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Abstract 

  The presence of water at volcanic vents can have dramatic effects on 

fragmentation and eruption dynamics, but little is known about how the presence of 

particulate matter in external water will further alter eruptions. Volcanic edifices are 

inherently “dirty” places, where particulate matter of multiple origins and grainsizes 

typically abounds. We present the results of experiments designed to simulate non-

explosive interactions between molten basalt and various “coolants,” ranging from 

homogeneous suspensions of 0 to 30 mass % bentonite clay in pure water, to 
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heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass 

beads and/or naturally-sorted pumice. Four types of data are used to characterise the 

interactions: (1) visual/video observations; (2) grainsize and morphology of resulting 

particles; (3) heat-transfer data from a network of eight thermocouples; and (4) 

acoustic data from three force sensors. In homogeneous coolants with <~10 % 

bentonite, heat transfer is by convection, and the melt is efficiently fragmented into 

blocky particles through multiple thermal granulation events which produce 

associated acoustic signals. For all coolants with >~20 % sediment, heat transfer is by 

forced convection and conduction, and thermal granulation is less efficient, resulting 

in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many 

particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. 

Both of these particle types indicate significant hydrodynamic magma-coolant 

mingling, and many of them are rewelded into compound particles. The addition of 

coarse material to heterogeneous suspensions further slows heat transfer thus reducing 

thermal granulation, and variable interlocking of large particles prevents efficient 

hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient 

distribution of melt and heat throughout the coolant volume. Our results indicate that 

even modest concentrations of sediment in water will significantly limit heat transfer 

during non-explosive magma-water interactions. At high concentrations, the dramatic 

reduction in cooling efficiency and increase in mingling help to explain globular 

peperite, and provide information relevant to analyses of premixing associated with 

highly-explosive molten fuel-coolant interactions in debris-filled volcanic vents.        

 

Keywords: peperite; granulation; magma-water interaction; experimental; 

fragmentation 
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1. Introduction 

 It is well established that interaction of magma with external water can have major 

effects on eruption dynamics (e.g., Thorarinsson et al., 1964). Styles of magma-water 

interaction vary from simple accelerated quenching of melt, to passive thermal 

granulation (Rittmann, 1962; Honnorez and Kirst, 1975; Fisher and Schmincke, 1984; 

Kokelaar, 1986), to intensely energetic thermohydraulic explosions (Colgate and 

Sigurgeirsson, 1973; Wohletz, 1983; Zimanowski et al., 1997b; Büttner and 

Zimanowski, 1998; Morrissey et al., 2000, Grunewald et al., 2007). Many of these 

processes have been observed in nature, and studied theoretically and experimentally, 

but most of these studies assume the “coolant” to be pure water without any sediment 

load. Volcanoes, in reality, are “dirty” places, where magma is far more likely to 

interact not with only pure water, but with mixtures of water and various particles of 

sedimentological and/or volcanogenic origin (White, 1991; 1996). 

 In very many cases of shallow magma intrusion, magma will interact with water-

saturated sediments (White et al., 2000; Skilling et al., 2002; Wohletz, 2002).  This 

will influence the cooling dynamics of intrusions where magma bodies remain intact, 

and will influence peperite textures in cases or regions where the magma fragments. 

Subaqueous lava flows may interact with pure water on their upper surfaces, but at 

their basal surfaces and advancing lobes they will interact with water and whatever 

substrate (e.g., earlier flows, volcaniclastic material, or pelagic/lacustrine sediments) 

over which they flow (Batiza and White, 2000; Maicher and White, 2001). At 

explosive vents, whether subaqueous or subaerial, processes such as juvenile particle 

recycling (Houghton and Smith, 1993; McClintock and White, 2006) or recapitulation 

(Rosseel and White, 2006; White and Houghton, 2006), and partial collapse of edifice 
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walls (White, 1996; Carey and Houghton, 2010) may deliver heterogeneous mixtures 

of particulate matter to the zone of magma ejection. These may add to pre-existing 

complications of surface or groundwater interacting with the magma. 

 Quantitative approaches to magma-water interaction are made possible by the 

well-constrained thermodynamic and fluid properties of both components, and a 

wealth of experimental data collected in multiple laboratories over the last 3 decades 

(e.g., Morrissey et al., 2000 and references therein). Extending these approaches to 

include the influence of particulate or other impurities in water is significantly more 

complicated. Some experiments using magma analogues have been done to address 

fluid mingling dynamics (Zimanowski and Büttner, 2002), heat transfer in saturated 

sediments (Wohletz, 2002), and the generation of peperite textures (Downey et al., 

2007; 2009). Remelted magma has been used to examine the effects of dissolved salts 

on explosive magma-water interaction (Grunewald et al., 2007) and magma-magma 

fluid mingling (Zimanowski et al., 2004). There is also abundant engineering 

literature for quantifying processes such as heat transfer and boiling phenomena in 

saturated porous media (e.g., Kaviany, 1991). In the engineering case, however, the 

porous media themselves are often rigid, permeable networks rather than slurries or 

granular fluids (e.g., Haff, 1983), and industrial heat sources typically have fixed heat 

outputs and known, constant, geometries. Engineering approaches are thus of limited 

applicability to volcanic scenarios involving fluid-fluid mingling, the finite heat 

output of cooling magma, and even for static situations are complicated by the great 

potential heterogeneity and mobility of particulate matter and/or water in the 

substrate. As sediment is entrapped and/or mobilized, as water is vapourised and/or 

added to the system, as the magma supply waxes and wanes, and as magma fragments 

and cools, the wholesale geometry and power of the magma-water-particle system 
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will change to dramatic effect. 

 In this paper, we present the results of some very simple experiments with molten 

basalt, carried out to explore the very complicated scenarios of magma-water-particle 

interaction. We use visual observations, the morphology of particles produced, heat-

transfer data, and acoustic response data, to evaluate how the non-explosive processes 

of hydrodynamic mingling and thermal granulation change as magma interacts with 

various “dirty” coolants. 

 

2. Methods 

2.1 Experimental setup 

Crushed volcanic rock from Billstein/Rhön, Germany (see Section 2.2) was 

remelted in an open furnace containing an Al2O3 crucible, in order to avoid 

contamination of the melt. Technical details of the inductive furnace and the 

experimental setup can be found in Schmid et al. (2010). Figure 1 shows a picture of 

the system.  

An insulated, cylindrical stainless steel 12 l container named the “Bismarck,” was 

used as short time calorimeter (Fig. 1). The water used in coolants was purified before 

being put into the pot to ensure constant water properties for all experiments. Eight 

thermocouples (type K) are mounted at two vertical levels, symmetrically, to get a 

good measurement of the average coolant temperature during each experiment. Three 

Kistler® high-speed (10 Hz to 20 kHz frequency response) force sensors are mounted 

to the base of the Bismarck, to record the characteristic acoustic response of the 

interaction, and especially of fragmentation processes. An automatic stir rod was 

designed for experimental runs with low suspended sediment. For high-sediment 

coolants, the stir rod interfered with the system, and the poured melt, and was not 
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used. Throughout the development of the Bismarck system, experimental runs 

involving pure water as the coolant have been performed to calibrate and refine the 

experimental setup (e.g., Schmid et al., 2010). For pure water coolant, the accuracy of 

the thermocouples is ±0.2 oC after calibration, and the relative uncertainty in the 

calorimeter’s heat content is 1.4 to 3.8 %. Heat loss due to imperfect insulation of the 

Bismarck is expected to be slightly higher for experiments involving high sediment 

loads, particularly in cases where melt collects as a point heat source at the base of the 

container. We consider this to have a negligible effect on our results, which rely on 

relative heat transfer styles and rates, rather than heat energy balances that require 

greater precision.  

< Fig. 1. Bismarck > 

2.2 Experimental runs 

In each experimental run, 200 to 250 g of melt was poured into the coolant 

over 20 to 35 s.  

An important physical parameter of the remelted alkalic Billstein/Rhön basalt 

(Zimanowski et al., 2004) used in all experiments is its rheological behaviour. The 

temperature dependent, non-Newtonian viscosity of the melt was determined using 

the method of Sonder et al. (2006), and is shown in Figure 2A. Low viscosities are 

required to get hydrodynamic mingling in the laboratory. Also, the low mingling 

energy (i.e., differential flow speed between melt and coolant) realised in the 

experiments and in nature means that the mingling process takes place on a time scale 

of seconds, necessitating a certain overheat of the melt. To satisfy these requirements, 

all experiments were carried out at ~1340 oC. After 3-4 hours of melting at 1340 oC 

some crystals may be present. Since magma is not at equilibrium during an eruption, 

not thermally, chemically, or thermodynamically, it is not possible to fully reconstruct 
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the inherently unknown physical states of all melt components. The remelting of all 

crystals in the Billstein melt would take at least several weeks (e.g., olivine, Thornber 

and Huebner, 1985). The described non-equilibrium melt represents the closest 

possible analogue that is practical to produce in the laboratory for these experiments. 

Properties of the melt and the different sediments used are given in Table 1; as are the 

different experimental coolant mixtures, divided into three series.  

 < Fig. 2. Viscosities >  

< Table 1. Experimental materials and coolants > 

 The “dirty” coolants presented here represent single experiments that show 

systematic changes in interaction dynamics with sediment load throughout the 

experimental series.  

“Series A: Homogeneous suspensions” includes four control experimental runs, 

designed to explore the influence of fine suspended sediment on melt interaction. A 

natural bentonite clay mixture (>70% montmorillonite, ~5% illite), normally used to 

line containment ponds, was delivered as a dry powder, and was mixed with pure 

water to yield different coolants, with 0%, 10%, 20%, and 30% bentonite by mass. 

This variation causes an increase of the coolant viscosity. At 30% bentonite content, 

the mixture viscosity (1 to 30 Pa s; Fig. 2B) exceeds the melt’s viscosity at 

experimental temperature. 

Clay suspensions may be thixotropic; showing reversible, time-dependent changes 

in viscosity depending on shear rate (e.g., Tropea et al., 2007). It can take several 

hours for gelling or solidification of high-concentration thixotropic mixtures to occur, 

depending on clay content and type. Over the time scales of our experiments and at 

the modest bentonite concentrations used, no manifestations of thixotropy were 

observed. 
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With time in each of the Series A coolants, there was slight settling of the 

sediment loads, apparent in the development of a meniscus of pure water that would 

develop on top of each coolant when left in a graduated cylinder. This settling/ 

separation occurred only after a few hours, so that the sediment was homogeneously 

suspended in each coolant mixture over the time scale of individual experiments. 

Observations made during Series A experiments are the main focus of this work. 

 “Series B: Heterogeneous mixtures” includes a variety of experimental runs using 

the coolant mixtures of Series A but with added coarse sediment; most used variable 

proportions of natural pumice collected from the Taupo Volcanic Zone (TVZ), New 

Zealand, and one used synthetic glass beads as a silicate-sand analogue (Table 1). The 

TVZ pumice was from an unseived but naturally sorted fall deposit (V. Manville, 

pers. comm., 2008) comprising pumice with a minor proportion of greywacke lithic 

material. Though the Series B experimental runs are here grouped together, the 

pumice and bead runs have different properties, especially at higher sediment loads. In 

the pumice mixture (Run B1), the coarse water-saturated pumice grains were strongly 

interlocked in a grain-supported mass, with water in interstices. The glass beads (Run 

B4) were neutrally buoyant in the 30% bentonite mixture, and homogeneously 

dispersed through the coolant volume in a non-interlocking geometry. In pumice-

bearing coolants with 15 and 30% coarse sediments (B2, B4, B5), the water-saturated 

pumice was near-neutral- to weakly-buoyant, but dispersed in the bentonite 

suspension, and in the 30% bentonite mixture buoyancy effects were damped by the 

increased bentonite-suspension viscosity.  For these mixtures the variable density of 

the natural clasts made some particle segregation inevitable, but it would have been 

quite limited because of the suspension's viscosity, particle interlocking, the small 

density contrasts, and because the mixtures were thoroughly stirred until some tens of 
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seconds before the pours began. In all Series B experiments involving pumice, 

significant interaction, grain-grain contact, and transient interlocking of the coarse 

particles was apparent, and increased with increased coarse sediment load. 

 “Series C: Stratified sediments” includes two experimental runs, where tight-

packed pumice (C1) and tight-packed, saturated sand (C2) mixtures were placed in the 

bottom of the Bismarck, covering the lower four thermocouples, but not the top four. 

Additional clean water then covered the basal sediment layer and the top four 

thermocouples.  

 

3. Results 

3.1 Pour dynamics 

 A key aspect of the pour dynamics in all experiments was the relative ease with 

which the poured melt penetrated the simple or mixed coolant in the Bismarck. 

Because of the shallow depth of the Bismarck and reduced fragmentation of the melt 

when it entered mixtures versus when entering plain water, the poured melt often built 

up into small piles that breached the surface of the coolants. This “shoaling” was an 

undesired effect that occurred to some degree in all experiments (Fig. 3; Table 2). 

Shoaling, when accumulated basalt emerged from the upper surface of the coolants, 

prevented some of the poured melt in each run from interacting directly with the 

various coolants, and introduced substantial uncertainty to determination of the 

absolute amount of heat added to the system. This is particularly the case when 

shoaling was “transient,” meaning that melt would build up to the surface and then 

collapse during the run, after having partially cooled to the air. Less commonly, 

shoaling was persistent (e.g. Fig 3D), and a rough estimate of the proportion of melt 

that penetrated the coolant mixture could be made by careful removal of the melt pile 
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that remained above the coolant surface at the end of the run. In all experimental runs, 

shoaling was accompanied by the production of limu o Pele bubbles (Hon et al., 1988; 

Clague et al., 2000; Maicher and White, 2001; Schipper and White, 2009) above the 

coolant surface, where melt was extended upward into a thin bubble, driven by 

entrapped and vapourised water. Limu was produced in all experimental runs, even 

those in which all melt fully penetrated the coolant, so limu fragments in the resulting 

particles are not solely from shoaling.  

 Another aspect of visual observations in each run relates to the opacity of the 

different coolants. In all but the clean water run (A1), observations were limited to 

processes occurring above the coolant surface. The observations thus included only a 

qualitative assessment of the ease of melt penetration and shoaling (Fig. 3), 

observations of any steam produced, and boiling/bubbling (Fig. 3C) of the coolants. 

Results from individual runs are summarized in Table 2.  

< Fig. 3. Pour interaction dynamics > 

< Table 2. Qualitative interaction dynamics > 

3.2 Fragmentation 

3.2.1 General fragmentation and particle characteristics 

 In this paper, the term “fragmentation” is used purely to indicate melt breakup, 

with no implication of explosive behaviour of any type. The extent and style of 

fragmentation in each experimental run can be evaluated from the proportion of 

poured melt that was broken up, and the types of particles formed, respectively.  

The degree of fragmentation ranged widely, from almost none (Fig. 4iii) when the 

vast majority of the poured melt simply piled up on itself, often shoaled, and solidified 

into a single mass, to nearly total (Fig. 4i), where virtually all the melt broke up into a 

variety of particles. 
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 The particles produced in experimental runs reflect different non-explosive 

processes of melt break-up. Thin limu o Pele, or “bubble wall” particles are found 

both as individual shards from larger, broken melt bubbles (Fig. 4A, left), or are 

recovered as partially intact bubbles (Fig. 4A, right). Some debate surrounds whether 

or not naturally occurring limu o Pele is formed by explosive release of magmatic 

volatiles from submarine vents (e.g., Clague et al., 2008), or by entrapment and 

vapourisation of water (e.g., Schipper and White, 2009). Limu are common in our 

experiments, as well as other experiments investigating non-explosive magma-water 

interaction (Mastin et al., 2009), and must in these cases be produced 

hydromagmatically, since the experimental melt is nearly completely degassed to 

atmospheric pressure, and there are no explosive events. Dense, blocky and irregular 

glass particles (Fig. 4B) are formed by quench granulation of larger domains of melt 

as they are rapidly cooled, and are an important particle in the current study. Larger (> 

1 cm) “vesicular” fluidal particles (Fig. 4C) are formed by hydrodynamic entrainment 

of domains of coolant into melt; the vesicles are not from magmatic exsolution, 

though some fragments have internal textures qualitatively identical to those of typical 

basaltic pyroclasts. Unlike vesicles in natural pyroclasts, the vesicles in the 

experimental particles often contain residual sediment from the coolants (Fig. 4C, 

right), similar to the sediment-filled vesicles that are common in natural peperites 

(Kokelaar, 1982; Dadd and Van Wagoner, 2002; Skilling et al., 2002 and references 

therein). Subspherical, dense, glass balls (Fig. 4D) are formed by hydrodynamic 

breakup of the melt stream in the coolant, followed by fluid reshaping before 

quenching (Zimanowski et al., 1991; Zimanowski and Büttner, 2003; Mastin et al., 

2009). These are found variably with rough surfaces and asperities (Fig. 4D, left), or 

more rarely in regular shapes with smooth surfaces (Fig. 4D, right). Composite 
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particles (Fig. 4E) were formed in many experiments. They consist of many individual 

particles, dominantly of the dense blocky and glass ball types, that welded back 

together before solidification. These composite particles reach several cm in length, in 

irregular shapes, and composed of hundreds of smaller particles; others are only two 

or three balls fused together, often with adhering hair. In one extreme example from 

the 30% bentonite + 30% glass beads run (B3), a composite “grapestone” was 

produced entirely below the surface of the coolant (Fig. 4E, right) and was composed 

almost entirely of rewelded glass balls. Composite particles are inferred to represent 

the substructure of the melt piles visible during the runs (Fig. 4iii).  They show that 

fragmentation took place even when there was shoaling, but that little heat was lost 

from the fragments prior to their almost immediate accumulation below the pour-entry 

point. In experimental runs that include a proportion of coarse material in the coolant 

mixtures, some particles are preserved with entrained sediment (not shown). Highly 

elongate Pele’s hair particles (not shown) ranging from a few mm to >3 m long were 

produced in all experimental runs. Pele’s hair appeared to quench instantly when it 

entered the coolant (only visible in clean water run A1). Though Pele's hair is often 

associated with explosive basaltic volcanism, these particles form whenever melt is 

highly, and linearly stretched before quenching (Shimozuru, 1994), and is regularly 

generated in experiments using basaltic melt (e.g., Mastin et al., 2009). In our 

experiments, some Pele’s hair always forms between the crucible and Bismarck at the 

end of the pour, when the melt stream thins asymptotically. When such Pele’s hair did 

not contact the coolant surface, they remained incandescent as they continued to 

deform for a few seconds. Pele’s hair is an unavaoidable by-product of the 

experimental setup, and is so abundant that the fraction of Pele’s hair dynamically 

interacting with the coolant mixtures cannot be quantified.  Some glass balls have 
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teardrop tails (Fig. 4D, left) like those of subaerial spindle bombs, and some hair is 

often included in composite particles (Fig. 4E, left), strongly suggesting that some of 

the hair formed during fragmentation within the coolant.  

< Fig. 4. Degree of granulation and particles formed > 

3.2.2 Granulation in individual runs 

 There is a large degree of uncertainty in interpreting the grainsize data for the 

experimental products, due to factors such as: shoaling, pour variations, breakage of 

delicate particles during recovery, loss of particles while sediment was being washed 

away, and incomplete separation of juvenile particles from sediment (e.g., as shown 

by silt component in gainsize plots of Fig. 5). Complete isolation of juvenile particles 

from sediment in Series B experiments was impossible; however, the results from 

Series A experiments are more representative, and are shown in Figure 5.  Even these, 

however, do not capture variable but noticeable amounts of very small fragments, 

especially flecks of limu, that were poured off during initial acquisition of the particle 

separates from the Bismarck. 

 The mean particle size produced in Series A experimental runs increases 

(fragmentation efficiency decreases) with increasing sediment load in the coolant.

 Limu o Pele particles, and similarly, Pele’s hair particles, are present through all 

size classes and all experiments. In all Series A experiments, limu are the only 

juvenile particles < 0.1-0.2 mm. Dense blocky particles dominate the size classes from 

~0.2 to 3 mm in all Series A experiments, but they represent a decreasing proportion 

of the total particles produced as sediment load increases (red zones in Fig. 5). Larger 

particles (> 3 mm) in the clean water and 10% bentonite (Runs A1 and A2) are mainly 

dense particles that are transitional between glass lumps representing melt piles (Fig. 

4iii), and compound particles (Fig. 4E). In the 20% and 30% bentonite runs (A3 and 
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A4), however, the larger particles are dominantly of the vesicular fluidal type (Fig. 

4C), with a minor proportion of glass balls (Fig. 4D). 

 Particles produced in Series B experiments, except for the usual limu and hair, are 

mostly variable, irregular glass lumps representing melt piles with entrained sediment 

(Fig. 4iii). This appears to be predominantly due to the presence of the larger, variably 

interlocking pumice particles, which physically interfered with melt and melt-

fragment dispersal. Even the smallest of glass domains collected after pumice-bearing 

Series B runs show that pumice was entrained into the melt. The particles produced in 

the 30% bentonite + 30% beads run (B3), which lacked large angular particles to 

obstruct melt-coolant interaction, and in which there is no grain interlocking, resulted 

in abundant glass balls (even though the melt entered the coolant as a continuous 

stream), and the characteristic “grapestone” pictured in Figure 4E (right).  

< Fig. 5: Grainsize and componentry of Series A > 

3.3 Time-temperature response 

The average temperature increase (∆T) recorded by the network of 8 

thermocouples, calculated as ∆T =Tmax-To where Tmax is the highest average 

temperature recorded over time, and To is the average temperature just before the start 

of the pour, varied dramatically from run-to-run (Fig. 6A,B). In the clean water and 

10% bentonite Series A runs (A1 and A2), similar ∆T of 28.6 and 29.1 °C (Tmax of 

50.2 and 51.4 °C) were recorded. For 20% bentonite run A2, a much lower ∆T of 20.6 

°C (Tmax = 40.0 °C) was recorded, and ∆T was dramatically lower still, at 8.0 °C (Tmax 

= 27.7 °C), in the 30% bentonite run (A4). ∆T was very low in Series B runs, ranging 

from 4.5 to 7.5 °C. 

 The recorded ∆T values (e.g., Fig. 6A,B) are of limited value for comparing the 

influence of different sediment loads on heat transfer, because the shoaling effect 
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described above meant that different amounts of heat energy (melt mass) interacted 

directly with the coolants in each run. Heat transfer by bubbling and mixture ejection 

that followed some runs is also not captured by the thermocouples, nor is heat 

transferred through the base of the Bismarck, which will be more significant in cases 

where melt collected as a pile, or point heat-source on the base of the container. The 

lower absolute temperatures measured by the thermocouples during high-sediment 

runs also reflect the poor transmission of heat through these mixtures, which is 

discussed below. The time of the melt pour varied from 20 to 35 seconds in different 

runs, but the magnitude of this variability is insufficient to influence the relative 

temperature responses of the different experiments. To accommodate these 

inconsistencies, as well as small differences in the starting temperature of the different 

coolant mixtures, we normalise the temperature response in each experiment by: 

T'=
T−T o

T max−T o
    (1) 

where T’ is non-dimensional temperature, T0 is initial coolant mixture temperature, 

and Tmax is the maximum temperature recorded by the thermocouples. For Series A 

and B experiments, we use the mean temperature response from all 8 thermocouples 

(Fig. 6C,D), and for Series C we calculate T’ separately for the two groups of four 

thermocouples below and above the substrate-water interface (Fig. 6H). This allows 

the rates and styles of heat transfer through the Bismarck volume to be compared 

across experimental runs, regardless of how much melt actually penetrated the coolant 

mixtures. 

In Series A experiments (Fig. 6C), the normalised T traces of the clean water (A1) 

and 10% bentonite (A2) runs are nearly identical, both reaching Tmax < 10 s after the 

pour. The 20% bentonite run (A3) shows a slightly delayed T’-t response, with an 

initially fast heat transfer, and then delayed transfer to reach Tmax. The 30% bentonite 
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run (A4) is markedly different to the other Series A experiments, with a heat transfer 

that is comparatively gradual and very slow, with Tmax reached only after ~15 

minutes.  

In addition to the fact that sediments have a lower heat capacity than water (Abu-

Hamdeh, 2003), sediment of different sizes/types has different effects on heat transfer 

in coolants. In low water-content sediment mixtures where heat convection is 

inefficient, adsorption of water on charged clay particles causes stronger increases in 

volumetric mixture heat capacity (and thus reductions in thermal diffusivity), than are 

observed in mixtures where sediment in dominated by sand or larger particles (Abu-

Hamdeh, 2003). Normalized Series B experimental runs (Fig. 6D) show variable heat 

transfer rates, the fastest in the 20% bentonite + 30% pumice run (B3), and the 

slowest in the 30% bentonite + 30% pumice run (B2). The influence of coarse 

material added to different coolants is illustrated in Figures 6E and 6F, for basic 20% 

and 30% bentonite coolants, respectively. In both cases, temperature response is 

slowed by the addition of coarse material, and for the addition of equivalent amounts 

of coarse (pumice) and fine (glass beads) material, the coarser material more strongly 

attenuates the heat transfer (Fig. 6F). The effect of varying basic coolants with 

equivalent proportions of coarse material (pumice) is illustrated in Fig. 6G. The 

addition of 30% pumice to 20% and 30% bentonite coolants slows heat transfer, but 

the effect is much more pronounced for the 30% bentonite coolant. This suggests that 

in the high water contents of our experimental coolants, addition of bentonite strongly 

reduces heat transfer, and further reduction of heat transfer with additional coarse 

sediment is less pronounced.  

Normalized Series C experiments are shown in Fig. 6H. Not surprisingly, heat 

transfer above the sediment base is equivalent to that in the clean water run, but below 
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the sediment surface is equivalent to that in the pure pumice mixture run (B1). The 

water over sand (C2) run shows a similar response.  

< Fig. 6. Temperature response > 

3.4 Acoustic response 

 The acoustic responses as recorded by the three force transducers on the bottom of 

the Bismarck yield different information depending on the timescale over which their 

signals are viewed. 

3.4.1 Long-timescale acoustic response 

 When viewed over the duration of the pour, the signal is dominated by the impact 

of the melt entering Bismarck, and by physical perturbation by any boiling of the 

coolant. The left panels of Figure 7 shows the acoustic response (F, mean of 

measurements recorded by the three sensors) as well as the mass evolution in each of 

the Series A runs, versus time (start of the pour is at t=0 s).  

 In clean water run (A1), there is a spike in the acoustic signal at the onset of melt 

impact, two small spikes in response in the first 10 seconds of the pour, and then a 

smooth, virtually noise-free response during the last 20 seconds of the pour (Fig. 7A). 

Qualitatively, this run was accompanied by audible cracking sounds, whereas pours 

into high-sediment mixtures were quiet. This pour produced a slow and steady rise, 

with one small perturbation, on the mass-time plot; the largest force pulses do not 

appear to correspond to mass-addition perturbations, but the video reveals splashes 

accompanying pulses in melt delivery that match roughly with the force pulses.  In the 

final ~20 s of the pour (before maximum mass is reached), the acoustic signal is 

relatively smooth even though melt was still being poured, although at a waning rate.  

 The 10% bentonite run (A2) has an extremely noisy signal, with many spikes in 

acoustic signal and the mass curve throughout the ~30 seconds of the pour (Fig. 7B), 
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with the large spikes in the first 10 seconds each corresponding to splashing at arrival 

of a pulse of melt.  A short shoaling episode matches the reduction in signal from 7-9 

seconds. Later during the run, shoaling melt repeatedly interfered with the automatic 

stir rod (see Fig. 1), which hit the side of the Bismarck several times; this both 

induced a lot of general noise, and created spikes in the mass-time curve when the 

stirrer was most strongly obstructed. 

 The 20% bentonite (run A3, Fig. 7C) and the 30% bentonite (run A4, Fig. 7D) 

runs have mass-time curves that are relatively steady and free of perturbations, with 

periods of maximum pour rate coinciding with the periods of maximum signal. For 

several tens of seconds after the pour completion in each of the runs, however, there is 

continued acoustic noise, greater in the 30% coolant (Fig. 7D) than in the 20% (Fig. 

7C). This coincides with the time the coolant was seen to boil and bubble in video of 

both of these runs, and the boiling was more violent in the 30% run, which is reflected 

in the stronger acoustic response. 

 The acoustic responses in Series B and C experiments (not shown) all showed 

spikes coincident with pour initiation, and then rapidly attenuated signals with time, 

and pervasive noise (as in Fig. 7C,D) coincident with the periods of boiling after the 

pours.  

3.4.2 Short-timescale acoustic response 

 Granulation events involve the brittle mechanical breakage of melt, and 

consequently generate acoustic signals. Since multiple breakage events occur 

simultaneously, only the first event can be uniquely identified on the readings of each 

force sensor. A force signal typically starts with a relatively “low frequency” segment 

(in the range of several hundred Hz), followed by high frequency crackling noise. The 

onset of the low frequency signal is interpreted to represent the plunge of the melt jet 
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onto the coolant’s surface, and is used as the origin of the force signal time axis (t=0). 

The high frequency signals are interpreted to result from thermal granulation events, 

and can be distinguished from other processes such as vapour film collapses, since the 

latter occur over longer time scales. This was verified by performing similar 

experiments where melt was poured into a transparent coolant tank, and recorded with 

a high-speed NAC® video camera at 2000 frames per second.  

Figure 7 (right panels) shows the signal recorded by each force sensor in Series A 

experiments, with granulation marked by the onset of sinusoidal responses. The 

granulation signal starts at slightly different times for the three sensors (marked t1, t2, 

t3 in Fig. 7), reflecting the time it takes for the acoustic signal to reach each sensor, 

depending on the proximity of the granulation locus to each.  

 Clean water run (A1) shows a distinct first granulation at ~0.001 s. At times 

longer than 0.001 s, all sensors show continued sinusoidal patterns indicating a 

succession of granulation events. The 10% bentonite run (A2) shows variable 

response, with no distinct granulation signal recorded by sensor #1. This is an 

enigmatic response, contradictory to the observation that the products of thermal 

granulation were abundant in the particles resulting from this particular run (Fig. 7B, 

left). All force sensors in the 20% bentonite run (A3) show strong granulation signals. 

The lag time between the different sensors is longer than in the clean water run (A1), 

possibly reflecting the slower speed of sound in multicomponent, sediment-rich 

coolants (Kieffer, 1977; Valentine and Wohletz, 1989). In the 30% bentonite run 

(A4), there is an initial granulation event recorded by sensors #2 and #3, but poorly 

recorded by sensor #1. These initial signals are rapidly (<0.002 s) attenuated, which 

we interpret as representing a single granulation event, with no subsequent events 

after ~0.003 s. Alternatively, other signals could be small enough, or damping high 
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enough, to be absorbed by the coolant. 

< Fig. 7. Acoustic response > 

4. Interpretation 

4.1 Interaction dynamics 

Although the shoaling effect observed in most of the experimental runs was an 

undesired effect, it illustrates an important aspect of magma-dirty coolant interaction. 

The high viscosity of the coolants, the presence of coarse material, and the degree to 

which the coarse material interlocks into a framework limits the effectiveness with 

which the melt pour penetrated and dispersed in the coolant. These conditions will 

also affect magma-sediment interaction in natural settings; where high concentrations, 

of interlocking particulate matter will inhibit efficient magma intrusion into the 

substrate. 

The vigorous boiling adjacent to the melt in experimental runs with > 20% 

sediment (Fig. 3C) indicates what has often been termed sediment “fluidization” 

(Kokelaar, 1982; Busby-Spera and White, 1987). True fluidization implies the 

independent movement of fluid through a population of near-static solid particles; i.e., 

vapour moving around particles that remained more or less stationary. In this case, the 

process observed might be better termed “liquefaction” (Zimanowski and Büttner, 

2002), because the particles remain largely coupled to the interstitial fluid as steam 

bubbles pass through. Sediment fluidization or liquefaction, and consequent 

movement of pore water and/or fine sediment, is apparent in many natural peperites, 

preserved as disruption of original host-sediment stratigraphy, fine sediment 

elutriation, or piping (Kokelaar, 1982; Busby-Spera and White, 1987; Skilling et al., 

2002 and references therein). The zone of liquefaction and bubbling in the 

experiments was in all cases limited to a region 2 to 4 cm from the melt entry point.  
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4.2 Particle formation I: Hydrodynamic mingling 

  Hydrodynamic mingling, defined as the dispersion of domains of one immiscible 

liquid in another, is a process by which melt can be non-explosively fragmented. The 

hydrodynamic breakup of melt jets in immiscible liquids has been extensively studied 

due to its application to industrial processes and nuclear reactor safety (e.g., Dinh et 

al., 1999). In experiments designed to examine whether hydrodynamic mingling can 

form peperites, Zimanowski and Büttner (2002) used analogue materials to 

demonstrate that high shear rates (i.e., high differential velocities) and low viscosity 

differentials between the two fluids promote mingling, and that the mingling energy 

required scales with the viscosity of the liquids. Hydrodynamic mingling is not 

theoretically dependent on heat transfer; however, the rapid cooling of magma in 

contact with any coolant, and the strong dependence of melt viscosity on temperature, 

in reality will strongly limit the time available for mingling to occur (Büttner and 

Zimanowski, 1998; Zimanowski and Büttner, 2002).  

Four regimes of hydrodynamic mingling were observed in our experiments: (1) no 

mingling because melt was thermally granulated; (2) domains of coolant were 

entrained in excess melt; (3) domains of melt were dispersed in excess coolant; and 

(4) no mingling because melt built up into a continuous pile. Since the melt was 

poured from the same height, at approximately the same rate (i.e., velocity) in each 

experimental run, shear rate throughout the experiments is our controlled variable, and 

the different mingling dynamics observed can be related directly to the heat transfer 

rates and viscosities the different coolants. Mingling dynamics are also dependent on 

coolant density (Table 2), and in our treatment, we consider the coolants to be viscous 

liquids rather than particle suspensions, so that the viscosity increase of successive 
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coolants is a direct function of density increases. Pumice-bearing and stratified runs 

are not appropriate for use in our investigation of mingling, because of particle 

interlocking. 

Melt fragmentation in coolants with 0% and 10% bentonite was dominated by 

thermal granulation due to high heat transfer rates (see below). Large proportions of 

dense blocky (Fig. 4B) and limu (Fig. 4A) particles were produced. Thermal 

granulation was sufficiently extensive and rapid to either preclude significant 

hydrodynamic mingling, or to prevent preservation of mingling-formed particles that, 

if formed, were subsequently granulated.  

Entrainment of ambient fluid into a jetting immiscible fluid, in this case producing 

vesicular particles, is important in the industrial manufacture of foams, and in casting 

processes. Entrainment may be extensive if fluid jets are in turbulent flow regimes 

(Reynolds number > ~2000), which would require basalt flow velocities greatly 

exceeding those examined in the current study, or in the natural formation of peperites 

(Zimanowski and Büttner, 2002). Entrainment may also be extensive if the jetting 

fluid is negatively buoyant (Friedman et al., 2007), which would be a consideration if 

we had jetted melt up into coolants, rather than poured it in. For our experimental 

geometry, the most likely form of hydrodynamic mingling leading to vesicular 

particles is entrapment of coolant as the melt pour passed the air/coolant interface 

(Lorenceau and Quéré, 2004). Above a critical plunge velocity, a melt jet will entrain 

a film of coolant, which then becomes dispersed as isolated droplets. Vesicular 

particles were common in the products of experiments with ≥20% suspended 

sediments, which is consistent with experimental results showing that dispersed fluid 

(coolant) domains increase in size and number with increasing viscosity. Furthermore, 

reduced heat transfer rates in higher-sediment coolants both allowed time for coolant 
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entrainment, and limited thermal fragmentation of the resulting vesicular particles.  

Dispersal of melt into excess coolant to produce glass balls (Fig. 4D) can be related to 

the hydrodynamic breakup of liquid jets. Four flow/fragmentation mingling regimes 

are recognized (Bürger et al., 1995): I) Rayleigh breakup with dripping, and no jet 

formation; II) transitional, “first wind regime” with jet formation and breakup; III) 

turbulent “second wind regime” jet breakup; and IV) atomization. Only the first two 

regimes are appropriate for the low pour velocities investigated here. Transition 

between regimes is governed by the ambient Weber number (Wea; Table 2), and jet 

behaviour is described in terms of coherent jet length and droplet size. Produced 

droplets progressively increase in number and decrease in size moving from Rayleigh 

breakup through to atomization. By approximating the non-pumice-bearing coolants 

as homogeneous fluids, and neglecting both the influence of lubricating vapour films 

and thermal granulation, calculated Wea place all Series A runs in the Rayleigh 

regime, and the 30% bentonite + 30% beads run in the first wind regime (inset to Fig. 

8). An apparent lack of glass ball particles in the Series A runs with ≤10 % sediment 

is presumed to result from extensive thermal granulation. Series A runs with ≥ 20 % 

sediment did produce glass balls, but not as extensively as in the higher-density, 

higher-viscosity 30% bentonite + 30% beads run, presumably because of longer stable 

jet lengths and reduced thermal granulation. This assessment neglects the significant 

effects of magma’s viscosity and elasticity, both of which are expected to shorten 

stable jet lengths and promote drop formation (Goldin et al., 1969). We note, 

however, that with the uncertainties in pour velocities, jet diameters, and jet properties 

notwithstanding, this is only a qualitative assessment of the jet breakup regimes that 

would be expected if thermal granulation did not truncate purely hydrodynamic 

processes. It does, however, explain the relative abundance of dense glass balls 



 

 

24

produced in the 30% bentonite + 30% beads run, in which heat transfer was 

comparatively slow, and thermal granulation was comparatively inefficient.  

 The results above, using magma and various “dirty” coolants, illustrate key 

controls on hydrodynamic mingling that are consistent with previous analogue-fluid 

experimental work into peperite-forming mingling regimes. In agreement with 

Zimanowski and Büttner (2002), mingling of any type only becomes possible when 

the viscosity of the coolant begins to approach that of the melt; and in agreement with 

Büttner and Zimanowski (1998), the dispersal of coolant within excess melt is 

favoured over the dispersal of melt in excess coolant, unless coolant viscosity is very 

high and heat transfer is slow, and there are few or no large framework-forming 

particles. In our experiments, the only run that met all these conditions was the 30% 

bentonite + 30% beads mixture (Run B4), where effective melt breakup, but with 

limited distribution away from the site of the pour (and of initial fragmentation) 

allowed many fragments to subsequently weld back together as the hot spheres 

accumulated below the pour entry point (e.g., Fig. 4F). The spectrum of mingling 

phenomena observed reflects that increased sediment loads result in both increased 

viscosity and density, and slower heat transfer, which cooperatively facilitate 

hydrodynamic mingling. 

  

4.3 Particle formation II: Thermal granulation 

 Granulation is a fundamentally thermal process, promoted by high heat transfer 

rates, as well as the high thermal expansion coefficient, brittleness, and low fracture 

toughness of silicate melts. Consequently, granulation was the primary form of 

fragmentation in Series A experiments with <20 % suspended sediment, where initial 

heat transfer rates were very high (Fig. 6C). This produced the dominant fine, blocky 
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particles (Fig. 4B), and generated short-timescale acoustic signals at the Bismarck’s 

force sensors (Fig. 7, right panels). 

 The efficiency and style of heat transfer through the volume of each different 

coolant controls whether or not strong thermal gradients develop, which in turn partly 

controls granulation efficiency. The nearly instantaneous temperature increase 

recorded at the thermocouples in experimental runs with < 20% bentonite (A1 and 

A2) indicate that at these low sediment concentrations, thermal convection throughout 

the Bismarck volume is efficient. The thermocouples, even though distributed around 

the outside wall of the Bismarck, record the temperature of the coolant as a whole, 

since heat is homogeneously distributed by convection throughout the coolant 

volume. As the experimental pour continues, the new melt interacts with coolant that, 

although increasing in absolute temperature, is still always at significantly lower 

temperature than the melt, and still capable of inducing thermal granulation. For 

coolants with higher (>20 %) sediment load, convection is no longer efficient, and 

large temperature gradations develop in the coolant. Qualitatively, this is most evident 

in the localised boiling around melt entry points (Fig. 3C). This occurred in all 

experiments with >20% sediment, and indicates that coolant in the proximity of the 

melt (and/or cooling melt piles) was > 100 oC, while the temperatures recorded at the 

thermocouples on the outside walls of the Bismarck never approached these 

temperatures (nor did temperatures in the < 20% sediment runs).  

The consequence of thermal gradients in high-sediment experiments, is that only 

the first-arrived melt interacts directly with comparatively very cold coolant. 

Granulation is not precluded, as evidenced by the presence of dense blocky particles 

in the products of all experimental runs, and by the sinusoidal acoustic responses of 

the 20% (A3) and 30% (A4) bentonite runs (Fig. 7, right), but it is hindered by poor 
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heat distribution throughout the Bismarck, and also by poor melt dispersal in higher-

viscosity coolants, or mixtures with framework-forming coarse particles. High-

sediment coolants thus do induce granulation of the first-arrived melt (e.g., onset and 

then truncation of sinusoidal response in 30% bentonite run acoustic signal, Fig. 7D, 

right), but as melt is continuously added to the system, thermal granulation becomes 

less efficient, and eventually impossible.  

 

5. Discussion 

5.1 Summary of experimental results 

 The style of magma-“dirty” coolant interaction changes dramatically with the 

sediment load of the coolant. The three main aspects of these changes, summarized in 

Figure 8, are: (1) reduced heat transfer in high-sediment coolants; (2) increased 

viscosity in high-sediment coolants; and (3) interference/interlocking of large 

particles, in coolants bearing coarse sediment. 

 The relationship between the above factors are illustrated in Figure 8, as the ratio 

of  ∆Tmax/tTmax (maximum temperature / time to reach maximum temperature) versus 

sediment load. In the relationship ∆Tmax/tTmax, proportionality with ∆Tmax and inverse 

proportionality with tTmax results in higher values for more and/or faster heat transfer, 

and it allows the different coolants to be assigned to regimes of convective and non-

convective heat transfer. There is a strong decrease in heat-transfer rates as ~20% 

suspended bentonite is added to water in the coolant.  By 30% suspended bentonite, 

the heat-transfer properties of the coolant are greatly reduced, and addition of further 

sediment to the coolant has little additional effect.  This suggests that the 30% coolant 

has sufficiently high sediment content to physically suppress rapid convective 

removal of heat from the melt-coolant contact, thereby "insulating" the melt from 
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high-rate cooling and preventing extensive thermal fragmentation. This has a feedback 

effect because suppressed fragmentation, as well as welding ("de-fragmentation") of 

hydrodynamically formed fragments, both act to minimize the surface area available 

for heat transfer.  Also shown on the figure are effects on the dynamics of melt-

coolant interaction, from immediate granulation without mingling, through inclusion 

of coolant domains into the melt, through hydrodynamic fragmentation of the melt 

and its dispersal in coolant as the coolant density increases. Effects of particle 

interlocking, which reduce melt penetration and mingling, are indicated separately. 

 

5.2 Application to natural settings  

 The experiments reported in this paper have general implications for most 

scenarios where extruding or intruding magma interacts directly with wet sediments. 

They have specific implications for the conditions of magma-water-sediment 

interaction that can lead to highly explosive molten fuel-coolant interactions (MFCI), 

and for the (often) more quiescent processes of peperite formation. The experiments 

cannot be directly linked to the formation of pillow lavas, the slow effusion of which 

involves quench rind formation around a large mass of still-molten melt. This slows 

heat transfer, and consequently there is typically little or no hyaloclastite (granulation 

products) associated with pillow lavas (Batiza and White, 2000). 

 Laboratory studies have shown that MFCI may proceed only following an 

essential, initial premixing phase (Zimanowski et al., 1997a), which establishes the 

magma-water interaction geometry and/or magma-coolant mixing ratio (Sheridan and 

Wohletz, 1981). In his discussion of the effects of impure coolants on MFCI, White 

(1996) noted that although sediment would promote the development of an efficient 

MFCI-ready premix, due to higher damping in the coolant, it would then in contrast 
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require a stronger trigger (in nature, likely by volcanic seismicity) to begin the 

explosive cycles of MFCI. Our results strongly support the previously-noted 

phenomenon (White, 1996) that hydrodynamic mingling (= premixing) is enhanced 

by the addition of ~10 to 30 % fine sediment to the coolant. Granulation in low-

sediment runs was fast enough to preclude mingling resulting from lava-like advance 

and coolant incorporation, but slower heat transfer and matched viscosities in higher-

sediment runs promoted hydrodynamic mingling, as indicated by formation of glass 

balls and vesicular particles. The experiments, however, were not designed to explore 

explosive interactions; thus no external MFCI trigger (e.g., Zimanowski et al., 1997b) 

was employed. The magnitude and style of trigger required to initiate MFCI in our 

experimental “dirty” coolants remains experimentally untested. 

 Peperites, rocks “formed essentially in situ by disintegration of magma intruding 

and mingling with unconsolidated or poorly consolidated, typically wet sediments” 

(White et al., 2000), can have a wide variety of textures, with juvenile components 

ranging generally from blocky to fluidal (Busby-Spera and White, 1987; Skilling et 

al., 2002; Squire and McPhie, 2002). Although the generation of some peperites likely 

involves a modified form of MFCI (Busby-Spera and White, 1987; Wohletz, 2002), 

the non-explosive experiments presented here pertain to more passive scenarios. 

Peperite textures are controlled by many factors (e.g., Skilling et al., 2002, and 

references therein), including highly temperature-dependent magma viscosity (Busby-

Spera and White, 1987; Dadd and Van Wagoner, 2002), and the grain size 

characteristics of the host sediment (Kokelaar, 1982; Busby-Spera and White, 1987; 

Squire and McPhie, 2002). The only true “blocky” particles produced in the 

experiments are the fine, dense blocky products of thermal granulation (Fig. 4B), and 

are the products of high heat transfer rates. Coarse “blocky peperite” is often 
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attributed to the fragmentation of magma with high viscosity (cooler), which is 

fragmented by various mechanical stresses from adjacent interactions (Busby-Spera 

and White, 1987), or magma backpressure during continued eruption (Skilling et al., 

2002; Squire and McPhie, 2002). The melt piles produced in Series B experiments 

involving coarse sediments can be considered analogous to coarse fluidal globular 

peperite (although preserved as unconsolidated particles, rather than preserved in-

situ), and exemplify that hot, low-viscosity magma interacting with limited 

backpressure on coarse sediments can readily form globular peperite-style dispersed 

melt domains. 

 The most important scaling issue with our experiments pertains to the size and rate 

of the melt jet or stream that penetrates each coolant. In nature, this will be controlled 

primarily by magma discharge rate and interaction geometry. Generally speaking, 

melt jets with larger diameter and/or velocity will serve to increase the Weber number 

of the flow (caption to Table 2, inset to Fig. 8), promoting hydrodynamic 

fragmentation as the flow regime is pushed to higher regimes of jet breakup (Bürger et 

al., 1995). Furthermore, the influence of thermal granulation will be controlled by the 

abundance and type of sediment in the coolants, as well as the total volume of the 

coolant within the given (and probably complex) interaction geometries at different 

types of volcanic edifices. We expect that when interactions between melt and 

coolants occur under hydrostatic pressures, insulating vapour films will be thinner and 

less stable, leading to enhanced efficiency of thermal granulation processes 

(Zimanowski and Büttner, 2003).  

 

6. Conclusions 

 This work represents the first experimental assessment of how non-explosive 
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magma-coolant interactions change as the coolants range from clean water to heavy 

particle-laden slurries. The large degree of heterogeneity that exists in the 

experimental coolants reflects the similar heterogeneity that exists in natural volcanic 

centres. Despite this heterogeneity, several key aspects of magma-“dirty” coolant 

interaction can be isolated: 

(1) In coolants with < ~20% suspended sediment, thermal convection is efficient 

throughout the coolant volume. This translates to efficient melt-coolant heat transfer, 

resulting in extensive thermal granulation of the magma. Combined with the large 

viscosity difference between low-sediment coolants and magma, this significantly 

limits processes of hydrodynamic mingling. Resulting particles are dominantly of the 

dense blocky granulate type. 

(2) In coolants with >~20% suspended sediment, regardless of the size of suspended 

particles, thermal convection is inefficient, and heat transfer throughout the coolant 

volume is predominantly by forced convection and/or conduction. Thermal 

granulation does still proceed locally, especially on first contact of magma with the 

coolant, but successive processes of granulation are truncated, and not self-sustained. 

(3) High-sediment (>~20%) coolants containing small (clay-sand) grainsize particles 

promote hydrodynamic mingling, due to their increased viscosity relative to the 

magma with which they are interacting. This, combined with reduced heat transfer 

promotes mingling that progresses from coolant dispersed in melt, to melt dispersed in 

coolant, as sediment load increases. In high-sediment coolants that contain larger 

(gravel/lapilli) sized particles, the large particles hinder hydrodynamic mingling by 

interfering with melt trajectories.  

Volcanoes are “dirty” places. The scenarios in which magma will  

interact with pure water are comparatively very rare compared to the scenarios in 
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which it will interact with water + sediment mixtures. Our results demonstrate that the 

style of magma-coolant interaction changes dramatically as sediment loads (and/or 

sediment size classes) change. Analogue experiments are essential for exploring this 

problem, since during real volcanic eruptions, the type of coolant(s) involved in 

interactions will most often be highly heterogeneous, and vary with time. As sediment 

types and water-sediment-magma availability changes in the course of eruption, the 

probability of generating highly explosive MFCI, and the style of any peperites 

produced will also change rapidly and dramatically in time and space. 
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Figure Captions 

Fig. 1. Experimental setup. The diameter of the steel “Bismarck” container is 24 cm. 
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Schematic diagrams of crucible and coolant tank modified from Schmid et al. (2010).  

 

Fig. 2. Viscosities. A: Temperature-dependent, non-Newtonian viscosity of the 

Billstein/Rhön melt. The blue line represents the fitted power-law (Sonder et al., 

2006) based on the measured points shown as red dots. The dashed blue line shows 

the extrapolated viscosity at melt temperature (1340 oC). The average relative error is 

~10%. B: Non-Newtonian viscosity of the 30% bentonite coolant (A4) at room 

temperature. 

 

Fig. 3. Pour interaction dynamics. Video frame grabs from various experimental runs, 

captured at various times after pour initiation, demonstrating examples of the full 

range of pour dynamics produced throughout all experiments. A: Melt easily 

penetrating the mixture. B: Transient shoaling events. White arrow marks 

incandescent early-formed shoaling limu bubble that has floated out of path of poured 

melt. C: Steady shoaling. White dashed line marks region of visible boiling/bubbling 

of mixture, around incandescent melt. D: Pervasive shoal with limited mixture 

penetration. The majority of the melt is piled atop the sediment mixture. 

 

Fig. 4. Degree of granulation (i-iii) and particles formed (A-E). i-iii: Photographs of 

bulk experimental particles, showing qualitative range of granulation efficiency. i: 

Run A1, complete granulation of melt. ii: Run A3, extensive granulation, but with 

larger compound particles and non-granulated melt. iii: Run B1, no granulation, melt 

is preserved as single unit. Black arrow indicates entrainment of pumice at base, white 

arrow indicates large limu bubble at top. A-E: Type individual particles. A: Limu o 

Pele fragments. Left image shows limu o Pele shard, right shows partially preserved 
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bubble, at much smaller scale than in iii. B: Dense, blocky glass particles. C: 

Vesicular particles. White arrow in right image indicates sediment within vesicle. D: 

Sub-spherical, dense, individual glass balls. Note roughness, “tails,” and asperities on 

particles in left image. E: Compound particles formed by welding of various smaller 

particles. Note larger scale compared to other individual particles. “Grapestone” 

particle in right image is almost exclusively composed of dense glass balls. 

 

Fig. 5. Grainsize and componentry of Series A experimental runs. Grainsize increases 

with increasing bentonite content of coolant, and small-diameter particles in Runs A2-

A4 are sediment particles that were not completely separated from juvenile particles. 

Componentry shown as dominant particle type (see Fig. 4) across size bins, with red 

background highlighting range of sizes dominated by dense blocky products of 

thermal granulation. 

 

Fig. 6. Temperature response. Panels A-D show basic results. A: Temperature of 

mixture as average recorded by all 8 thermocouples (Tavg) vs. time (t) for Series A 

experiments. B: Normalized temperature (T’; see text for description) versus time (s) 

for Series A experiments. C: Tavg versus t for Series B. D: T’ versus t for Series B, 

including run A2 (20% bentonite) for comparison. Panels E-H show T’ versus t 

grouped for various mixtures. E: Constant 20% bentonite coolant, and variable coarse 

(pumice) contents. F: Constant 30% bentonite coolant, with variable coarse (pumice 

+/- glass bead) contents. G: Constant coarse content (30% pumice), with variable 

coolant bentonite content. H: Stratified sediments, showing average response of 

thermocouples from over, and under the basal coarse layer. All melt pours lasted 

between 20 and 35 seconds.  
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Fig. 7. Acoustic responses for Series A experimental runs. Left panels shows time-

normalized acoustic response (F, in volts (V)) as average response from three sensors, 

and melt added (∆m) versus t. The main contribution to acoustic response in each is 

due to impact of melt being poured into the Bismarck. Grey arrows in top left panel 

indicate what we refer to as mass addition perturbations. Right panels show the 

response from each individual sensor over the first 0.01 s of interaction. The onset of 

a sinusoidal trace marks the first granulation event recorded at slightly different times 

(tF1, tF2, tF3) depending on the relative proximity of each sensor to the locus of 

granulation. 

 

Fig. 8. Summary diagram relating fragmentation processes to coolant properties. Heat 

transfer, expressed as the ratio ∆Tmax/tTmax (see text for description) is the primary 

control on thermal granulation efficiency, detailed qualitatively in vertical greyscale 

bar. Total sediment is taken as a proxy for coolant viscosity, and is the primary 

control on hydrodynamic mingling, detailed qualitatively in horizontal greyscale bar. 

Note that hydrodynamic mingling is significantly limited by the presence of large 

particles in pumice-bearing Series B experiments, which tend to interlock. The style 

of fragmentation (≈ type of particles formed) in reality represents a balance between 

heat transfer and coolant viscosity (e.g., melt dispersal in coolant is made possible 

both by high coolant viscosity and reduced heat transfer). Dominant particle types 

produced are given along the curve. Inset are cartoons of the Bismarck, with 

schematic temperature profile (white dashed line) from melt pour to thermocouples. 

Note that the profile is flat in low-sediment, high ∆Tmax/tTmax, convective regime. Inset 

graph represents non-dimensional jet breakup length versus ambient Weber number 
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(Wea, Table 2), illustrating the theoretical hydrodynamic breakup regimes in the 

absence of thermal granulation. Note that all Series A experiments (circles) are in 

field I, but the 30% bentonite + 30% beads run (B4; grey diamond) is in regime II. 

 

Tables 

Table 1. Experimental materials and coolants 
Melt composition   

  (XRF; wt.%)  

SiO2 45.31 
TiO2 2.16 
Al2O3 12.86 
FeO 11.93 
MnO 0.17 
MgO 10.90 
CaO 10.50 
Na2O 3.14 
K2O 1.38 
P2O5 0.54 

Total 98.89 
Sediment 
granulometry   

  Φ (-log2[mm]) 
bentonite* < 2.5† 

pumice 0.0 - -4.0 
beads 2.5 - 1.5 
sand 2.0 - 0.5 

    
Major element geochemistry (Zimanowski et al., 2004) by X-ray fluorescence 
spectroscopy (XRF). *Deponit Ca-N (calcium bentonite). †The maximum grainsize of 
2.5 Φ represents a small (< 25% by mass) silt content in the dominantly 
montmorillonite (~0.16 µm diameter particles) bentonite clay mixture. 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Qualitative interaction dynamics 

    Melt           
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No. Description Penetration Shoaling Steam 
Coolant 
Boiling 

ρa (kg 
m-3) Wea 

A1 water unrestricted 
brief, 
transient negligible none 1000 0.333 

A2 10% bentonite unrestricted 
brief, 
transient minor none 1055 0.352 

A3 20% bentonite unrestricted persistent minor 

weak 
around 
pour 1116 0.372 

A4 30% bentonite unrestricted persistent minor 

vigorous 
around 
pour 1185 0.395 

        
B1 pumice slurry poor      

B2 
30% bentonite + 
30% pumice unrestricted 

brief, 
transient significant 

vigorous 
around 
pour   

B3 
20% bentonite 
+30% pumice unrestricted persistent minor 

vigorous 
around 
pour   

B4 
30% bentonite + 
30% beads 

slightly 
restricted persistent minor 

weak, only 
after 
shoaling 1640 0.547 

B5 
30% bentonite + 
15% pumice 

slightly 
restricted cyclical minor 

vigorous 
around 
pour   

        

C1 
water over 
pumice 

unrestricted 
into water poor 
into pumice persistent minor none   

C2 water over sand 

unrestricted 
into water none 
into sand none negligible none     

 
Sediment content of different coolants given as mass %. Ambient Weber number 
calculated by Wea = ρad jv j /σm  for different coolant densities (ρa), with fixed jet 
diameter (dj=0.01 m), jet velocity (vj=~0.1 m/s, estimated from mass-time curves in 
Fig. 7), and σm is interfacial tension (~0.30 N/m) 
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