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Abstract 

The present study makes use of a detailed water balance to investigate the hydrological 

status of a peatland with a basal clay-rich layer overlying an aquifer exploited for 

drinking water. The aim is to determine the influence of climate and groundwater 

extraction on the water balance and water levels in the peatland. During the two-year 

period of monitoring, the hydrological functioning of the wetland showed a hydric 

deficit, associated with a permanent unsaturated layer and a deep water table. At the 

same time, a stream was observed serving as a recharge inflow instead of draining the 

peatland, as usually described in natural systems. Such conditions are not favourable for 

peat accumulation. Field investigations show that the clay layer has a high hydraulic 

conductivity (1.10-7 to 3.10-9 m.s-1) and does not form a hydraulic barrier. Moreover, the 

vertical hydraulic gradients are downward between the peat and the sand aquifer, 

leading to high flows of groundwater through the clay layer (20 to 48% of the 

precipitation). The observed hydric deficit of the peatland results from a combination of 

dry climatic conditions during the study period and groundwater extraction. The 

climatic effect is mainly expressed through drying out of the peatland, while the 
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anthropogenic effect leads to an enhancement of the climatic effect on a global scale, 

and a modification of fluxes at a local scale. The drying out of the peatland can lead to 

its mineralization, which thus gives rise to environmental impacts. The protection of 

such wetlands in the context of climate change should take account of anthropogenic 

pressures by considering the wetland-aquifer interaction. 
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1. Introduction 

The loss of peatland area and biodiversity through drainage and water extraction are the 

subject of major and varied research programmes focused on wetlands. Wetlands have a 

crucial impact on human activities, since these areas are  important in regulating water 

flow and long-term storage, carrying out hydrochemical functions such as  water 

filtration, while also having an ecological value because of the high diversity of their 

flora and fauna,  as well as regarding eco-tourism (Bragg and Lindsay, 2003; 

Heathwaite, 1995; Mitsch and Gosselink, 2000 Fraser et al., 2001; Reeve et al., 2001). 

The importance of wetlands for carbon sequestration has also been investigated 

(Siemens and Janssens, 2003). The potential evolution of wetlands as a carbon source is 

a key issue in the context of climate change. Hydrology is important for the 

maintenance of wetland structure and biological processes (Winter and Woo, 1990; 

Romanowicz et al., 1993; Waddington and Roulet, 1997; Dowrick et al., 2006). Slight 

hydrological variations in wetlands, which would cause a shift from saturated to 

unsaturated conditions, could induce massive changes in species composition, diversity 

and productivity of the ecosystem (Provost, 1982; Mitsch and Gosselink, 2000). A 

deeper water table would expose a larger proportion of organic material to aerobic 

decay (Joosten, 2008). Peatland conservation and growth depend mainly on the 

frequency and length of the annual flooding period, which is itself controlled by the 

water balance (Laplace-Dolonde, 1994). 

The hydrological functioning of wetlands may influence carbon release or uptake 

through the modification of water levels and/or water fluxes (Blodau et al., 2004). 

Under natural conditions, peatlands represent net carbon sinks. Peat accumulation 

depends strongly on water-table level, and occurs when the water table is just under, at, 

or just above the ground surface (Joosten, 2008). The lowering of water level in 

peatlands can negatively affect the functioning of wetlands (Ivanov, 1981 in Joosten, 

2008; Blodau et al., 2004) through processes of mineralization and erosion (Clymo, 

1983; Hooijer et al., 2006). Natural peatlands may thus shift from carbon sinks to 

carbon sources. However, there any many unresolved questions concerning the potential 
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evolution of wetland hydrological functioning over the last few decades, and the 

influence of climate as well as anthropogenic factors. 

There are large number of mire classifications based on landform, chemistry, plant 

composition, water source, etc (Brinson, 1993), so the role of groundwaters differs 

between the various types of wetlands. In some cases, wetlands have weak interactions 

with groundwaters. Soils with low permeability isolate wetlands from large-scale 

groundwater systems. In raised bogs, peat accumulates above the surrounding land and 

becomes isolated from the influence of groundwater and surface water. In other cases, 

wetlands interact with groundwaters. Fens are known to be the expression of 

groundwater outflow at the ground surface (Mitsch and Gosselink, 2000; Fraser et al., 

2001; Reeve et al., 2001). Peatlands may form in topographic depressions or on hill 

slopes where the water table rises through the soil. In valley mires, the water is derived 

from the mixing of groundwater, surface water and precipitation. Riparian wetlands, 

adjacent to streams or rivers, are influenced by fluctuations of water level in the riparian 

zone.  

Several hydrological investigations have focused on wetland-aquifer interactions and 

have laid stress on the importance of groundwater flow exchanges between peatlands 

and their surrounding as well as their underlying geological formations. Such exchanges 

influence vegetation patterns (Siegel and Glaser, 1987), chemical composition and 

biogeochemical processes (Hill and Siegel, 1991; Clément et al., 2003; Ladouche and 

Weng, 2005), and hydrological functioning (Siegel, 1983; Roulet, 1991; Devito et al., 

1996; Devito et al., 1997; Wise et al., 2000; Ladouche and Weng, 2005). Studying the 

relationships between peatlands and regional hydrogeology represents an important 

stage in assessing the functioning of wetlands and their sensitivity to hydrogeological, 

anthropogenic or climatic variations. At a large scale, climate would directly influence 

both precipitation and evapotranspiration in the peatland, while wet periods with high 

precipitation would favour waterlogged soils. Warm and dry conditions would decrease 

precipitation and increase evaporation, leading to a lowering of the peat water table. On 

a more local scale, anthropogenic activities (agricultural drainage, forestry drainage, 

peat extraction, etc.) substantially lower the water level and negatively affect peat 

preservation. Such activities can lead to substantial losses of peat through 
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mineralization and erosion (Joosten and Cowenberg, 2008). Groundwater resource 

extraction might also influence wetland-groundwater interactions. Although 

groundwaters may account for a minor component of the water balance of the wetland, 

decreasing the piezometric head by water withdrawal from the underlying aquifer can 

lower the base level to such an extent that the system can no longer  compensate and the 

wetland dries out (Owen, 1995; Gilvear et al., 1997). There is a remaining need to 

investigate the importance and variability of vertical groundwater flow as compared to 

other components of the water balance (precipitation, evapotranspiration, and surface 

flow). Anthropogenic activities may modify wetland sensitivity and vulnerability to dry 

climatic conditions.  

In France, peatlands cover less than 1% of the total land area. Although this is relatively 

small proportion compared with more northern countries (Canada, Russia, Fenno-

Scandinavia and the British Isles), the peatlands of France exhibit a great diversity 

(Manneville, 2001). However, like many other countries in Western Europe, 

commercial extraction and drainage have led to the destruction of French peatlands (loss 

of 50% from 1945 to 1998) (Bragg and Lindsay, 2003; Manneville 2001).  

The Cotentin peninsula in northern Normandy has one of the largest peat sites in 

France, which has been included in the list of the Ramsar convention since 1991. The 

wetland landscape of the Cotentin is made up of a mosaic of water meadows covering 

an area of 32 000 ha, forming a drainage network converging towards the sea. The 

Cotentin peatland overlies sandy aquifers used for drinking water extraction. Marine 

and fluvial Plio-Pleistocene deposits have been preserved in small Cenozoic grabens 

(Pareyn, 1980; Baize, 1998; Dugué, 2003), thus making up the main water resource in 

northern Normandy (Freslon, 1988; Vernoux et al., 2000). The groundwater resources 

have been estimated at around 16 million cubic metres per year. Current groundwater 

extraction does not exceed 7 million cubic metres per year, providing water for 80 000 

inhabitants. This extraction is expected to increase considerably over the next few 

decades. Following water extraction, a piezometric depression in the sandy substrate 

could influence the hydrological functioning of the overlying peatland (Vernoux et al., 

2000). The potential influence on functioning will evidently depend on the hydrological 

connection between peat and sand. Therefore, the present study focuses on 
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groundwater-surface water interactions in the Cotentin peatlands. This study aims to 

determine the effect of climate and groundwater extraction on the peat/water balance 

and water levels in peatlands. A water balance approach is used to characterize the 

hydrological connection between peat and sand. For that purpose, stream and 

groundwater levels were monitored over a two-year period and placed in the context of 

recent decadal wet and dry cycles. To assess the sensitivity and vulnerability of the 

peatland to anthropogenic and climatic influences, we compare sites according to the 

eventual influence of groundwater extraction.  

2. Site description 

The studied sites are peaty meadows located in Normandy, North-Western France 

(Figure 1). The peatlands of Normandy have developed over the last 5000 years from 

the anaerobic decomposition of feather mosses, but the plant assemblage is mostly 

composed of phanerogams including trees and shrubs whose woody skeleton is well 

preserved in the peat (Provost, 1982). The peat thickness varies between 1 m to 7 m 

(Figure 1). Most of the Cotentin peatlands are now at the end of the active turf-forming 

phase. Peats have almost entirely ceased accumulating organic matter, in spite of 

frequent and persistent flooding (Provost, 1982). The wetland ecosystem has evolved in 

equilibrium with human activities, preserving a rich biodiversity (Provost, 1982, 1993). 

The investigated peatlands are mesotrophic freshwater fens with alkaline to neutral pH 

(Provost, 1982). Along the streams, there are regular exchanges between the peatlands 

and the drainage network, which consists of several rivers either within or bordering the 

peatland, as well as small ditches (30 to 40 cm deep) running through the wetland. 

During the study period, the influence of these small empty ditches on the wetland 

hydrology was negligible at the site scale. The peatlands overlie (1) a clay-rich layer of 

variable thickness (1.5 - 6 m), and (2) a Miocene to Quaternary sandy formation 80 to 

100 m thick (Freslon, 1988; Salimeh, 1990; Dugué, 2003). This latter formation makes 

up the largest regional aquifer, with a high hydraulic conductivity (10-3 to 10-4 m.s-1), 

which covers an area of 132 km². This major aquifer has been used for drinking water 

supply since 1989 (3 million m3 per year), with wells being sunk directly into the 

peatland.  
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The climate of northern Normandy is oceanic. The meteorological station, located 5 km 

north of the study sites, records a mean annual precipitation of 923 mm (1946 to 2004), 

with an annual mean potential evapotranspiration of 650 mm. The average number of 

days with precipitation of more than 1 mm ranges from 120 to 160 days. The 

temperature range is narrow, with a mean maximum temperature ranging from 19 to 

24°C in summer and from 1 to 5°C in winter. 

Three peatland sites were investigated (Figure 1): two sites (S) are situated close 

together, one near the pumping station, on the left bank (west side of the stream 

channel), and the other at the pumping station on the right bank, across the stream on 

the east side of the channel. The reference site G is located 1.3 km downstream, beyond 

the zone of influence of the pumping station. Indeed, the pumping rate at F1 (Figure 1) 

and hydraulic parameters of the sand aquifer (Vernoux et al., 2000) show that the 

capture zone of the extraction well does not extend farther than 150 m downstream from 

the pumping area (Fetter, 2001). Therefore, in the sand aquifer, the drawdown due to 

extraction at F1 (site S) is negligible at the reference site G.  

The thickness of the peat layer was estimated from auger-test holes (Figure 1). At the S-

sites (left and right bank), the peat layer has a basin-like shape with the greatest 

thickness at the centre. The peat layer ranges in thickness from less than 1 m to more 

than 6 m, attaining a maximum of about 4 m below the stream. The peat layer is thin 

around the edge of the peatland (60 cm at site G) and becomes thicker towards the 

centre of the peatland (more than 6 m). The thickness of the clay-rich layer (2.70 m in 

borehole F1 and 1.50 m in borehole G) was estimated from two drilling-logs that 

penetrated into the deep aquifer.  

3. Materials and methods  

3.1 Piezometric monitoring 

To characterize horizontal and vertical groundwater flow, groundwater levels (in peat, 

clay and sand) were monitored along with the stream water level. The peat layer was 

monitored using sixteen PVC piezometers. Large-diameter (100 mm) piezometers were 

chosen to ensure robustness of the equipment during the installation and facilitate 
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chemical sampling. To limit the impact on the surrounding peat, the piezometers were 

installed using an auger with the same diameter, and inserted manually into the peat. To 

observe the piezometric head distribution in the peatland, piezometers were inserted at 

depths of 1.20 m to 6 m. Most of them were inserted at 1.5-2.0 m depth with a 40 cm 

long screened section at the base. Additional piezometers were inserted deeper than 3 m  

with a 60 cm long screened section. However, to allow comparison, in Figure 2, we plot 

the piezometric heads for each site measured using piezometers with the same design 

(same depth, same screened section). The slots of the screened section were 

perpendicular to the pipe axis, measuring 5 cm long, 1-2 mm wide, and were spaced at 1 

cm intervals. Six piezometers were set up in the peat layer at site G and four at site S-

right bank, following a transect perpendicular to the river, in order to observe the 

stream-peat relationship and determine the main direction of groundwater flow. At site 

S-left bank, 6 peat piezometers (deep and shallow) were placed close to the stream, 

close to the pumping area and right in the middle of the area. Because of the areas of 

private land, it was not possible to carry out a perpendicular transect as at the other sites. 

At this site, one piezometer was placed in the clay-rich layer (Figure 1). The 

piezometric level in the sand aquifer was monitored with 2 deep boreholes (80 – 100 m) 

intersecting the sand formation at site S-left bank and at site G (Figure 1). At site S-right 

bank, there was no point for direct measurement of the groundwater level in the sand. 

The monitoring of piezometric head in the sand at different measurement points located 

all around the aquifer showed homogeneous fluctuations. This allowed us to extrapolate 

the sand piezometric head at site S–right bank from the piezometric map established in 

1996 (Vernoux et al., 2000). The sand piezometric level at site S-right bank appeared to 

be 7.1 cm higher (σ = 2.4) than at site S-left bank. Water level rules were placed in the 

stream at two locations at site G and at pumping site S (Figure 1). The monitoring of 

groundwater levels and stream water levels was carried out manually using a water-

level meter, simultaneously for all the measurement points, every two or three weeks 

from March 2003 to March 2005. In parallel, continuous monitoring was set up at 

pumping site S. Paratronic data loggers and Keller pressure transducers (0-2 bar) were 

used to record continuously the piezometric level in 4 piezometers in the peat layer, as 

well as the stream water level, with a time frequency of 10 minutes (Figure 1). Sand 

groundwater levels were measured in the field in the deep boreholes F2 and G (screened 
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throughout the thickness of the sand layer) (Figure 1). These measurements were 

compared with the piezometric head of the sandy aquifer, which was continuously 

monitored since 1993 (Figure 2).  

3.2 Water sampling and analysis 

To estimate actual evapotranspiration from chloride concentration (Cl-), peat-water 

samples were collected every two months. Due to the low hydraulic conductivity of the 

peat (see section 4.1), the recovery of the groundwater level in the piezometers took 

more than a week. As a consequence, the wells were not purged before sample 

collection. Water was sampled, filtered (0.22 µm cellulose acetate filter capsule 

Sartorius), stored at 4°C in the dark for 24h before analysis for Cl- by ionic 

chromatography (Dionex DX-120) with an uncertainty better than ± 5%.  

3.3 Permeability measurements 

Literature values for the hydraulic conductivity of saturated peat cover several orders of 

magnitude from 10-10 to 10-3 m.s-1 (Rycroft et al 1975a), thus indicating the need for 

site-specific information (Wise et al., 2000). To provide components of the water 

balance, a specific effort was made to estimate peat permeability through field tests. 

Field tests are thought to provide a better estimation of permeability than laboratory 

methods (Rycroft et al., 1975a; Dasberg and Neuman, 1977; Baird, 1997), since it is 

indeed difficult to obtain a representative sample of a highly heterogeneous medium and 

preserve a peat sample without damaging its structure (Hanrahan, 1954; Bromley et al., 

2004). K-peat was measured in each piezometer using the hydrostatic time-lag method 

of Hvorslev (1951) based on the rate of water level rise in the piezometer after a sudden 

withdrawal of water. In previous studies, withdrawal tests have been found to be more 

reliable and accurate than slug insertion tests, even though slug-tests give a reasonably 

reliable indication of horizontal hydraulic conductivity (Baird et al., 2004; Surridge et 

al., 2005). 

Sixteen large-diameter piezometers (Figure 1) were used to measure horizontal peat 

hydraulic conductivity (Kh-peat) at 1.20 to 3.5 m depth. Hydraulic conductivity varies 

with depth in the peat (Boelter, 1965; Ingram, 1983). Only one large piezometer was 
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placed at less than 1.50 m depth. We used additional piezometers to characterize Kh-

peat at shallower depth, i.e. one large piezometer at 0.90 m depth and several mini-

piezometers at 1 m depth. The mini-piezometers consisted of PVC tubes with a 

diameter of 10 mm (Lee and Cherry, 1978; Hinsby et al., 1992; Boulton, 1993). They 

were screened at the base (20-cm-long section) and were put into the peat by 

hammering with a steel T-bar down to a depth of 1 m. In the large piezometers, the 

water level recovery took a long time, typically several days, so we used pressure cells 

and acquisition equipment. The 16 large piezometers were tested once, 6 were tested 

twice. A total of 26 temporary mini-piezometers were set up at the three sites around the 

large piezometers, and also between them, to obtain an overall picture of the spatial 

distribution of hydraulic conductivity. At each site, mini-piezometers were tested twice. 

To check the permeability of the clay-rich layer, two slug-tests were also performed in 

the clay piezometer (K-clay) at the site S - left bank (Figure 1). All the slug-tests were 

performed during the summer of 2004. 

To ensure the validity of the method in a medium such as peat, several conditions must 

be satisfied. (1) The length/radius ratio of the well screen should be higher than 8 

(Horvslev, 1951). (2) The tube diameter is used in the calculation of hydraulic 

conductivity and could influence the determination of Kh-peat. Therefore, we tested 

both types of piezometer with different diameters at the same depth. As observed on site 

and in previous studies (Dai and Sparling, 1973; Clymo, 2004), the tube diameter does 

not have a significant influence on K-peat measurement. (3) To prevent eventual 

smearing, which could clog the peat pores and affect the water-head recovery, the tubes 

were developed by emptying twice before the beginning of monitoring (Butler, 1998; 

Baird et al., 2004). (4) In  cases where the elastic properties and compressibility of the 

peat result in flow that violates Darcy’s law in humified peat, Hvorslev´s method 

(Hvorslev, 1951) becomes inappropriate and would lead to inaccurate estimation of Kh-

peat (Ingram et al., 1974; Rycroft et al., 1975b; Hemond and Goldman, 1985; Van der 

Schaaf, 2004). However, the water-level recovery during the slug tests was very nearly 

log-linear, as required to apply the Hvorslev method. Baird and Gaffney (1994) 

compared the hydraulic conductivity of humidified fen peat assuming both rigid 

(Horvslev, 1951) and compressible (Brand and Premchitt, 1982) materials, showing that 

compression and swelling can affect head recovery during slug-tests. However, K 
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values do not differ by more than a factor two, which is relatively low for a parameter 

that is known to vary by several orders of magnitude. In our study, we only used a 

general estimate of K-peat at the site scale and small-scale heterogeneities were not 

considered. Therefore, slug tests and Hvorslev’s theory appear to yield a reasonably 

reliable indication of K (Surridge et al. 2005). (5) Piezometers were tested twice (6 large 

piezometers and 26 mini-piezometers). Very little variations were observed between 

both slug tests, which ensured the validity of the results.  

3.4 Components of the water balance and error estimation 

A mass balance approach is used to describe and quantify the hydrological budget of the 

peatland (Equation 1). The mass balance is performed for the year 2004 on a segment of 

terrain between the stream and a more distal zone of the peatland on a sub-annual scale 

(Figure 3).  

ΔS = P – AE ± Q-peat ± Q-stream ± Q-sand  (1) 

where ΔS (mm) is the variation in water storage of the peatland; 

P (mm) is precipitation; 

AE (mm) is the actual evapotranspiration; 

Q-stream (mm) is the groundwater flow exchanged between the stream and the peat 
groundwater, as estimated from Darcy’s law; 

Q-sand (mm) is the groundwater flow exchanged between the peat aquifer and the sand aquifer 
through the clay layer; 

Q-peat (mm) is the  peat groundwater flow of the investigated area exchanged with the rest of 
the peatland, as estimated from Darcy’s law. 

 

The mass balance approach quantifies water flows (Table 1). However, errors in 

measurements and natural variability propagate through the calculation and can have a 

significant impact on the calculation (Winter, 1981; Barry and Morris, 1991; Owen et 

al., 2003). Thus, an error estimation is carried out for each term of the water balance 

and then summed in the final mass balance to define the upper and lower limits of the 

peatland water balance (Table 1). 

Precipitation (P) represents an input and actual evapotranspiration (AE) an output. In 

wetlands, runoff is likely produced in the form of saturated overland flow (Hayashi et 

al., 1998; Evans et al., 1999; Holden, 2003; Holden and Burt, 2003b). At the 

investigated sites, the water table remains below the ground surface (Figure 2), which 
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limits the production of saturated overland flow. As a result, runoff can be ignored and 

all the effective rainfall is considered as an input to the peat groundwater. In the 

Cotentin peatlands, there are very few trees and the grassed peatlands represent open 

areas. Not all rainfall reaches the soil, since some water evaporates directly from wet 

vegetation during and after rainfall events. As a first approximation, 15% of rainfall 

from grassland is “lost” by interception (Keliher, 1993). In our global approach, rainfall 

interception is not measured as a separate component, and therefore is included in the 

actual evapotranspiration component. Precipitation data and errors were provided by 

MeteoFrance according to the recommendations of the World Meteorological 

Organisation (OMM, 1994). Since the meteorological station was not located within the 

study area, the measured precipitation could differ from the actual precipitation at the 

studied sites. From the annual rainfall map of the Cotentin (Vernoux et al., 2000), we 

use the spatial variability of precipitation to estimate the error on precipitation input of 

the water balance. 

Potential evapotranspiration (PE) was calculated by Meteofrance using the Penman-

Monteith equation (Monteith, 1965; Penman, 1948), which is the most commonly used 

method to estimate PE (Abtew, 1996; Kite and Droogers, 2000; Rana and Katerji, 2000; 

Jacobs et al., 2002). The equation uses standard climatological records of insolation, air 

temperature, humidity and wind speed. The data are interpolated by an inverse method 

at squared distances and calculated at the nodes of a grid including the five nearest 

meteorological stations. From these data, actual evapotranspiration (AE) is derived by 

the soil reservoir method (De Marsily, 1986; Thornthwaithe and Mather, 1957), 

assuming a single soil reservoir storage capacity of 100 mm as commonly accepted for 

a temperate climate (Greiner, 1979; Mégnien, 1979). To refine the AE estimates, we 

make use of chloride concentration through a mass balance approach (Zhu et al., 2003). 

Chloride is an inert constituent remaining conservative during its passage through the 

unsaturated zone, so it is not involved in chemical reactions in peat except under ultra- 

saline conditions (Ours et al., 1997; Shotyk, 1997). Thus the rainfall signature is only 

modified by evapotranspiration. AE is computed from the ratio between peat and rain 

mean Cl– concentrations. The amount of water involved in evapotranspiration is 

estimated with Equation 2:  
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Peat
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ClClP.AE −

=  (2) 

[Cl-]Peat is the average chloride concentration in peat groundwaters, as measured in the 

peat piezometers not showing any mixing with river waters (deep wells in the centre of 

the study area). [Cl-]Rain is the weight-average chloride concentration in precipitation 

measured from samples collected in a rain-funnel located at site S. We take the standard 

deviations of [Cl-]Peat and [Cl-]Rain as representing the uncertainty interval (Table 2).  

Q-peat and Q-stream represent the horizontal groundwater flows exchanged with the 

stream and the rest of the peatland, respectively, and are calculated using Darcy´s law. 

K-peat is measured in the field and the horizontal hydraulic gradient is derived from the 

piezometric monitoring. At site S-left bank, the hydraulic gradients needed to be 

corrected because piezometers did not follow the main flow direction. Errors in 

estimating Q-peat and Q-stream correspond to the summed  errors on the measured 

horizontal hydraulic gradient, the peat thickness and the peat hydraulic conductivity.  

The vertical hydraulic gradient was measured between the peat layer and the underlying 

sand aquifer. The screened section of peat piezometers was at 1.50-2 m depth and not 

just at the top of the clay rich-layer. Therefore, an equivalent hydraulic conductivity (K-

equiv), which represents the peat bottom layer below the peat piezometers and the clay-

rich layer, is estimated as the harmonic mean of hydraulic conductivity (Ki) and 

thickness (ei) of each layer I, as shown by equation 3 (De Marsily, 1986). 

∑
∑=−

i

i

i

K
e
e

K equiv  
(3) 

Errors on Kv-equiv include errors on the vertical hydraulic conductivity in peat (Kv-

peat), the clay hydraulic conductivity (K-clay), the thickness of the lower peat layer and 

the thickness of the clay layer.  

The water storage variation (ΔS) is the product of the height of the water table (h) and 

the peat specific yield (Sy), i.e.: 
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ΔS = Δh.Sy (4) 

where Δh (mm) is the head difference between the beginning and the end of the considered 
period.  

The peat specific yield (Sy) varies with depth, particularly with the elevation of the 

water table (Ingram, 1983; Price, 1992; Price and Schlotzhauer, 1999; Schlotzhauer and 

Price, 1999). The lowering of the water table may cause surface subsidence, which is 

partly due to shrinkage above the water table and partly due to the compression of 

saturated peat beneath the water table (Schlotzhauer and Price, 1999; Kellner and 

Halldin, 2002). To estimate Sy, we use the data from continuous monitoring. Following 

a rainfall event (P in mm), the rise of the water table (h) is proportional to the specific 

yield (Sy) (Equation 5):  

Sy = 
h
P  (5) 

Therefore, we apply Equation 5 to the short rainfall events of winter, thus ignoring the 

effects of horizontal groundwater flow, evapotranspiration and re-wetting of the profile. 

The variation of the storage uncertainties is the sum of uncertainties on the estimation of 

specific yield and the head difference measured in the field. 

4. Results  

4.1 Components of the water budget and error analysis 

The hydrologic budget is quantified (Table 1) for the year 2004 on a sub-annual scale 

by considering the horizontal groundwater flow (see below). This latter is determined in 

a peat section at each site (Figure 1, Figure 3), and is defined as follows: stream – S4 –

 S8 (3150 m2), stream – S16 – S20 (7320 m2) and stream – G2 – G6 (3360 m2) at site S-left 

bank, site S-right bank and site G, respectively.  

Precipitation and Evapotranspiration 

At the local meteorological station, 5 km north of the studied sites, the measured 

precipitation was 915 mm in 2004, accounting for more than 86% of the total inputs to 

the wetlands on each site (Table 1).  Precipitation for 2004 was close to the 1946-2004 



A
cc

ep
te

d 
A

rti
cl

e

 16

annual mean (923 mm, Figure 4). The 1998-2002 period appeared relatively “wet”, with 

precipitation higher than 1100 mm per year. The following years, from 2003 to 2005, 

were drier, with precipitation below the annual mean value, while 2003 was particularly 

dry (764 mm). Therefore, we qualify 2003-2005 as a “dry” period (Figure 4). 

For 2004, the PE is estimated at 723 mm. Actual evapotranspiration (AE) is a dominant 

component in the water balance but it is difficult to estimate precisely. It depends on the 

water table, vegetation cover and climate forcing (Ingram, 1983; Lafleur and Roulet, 

1992). The net recharge is estimated from the PE. Under well watered conditions, as 

should be the case in wetlands where water is likely to be abundantly available, AE can 

be assumed to be equal to PE. However, field measurements (Figure 2) show that the 

water table dropped 1 m below the ground surface in the summer period, which 

indicates water-stressed conditions and suggests AE would be less than PE. Using the 

soil reservoir method (De Marsily, 1986; Thornthwaithe and Mather, 1957), AE is 

estimated at 572 mm, which represents 62% of the precipitation. Based on the chloride 

mass balance approach, AE represents 53 and 60% of precipitation for the sites G and S, 

respectively (Table 2). This corresponds to an AE value of 480 – 549 mm, which is 

relatively close to the estimates derived from the water budget method of Thornwaithe 

and Matter (1957). The evapotranspiration rate can be high in peatlands, sometimes 

reaching more than 90 % of P (Owen, 1995; Van Seters and Price, 2001), and even 

compensating or exceeding precipitation (Reeve et al., 2001; Van Seters and Price, 

2002; Ferone and Devito, 2004). However, such high rates were only determined for 

periods of 3-4 months during the summer. The annual peat water balance shows similar 

evapotranspiration rates compared to our results, ranging from 50 to 75 % of 

precipitation (Devito et al., 1996; Fraser et al., 2001; Andersen, 2004). In the water 

budget calculated here, we use the mean AE value of 572 mm.  

Horizontal groundwater flow (Q-stream and Q-peat) 

The peat piezometric monitoring (Figure 2) shows that: 1) in the peat, local 

groundwater flow reverses between lower-water and high-water periods, although the 

stream water level remains mainly above the peat groundwater level at the three sites, 

and 2) groundwater flows in the peatland and through stream-peat groundwater 

exchanges are different between sites G and S. At site G, the stream water level remains 
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above the peat groundwater level during the studied period. In the peatland, the flow 

direction changes between high-water and low-water periods. During the low-water 

periods (white areas – Figure 2b), the peat groundwater level is higher inside the 

peatland (G6) and lower on the edge (G3). Both G3 and G6 remain below the stream 

water level. On this 2D view, the groundwater flows locally appear to converge. 

Therefore, the stream and the peat groundwater are locally and temporary disconnected 

during low-water periods. During high-water periods (grey areas – Figure 2b), the peat 

groundwater levels are similar both far away and close to the stream, showing a 

relatively flat groundwater table. The stream water level is above the peat groundwater 

level, reflecting local temporary inflow from the stream to the peat. The clay-rich layer 

could explain this disconnection. In section G (Figure 1b), the clay-rich layer is at a 

depth of 1.50 m, and is deeper throughout the inner zone of the peatland. Towards the 

stream location, the clay-rich layer could intersect with the stream bed and form a 

hydraulic barrier during low stream water-level conditions. At pumping site S (left and 

right bank), during most of the studied period (grey areas – Figure 2c, 2d), water flows 

from the stream to the peat, with the stream remaining above the peat groundwater level 

and the peat groundwater level falling with distance away from the stream bank (S16-

right bank, S8-left bank) towards the inner zone of the peatland (S20-right bank, S4-left 

bank). Immediately after episodes of very high water level (shown in white – Figure 2c, 

2d), the flow direction reverses in the peat, and the stream locally drains the peatland for 

a short period of time. Horizontal groundwater flow varies in the peatland throughout 

the hydrological cycle. The flow direction reverses at site S, with Q-stream and Q-peat 

alternately representing an input to or an output from the peatland. Meanwhile, the 

stream-peat connection at site G ceases during periods characterized by low stream 

water-level (i.e. Q-stream = 0). Therefore, we calculate the annual balance according to 

sub-annual periods depending on horizontal groundwater flow conditions.  

Kh-peat values cover several orders of magnitude, ranging from 1.4×10-9 to 1.5×10-5 

m.s-1 (Figure 5). Other studies have shown peat hydraulic conductivity ranging between 

6.0×10-10 and 2.8×10-3 m.s-1 depending on the botanical composition, degree of 

humification, bulk density, type, structure or porosity of the peat (Hanrahan, 1954; 

Boelter, 1965, 1969; Rycroft et al., 1975a; Ingram, 1983; Vidal-Beaudet and 

Charpentier, 2000; Bradley, 2002; Clymo, 2004). In our study, K-peat shows a depth-
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correlated stratification (Figure 5). Three layers can be identified: an upper layer (0.6 - 

1.2 m) with a high hydraulic conductivity (3.4×10-7 to 1.5×10-5 m.s-1), an intermediate 

layer (1.2 m - 2 m) with a lower permeability (1.4×10-9 m.s-1 to 6.0×10-8 m.s-1), and a 

deep layer (2 m - 3.5 m) with variable hydraulic conductivities (7.2×10-9 to 4.5×10-6m.s-

1). Peat hydraulic conductivity decreases with the degree of humification, which is 

generally correlated with depth. However, the relationship is not always simple and 

significant (Boelter, 1965; Ingram, 1983; Chason and Siegel, 1986; Devito et al., 1996; 

Schlotzhauer and Price, 1999; Holden and Burt, 2003a; Clymo, 2004; Rizzuti et al., 

2004; Baird et al., 2008). For the water balance, we estimate a mean value for Kh-peat 

using a stratified 3-layer model: (1) 0 - 1.2 m, (2) 1.2 - 2 m and (3) 2 - 6 m. In the upper 

and intermediate layers (Figure 5), Kh-peat displays a log-normal distribution and the 

equivalent Kh-peat is estimated as a geometric mean (De Marsily, 1986) with 2.8×10-6 

m.s-1 in the upper layer and 7.4×10-9 m.s-1 in the intermediate layer. In the lower layer, 

there are only 4 values between 7.2×10-9 m.s-1 and 4.5×10-6 m.s-1, which does not allow 

an estimation of the mean. In this stratified medium, the mean horizontal hydraulic 

conductivity is weighted as the arithmetic mean of the mean value of the two upper 

layers and the highest and lowest value of the lower layer (De Marsily, 1986). The K-

peat value used in the water balance is thus 2.0×10-6 ± 1.5×10-6 m.s-1.  

The 2004 water balance shows that Q-peat and Q-stream reflect inflow on the annual 

scale at each site (Table 1). Q-Peat is relatively insignificant and Q-Stream dominates 

the horizontal groundwater flow. Q-stream is negligible in Site G (<1 % of the total 

inflow) because of the absence of input from the stream during low stream water-level 

conditions. However, at the sites S, Q-stream represents an inflow that can account for 

11 % of the total inflow.  

Vertical groundwater flow, Q-sand 

The piezometric monitoring (Figure 2b, 2c, 2d) shows that the sand groundwater level 

was almost always below the peat groundwater level at both sites S during the studied 

period. At site G, it was mainly below the peat groundwater level except for 2 periods 

(June 2003 and June 2004) when it was almost the same. The vertical hydraulic gradient 

was always positive (Figure 6). Vertical potential groundwater flows always ran 



A
cc

ep
te

d 
A

rti
cl

e

 19

downward, from the peatland to the aquifer. The recharge downward gradient was 

higher at the sites S, where pumping had a greater effect.  

At site G and site S-right bank, without taking account of flood events from the river, 

overall fluctuations of peat water level appear similar to those observed in the sand 

groundwaters (Figure 2b - 2c). Although precipitation events are more clearly observed 

in the peat aquifer, the long-term trends are similar, with simultaneous reversals and 

almost the same levels at reference site G (Figure 2b). Since the sand aquifer is confined 

below the peat aquifer in this area, both aquifers are unable to respond to similar 

episodes of recharge and discharge/evapotranspiration, especially because their 

thicknesses differ by one order of magnitude. This implies a hydraulic connection 

between the groundwaters in the peat and sand despite the presence of a clay layer. At 

site S-left bank, the link between peat and sand groundwaters is less clearly marked 

(Figure 2c), and a significant difference could be observed between the peat and the 

sand piezometric heads. This difference is related to the stream inflow, which maintains 

peat groundwater levels always close to stream levels. However, the clay piezometric 

level varies during the hydrological cycle (Figure 2d). Each water-level drop 

corresponds to groundwater sampling, which indicates a relatively high permeability of 

the clay at this location. The tests performed in the clay piezometer yield a permeability 

of 2.2×10-8 m.s-1 (Figure 5). In a previous study on the Lessay peatland located 20 km 

west of the present study sites, Tortrat (2001) measured K-clay in the clay layer 

underlying the peatland, obtaining values in the range from 1×10-7 m.s-1 to 3×10-9 m.s-1, 

and a mean of 3.3×10-8 m.s-1, with the higher values being recorded close to a pumping 

site. According to these results, we take a mean value of 3.3×10-8 m.s-1 for the K-equiv 

computation,  which is associated with K-clay values ranging from 1×10-7 m.s-1 to 3×10-

9 m.s-1 (see section: error estimation).  

K-equiv is the equivalent conductivity of a two-layer section comprising the lower 

catotelm (5 m) and the underlying clay-rich layer (2.70 m at site S and 1.50 m at site G). 

Horizontal hydraulic conductivity in peat is measured by means of slug-tests, but peat is 

an anisotropic material in which the horizontal hydraulic conductivity Kh generally 

exceeds the vertical hydraulic conductivity Kv (Beckwith et al., 2003; Surridge et al., 

2005). We use the mean anisotropy as expressed by the Kh/Kv ratio as measured by 

Beckwith et al. (2003) in 400 samples of bog peat: log10(Kh/Kv) = 0.55. This ratio is 
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very similar to the bulk mean (= 0.57) found by Schlotzhauer and Price (1999). In the 

present study, we use a Kv-peat value of 5.6×10-7 m.s-1. According to Equation 2, the 

K-equiv values used in the computation are 9.8×10-8 m.s-1 and 1.2×10-7 m.s-1 at sites S 

and G, respectively.  

Combined with the downward vertical gradient, the value of K-equiv adopted here gives 

rise to large groundwater flows from the peat to the underlying aquifer, representing 

42% and 24% of the total outflow at pumping site S and reference site G, respectively. 

Although the clay layer is thinner and the K-equiv is higher, Q-sand outflow appears to 

be substantially lower at site G (183 m3/m2) than at site S (>400 m3/m2). We may 

conclude that the vertical hydraulic gradient is a dominant parameter in the water 

balance. 

Storage variation 

The estimated Sy ranges from 0.15 to 0.30, depending on the piezometer and the rainfall 

event in question. These values are clearly overestimated because evapotranspiration is 

considered as negligible, although some rainfall water undergoes evapotranspiration 

during short rainfall events. A wide range of Sy values, from 0.05 to 0.79, have been 

observed for peat deposits (Boelter, 1965; Bradley, 1996; Price and Schlotzhauer, 1999; 

Schlotzhauer and Price, 1999; Van Seters and Price, 2002; Price et al., 2003; Rosa and 

Larocque, 2008), so it is not possible to constrain this parameter any further. We assume 

a mean Sy value of 0.22 to quantify ΔS. At an annual scale, ΔS appears to show low 

values of -0.005 m3/m², -0.028 m3/m² and +0.012 m3/m² at site S-left bank, site S-right 

bank and site G, respectively (Table 1).  

Summary of error estimation 

Precipitation. Data were provided by Meteofrance, the French National Meteorological 

Agency. The estimated accuracy of 5% is considered as acceptable according to the 

recommendations of the World Meteorological Organisation (OMM, 1994). The study 

sites are 5 km south of the meteorological station at the same elevation and in the same 

kind of landscape. The local map of annual precipitation (Vernoux et al., 2000) shows 

that precipitation at the studied sites is 50 mm higher than values measured at the 
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meteorological station, i.e. around 5% of annual precipitation. We can thus define a 

±10% uncertainty interval (Table 1). 

Evapotranspiration. AE is estimated using two different methods (chloride mass balance 

and water soil reserve approaches) based on two different kinds of data. The AE value 

calculated from each method is similar, so it is assumed to be appropriate for calculating 

the water mass balance. In the chloride mass-balance approach (Equation 2), [Cl-]Rain is 

the parameter with the highest uncertainty in calculating AE. For every 1 mg/L 

difference in weighted average chloride in the precipitation, the calculated AE shows an 

increment of approximately 3.5%. In the water soil reserve method, AE is estimated 

from PE using the Penman-Monteith equation and precipitation data. In a marsh 

environment, the evapotranspiration rate measured daily with lysimeters shows a 10 % 

discrepancy with the Penman-Monteith estimation (Abtew and Obeysekera, 1995). 

Added to the 10% uncertainty interval of precipitation defined above, the uncertainty on 

AE used in the water mass balance should not exceed 20% (Table 1). 

Horizontal groundwater flows. The errors on Q-peat and Q-stream are estimated by 

summing the errors on the horizontal hydraulic gradient, the peat section thickness and 

the peat horizontal hydraulic conductivity. Given the depth of the clay-rich layer, the 

uncertainty on the peat section is negligible. In the field, the uncertainty of the water 

level measurement did not exceed ± 1 cm. The error associated with the piezometer 

levelling did not exceed ± 3 cm. These errors appear very low compared to the 

uncertainty on horizontal K-peat (Kh-peat = 2.0×10-6 ± 1.5×10-6 m.s-1 corresponding to 

75% uncertainty), leading to a ±80% uncertainty on Q-stream and Q-peat which mainly 

arises from the spatial variability of Kh-peat. 

Vertical groundwater flow. Errors depend on the vertical hydraulic gradient, Kv-peat, 

K-clay and clay thickness. The relative error of the vertical hydraulic gradient depends 

on the field piezometric measurement, on the estimated thickness of the clay layer and 

on the underlying peat thickness below the piezometers. It does not exceed 10%. The 

main uncertainty is related to K-equiv, which depends on Kv-peat and K-clay. K-clay 

ranges from 1×10-7 m.s-1 to 3×10-9 m.s-1, which indicates a relatively heterogeneous 

layer and therefore a larger range for K-equiv (8×10-9 m.s-1 to 2.7×10-7). Kv-peat 
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depends on Kh-peat and the degree of peat anisotropy. Kh-peat resulting from the slug 

test shows a wide range of values in the lower catotelm (7.2×10-9 m.s-1 to 4.5×10-6). 

Peat anisotropy can exhibit extremely large variations (Collis-George and Evans (1964) 

in Beckwith et al., 2003). The value used here in the water balance is derived from 

studies which sampled the upper peat layer (0-1.50m Beckwith et al., 2003; 0-0.30m 

Schlotzhauer and Price, 1999). No unequivocal uncertainty could be associated with this 

parameter. Thus, we computed a residual water balance RWB (Equation 6, Table 1) 

based on the assumption that the clay-rich layer is impermeable and forms a no-flow 

boundary condition. By introducing Q-sand = 0 into Equation 6.1, we obtain Equation 

6.2. 

RWB = Inflow – Outflow – ΔS (6.1)

RWB = P – AE ± Q-peat ± Q-stream - ΔS (6.2)

Worst possible estimates of the RWB consider that all the errors are additive (Winter, 

1981). From Equation 6 and the previous error analysis, upper and lower limits can be 

computed with [highest inflow - lowest outflow] and [lowest inflow - highest outflow], 

respectively. The RWB upper and lower limits are positive for each site. Outflows are 

insufficient to balance inflows. 

Change in storage. ΔS error depends on the errors associated with the water level 

measurement and the specific yield Sy. The relative error on the measured water level is 

estimated to be 4%. Sy ranges between 0.15 and 0.30, which corresponds to a relative 

error of 36%. When propagated in the computation, this leads to a relative error of 38% 

on ΔS, which could be considered as relatively large. However, since the absolute value 

of ΔS (< 0.028 m3/m²) is low, a 38% error on ΔS does not significantly affect  the water 

budget. 

4.2 Hydrological functioning of the peatland 

The horizontal groundwater flows, Q-peat and Q-stream, represent up to 122 m3/m², 

i.e.13.3% of the precipitation. Although not negligible, these values are significantly 

lower than P and AE. Although these groundwater flows might influence the wetland 



A
cc

ep
te

d 
A

rti
cl

e

 23

functioning from a chemical point of view, they remain almost negligible in the water 

balance.  

The peat and sand groundwater levels (Figure 2) show similar fluctuations compared 

with the water balance results (Table 1), which can be explained by a hydraulic 

continuity between the sand and the peat aquifers. Following the assumption of an 

impermeable clay-rich layer, the RWB is positive (inflow - outflow ranging from 0.100 

to 0.805 m3/m²) for the three sites, even when taking into account the highest 

uncertainties. Clearly, an equilibrated water budget requires an additional outflow. The 

only way to remove water from the peat sections would be a downward groundwater 

flow from the peatland through the clay-rich layer (Q-sand). Field measurements of K-

clay yield values between 1×10-7 m.s-1 and 3×10-9 m.s-1 (Tortrat, 2001). These values 

are higher than those usually obtained in clays: 10-9 – 10-13 m.s-1 (De Marsily, 1986). In 

the Lessay area (Tortrat, 2001), higher clay hydraulic conductivities have been 

measured in the vicinity of the pumping station. Therefore, we propose that the 

piezometric depression in the sand could lead to desaturation of the clay layer, thus 

favouring its drying out and the creation of preferential pathways for groundwater. The 

clay layer appears to be permeable and does not form a hydraulic barrier between the 

peatland and the sand aquifer.  

The water budget is largely dominated by precipitation and evapotranspiration. The 

vertical flows (P, AE and Q-sand) are predominant, defining the main contribution to 

wetland functioning, with Q-sand representing 20 to 48% of precipitation. This 

emphasizes the role of groundwater flow in wetland functioning. Apart from wetlands 

where there is no connection with underlying geological systems, the influence of 

groundwater flows should be monitored when carrying out hydrological investigations 

of wetlands. 

5 Discussion: Climatic or anthropogenic origin of hydric deficit 

5.1 Hydric deficit of the peatland 

The peat groundwater level at the three studied sites was never higher than 20 cm below 

the soil surface, while it reached a maximum depth of 1.20 m. There is a permanent 
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unsaturated layer. The peatland was never flooded during the study period, i.e. the water 

table did not intersect the ground surface, even though flooding usually takes place each 

winter.  

Most hydrologists distinguish two major hydrologic zones in a peat soil profile (Ingram, 

1983; Chason and Siegel, 1986): (1) an upper aerated zone with relatively 

undecomposed leaves and dead vegetation, the acrotelm, with fluctuating water level 

and rapid water transmission, and (2) an underlying anaerobic zone, the catotelm, where 

peat is more humified, associated with constant water saturation and a lower hydraulic 

conductivity. The acrotelm thickness, corresponding to the water-table fluctuation zone, 

is usually about 0.5 m (Chason and Siegel, 1986; Reeve et al., 2000; Fraser et al., 

2001). At the Cotentin sites, the water table fluctuated in a depth range from 0.20 to 

1.20 m, which indicates the presence of a thicker acrotelm than is usually described. 

Measurements of peat hydraulic conductivity at around 1m depth show a particularly 

highly permeable layer at this depth (Figure 5), overlying a layer with lower hydraulic 

conductivity which would correspond to the catotelm. This suggests that the acrotelm 

reached a depth of 1.20 m, with this greater thickness being related to the higher 

amplitude of the water-table fluctuations. The boundary between the two zones is also 

observed through the organic matter content of the peat (Bouillon-Launay, 2002). To 

lower the water-table level in the peat layer, it is necessary to change the water balance 

either by increasing the output from or decreasing the input into the wetlands. In both 

cases, the amount of water stored in the peatland is lower than previous conditions. 

Such low water levels are clearly contrasted with the frequent flooding during the last 

decades, indicating a present hydric deficit. 

In the studied wetland, the stream water level was always above the peat groundwater 

level. Under temperate climates in this type of landscape, we would expect a stream to 

drain the peatland, but this is not the case because the stream mainly represents an 

inflow. Episodes of flow reversal have been recorded at the studied sites. Other studies 

have reported such episodes during prolonged periods in summer characteristic of 

hydric deficit (Gilvear et al., 1997; Bradley, 2002; Burt et al., 2002). However, in the 

Cotentin peatlands, the episodes of “flow reversal” (grey areas at S-sites, Figure 2c, 2d) 

are notably longer than usually reported, contributing to nearly all the functioning of the 
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peatland hydrology. This reflects a considerable hydric deficit, which could not be 

attributed only to a prolonged dry summer.  

The peatland was not flooded during the study period, and the water table dropped to a 

lower level in the peat profile reflecting the presence of a thicker acrotelm. The lack of 

horizontal flow from the wetland to the stream argues in favour of a hydric deficit of the 

peatland over the last few years. Wetlands continuously receive or lose water through 

interchange with the atmosphere, streams and groundwater (Winter and Woo, 1990). 

The water balance of the peatland depends on the relative importance of the 

spatiotemporal variability of each of these components. In the present study, we show 

that vertical flows (P, AE and Q-sand) are predominant. This leads us to assume that 

inputs (P) have decreased in the last few years and/or outputs have increased (AE, Q-

sand), thus accounting for the apparent hydric deficit of the peatland.  

5.2 Influence of aquifer-water production 

At site S, the hydrological functioning mainly reflects a lack of horizontal groundwater 

flow from the wetland to the stream at any period. Compared to usual wetland 

functioning and reference site G, this behaviour clearly results from pumping in the 

sand aquifer. The hydraulic continuity between the peat and the sand aquifers leads us 

to consider the two aquifers together. The size of the aquifers (132 km2 for the sand 

aquifer and locally only a few square kilometres for the peatland) implies that the sand 

groundwater level controls the peat groundwater level. Therefore, a lowering of the sand 

groundwater level leads directly to a fall in the peat groundwater level. In the present 

study, the sand piezometric depression due to withdrawal does not exceed 0.5 m in the 

pumping well, which is rather weak for a large aquifer more than 70 m thick. In the 

Catfield Fen, England, groundwater makes up only a minor component of the water 

balance of the fen. However, using a 2D-model with 4 geological layers (acrotelm, 

catotelm, clay and the Pleistocene aquifer Crag) it has been shown that decreasing the 

Crag pressure heads by abstraction would lower the base level to such a degree that the 

system could not compensate and the wetland would dry out (Gilvear et al., 1997). 

Similarly, in the present study, the peat groundwater level varied between 0.2 and 1.2 m 

depth under the soil surface. A small increase of the base level would easily favour 
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saturation of the upper part of the peat layer. The piezometric depression due to water 

extraction could explain, at least partly and locally, the lack of flooding of the peatland 

during the studied period.  

This result reflects the great sensitivity of the peat to the underlying hydrogeological 

conditions. Any modification will influence the water balance, and thus also the 

elevation of the water-table in the peat layer. The peat water level marks the boundary 

between saturated and unsaturated zones in a context where saturation is the main 

parameter in peat preservation. Moreover, at a local scale, the influence of pumping 

produces continuous fluxes of oxidizing water from the stream to the peat, which could 

induce biochemical modifications involving fluxes of oxygen and other nutrients 

associated with the stream inflow. Such effects have been clearly observed, for 

example, in the higher oxidation-reduction levels and higher sulphate concentrations at 

site S-left bank compared to the reference site G (Bougon et al., 2010). 

5.3 Influence of climate fluctuations  

The study period (2003-2005) appeared drier, with lower annual precipitation than the 

previous period (1998-2002). These conditions contributed not only to decreased 

precipitation input to the water balance, but also a lowering of the sand groundwater 

level in the underlying aquifer (Figure 4). In the Lessay area (Tortrat, 2001), the sand 

groundwater level exceeded the peat groundwater level during the wet period (Figure 

7). The sand aquifer sustained the peat groundwater level, or at least, the sand aquifer 

head limited potential downward flow. In that case, the high peat groundwater level and 

peatland flooding were correlated with the regional discharge of the aquifer. During the 

dry period (this study), the pumping rate did not change, but the sand groundwater level 

was lower and the vertical hydraulic gradients appeared to be downward from the 

peatland to the sand aquifer as a consequence of lower precipitation. On the contrary, 

the previous wet period shows that a continuous upward flow from the sandy aquifer 

created favourable hydrologic conditions for wetland functioning. At reference site G, 

outside of the influence of the pumping well, the vertical hydraulic gradient was 

downward (Figure 7) and the sand groundwater level was lower than during the 

previous period (1998-2002). Moreover, during dry periods, there was a decrease in 
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direct precipitation input to the wetland. At a global scale, climate conditions influenced 

the sand aquifer recharge, lowering the groundwater level in the sand and thus 

increasing the Q-sand output from the peatland. The dry period also reduced the peat 

recharge and led to a hydric deficit in the peatland.  

5.4 Sensitivity and vulnerability of the peatland 

This study indicates that both climate and water extraction clearly have an impact on the 

peat water balance, even though their effects are difficult to distinguish. They produce 

the hydric deficit observed at both pumping site S and reference site G. The climatic 

effect is mainly expressed through the drying out of peat (reference site G), whilst the 

anthropogenic effect leads to i) an enhancement of the climatic effect on a global scale, 

and ii) a modification of the fluxes (i.e. lack of horizontal groundwater flow from the 

stream draining the peatland) at a local scale (pumping site S). The peat-sand interaction 

has a major impact on the vulnerability of the peatland under dry conditions. The 

combined effects of a dry period and water extraction from the aquifer accounts for the 

low water table in the peat, lower than the stream water level, thus explaining why the 

stream did not drain the peatland. The peat groundwater level depends on the sand 

groundwater level. The almost permanent river inflow at the S-sites provides clear 

evidence of the anthropogenic effect of water extraction at a local scale. The sand 

aquifer water-table locally fell to a base level lower than under natural conditions, 

making the peatland more sensitive to low precipitation.  

Annual precipitation in 2004 (915 mm) was close to an average year (923 mm) (Figure 

4). However, the previous year 2003 (764 mm) was dry, with precipitation 17% lower 

than the annual mean. Such variations are clearly within the potential range related to 

climate change over the next few decades. This could represent an important issue since 

low precipitation has a major impact on water levels in the peatland and hydrological 

functioning, leading to severe droughts. Furthermore, the 0.5-m lowering of the sand 

water table related to pumping is similar to the water level variation between the ‘wet’ 

and the ‘dry’ period in this aquifer outside the zone of pumping influence. This 

indicates that anthropogenic and climatic effects may be of the same order of 

magnitude, and their combined influence could lead to a drastic drying out of the peat.  
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The geomorphological context of the study site is typical of the Cotentin wetland, which 

represents the largest peatland in France. Peatlands are more dependent on the local 

hydro-geomorphological context (low-lying topography, groundwater table near the 

ground surface, etc.) than wet climate conditions (Vernoux et al., 2000). The Cotentin 

peatlands provide a typical example of peatland-aquifer interaction under oceanic 

climate conditions with high annual precipitation (> 900 mm). This study shows that 

changes of the hydrogeological context, such as a lowering of the underlying sand 

groundwater level, can substantially modify the peat water balance. Such changes 

increase the sensitivity and the vulnerability of peatlands to dry climate conditions. 

Wetlands could be dramatically impacted by anthropogenic and climatic changes on 

relatively short time scales since the maintenance and growth of a peatland depends 

essentially on hydrological conditions such as depth of the water table, as well as 

duration and frequency of the flooding period. After drying out, the volume of peat 

decreases and its physical properties are not fully restored after resaturation (Winter and 

Woo, 1990). Therefore, frequent desaturation and short flooding episodes, resulting 

from global warming and/or anthropogenic influence, can lead to a peat hydric deficit, 

as shown in this study, which may irreversibly alter the hydrologic characteristics of the 

peatland. This could cause an acceleration of peat decay and, moreover, a modification 

of the carbon budget as well (Waddington and Roulet, 1997).  
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Tables: 

(a) Site S - left bank
Estimated flow Uncertainty Lower limit Upper limit

Variation of the storage = -0.005 ±40 -0.003 -0.007
Input

Precipitation 0.915 ±10 0.823 1.006
Qstream 0.116 ±80 0.023 0.209
Qpeat 0.024 ±80 0.005 0.044 RWB upper bound = 0.805
Qsand 0.000 - - -

total input 1.055 RWB lower bound = 0.142

Output
Evapotranspiration 0.572 ±20 0.458 0.687
Qstream 0.006 ±80 0.001 0.011
Qpeat 0.007 ±80 0.001 0.013
Qsand 0.442 - - -

total ouput 1.029
Water balance = 0.021   

(b) site S - right bank
Estimated flow Uncertainty Lower limit Upper limit

Variation of the storage = 0.028 ±40 0.017 0.040
Input

Precipitation 0.915 ±10 0.823 1.006
Qstream 0.122 ±80 0.024 0.219
Qpeat 0.001 ±80 0.000 0.001 RWB upper bound = 0.723
Qsand 0.000 - - -

total input 1.037 RWB lower bound = 0.100
Output

Evapotranspiration 0.572 ±20 0.458 0.687
Qstream 0.013 ±80 0.003 0.023
Qpeat 0.012 ±80 0.002 0.021
Qsand 0.434 - - -

total ouput 1.031
Water balance = 0.034  

(c) Reference site G
Estimated flow Uncertainty Lower limit Upper limit

Variation of the storage = 0.012 ±40 0.007 0.017
Input

Precipitation 0.915 ±10 0.823 1.006
Qstream 0.005 ±80 0.001 0.010
Qpeat 0.001 ±80 0.000 0.002 RWB upper bound = 0.543
Qsand 0.000 - - -

total input 0.921 RWB lower bound = 0.129
Output

Evapotranspiration 0.572 ±20 0.458 0.687
Qstream 0.000 ±80 0.000 0.000
Qpeat 0.001 ±80 0.000 0.001
Qsand 0.183 - - -

total ouput 0.756
Water balance = 0.177  

Table 1:  

Hydrological budget for 2004 at (a) pumping site S - left bank (3150 m²), (b) pumping 

site S - right bank (7320 m²) and (c) reference site G (3360 m²) . Flows are expressed in 

m3/m². Water balance is calculated from Equation 1. RWB represents the residual water 

balance, assuming that the clay is impermeable and forms a no-flow boundary 

condition, calculated using Equation (6.1) and (6.2). RWB upper and lower bounds are 
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defined by the sum of the uncertainties of each component of the water balance. RWB 

upper bound represents the maximum input and minimum output, while RWB lower 

bound represents the minimum input and maximum output.  

  

Site G Site S
[Cl-]rain (mg.L-1) 13.6 13.6

Std deviation 5.0 5.0
[Cl-]Peat (mg.L-1) 28.6 33.8

Std deviation 2.8 6.3
AE  (% of precipitation) 52.5 59.8  

Table 2:  

[Cl-]Rain is the weight-average chloride concentration in precipitation. [Cl-]Peat is the 

average chloride concentration in peat groundwaters. The amount of water remaining 

after evapotranspiration is determined as: 
[ ] [ ]

[ ]Peat
-

Rain
-

Peat
-

Cl
ClClP.AE −

=  
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Figure 1: (a) Map of studied sites showing location of peat piezometers and water-level rules. F2 
and G are boreholes in sand used for continuous monitoring of piezometric head within the aquifer, 
while F1 is the extraction well. Sketch cross-sections at (b) site G, and (d) site S showing the basin-

like morphology of the peat layer, as established from field auger holes.  
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Figure 2: (a) Daily rainfall and water level fluctuations during a two-year period (April 2003 to 

March 2005) at the three study sites: (b) reference site G, (c) site S-right bank and (d) site S-left 
bank. At each site, piezometric heads are measured using piezometers with similar design (same 

depth and same screened section). Water levels refer to sea level. 
Grey and white areas indicate changes in the direction of horizontal groundwater flow. During grey 
periods, the peat groundwater level decreases from the edge of the stream to the inner part of the 
peatland, and shows groundwater flow from the stream into the peatland. During white periods, the 
peat groundwater level is higher far from the stream than close to the stream. The stream drains 
the peatland except at reference site G, where the stream is disconnected from the peatland.  
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Figure 3: Water balance calculated in a peat section delimited by the dashed line, with P as 
precipitation and AE as actual evapotranspiration. Q-peat and Q-stream represent horizontal 

groundwater flows through the peat layer exchanged with the rest of the peatland and the stream, 

respectively. Q-sand is the flow exchanged with the underlying aquifer though the clay-rich layer.  
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Figure 4: (a) Annual precipitation monitored at the meteorological station from 1998 to 2005, with 
the mean annual precipitation for 1946-2004 indicated as dashed line. (b) Water-level elevation 

above sea level in G sand borehole at reference site G.  
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Figure 5: Plot of hydraulic conductivity as a function of depth. The y-axis variance refers to the 
screened section of the piezometers used for slug-tests.  



A
cc

ep
te

d 
A

rti
cl

e
 

 

Figure 6: Vertical hydraulic gradient between the peat layer and the underlying sand aquifer. The 
hydraulic gradient represents the head difference between the peat water table (at 1.50-2.0 m 

depth) and the sand groundwater table divided by the total thickness of sediments (5 m peat plus 
2.70 m or 1.50 m clay at sites S and G, respectively)  
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Figure 7: Peat and sand piezometric monitoring from 2001 to 2005  at Lessay site and reference 
site G.  




