) < ug(z) < wp(|z|) Vo e RY (1.17)

for some 0 < a < b, there exist at least two solutions u, T € C(Quo) of (L) with initial
value ug. They satisfy respectively

0 < w(z,t) < minfwy(|2]), doo(t)}  V(2,1) € Qo

thus tlim u(z,t) = 0, uniformly with respect to x € RN, and
— 00

wa(|z]) <u(z,t) <wp(|z]) V(z,1) € Qoo

thus lim wu(x,t) = oo, uniformly with respect to t > 0.
|z|—o00



In section 4 we prove an existence and stability result for the initial value problem

{ Ou—Apu+ f(u) =0 in Qs (1.18)
u(.,0) =u in RV

where p € mi(RN ), the set of positive and bounded Radon measures in R,

Theorem 1.7 Assume p > ]\2,—]}:1 and f satisfies (l.12). Then for any p € SDT{’F(RN) the
problem ([.L1§) admits a weak solution u,. Moreover, if {j,} is a sequence of functions
n L}r(RN) with compact support, which converges to p € ?J)Ti(RN) in the weak sense of

measures, then the corresponding solutions {uy, } of ([.1§) with initial data ., converge to
some solution u,, of (L.18), strongly in L}, (Qr) and locally uniformly in Qr = RN % (0,T).

loc

Furthermore {f(uy,)} converges strongly to f(u,) in L} (Qr).

In Section 5, we discuss the initial trace of positive weak solution of ([.T). The power
case f(u) = u? with ¢ > 0 was investigated by Bidaut-Véron, Chasseigne and Véron in
[Bll. They proved the existence of an initial trace in the class of positive Borel measures
according to the different values of p—1 and q. Accordingly they studied the corresponding
Cauchy problem with a given Borel measure as initial data. However their method was
strongly based upon the fact that the nonlinearity was a power, which enabled to use
Holder inequality in order to show the domination of the absorption term over the other
terms. In the present paper, we combine the ideas in [[] and [[§] with a stability result for
the Cauchy problem and Harnack’s inequality in the form of [[] to establish the following
dichotomy result which is new even in the case p = 2.

Theorem 1.8 Assume p > 2 and ([L.13) holds. Let u € C(Qr) be a positive weak solution
of (LX) in Qr. Then for any y € RN the following alternative holds
(i) either
u(z,t) > klim ug(r —y,t) V(z,t) € Qr, (1.19)
—00

(i1) or there exist an open neighborhood U of y and a Radon measure py € My (U) such
that

lim u(m,t)((x)dxz/(d,uy V(¢ e C.(U). (1.20)
t—0 U U

Actually, since ([L.13) is verified, ([L.19) is equivalent to the fact that, for any open
neighborhood U of y, there holds

limsup/u(x,t)dx = 0. (1.21)
t—0 U

However, if ([.12) is not verified, there only holds ([[.19) = (L.21)).




The set of points y such that ([L.20) (resp. ([L.21))) holds is clearly open (resp. closed)
and denoted by R(u) (resp (S(u)). Using a partition of unity, there exists a unique Radon

measure f € M4 (R(u)) such that

lim u(z, t)(z)dx = Cdp V¢ € Ce(R(u)). (1.22)
OISR @W) R(w)

Owing to the above result we define the initial trace of a positive solution u ([.1) in Q7 as
the couple (S(u), ) for which ([.20) and ([L.21)) holds and we denote it by tr_ (u). The
set S(u) is the set of singular points of tr_ (u), while y1 is the reqular part of tr_ (u). It is
classical that any v € B79(R"), the set of positive outer regular Borel measures in RY,
can be represented by a couple (S, 1) where S is a closed subset of RY and p € 9, (R),
where R = RV \ S, in the following way

00 if ANS # 0,

v(A) = { u(A) i ACTR, VA Borel.

Therefore Theorem [[.§ means that tr_, (u) € Bred(RY).
The initial trace can be made more precise when the Keller-Osserman-Vazquez condi-

tion does not hold, and if we know whether klim uy, is equal to ¢ oOr is infinite.
— 00

Theorem 1.9 Assume p > 2 and ([L12) holds and u is a positive solution of ([L.1) in Q.

I- If J < 00 and K = oo are verified and klim up = ¢oo. Then either tr . (u) is the Borel
—00

measure infinity Ve, which satisfies vso(O) = 0o for any non-empty open subset O C RV,

or is a positive Radon measure pn on RV,

II- If J = o0 and K = oo are verified and klim ug = o0. Thentr_, (u) is a positive Radon
— 00

measure ji on RY

As a consequence of I, there exist infinitely many positive solutions u of ([[.1)) in Qoo
such that tron (u) = Voo. By Theorem .3, Theorem [4, the previous results apply in

particular if f(s) = s*In®(s +1).

2 Isolated singularities

Throughout the article ¢; denote positive constants depending on N, p, f and sometimes
other quantities such as test functions or particular exponents, the value of which may
change from one occurrence to another.



2.1 The semigroup approach

We refer to [fl, p 117] for the detail of the Banach space framework for the construction
of solutions of (1)) in Qs with initial data in L'(R™) N L>®(RY). We set

T(u) = /RN <% IVl + F(u)) do (2.1)

when u belongs to the domain D(J) of J which is the set of u € L?(RY) such that
Vu € LP(RY) and F(u) € LY(RY), and J(u) = oo if u ¢ D(J). Then J is a proper convex
lower semicontinuous function in L2(RY). Its sub-differential A is defined by its domain
D(A) which is the set of u € L?>(R") such that Vu € LP(RY) and F(u) € L*(RY) with
the property that —A,u + f(u) € L>(RY) and

- / vA udr = / |VulP? Vu.Vode Yo € D(J), (2.2)
RN RN

and by its expression

Au=—-Apu+ f(u) Vu € D(A). (2.3)

Notice that (R.J) implies that vf(u) € L'(RY) for all v € D(J). The restriction of the
operator A is accretive in L'(R™) and in L>(R¥), hence in every LI(R"). The operator
A, defined in LI(RY) is the closure in L¢(RY) of the restriction of A to LY(RY). Tt is a
m-accretive operator, with domain D(4,). Since C°(RY) C D(A4,), D(4,) is dense in
LY(RN). If ug € L7 the generalized solution u to

du .
T +Au=0 in (0, 00) (2.4)
u(0) = ug
is obtained by the Crandall-Liggett scheme
% +Au; =0  ini=0,1,.. (2.5)

when we let h — 0, in the sense that the continuous piecewise linear function U}, defined
by Up(ih) = u; converges to u in the C([0,T], L¢(RY))-topology, for every T > 0. Fur-
thermore, if ¢ = 2 and ug € D(Ag) (resp. up € L*(RY)), then % converges to % in
L%([0,T], L>(RN)) (vesp. L2([0,T], L*(RN); tdt)), see [R0]. We shall denote by {S44(#)}4~0
the semigroup of contractions of L4(R") generated by —A, thru the Crandall-Liggett The-
orem [ff].

An important property [J, Lemma 2] is that if w € L*(RY) satisfies

Aiw+ow=h (2.6)



where o > 0 and h € L'(RY), then

RNAlwd:U =0. (2.7)

Definition 2.1 (i) A function u € C([5,00); L' (RN)) where § > 0 is a semigroup solution
([T) on (6,00) if for any t > & there holds u(.,t) = SA1(t — 8)[u(.,d)].

(ii) A function u € C((8,00); L*(RY)) is an extended semigroup solution of ([.1]) on (8, 00)
if for any t > 7 > 6, there holds u(.,t) = S41(t — 7)[u(.,7)].

2.2 The Barenblatt-Prattle solutions

We recall the explicit expression, due to Barenblatt and Prattle, of the solution v = v, of

problem ([.I4). If p = 2
Nz
2 e

vp(x,t) = k(4dnt)” 2e” 4t , (2.8)
and if N+1 <p#2,

p=1
vp(z,t) =tV <iA> , where V(§) <Ck —d[¢|P 1)"_2 (2.9)
t~ +
with )
N p—2 < A ) 1
A= —————— and d=—|(— ) 2.10
Np—-2)+p p \N (2:10)
and where C}, is connected to the mass k by
—2)A

C, = c¢(N,p)k!  with (= p(p = 2)A 2.11
= c(N,p) T (211)

The condition p > Ar‘,:—fl appears in order A be positive. Notice that, if p > 2 then
p—1

d > 0, therefore the support of vk( t) is the ball By, ;) where 6y (t) = <C’“) b t% while

vg(z,t) > 0 for all (x,t) € Qo if N+1 < p < 2 (and also p = 2 although the expression of
vy is different). Furthermore, if 2N 71 <P <2, the limit of v, when k — oo is explicit

Voo (1) = AN< ! >2 (2.12)

[P

-1

where Ay = (—d)gT?. This type of singular solution which is singular on the whole
axis (0,t) C Qoo, is called a razor blade (see [I9] for some examples). To this solution
corresponds a universal estimate.



Lemma 2.2 Assume 1 < p < 2 and let v € C(Qux \ Br, x {0}) be a semigroup solution

positive of ([L.1)

0w —Apu =0 in Qo (2.13)
which satisfies
}g% Kv(x,t)dx =0, (2.14)

for any compact set K C RN\ Br,. Then there exists c; = c1(N,p) > 0 such that

1

t m

sup / v(z,T)dr < ¢ | ———= VR > Ry, t > 0. (2.15)

0<7<t J{z:|z|>R} (R—Rp)~
If we assume moreover that ‘ l‘im v(t,z) = 0 locally uniformly with respect to t > 0, then

T|—00
1
Heh (—— V7 V@t eQultl >R (2.16)
v(z,t) < Ay (2= Ro)? ) 005 05

where Ay is the value of the constant in (R.19) when N = 1.

Proof. The first estimate is a consequence of

t >
sup / v(z,t)dr < ¢y / v(z,0)dr + | — (2.17)
0=7<t/B,(a) Bzy(a) px

in [, Lemma IT1.3.1] under the assumption that v(., 0) is continuous with compact support.
Actually this assumption is not used. In this proof the first step is the following estimate
obtained by a suitable choice of test function:

t
sup/ v(m,t)dxg/ v(x,O)dx—i—c—g// |VoP~tdz dr (2.18)
0<7<t JBg(a) Bar(a) R Jo Br(a)

valid for any a € RV \ {(0,0)} and R < |a|/2. The second step to get (R.17) is to estimate
the integral on the right-hand side by relation (I.4.2) in [f, Lemma I1.4.1] with the same
choice of e. We apply estimate (R.17) with a sequence of points in a fixed direction e (with
le| =1) a = a; = (2"(R — Ro) + Ro) e and p = pj, = 2871 (R— Ry) (actually we start with
p < pi and let it grow up to pg). Then we get

1

_ N(k-1) ¢ 2-p
sup / v(z,t)dr < cg2” AP | ———— ) (2.19)
0<r<t JB,, (ay) (R— Ro)»
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Since the ball By, (ax) and By, (axs1) are overlapping there exist a finite number of
points {e; };ll:l and {€’; }?2:1 (dy and dy depend only on N) on the unit sphere such that

di oo da
{zeRY:|z| >R} C U U B, (2pre;) U U Br_r, (Re€;)
j=1k=1 j=1 7
Therefore
- 1
_ Nk N t v
sup / v(x, T)dr < ¢4 |dy Z 2 2@7p) 4 (d922C-p) | | ——
0<r<t J{z:|z|>R} o (R—Ro)»

which is (R.19).

Estimate (P.16) follows from comparison with the 1-dim form of vy,

1
t\2r
Voo (8,1) = Ay (—p) ’ Vs, t > 0. (2.20)
s
For € > 0, the function
(x,t) = voo(x1 — Rp — €,t) €

where z = (21, ...,xn) = (z1,2'), is a solution of (P.13) in Hy ry+e x (0,00) where Hy ,, =
{z € RN : 21 > m}. For R large enough v(x,t) < veo(x1 + Ry + €,1) + € on the set
((H1,Ry+e¢ NOBR) U (0H1 py+e N BRr)) x [0,T] for any T > 0, and for ¢ = 0. By the
maximum principle v(z,t) < voo(x1 — Rg — €,t) + € in (Hi gy+e N Br) x (0,T]. Letting
successively R — oo, T — oo and € — 0 and using the invariance of the equation by

]

rotation implies (R.16). O

Proposition 2.3 Let p > J\%—JL and {v"} C C([0,00); LY(RN)) be a sequence of positive
semigroup solutions of (R.13) on (0,00) such that v"(.,0) has support in B, where €, — 0.
If
/ V" (2,0)de =k, >k asn — oo
RN

then v™ — v locally uniformly in Q.

Proof. We first give the proof in the case Az,—fl < p < 2. By a priori estimates, up to a
subsequence v™ converges locally uniformly in Q. to a solution v of (R.13) in Q. By

Herrero-Vazquez mass conservation property [[], Theorem 2] (valid if p > ]\%—JII)
/ v (x,t)dr = / " (x,0)dx = ky,.
RN RN

11



By (R.16)

1

t 2-p
)p> YVt >0, V|z| > €.

(lz] = en

o (2, 1) < Ay (

Since 2— > N, the function

1

o (@ar)

belongs to L*(RY \ Bs), for any § > ¢,. Since v"(z,t) — v(z,t) uniformly in Bj, it follows
by the dominated convergence theorem

lim v (z,t)dx = / v(z,t)dr = k. (2.21)
RN

n—oo RN

Because v is a positive solution with isolated singularity at (0,0), it follows from [B] that
v = vy, solution of ([[.14).

When p > 2, the function vg(.,t) has a compact support Dy, (¢) for any ¢ > 0 and
Dy, (t) C Bg,, (1) where

p=2 1 p=2

1
Ry (t) = €n + cskn” tN0-27 < € 4 c5k,” tNE-2Tp (2.22)

where ¢5 = ¢5(N,p) > 0, € = sup{e,;n € N} and k, = sup{k,;n € N}. Using Lebesgue
dominating theorem we obtain again (P.21)). O

2.3 Fundamental solutions

The following lemma is fundamental.

Lemma 2.4 Assume p > N+1 and f is a continuous nondecreasing function defined on
R such that f(0) =0. Then, for any k,R,T > 0,

/loof(s “P M ds < 00 = f(uy) € LY(Bg x (0,T)). (2.23)

Proof. The result is already proved in [[l0] in the case p > 2. It is probably known in
the case p = 2, but we have not found any reference. It appears to be new in the case
N +1 < p < 2. Without any loss of generality we can assume R =T = 1.

Case 1: p = 2. By linearity we can assume that k = (471') . Let

I—// fug dxdt—wN// < 2e” 4t> N=Lar dt.
le(ol)
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-2

1 gt N—2
I=2N"1yy ; /_ﬂ o [—lns—ln (t%ﬂ ’ f(s)sfldst%dt
t7 2 at

N-2

1 gt N2
< oN=1y / . [— Ins—In (t%)} > f(s)sldstrdt < 2N lwy (I + I)
0 Je 4t

thus

L < 08/ s 1 (—=Ins)2f(s)ds < oo
0

by Duhamel’s rule. Further

2
0 ps N N-2
L< | | [—lns—ln(t%ﬂ : t%dts_lf(s)ds
em1.Jo
2 [~ ! N2 2 . g 2
< = (=ln7)7z 7¥dr s~ N f(s)ds
N e_% 0

for some cg = c9(IN) > 0. This implies the claim when p = 2.
Case 2: % < p < 2. Weset d* = —d. By rescaling we can assume that C = d* = 1.

Therefore
p 421
p—1|P72
1+ (%)p ] PNy dt.
tN

= //31X(0,1) J (on)eedt = wN/ol/olf o
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b2

p=1 =2 A p=2 =
Set s =t~ |1+ (%) , then r =tw~ [(t)‘s)f)—l - 1] and
tN
N(P—l)fl
1 p—2 P
I= wN/ / oo (ths) 7T <(t)‘s) Pl — 1> f(s)dst* dt
A1+t = 1 p=2
= =Lwy ([ + I7)
where
N(P—l)fl
p=2 P
/ / (ths) 51 ((z&A )rt —1> 2 dt f(s)ds
52 Ju(s)

% . N(;;fl)il
I = / / <(t)‘s)§1—1> t27dt f(s)

A —1
and a(s) is the inverse function of ¢~ ¢t=(1 + fﬁ)ﬁ. Clearly

p—1 22 (p—1) 2—p

A4 E <t e = a(s) > sBOD.

Therefore

N(p-1) —1

! 1 1 p=2 p
I < p_l/z;p (ths) v ((tAS)’“ - 1> t22dt f(s)ds

2p—2 82/\(p—1)

1/t s 2-p Np-1)_; 1, N(p-2
/ , (=70 Rt de_z_%f(s)ds.

_)\ pTQ -1

Since%+%>—land%—l>—l,

s 2-p N@-1)_; 1, N@p-2) ! 2-p N@=1) _; 1, N(p-2)
/ , (=7 1) 5 Tt d7'</ (1—7r1) » 73775 dr < .
(p—1) 0

Furthermore —2 — % = —p — & thus

p(N+1)

1
Il < Clo/plf(s) ds.
2p=2

We perform the same change of variable with I

N(p—1)

% 1 N p—2 T—l o
fa= / /wp 1) (ths)rt =1 t2Xdt f(s)ds
—p N@=1) _ N(p-2)
: _/ / = (1_7%) [ d7872*§f(8)d8.
A 1 s2(p—1)
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Again

1 2-p N(p—1) N(p—2) 1 2-p N(p=1) N(p—2

2=p Np=l) _ 41 1, N(pP=2) p p—1) 1 1, N(p=2)

/—” (1—7p-1)"» T dT</ (I—7r1)"» TR dr < oo,
32(17*1) 0

then

_ p(N+1)

I < 011/ f(s)s™ N ds.
1

Therefore (R:23) holds. O

Notice that the assumption implies that vy € C(Quo) N L°(6, 00; LY (RNY) N L= (RM))
for every § > 0.

Proof of Theorem [L.1. Ezistence. Let € > 0, Q0o = RY x (¢,00) and denote by u, the

solution of
{ Oru—Apu+ f(u) =0 in Qcoo

u(.,€) = vg(., €) in RV, (2.24)

Since vg(.,€) is a smooth positive function belonging to L'(RY) the function u. is con-
structed by truncation. By the maximum principle

ue(z, t +¢€) < vz, t+e) V(z,t) € Qeoco- (2.25)

For 0 < € <€, ug(x,€) < vg(z,€) = uc(z,€), thus ue(x,t +€) < ue(z,t +€) in Q¢ 0. Set
% = lime_yq e, then @ < v in Q. By the standard local regularity theory for degenerate
equations, Vu, remains locally compact in (CL_(Qw0))Y, thus @ satisfies ([.1) in Q.

In order to prove that

d
— [ ue(z,s)dx + f(ue(z,s))dx =0
dt RN RN

we recall that u. can be obtained as the limit of thru the iterative implicit scheme (.4)
with ¢ € [1,00] is arbitrary since u.o € LY(RY) N L>®(RY). For h > 0 we can write it
under the form

Ue; — hApum- = —hf(ue,i) + Uei—1-

By (B.1), and denoting by f]e,h the piecewise constant function such that f]e,h( Jh) = ucj,
we obtain since ue o = vg(€)

ih :
/ (uei — vg(e))(x)dx = —/ J(Uep(z))dzdt. (2.26)
RN € RN

Letting h — 0 and ¢ — oo such that th =t > ¢ and using the uniform convergence, we
obtain

[ uetide = [ owadr=- [ t [ oo (2.27)

15



Since 0 < ue < v and vg(.,t) has constant mass equal to k, we derive

/R el t)dz — k' < / t RNf(vk(x,s))dxdt. (2.28)

Because f(vy) € LY (RN x (0,T)), we can let ¢ — 0, using the monotone convergence
theorem, in order to get

t
/ u(z, t)de — k:‘ < / f(vg(x, s))dxdt. (2.29)
RN 0 JRN
This implies that
lim [ w(z, t)dr = k. (2.30)
t—0 RN

If ¢ € C.(RV), let ¢ € CX(RYN) such that 0 < ¢ < 1, ¢ = 1 on the support of ¢ and
¢(0) = 1. Then

/RNu(x,t)Qs(ﬂ:)dx :/ u(z, t)p(x)((x)dx

RN

=600) [ e+ [ (e 00(a)(@) - 90)de.

Thus

/RN“(”“ Do)t = 9(0) | ulat)de

RN

< [ o066 - (0| da.

Because |¢(x)((z) — ¢(0)| is continuous and vanishes at zero and vg(.,0) = kdp, it follows
from (R.30)
lim [ wu(z,t)p(x)dr = ko(0). (2.31)

t—0 RN

Uniqueness. The proof uses some ideas from [[[0}, Th 2.4]. Assume @ is any nonnegative
solution of problem ([.13), then, for any ¢ > 0 we denote by @, the solution of

{ Ov — Apv =0 in Qe,oo

v(.,€) = (., €) in RV, (2.32)

By the maximum principle 9 > % in Q¢ o. When € — 0, 9. converges locally uniformly
to a solution ¥ of the same equation in Q. Furthermore, using again [J, Lemma 2],

/ Ve(x,t + €)dx :/ (z, €)dx.
RN RN

16



By Fatou’s Lemma and using the fact that

lim (x, e)dr = k,
e—=0 JrN

we derive

/ (x, t)dx < k. (2.33)
RN

Since ¥ > 1, equality holds in (R.33). Since the fundamental solution is unique [§, Th 4.1],
it implies ¥ = v and @ < v;. We end the proof as in [E, Th 4.1], using the L'-contraction
mapping principle and the fact that any solution of ([[.1J) is smaller than vy: for t > s > 0,
there holds

/RN lu(z,t) — a(z, t)| de < / lu(z, s) — a(z, s)| dx

RN

< /]RN lu(z, s) — vg(z, s)| dx + /RN |vg(z, 8) — a(z, s)| dx

< [ (o)~ ulws)do+ [ (onles) ~ il s))da,
RN RN
(2.34)
When s — 0 the right-hand side of the last line goes to 0. This implies the claim. O

The next result shows some geometric properties of the uy.

Proposition 2.5 The solution u = uy, of problem ([L.1§) is radial and nonincreasing with
respect to |x|.

Proof. Tt is sufficient to prove the result with the approximation uc(.,t). By (R-9), vx(.,t)
is radial and decreasing, therefore uc(.,t) is radial too by uniqueness. We notice that u
is the increasing limit, when R — oo, of the solution u¢ g of

Ou— Apu+ f(u) =0 in Q%
u=20 in 0BR X (€,00) (2.35)
u(o)=vp(ne)  in Bp,

For A € (0, R), we set ¥\ = BpN{z = (2\ — z1,2’) : 1 > A} N By and define w), by
wy(z,t) = wy(z1,2',t) == Ux e, R(T) — Ue, R(T) = Ue,R(2A — x1,2 ) — uE,R(xl,x',t).

If QX3 = ¥y x (€,00), there holds

Bywy + Awy, + d(x)wy = 0 in Q7
wy >0 in 02 x (E,OO) (2'36)
w}\('?e) >0 in 2)"
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where
e n if uyer # UeRr

f(u)\,e,R)ff(ue,R)
d(x) =
0 if UN,e,R = Ue,R

and
Awy = =Apuy e, g + Aple R

Notice that d > 0 since f is nondecreasing and A is elliptic [[], Lemma 1.3]. Furthermore
the boundary data are continuous, therefore wy > 0. Letting A — 0, changing A in —A
and replacing the z; direction, by any direction going thru 0, we derive that u, r(.,t) is
radially decreasing. Letting R — oo yields to u(.,t) is radially decreasing too. ([l

In the next result we characterize positive solutions of ([L.1) with an isolated singularity
att =20

ey 2N . . . . L.
Proposition 2.6 Assumep > 5 and f is continuous nondecreasing function vanishing

only at 0 and satisfying ([19). If u € C(Qu \ {(0,0)}) is a positive semigroup solution of
(L)) in Qoo such that u(z,0) =0, for all x # 0 and

lim [ w(z,t)dx < oo,
t—0 JpN

then there exists k > 0 such that u = uy.

Proof. Using [[J], Lemma 2.2 | when p > 2, or the proof of Theorem [[.T when J\%—]Il <p<2
jointly with the fact that

t— u(z, t)dx
RN

is decreasing, we derive that u < v,, for some m > 0 and there exists k£ > 0 such that

lim u(z,t)dx = k.
t—0 JrN

Since u(.,0) vanishes if z # 0, it implies
lim [ w(z t)p(z)de = kp(0) Vo € C(RY).

t—0 RN

Therefore u satisfies ([.13). By uniqueness, u = . O

18



2.4 Strong singularities

This section is devoted to study the limit of the sequence of the solutions uy, to ([L13) as
k — oo with f(s) = s*In®(s + 1) where p > 2, a € [1,p — 1) and 3 > 0.

Proof of Theorem [[.§. By the comparison principle,

(=Dt
uk(xat) < /Uk(xat) < cpk 2 77,

where vy, is the solution of ([[.14) in Qs and c12 = c12(N,p) > 0 in (R.11]). We set

(a—1)(p—1)

L (p—1)¢
0u(t) = 5k 2 O DB ek r A + 1) (2.37)

then
Opug, — Apuk + ukak(t) > 0. (2.38)

Next we write ug(x,t) = bg(t)wg(z, sk(t)) (the functions by and s will be defined later).
For simplicity, we drop the subscript & in by, and sj. Inserting in (P-3§), we get

b2 P (1)s' (t)Oswy (z, 8) — Apwy(z, ) + bPY (¢) + b(t)0y(t)]wk(z, 5) > 0. (2.39)
We choose the functions b and s such that
VPt)s'(t)=1  and V() +b(t)0x(t) =0,

which implies

t t T
b(t) = exp ( — / 0(T)dr) and s(t) = / exp(—(p— 2)/ Oi(o)do)dr.  (2.40)
0 0 0
Then Gswy, — Apwy, > 0 in RY x (0, sk,0) with some s, o > 0 and wy(.,0) = kdg. It follows
by comparison principle that wy, > vy, in RV x (0, sg,0). Hence

p—1

t —pX
ug(x,t) > b(t)vg(z, s) = exp (—/ Hk(T)dT> s (clgkg — Cras® DN \x]zv_ﬁl )EE (2.41)
0

Let 6; > % and 0 < 6 < 1—\(a—1). Using (R.37) there exists tq > 0 depending

on 01, 02 and k large enough, such that, for any ¢ € (0,ty) there holds
¢
/ Hk(T)dT < 015/€51t52 Vit € (O,to) (2.42)
0

with c15 = c15(ci, o, B,p, N) > 0. It follows from (R.4() and (R.49) that

t exp [— (p —2)e1sk211%2 | < s(t) < t. (2.43)
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Since J < oo holds, there exists the solution ¢, of ([.3). The sequence {uy} is increasing
and is bounded from above by ¢, then the function U(z,t) := klim up(x,t) satisfies
—00

U(x,t) < ¢oo(t) for every (z,t) € Qoo. We restrict x € By and we choose ¢ such that
1
c13kt — cl4s(t)ﬁ > %clgkg = k> (200—1134> es(t)_P—Q. (2.44)
By (R.43), we only need to choose ¢ such that
1
k> (%) ZtP;J? exp <cl5k51t52>. (2.45)

We choose ¢t under the form

t= k™% with v >0, (2.46)
then (R.45) becomes
1
2 g _—
77 > <&> o2 exp (cl5t52_5”) . (2.47)
€13

In order to obtain (R.47), it is sufficient to choose + such that

1
<y < 2 2.48
2 <<% (2.48)

Indeed, since o < p— 1, we may choose §; and 5 close enough Z(a*pl# and 1 —A(a—1)

respectively such that (2.48) holds true. When ¢ has the form (R.46) where v satisfies
(49), from (P.41)), (£.43)-(R.44) and the fact that U > uy, in Qu, we deduce that

Uz, t) > crgt Nexp [err In(t7h) — 527017 (2.49)

for every (x,t) € By x (0,ty) with tp small enough and ¢16 = c16(V, p), c17 = c17(N, p, 7).
Since ~y satisfies (R.49),
c17 ln(t_l) — 0151562_61“/ >0

for every t € (0,ty). Therefore lim;_,oU(x,t) = oo uniformly with respect to x € Bj.
We next proceed as in [[[9, Lemma 3.1] to deduce that U(x,t) is independent of x and
therefore it is a solution of ([.4). Since J < 0o, U(x,t) = ¢oo(t) for every (z,t) € Quo.
(]

Theorem [[.4 is proved by the same arguments as Theorem [[.d, using the fact that
U(z,t) is independent of z.
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3 Non-Uniqueness

The next result shows that K = oo is the necessary and sufficent condition so that a local
solution of

(PN P = N f () (3.1)
can be continued as a global solution. More precisely,

Lemma 3.1 Every positive and increasing solution of (B.1]) defined in an interval [a,a*]
to the right of a > 0 can be continued as a solution of (B)) on [a,+00) if and only if f

satisfies oy
I, o == .

for any o > 0.

Proof. The proof is is an extension to the case p # 2 of the one of [[I§, Lemma 2.1] for the
case p = 2.
Step 1. We first assume that w is defined on a maximal interval [a,a*) with a* < oo and

lim w(r) = 4o00. Since w is a nondecreasing function, v’ > 0. And hence we may write
r—a*

(B)) under the following form

N -1

— (P (p = (PR = fw),

which implies that
(p = D" < f(w) (3-3)

and hence

Taking the integral over [a,r|, we get

1
I () = ()P (@) < Fl(r) = Plw(@) < Fu(r).
Since f is positive on (0,00), F(s) — oo when s — oo, thus there exists a € (a,a*) such
that

0 <w(r))P < m

Taking the integral over [a, 7], we obtain

w(r) s /p 5
/(a) F(j)l/p 5 <2(pp— 1)>1 o

w

< (5 1)>1/,, vr € [a,a").
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Letting r — a* yields to

/C:;)F(j;/p : <2(pp— 1))1/p(“* —a) <0

w

and (B.J) is not satisfied.
Step 2. We assume that

/°° ds <
— <X
o F(s)l/r
for some o > 0, and we fix A > a. By [, Theorem 1] there exists a function v defined
on (a, A) such that
w(r) <~(r) Vre(a,A)
for any solution of (B.1]) on (a, A). Moreover, v can be assumed convex, and }im’y(r) =
—a
lim v(r) = +oo. If w is a solution of (B.1) on (a,a + €) such that w(a) > min ~(r)
r—A a<r<A
and +/(a) > 0, it is clear that w(r*) = ~(r*) for some r* < A and w(r) > ~(r) for
r € (r*,r* +e¢), so w can not be defined on the whole (a, A), and there exists a* < A such
that lim w(r) = oo. O
r—a*

Proof of Theorem [.§ By the Picard-Lipschitz fixed point theorem in the case 1 < p < 2
and [§, Th 5.2] in the case p > 2, there exists a unique solution w, to ([L16) defined on a
maximal interval [0,7,) and w, is an increasing function. Since Keller-Osserman estimate
does not hold, by Lemma B.1, the solution can be continued on the whole [0, +00) and
global uniqueness follows from the local uniqueness. The function r — wg(r) is increasing

and
1

—1 4 =1 L
w2 L g ()
for any r > 0. O
Proposition 3.2 Assume p > 2N/(N + 1), f is locally Lipschitz continuous and K = co
hold. For any positive function ug € C(Qs) which satisfies

we(|z]) < uo(z) < wy(|z|) Vo e RY (3.4)
for some 0 < a < b, there exists a positive function U € C(Qs) solution of (1) in Quo
and satisfying U(.,0) = ug in RY. Furthermore

we(|z]) <u(z,t) <wp(jz]) V(z,t) € Qoo (3.5)

Proof. Clearly w, and wy are ordered solutions of ([.1)). We denote by u,, the solution to
the initial-boundary problem

Orun, — Apupn, + f(un) =0 in @, := By, x (0,00)
un(x,0) = up(x) in B, (3.6)
un(z,t) = (wa(|z]) +wp(|z|))/2 in OB, x (0,00).
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By the maximum principle, u, satisfies (B.§) in @,. Using locally parabolic equation
regularity [, Th 1.1, chap III] if p > 2 or [{, Th 1.1, chap IV] if 1 < p < 2, we derive
that the set of functions {u,} is eventually equicontinuous on any compact subset of Quc.
Using a diagonal sequence, combined with Proposition 1.4, we conclude that there exists
a subsequence {u,, } which converges locally uniformly in Qoo to some weak solution
7 € C(Qo) which has the desired properties. O

Proposition 3.3 Assume p > 2N/(N + 1), f is locally Lipschitz continuous and J = oo
and K = oo hold. Then for any ug € C(RN) which satisfies

0 <ug(z) <wy(|z]) VoeRN (3.7)

for some 0 < b, there exists a positive solution u € C(Qx) of ([) in Qu satisfying
u(.,0) = ug in RY and

u(z,t) < min{wy(|z]), poo(t)} V(z,1) € Qoo- (3.8)
Proof. For any R > 0, let ug be the solution of

OpuR — ApuR + f(uR) =0 in Qoo
ur(z,0) =wuo(z)xBg(x) in RV,

The functions ¢, and wj, are solutions of (1)) in Qs, which dominate ugr at t = 0,
therefore, by the maximum principle,

min{ oo (t), wp(|z])} > ur(x,t) VY(z,t) € Q- (3.9)

The mapping R +— up is increasing, jointly with (B.9) it implies that there exists a solution

u = Rlim ug of ([0]) in Qo which satisfies u(z,0) = ug(z) in RY. Letting R — oo in
—r 00

(B.9) yields to (B.9). O

Proof of Theorem [[.6. Combining Proposition B.3 and Proposition we see that

there exist two solutions v and w with the same initial data ug, which are ordered and

different since lim u(x,t) = oo and | 1|im u(z,t) < ¢oo(t) < oo for all t > 0. O
T|—00

|z| =00

4 Estimate and stability

In this section we assume that  is a domain in R, possibly unbounded, 0 < T < oo
and set Q% := Q x (0,7) and Qr := RY x (0,7). We denote by M(2) the set of Radon

measures in  and by 9, () its positive cone.
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Definition 4.1 A nonnegative function u is called a weak solution of ([.1) in Q¥ if u,
Vul, f(u) € LL, (QF) and

loc

T
/ / (—G(u)@tcp + |Vul[P 2 Vu.V (g(u)p) + f(u)g(u)<p> dzdt =0 (4.1)
0 JQ
for any p € CX(Q}) and any function g € C(R) N WL2(R) where G'(r) = g(r).

The next results are obtained by adapting the proofs in [g].

4.1 Regularity Properties

The following integral estimates are essentially [l, Prop 2.1] with u? replaced by f(u).

Proposition 4.2 Assume p > 1. Let 6§ < 0, 6 # —1 and 0 <t < 6 < T. Let u be a
nonnegative weak solution of (1)) in Q%. For any nonnegative function ¢ € C2°(2) and
T>D,

. 8] [* e
—/Q(l—l—u(x,t))H‘SC (x)dx—i—?/t /Q(l—i—u)‘s L | Vul? da dt

= 5%1/9(1+U(w,0))1+5CT(x)dx+A9AZ(1+u)5f(u)g7dmdt (4.2)

[%
e / / (14 w)P-1e7=2 VPP da dt.
t Q

and

6
/Q (1+ u(w, )¢ (2)dz < /Q (1+ u(, )¢ (x)dx + /t /Q Flu)CTda dt .

6 [%
+ T/ /(1 + )T [Vl ddt + T/ /(1 ) ETD [VCP i,
t JOQ t JOQ

Conversely,

: /Q u(e, )¢ (@)dr + /t 6 /Q Flu)Cde dt

(4.4)
0
<ot [l @dn 7 [ [ ¢ Tup Ve de

and

1 T 1 0 T T
Z/Q(l + u(z,0))C (m)dm+§/t /Qf(u)C dx dt < /Q(l—l—u(x,t))C (x)dz

0 [%
+ 7'/ /(1 + )01 |Vl de dt + 7'/ / (14 w)I=0@=D¢m=P |V(|P da dt + e
t JQ t JQ
(4.5)
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where ¢; = ¢;(p, f,9,7) (i = 18,19, 20).

The next result is the keystone for the existence of an initial trace in the class of Radon
measures. It is essentially [f, Prop 2.2] with u? replaced by f(u), but we shall sketch its
proof for the sake of completeness.

Proposition 4.3 Let u be a nonnegative solution of ([1]) in Q. Let 0 < § < T. Assume
that two of the three following conditions holds, for any open set U CC §):

sup /u(az,t)dx < 00, (4.6)
t€(0,0] JU
0
/ /f(u)dxdt < 00, (4.7)
o Ju
0
/ / \VulP~! dz dt < oo. (4.8)
0o Ju
Then the third one holds for any U CC 2. Moreover,
6
/ /u"dw dt < oo Vo e (0,q.) (4.9)
0 JU
and
0 N
" —_— 4.1
/O/U]Vu] dx dt < 0o VTG(O,N+1qc) (4.10)

where g. = p — 1+ p/N. Finally, there exists a Radon measure p € M (Q) such that for
any ¢ € Cc(),

t—0

lim [ w(z,t)((x)dx = /C(x)du (4.11)

Q Q
and u satisfies

0
/ /Q(—uatgo + |VulP 2 Vu.Vo + f(u)p)dz dt
0
— [ ele.00dn [ u(e. )¢, 0)do
Q Q

for any 0 <0 <T and ¢ € CX(Q x [0,7)).

Proof. Step 1: Assume (.§) and ([£.§) holds. Let ¢ and 7 as in Proposition [1., there
holds

(4.12)

[&+m%mszA&+MLWCM+[u¥MUMﬁ -

[%
—|—7'/ /C7_1|Vu|p_2Vu.VCdxdt.
t JQ
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It follows that f(u) € L((0,0), L} .(Q)).

Step 2: Assume that () and (.§) hold. Then ([.4) follows from (E.13).

Step 3: Assume that (.6) and (7)) hold. Let 6 € (max(1 — p,—1),0) be fixed. From
(D), we get for any 0 < t < 6,

0
%/t /(1 +u)0 1 | Vul? ¢Tdx dt < L/ (14 u(z,0))°+ ¢ dx

// (14 u)’ Cdedt—}—clg// (1 4 w)dTP=1¢7=P|V(|P da dt.

If p < 2, then (14 u)%*t?~1 <1 + u. Consequently, by (E.§),

(4.14)

6 6
/ /(1 ) LT [P d di < / /(1 )P V(P dedt < 0o, (4.15)
0 JQ 0 JQ
which, along with ([L.7) and ({.14), implies that
0
/ /(1 +u)07 | VulP ¢Tdz dt < coy. (4.16)
t JQ

If p > 2, we choose 6 € (1 —p,2—p), d # —1, ¢ and 7 as in Proposition .9, then ({£.2)
remains valid. From the 1nequahty (1+u)'* <14 u and (f£6), we find that

T /Q(l + u(x, )7 () dx <

Hence, by ({.9),

T 0wl 0 <

|6| o 6—1, 7 1 o+1 71
— (1+w)’ ¢ |VulP de dt <571 1+ u(z,0))° T ("dz
2 / / / (4.17)

// 1+u) gTdmdtJrclg// (14 w)0HP=1¢T=P V(P da dt + cao.

Since § <2 —p, d+p—1 <1, hence (1 +u)°*P~1 < 1+ u. Therefore, ({.16) follows from

(E9), (L) and (LI7).

By applying the Gagliardo-Nirenberg inequality as in [B, Prop 2.2 (iii)], we deduce that

/OG/UQ +u(z, b)) de < cas
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for any o € (0,q.) with ¢g. = p — 1 + p/N, which leads to (.g). Next for 0 < r < p, and
any ¢ < 0, we find

0 0 >
/ / |Vu|" dx < </ / (14 u)~ | Vul? dx dt) ’
0 JU 0 JU

p—r

9 (1-d)r »
x(//(1+u) p=r dmdt) .
0o Ju

Thus, if r € (0, Ng./(N + 1)), this proves ({.10); furthermore, since p —1 < Nq./(N + 1),
we obtain ([L.§).

Step 4: End of the proof. Now we use ([.1]) with ¢ = 1, for any ¢ € C°(Q) and any
O<t<O<T,

(4.18)

0
/Qu(x,t)g(x)dm = /Qu(x,H)C(x)dw—i—/t /Q(]Vu\p 2Vu.VC+f(u)C) dedt.  (4.19)

Because the right-hand side of (f.19) has a finite limit when ¢ — 0, the same holds
with ¢ — /u(x,t)((x)dx The mapping ¢ — lim;_, /u(m,t)((x)da: is a positive linear
Q Q

functional £ on the space C2°(€2). By a partition of unity it can be extended in a unique
way as a Radon measure p € 9, () and (f.11)) holds.

Finally, let 0 < ¢ < 0 be fixed, g = 1 and ¢ € C°(Q%}), thus

0
/ / (—udyp + |VulP > Vu.V + f(u)p)dz dr
t JQ

(4.20)
= /u(x,t)go(x, 0)dx — /u(x, 0)p(x,0)dx.
Q Q
But
/u(x,t)(gp(m,t) — ¢(x,0))dz| < 024t/ u(z,t)dz.
Q Q
By (E11)), letting t — 0 yields
[ utatyotatide [ plw,0)d
Q Q
Thus, letting ¢ — 0 in ({.20) implies (fL.12). O
Next we consider the the following problems
Ou—Apu+ f(u) =0 in Q%
u =0 in 09 x (0,7) (4.21)
u(.,0) =p in Q.
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where p € M (). The solutions are considered in the entropy sense (see [[Lf] and [L3]).

We recall that for ¢ > 1 and © C R? open, the Marcinkiewicz space (or weak Lebesgue
space) M%(©) is the set of all locally integrable functions u : ©® — R such there exists
C > 0 with the property that for any measurable set £ C O,

/ luldy < C|E|"" 1. (4.22)
E

The norm of u in M%(©) is the smallest constant such that ([£.23) holds for any measurable
set E (see [[[§, [[J] for more details). Here dy denotes the Lebesgue measure in RY,
although any positive Borel measure can be used.

We recall the following result of Segura de Leon and Toledo [[[f, Th 2] and Li [[3, Th
1.1] dealing with entropy solutions with initial data in L'. However such solutions coincide
with the semi-group solutions because of uniqueness.

Proposition 4.4 Assume p > ]\2,—]4\_[1, Q C RY is any open subset and, h € L'(Q%})and

p € LL(Q). Let v € C([0,T; L' (Q)) be the entropy solution to problem

Ov—Apyv =h n Q¥
v =0 in 02 x (0,00) (4.23)
v(.,,0) =p in Q.

Then v € MP~4X (QP), Vv e Mp_NLH(Q% and there holds

[l y IVl - < ca5, (4.24)

N (QF)

_ b
MP 1+ (Q¥ o

for some ca5 > 0 depending on p, N, ||pl| 1) and Hh||L1(Q¥).

4.2 Stability

Let {un} C L}F(RN ) be a sequence converging to p in weak sense of measures, then
[bnll 1y < ¢, where ¢ depends only on N,p and [|p/[gqgyy- Denote by wy, (resp.
vy,) the solution to problem ({.21)) (vesp. (f23) with A = 0) with the initial data .
Then the following estimate holds

0 <y, <vy,. (4.25)

By [, Theorem 3],

__ =N W
[0 (s DM e vy < 6t T2 | 7 V>0,
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where co6 = c26(N,p) > 0. Thus

-N f
ity o )] ey < €26t 7555 1| T 27

N (4.26)

< ot N=2)+p

for every t > 0, where co7 = co7(N, p, c*) > 0.
It follows from (f.:24) and ([.25) that

p+N

s | pgp=140/8 (@) < €25 Hﬂn”Hfﬂgv_)l) < eas(N,p,c”). (4.27)

By ({.26)) and the regularity theory of degenerate parabolic equations [ff], we derive that the
sequence {uy,, } is equicontinuous in any compact subset of Q7. As a consequence, there
exist a subsequence, still denoted by {u,, } and a function u such that {u,, } converges to
u locally uniformly in Q7.

Lemma 4.5 The sequence f(u,,) converges strongly to f(u) in LY(Qr). Furthermore,
{un} converges strongly to w in L}, (Qr) for every 1 < ¢ < gc.

Proof. Since u, — u a.e in Qr, by Vitali’s theorem, it is sufficient to show that the
sequence {f(uy,)} is uniformly integrable. Let E be a Borel subset of Q7 and let R > 0.
Then, since f is increasing,

//Ef(umdmdt://Em{umg}f(u")dmdt+//Em{uM>R}f(u“”)dxdt
< f(R)//dedt+//Eﬁ{uM>R}f(uMn)dxdt'

For A >0, we set B,(\) = {(z,t) € Qr) : uy, > A} and a,(\) = // dx dt. Then
n(A)

//Em{u#n>3}f(u“")dx dt < //{u#an}f(u“n)dx dt = —/Roof()\)dan()\) (4.28)

and
— [ FOVdan(N) < f(Rjan(B) + [ a0 ),
R R
It follows from ([.27) that

+N

__ptN
an(N) < ezs lanll gy AR < epghZOTHR),
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Plugging these estimates into ([.2§) yields

/ / Flu, )z dt < f(R)an(R) + eao / TR gr ()
En{uu, >R} R
< f(R)an(R) — cao f(R)R~P~1- %)
+ c2 (p 14 %) /Oof()\))\—(p+%)d)\
R

— AN —(r+%)
< 29 (P 1+N>/R JNATPTNI A

(4.29)

Since

/ A~PER) F(A)dA < oo,

1
for given € > 0,we can choose R > ( large enough such that

029 —1+ / f %)d)\<6/2.
Set § = (1 + f(R)) 'e/2, then

|E|<5:>0§//Ef(uun)dxdt<e,

which proves the uniform integrability of the sequence {f(u,,)}. The last assertion follows
from the fact that u,, is bounded in M9 (Qr) (remember that ¢ = p — 1+ p/N) and
M%(Qr) C LY (Qr) with continuous imbedding, for any ¢ < g.. The conclusion follows

loc

again by Vitali’s theorem. O
Lemma 4.6 Assume p > N+17 then for any U CC RV, the sequence {Vuy,} converges
strongly to Vu in (L*(Qr))N for every 1 < s < s.:=p — NL_H
Proof. We set hy, = —f(uy,) and write the equation under the form
Oy, — Aptiy, = hy in Qpr
" N . 4.30
{ Upp (1, 0) = pip in RV, (4.30)

We already know from the L!-contraction principle and Proposition .4 that
Huﬂn('at)HLl(RN) < HMnHLl(RN) vt € (0,T]
and u,, — w in L]

1 (Qr) for every q € [1,¢.) and |Vuy,| is bounded in_LlsOc(@) for
every 1 < s < s.. Thus |Vu,,|[P~! remains bounded in bounded in LY (Qr) for every

1<o<o.: =1+ m. Furthermore,

{Vu,, } is a Cauchy sequence in measure. (4.31)
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and the proof is similar to the one of [, Th 5.1-step2]. Up to the extraction of a
subsequence, {Vu,, } converges a.e. to some D = (Di,...,Dy) in Q7. Consequently,
{|Vu,, |P* Vu,, } converges a.c. to |D[P"> D in Qr and, by Vitali’s theorem,

Vuy, — D strongly in (L5, .(Qr))Y, Vs € [1,s.), (432)
. .32

{IVuy,, [P*Vu,,} — |DP"*D strongly in (L7 _(Qr))N, Vo €[l,0.).
which implies Vu = D and the conclusion of the lemma follows. O

Proof of Theorem [[.7. Step 1. For any ¢ € C°(RY) and ¢ > 0, we have

t
Uy, (T x)dz wy, P72 Vu u xdt = x)((z)dx
e ti@ide [ (907, 9+ fu)Odedt = [ (o)

By Lemma [£.5 and Lemma [I.6, up to the extraction of a subsequence, we can pass to the
limit in each term and get

t
/RNu(x,t)C(x)dx +/0 /RN(WUV’? VuV¢ + f(u)¢)dz dt = /RNgdu.
Letting ¢t — 0 yields

lim u(z, t)((x)dr =

lim | [ @) (4.33)

For any ¢ € C°(RY x [0,00)) and 6 > 0, we have

0
/0 /RN(—uunatap + |Vuy, ]p*Q Vuy, Vo + f(uy,)p)de dt

(4.34)
— [ oD@~ [, (. 0p(.0)d.
RN RN
By the previous convergence results, we can pass to the limit in ({.34)) to obtain
0
/ / (—udyp + |[VulP > VuVe + f(u)p)dz dt
0 JRN (4.35)

= [ oo [ a0y,
RN RN
Step 2: u is a weak solution. By ([.26)

N
SUP{HUun(-,t)HLoo(RN) (s )l poomay} < cort No=240 vt € (0,T].
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Let ¢ € C(RY). Since {uy,(.,0)} converges locally uniformly to u(.,6) in RY, for any
6 > 0, there holds

1

T
i/RN(uM —uum)2(.,T)Cdaﬂdt+/€ /RN(f(u“") — flup,,)) (U, — up,, )Cdx dt

T
+/ / (|Vuﬂn|p72 Vuy, — |V, |p72 Vuy,,).V(uy, —uy,)Cdzdt
7] RN

) (4.36)
<5 = w2 0)Gd
2 RN
T
900 Vi, = 190007 T, = ][9] .
0 JRN
This implies directly
Vuy, = Vu in LT (Qr), (4.37)
by Lemma [L.§ when p > 2. When 1 < p < 2, we derive by Fatou’s lemma
1 N T
5 [~ PTGz d [ [ () - f@), —u)Cdads
RN 0 RN
T
+/ / IV, [P~ Vi, — |VulP ™ Vau).V (uy, —u)(dzdt
0 JRN
) (4.38)
< 5/RN(UM — w)?(,6)Cda dt

T
+/ / ‘\Vuun\p_QVuun—\Vu\p_QVu‘ g, — u| |V¢| dx dt.
o JRN

Using again Lemma [L.6], it implies

T T
lim / / |Vuy, |P (dx dt:/ / |VulP (dx dt. (4.39)
oo Jo JRN 0 JRN

Since Vu,, — Vu weakly in L} (Qr), it implies again that (f£37) holds true. At end,
let ¢ € C°(Qr) and consider 0 < § < T and U cC R such that suppy C (0,T) x U.
Let g € C(RY)NWL2(RN) where G’(r) = g(r). Multiplying the equation in (f21)) (with

initial data = pp) by g(uy, )¢, we obtain

T
| [ G 0+ (9, P (o)
o JR (4.40)

T
T () [Vt P Vg, Vg + /0 | 505 ) dt =0,
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By Lemma [L.] and ([£.37), we can pass to the limit in each term. As a consequence, u is
a weak solution.

Step 3: Stability. Assume that {u,} is a sequence of functions in L (RY) with compact
support, which converges to u € MY (RY) in the dual sense of C(RY), then ||p,|| L1(RN) I8
bounded independently of n. By the same argument as in step 1 and step 2, we can pass
to the limit in each term of (.40), hence the conclusion follows. O

Lemma 4.7 Assume p > 2. Let u € C(Qr) be a positive weak solution of (L) in Q.
Assume that there exists r > 0 such that

T
// |VulP~! dz dt = oo. (4.41)
0 r

Then
sup / u(z, ) = o0. (4.42)
TE(O,T) Bs,
Proof. By contradiction we assume that (f.43) does not hold. Then there exist A1 > 0
such that

sup / u(z, ) = A;. (4.43)
TE(O,T) Bg,

Step 1: We claim that
u e L=(QP).

Since u is a positive subsolution of the equation in (R.13), by [f, Theorem 4.2, Chapter
V], there exists a constant c3y = c30(N, p) such that for every zy € RN, 0<O0<ty<T
and o € (0,1), there holds

1 P
3002 1 2

sup us< — N(p+l)+p< sup |K,| / u(x,7’)dx> , (4.44)
Kopx(to—0ob,to) p2 (1 — o') 2 o<r<t K,

where K,(zg) is the cube centered at zg and wedge 2p, i.e.,

K = RY G .
pl@o) = {w €RY : max |2' —ap| <p)

We choose 79 =0, tg =0 =t, 0 = 1/2 and p = 4r, then ([L.44) becomes

) —
sup u <2 T *”C3Ot%(4r)f< sup | K| ™" / u(m,T)dx) . (4.45)
K47‘

Ker(%,t) 0<r<t

Since By, C Ko, and Ky C Bg,, from ([.43) and (.45), we obtain that

N—p(2N+1) 1 —p(N+1) ya
sup w<2 2 c3pT2r 2 A} =: Ay, (4.46)
BQTX(O,T)
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which implies the claim.

Step 2: Let ¢ € C(RYN) such that ¢ >0 in RN, ¢ =1 in B, and |V¢| < 1/r. We show
that
// (u+1) Cp|Vu|pdxdT<oo
By

—1)
// (u+1) p dr dr < oo.
BQr

Multiplying (L)) by (u + 1)TCP and then integrating on RY x [e, ] with 0 < € < t, we
get

(4.47)

P /B%( (e, t) + 1) dex—i——//B%u—i-l T P |Vl d dr

2(p—1)
—i—/E/BQT(u—i-l);f(u)dexdT

Pz

p 2(p—1)
= u(r,e)+1) »
i _
- P/ / (u+ 1)%@’*1 |VulP~? VuVdz dr,
BQT

which implies that

— t —_

29—2// (u—|—1)72Cp|Vu|pdxdT
p € J B,
p
<_P z,6)+1
sy, 0+
—p/ / (u+ 1)%@*1 VulP~2 VuV(dz dr.
€ Boy

' (Pdz (4.48)

By Young’s inequality,

t _
p/ / (u+1)"7 1 [VulP~! |V¢|de di
€ B27‘
/ / Cp |VulP dx dr (4.49)

p—1
+p< > // (u+ 1) VP de dr.
Bay
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It follows from (§.48) and (4.49) that

p—2 (! =2
—/ / (u+1)7 P |VulP dedr
2p ¢ J B, ( )
p 2(p—1
< P 4.50
2(p—1) Bgr( )+ (4.50)

p—1
+p< > // (w+1)7 VP de dr.
BQr

sup / (u(z,€) +1) dex < e31(N,p,r, ¢, As)
EE(OT) Ba,

u(z,
2p?

// u+1 ]VC]pdxdT<r p// u+1) P dmdt<032(Np,rTA2)
BQr BQr

Combining the previous two estimates with (.50) yields
J1(t) < ess(N,p,r,T,¢), Vte (0,T). (4.51)
By ([:46), we also find that
Jo(t) < csa(N,p, 7, T, As). (4.52)

Step 3: End of proof. By Holder’s inequality, we get

t _
/ / VulP =L P Ndw dr < (J1(0)7 (Ja(1))7.
0 BQT
By step 2, we deduce that
T
/ / (VulP~t PNz dt < es5(N,p,r, T, C), (4.53)
0 B27‘
which contradicts (|.41]). O

5 Initial trace

5.1 The dichotomy theorem
The dichotomy result Theorem [L.§ is a consequence of Proposition f.J and Lemma [£.7.
Proof of Theorem By translation we may suppose that y = 0.
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Case 1: there exists an open neighborhood U of 0 such that (1) and (f.§) hold true.
Then the statement (ii) follows from Proposition [£.3.

Case 2: for any open neighborhood U of 0, (1) or (.§) does not holds. We first suppose
that (.§) does not hold. We can choose r > 0 such that Bg, C U and ({.41]) holds.
Then the statement (i) follows from Lemma [L.7. Suppose next that ({.§) holds but (f.7)
does not hold, then Proposition [.d implies that (f.6) does not hold and the statement (i)
follows. O

Proposition 5.1 Assume p > 2 and f is nondecreasing and satisfies ([[.12). Let u is a
positive weak solution of (L)) in Qe with initial trace (S, ). Then for everyy € S,

U,(x,t) :=U(x —y,t) < u(z,t) (5.1)

“y
M Qoo

Proof. By translation we may suppose that y = 0. Since 0 € S(u), for any n > 0 small
enough

lim [ w(z,t)dx = cc.
t—0 Bn

For € > 0, denote M, = / u(x,e)dx. For any m > m, = ir;% M, , there exists € =
mn
€(m,n) such that m = M., and liH(l) e(m,n) = 0. Let u, be the solution to the problem
n—

Opliy — Aptiy + f(Uy) =0 in Qo
tn(z,0) = u(z, €)X, in RY

where x By is the characteristic function of B;,. By the maximum principle @, < u in

RY x (e,00). By Theorem [[.7] v, converges to uy when n goes to zero. Letting m go to
infinity yields (B.1)). O

Proof of Theorem The conclusion follows directly from Proposition p.1. O

5.2 The Keller-Osserman condition does not hold

Lemma 5.2 Assume p > 2, ([.12) and J < oo are satisfied and klim Up = Goo. Ifu is a
— 00
positive solution of ([L1]) in Qo which satisfies

t—0

limsup/u(x,t)dac = 00, (5.2)
G
for some bounded open subset G C RY, then u(w,t) > ¢oo(t).
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Proof. By assumption, there exists a sequence {t,} decreasing to 0 such that

lim [ u(z,t,)dr = co. (5.3)

n—o0 G

If (F.2) holds, we can construct a decreasing sequence of open subsets Gy, C G such that
G C Gp_1, diam(Gy) = e, — 0 when k — oo, and

lim u(z,ty)dr =00 VkeN. (5.4)

n—oo Gk

Furthermore there exists a unique a € N Gj. We set

/ u(x,ty)dr = My .
G

Since lim M,, ; = oo, we claim that for any m > 0 and any k, there exists n = n(k) € N
n—oo
such that

/ u(z, tyy)de > m. (5.5)
Gy

By induction, we define n(1) as the smallest integer n such that M, ; > m. This is always
possible. Then we define n(2) as the smallest integer larger than n(1) such that M, > > m.

By induction, n(k) is the smallest integer n larger than n(k — 1) such that M, ; > m.
Next, for any k, there exists ¢ = ¢(k) such that

/ inf{u(x,t,u)); (yde =m (5.6)
Gy

and we set R
Uk (x) = lnf{u(x’ tn(k)); E}Xck (x)

Let 1, = u be the unique bounded solution of

Oyt — Apu + f(u) =0 in Qoo (5 7)
u(.,0) =0Ty in RV, '
Since iy (z,0) < u(z,tyr)), we derive
u(z,t +tygy) = g, ) V(z,t) € Qoo (5.8)

When k — oo, Uk — mbg, thus @, — Upys, by Theorem [.7. Therefore u > tu,,s,. Since
m is arbitrary and u,,5, — ¢oo When m — oo, it follows that u > ¢. O

Lemma 5.3 Assume p > 2, ([.14) and J = oo are satisfied, and klim up = oo. There
— 00

exists no positive solution u of (L)) in Qo which satisfies (5.9) for some bounded open
subset G C RV,
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Proof. If we assume that such a u exists, we proceed as in the proof of the previous lemma.
Since Theorem [[.7 holds, we derive that u > w,,s5, for any m. Since lim s, (x,t) = oo
m—o0

for all (z,t) € Qo, we are led to a contradiction. O

Thanks to these results, we can characterize the initial trace of positive solutions of
(L) when the Keller-Osserman condition does not hold.

Proof of Theorem [I.4. (i) If S(u) # (), there exists y € S(u) and an open neighborhood
G of y such that (b.9) holds. By Lemmap.9, u > ¢o, and the initial trace of u is the Borel
measure vy,. Otherwise, R(u) = R and Tr, y(u) € M, (RV).

(ii) Using the argument as in Theorem [.9 and because of Lemma p.3, S(u) = 0. Therefore
R(u) =R and Tr_ (u) € M, (RY). O

Corollary 5.4 Assume p > 2. If f is convex and satisfies ([.13), J < oo and K = oo,
there exist infinitely many different positive solutions u of ([L1)) such that trgx (u) = Veo.

Proof. Let b > 0 be fixed. Since f is increasing, (v,t) — U(z,t) = wp(r) + dog(y) is a
supersolution for ([L.1). Let V(z,t) = max{wy(z), ¢poo(t)} then V, f(V) and |[VV|? are
locally integrable in QQ7; actually V' is locally Lipschitz continuous. Let € > 0 and p. be a
smooth approximation defined by

0 if r<o0
pe(r) = g—i if 0<r<e
r—35 if r>e

We set Ve(z,t) = ¢oo(t) + pe[wp(z) — ¢doo(t)]. Then

OV — DpVe + F(Ve) = ¢l (1= pllws — o)) — (pLfws — doc))’ ™" Ay
—(p— 1) (PLLwy — doc)) 2 Pl Twp — Goo)[Vunl? + F(V2)
< F(Ve) = (1= pllws — docl) F(6o0) — (PLlwn — doc])’ ™" f(wy)

If € C°(Qr) is nonnegative, then
// (=Vioiop + |VV[P2VV.V ¢ + f(Ve)) dadt < o(1)
T
Letting € — 0 implies
// (=Vop + |[VV[P2VV.V¢ + f(V)) da dt < 0.
T
Thus V is a subsolution, smaller than U. Therefore there exists a solution u; such that
V <wu < U. This implies that trpy (up) = veo. If b’ > b we construct uy with tre~ (uy) =

Voo and limy_, o (up (0, 1) — up(0,¢)) > 0. O
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