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ISOPERIMETRIC CONTROL OF THE SPECTRUM OF

A COMPACT HYPERSURFACE

BRUNO COLBOIS, AHMAD EL SOUFI, AND ALEXANDRE GIROUARD

Abstract. Upper bounds for the eigenvalues of the Laplace-Beltrami
operator on a hypersurface bounding a domain in some ambient
Riemannian manifold are given in terms of the isoperimetric ratio
of the domain. These results are applied to the extrinsic geometry
of isometric embeddings.

1. Introduction

The spectrum of the Laplace-Beltrami operator on a compact Rie-
mannian manifold (Σ, g) of dimension n ≥ 2 provides a sequence of
global Riemannian invariants

0 = λ1(Σ) ≤ λ2(Σ) ≤ λ3(Σ) ≤ · · · ր ∞.

One of the main goals of spectral geometry is to investigate relation-
ships between these invariants and other geometric data of the mani-
fold Σ such as the volume, the diameter, the curvature, or the Cheeger
isoperimetric constant. See [2, 3, 7, 15] for classical references.

Since the work of Bleecker and Weiner, Reilly and others, the fol-
lowing approach has been developed : the manifold (Σ, g) is immersed
isometrically into Euclidean space, or a more general ambient space.
One then looks for relationships between the eigenvalues λk(Σ) and
extrinsic geometric quantities constructed from the second fundamen-
tal form of the immersed submanifold, such as the length of the mean
curvature vectorfield. See for example [4, 17, 16, 21, 22, 25]. It is worth
noticing that the spectrum of (Σ, g) cannot be controlled only by the
volume of (Σ, g) (see [9, 11, 24]), even for isometrically embedded hy-
persurfaces (see [10, Theorem 1.4]).
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More recently, the first two authors and E. Dryden [10] have obtained
upper estimates for all normalized eigenvalues λk(Σ)|Σ|

2/n, where |Σ|
denotes the Riemannian volume of Σ, in terms of the number of in-
tersection points of the immersed submanifold with a generic affine
plane of complementary dimension. Such results allow a better un-
derstanding of the geometry of a Riemannian metric g on Σ inducing
large eigenvalues, that is such that for some k ≥ 2, the k-th normalized

eigenvalue λk(Σ, g)|(Σ, g)|
2/n is large. Indeed, if g is such a metric, then

any isometric immersion of (Σ, g) into the Euclidean space R
n+p must

have a large mean curvature, at least somewhere, and a large number
of intersection points with some p-planes.

In the same vein, Reilly [25, Corollary 1] and Chavel [6] obtained the
following remarkable inequality for the first positive eigenvalue λ2(Σ)
in the case where Σ is embedded as a hypersurface bounding a domain
Ω in R

n+1 (or in a Cartan-Hadamard manifold in [6]):

λ2(Σ)|Σ|
2/n ≤

n

(n+ 1)2
I(Ω)2+

2

n , (1.1)

where I(Ω) is the isoperimetric ratio of Ω, that is

I(Ω) =
|Σ|

|Ω|n/(n+1)
,

where |Σ| and |Ω| stand for the Riemannian n-volume of Σ and the
Riemannian (n+1)-volume of Ω, respectively. Moreover, equality holds
in (1.1) if and only if Σ is embedded as a round sphere.

The main feature of the upper bound (1.1) is its low sensitivity to
small deformations, compared to that of the curvature or the intersec-
tion index. This result of Reilly and Chavel has been revisited by many
authors [1, 18, 27], but only for the first non-zero eigenvalue λ2, and
using barycentric type methods involving coordinate functions.

Our aim in this paper is to establish inequalities of Reilly-Chavel type
for higher order eigenvalues, that is to show that the isoperimetric ratio
I(Ω) allows a control of the entire spectrum of Σ = ∂Ω, and in various
ambient spaces. Let us start with the particular but important case of
compact hypersurfaces in Euclidean space.

Theorem 1.1. For any bounded domain Ω ⊂ R
n+1 with smooth bound-

ary Σ = ∂Ω, and all k ≥ 1,

λk(Σ)|Σ|
2/n ≤ γnI(Ω)

1+2/nk2/n (1.2)

with γn = 210n+18+8/n

(n+1)
ω

1

n+1

n+1 , where ωn+1 is the volume of the unit ball

in R
n+1.
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This result can also be understood as an estimate of the volume pre-
scribed by a Riemannian manifold once embedded as an hypersurface
in R

n+1. That is, if (Σ, g) is a Riemannian manifold of dimension n
of volume one, then, for any isometric embedding φ : Σ → R

n+1, the
domain Ω bounded by the hypersurface φ(Σ) satisfies, for each k ≥ 2,

|Ω|
n+2

n+1 ≤ γn
k

2

n

λk(Σ)
. (1.3)

In particular, if the Riemannian metric g is such that λk is large, then
the prescribed volume |Ω| has to be small (see [10, Theorem 1.4] for
the existence of hypersurfaces with large λk).

For more general ambient spaces, we have the following theorem
which is a particular case of a more general result (Theorem 2.1) we
will prove in section 2 in which the curvature assumptions are replaced
by hypotheses of metric type.

Theorem 1.2. Let (M,h) be a complete Riemannian manifold of di-
mension n+1 with Ricci curvature bounded below by −na2, a ∈ R. For
any bounded domain Ω ⊂ M with smooth boundary Σ = ∂Ω, and all
k ≥ 1, we have

λk(Σ) ≤ αn
I(Ω)

I0(Ω)
a2 + βn

(
I(Ω)

I0(Ω)

)1+2/n(
k

|Σ|

)2/n

, (1.4)

where
I0(Ω) = inf{I(U) : U is an open set in Ω}

and αn and βn are two constants depending only on n (see (3.2) and
(3.3) for explicit expressions of these constants).

Observe that the power of k appearing in the right hand side of this
estimate is optimal, according to Weyl’s law.

It is in general not easy to estimate the number I0(Ω), which repre-
sents the best constant in the isoperimetric inequality for domains in
Ω. Recall that for any domain Ω in R

n+1, one has

I0(Ω) = I0(R
n+1) = (n + 1)ω

1

n+1

n+1 ,

where ωn+1 denotes the volume of the unit ball in R
n+1. In a Cartan-

Hadamard manifold, it is known that there exists a universal positive
constant Cn such that I(Ω) ≥ Cn for any bounded domain Ω (see [14]).
More generally, if (M,h) is any complete Riemannian manifold with
positive injectivity radius inj(M), then any domain U contained in a
geodesic ball of radius r < 1

2
inj(M) satisfies I(U) ≥ Cn (see [14] and

[8, Proposition V.2.3]). This leads to the following two corollaries.
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Corollary 1.1. Let (M,h) be a Cartan-Hadamard manifold of dimen-
sion n + 1 with Ricci curvature bounded below by −na2, a ∈ R. For
any bounded domain Ω ⊂ M with smooth boundary Σ = ∂Ω, and all
k ≥ 1,

λk(Σ) ≤ AnI(Ω)a
2 +BnI(Ω)

1+2/n

(
k

|Σ|

)2/n

, (1.5)

where An and Bn are constants depending only on n.

In view of (1.1), it would be interesting to know if the first term on
the right hand side of inequality (1.5) is necessary. In Example (3.1)
we will show that it is not always possible to remove this term, at least
if we allow the topology of M to be non-trivial.

Corollary 1.2. Let (M,h) be a complete Riemannian manifold of di-
mension n+1 with Ricci curvature bounded below by −na2, a ∈ R, and
positive injectivity radius. For any compact hypersurface Σ bounding
a domain Ω ⊂ M contained in a geodesic ball of radius r < 1

2
inj(M),

and for each k ≥ 1, one has

λk(Σ) ≤ AnI(Ω)a
2 +BnI(Ω)

1+2/n

(
k

|Σ|

)2/n

, (1.6)

where An and Bn are two constants depending only on n. In particular,
for any bounded domain Ω in a hemisphere of the standard sphere S

n+1

with smooth boundary Σ = ∂Ω, and all k ≥ 1,

λk(Σ)|Σ|
2/n ≤ BnI(Ω)

1+2/nk2/n.

The assumption that the domain is contained in a geodesic ball of
radius r < 1

2
inj(M) is necessary. Indeed, in Example 3.2 below, we

will show that if (M,h) is any compact manifold, then there exists
a sequence of domains for which inequality (1.6) fails, whatever the
constants An and Bn are.

Notice that it is impossible to obtain an inequality such as (1.6) for
a class of domains Ω in a Riemannian manifold M without an assump-
tion that guarantees that their isoperimetric ratio I(Ω) is uniformly
bounded from below. Indeed, since λk(Σ)|Σ|

2/n ∼ cnk
2/n as k → ∞

(Weyl’s asymptotic formula with cn = 4π2ω
−2/n
n ), the inequality (1.6)

implies that
I(Ω)1+2/n ≥ cn/Bn.

Finally, let us mention that in our recent work [12], we studied
isoperimetric control of the Steklov spectrum for bounded domains in a
complete Riemannian manifold. The methods we used in [12] are based
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on concentration properties which were initiated by Korevaar [23], and
further developed by Grigor’yan, Netrusov and Yau [19, 20]. Together
with the results of the present paper, this leads to comparison results
between the Steklov spectrum of a domain and the spectrum of its
boundary hypersurface. See [12, Section 4] for details.

2. Eigenvalue bounds : a general result

In this section, we give an upper bound for the eigenvalues of the
Laplacian in terms of quantities which depend only on the Riemannian
distance and measure.
Let M be a Riemannian manifold M of dimension n + 1. The Rie-

mannian volumes of a geodesic ball B(x, r) and of a geodesic sphere
∂B(x, r) of radius r in M are asymptotically equivalent as r → 0 to
ωn+1r

n+1 and ρnr
n, respectively, where ωn+1 is the volume of a unit

ball and ρn = (n+1)ωn+1 is the volume of a unit sphere in the (n+1)-
dimensional Euclidean space. To each point x in M we associate the
number r(x) defined as the largest positive number (possibly infinite)
so that, fo all r < r(x), one has

|B(x, r)| < 2ωn+1r
n+1

and
|∂B(x, r)| < 2ρnr

n.

If M has nonnegative Ricci curvature, then, thanks to the Bishop-
Gromov inequality, r(x) = +∞ for all x ∈ M .
Let Ω be a bounded regular domain in M and denote by Σ the

boundary of Ω. We define the number r−(Ω) as follows :

r−(Ω) = inf
x∈Σ

r(x).

We also introduce for all r > 0, an integer NM(r) such that for any
x ∈ M and any s < r, the geodesic ball B(x, 4s) can be covered by
NM(r) balls of radius s.

The main technical result of this paper is the following

Proposition 2.1. Let r0 be a positive number such that r0 < 1
4
r−(Ω)

and define k0 to be the first integer satisfying

k0 >
1

16ρn

I0(Ω)

rn0
|Ω|n/(n+1).

For all k ≥ k0,

λk(Σ)|Σ|
2

n ≤ 256 (16ρn)
2

n NM(r0)
2

(
I(Ω)

I0(Ω)

)1+ 2

n

k
2

n .
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Proposition 2.1 has the following consequence, from which the results
announced in the introduction will follow.

Theorem 2.1. Let M be a complete Riemannian manifold of dimen-
sion n+1 and let Ω ⊂ M be a bounded domain whose boundary Σ is a
smooth hypersurface. For any r0 <

1
4
r−(Ω) and any positive integer k,

one has

λk(Σ) ≤ 256NM(r0)
2 I(Ω)

I0(Ω)

{

1

r20
+

(

16ρn
I(Ω)

I0(Ω)

k

|Σ|

) 2

n

}

. (2.1)

It is in general not easy to estimate the quantities I0(Ω) and NM(r0)
that appear in the right-hand side of this inequality. However, in many
standard geometric situations it is possible to control these invariants
in terms of the dimension and a lower bound of the Ricci curvature.
This will lead to the results stated in the introduction. For exam-
ple, when M is the Euclidean space R

n+1 one has for any Ω ⊂ R
n+1,

r−(Ω) = +∞, I0(Ω) = I0(R
n+1) = (n + 1)ω

1

n+1

n+1 and NM(r) ≤ 32(n+1)

for all r > 0 (see Lemma 3.1 below).

For the need of the proof, we endow M with the Borel measure µ
with support in Σ defined for each Borelian O ⊂ M by

µ(O) =

∫

O∩Σ

dvg,

In other words, the µ-measure of O is the volume of the part of the
hypersurface Σ lying inside O. The geodesic distance of M will be
denoted by d.
One of the main tools in the proof is the following result which is an

adapted version of a result obtained by Maerten and the first author
in [13]:

Lemma 2.1. Let (X, d, µ) be a complete, locally compact metric mea-
sure space, where µ is a finite measure. We assume that for all r > 0,
there exists an integer N(r) such that each ball of radius 4r can be cov-
ered by N(r) balls of radius r. If there exist an integer K > 0 and a
radius r > 0 such that, for each x ∈ X

µ(B(x, r)) ≤
µ(X)

4N2(r)K
,

then, there exist K µ-measurable subsets A1, ..., AK of X such that,

∀i ≤ K, µ(Ai) ≥
µ(X)

2N(r)K
and, for i 6= j, d(Ai, Aj) ≥ 3r.
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The proof of this lemma consists of a slight modification of the con-
struction made in [13, section 2]. For convenience, the proof is included
at the end of the paper.

Proof of Proposition 2.1. The Rayleigh quotient of a function f in the
Sobolev space H1(Σ) is

R(f) =

∫

Σ
|∇Σf |

2

∫

Σ
f 2

.

The k-th eigenvalue λk(Σ) is characterized as follows:

λk(Σ) = inf
E

sup
06=f∈E

R(f)

where the infimum is over all k-dimensional subspaces of the Sobolev
space H1(Σ) (see for instance [2]). In particular, in order to obtain
upper bounds on λk, we will construct k test functions with disjoint
supports and controlled Rayleigh quotient.

Let us fix an integer k ≥ k0 and set

rk =

(
I0(Ω)

4n+2ρnk

)1/n

|Ω|
1

n+1 (2.2)

so that rnk ≤ 1
4n

I0(Ω)|Ω|
n

n+1

16ρnk0
<
(
r0
4

)n
, that is rk <

r0
4
.

Step 1

Let us first show that Σ cannot be covered by 2k balls of radius 4rk.
More precisely, let x1, x2, . . . , x2k be 2k (arbitrary) points in M and
define

M0 = M \ ∪2k
j=1B(xj , 4rk),

Ω0 = Ω \ ∪2k
j=1B(xj , 4rk), and Σ0 = Σ \ ∪2k

j=1B(xj , 4rk).

Then,

|Ω0| >
3

4
|Ω| (2.3)

and

|Σ0| >
1

2
I0(Ω)|Ω|

n
n+1 =

1

2

I0(Ω)

I(Ω)
|Σ|, (2.4)

Indeed, since 4rk < r0 < r−(Ω),

2k∑

j=1

|B(xj , 4rk)| < 4kωn+1(4rk)
n+1
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with

(4rk)
n+1 =

(
I0(Ω)

16ρnk

)n+1

n

|Ω| <
1

16k

(
I0(Ω)

ρn

)n+1

n

|Ω| ≤
1

16kωn+1
|Ω|

where the last inequality follows from the fact that

I0(Ω) ≤ I0(R
n+1) =

ρn

ω
n/(n+1)
n+1

.

Therefore,
2k∑

j=1

|B(xj, 4rk)| <
1

4
|Ω|

and

|Ω0| > |Ω| −
1

4
|Ω| =

3

4
|Ω|.

Now, observe that the boundary of Ω0 consists of the union of Σ0 and
parts of the boundaries of the balls B(xj , 4rk). Therefore,

|∂Ω0| ≤ |Σ0|+
2k∑

j=1

|∂B(xj , 4rk)| < |Σ0|+4kρn(4rk)
n = |Σ0|+

1

4
I0(Ω)|Ω|

n
n+1 .

On the other hand, from the isoperimetric inequality satisfied by do-
mains in Ω and (2.3) we get

|∂Ω0| ≥ I0(Ω)|Ω0|
n

n+1 >

(
3

4

) n
n+1

I0(Ω)|Ω|
n

n+1 .

Hence,

|Σ0| >

[(
3

4

) n
n+1

−
1

4

]

I0(Ω)|Ω|
n

n+1 >
1

2
I0(Ω)|Ω|

n
n+1 .

Step 2

The result of the previous step makes it possible to define inductively
a family of 2k balls B(x1, rk), . . . , B(x2k, rk) satisfying the following:

µ (B(x1, rk)) = sup
x∈M

µ(B(x, rk)),

µ (B(xj+1, rk)) = sup
{
µ(B(x, rk)) : x ∈ M \ ∪j

i=1B(xi, 4rk)
}
.

It follows from this construction that

a) the balls B(x1, 2rk), . . . , B(x2k, 2rk) are mutually disjoint,
b) µ(B(x1, rk)) ≥ µ(B(x2, rk)) ≥ · · · ≥ µ(B(x2k, rk)),
c) ∀x ∈ M0 = M \ ∪2k

j=1B(xj , 4rk), µ(B(x, rk)) ≤ µ(B(x2k, rk)).
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Two alternatives are to be considered separately, depending on how
the ball B(x2k, rk) is µ-charged. This will be done in the two following
steps.

Step 3

Assuming that

µ (B(x2k, rk)) ≥
I0(Ω)|Ω|

n
n+1

16kNM(r0)2
=

1

16kNM(r0)2
I0(Ω)

I(Ω)
|Σ|, (2.5)

we show that

λk(Σ)|Σ|
2

n ≤
16NM(r0)

2

r2k

I(Ω)

I0(Ω)
|Σ|

2

n .

Indeed, for each 1 ≤ j ≤ 2k we consider the function fj supported
in B(xj , 2rk) and defined for all x ∈ B(xj , 2rk) by :

fj(x) = min

{

1, 2−
1

rk
d(xj, x)

}

. (2.6)

Since |∇fj |
2 ≤ 1

r2k
in B(xj , 2rk), the Rayleigh quotient of the restriction

of fj to Σ, that we still denote by fj , clearly satisfies

R(fj) ≤
1

r2k

µ(B(xj , 2rk))

µ(B(xj, rk))
(2.7)

with (from the definition of x1, . . . , x2k)

µ (B(xj , rk)) ≥ µ (B(x2k, rk)) ≥
1

16kNM(r0)2
I0(Ω)

I(Ω)
|Σ|.

On the other hand, the balls B(xj , 2rk), j = 1, . . . , 2k, being mutu-
ally disjoint, there exist k of them, B(xj1, 2rk), . . . , B(xjk , 2rk) satisfy-
ing

µ(B(xjm , 2rk)) ≤ |Σ|/k for m = 1, . . . , k.

Replacing into (2.7) we get, ∀m = 1, . . . , k,

R(fjm) <
16NM(r0)

2

r2k

I(Ω)

I0(Ω)

so that

λk(Σ)|Σ|
2

n ≤ max
1≤m≤k

R(fjm)|Σ|
2

n ≤
16NM(r0)

2

r2k

I(Ω)

I0(Ω)
|Σ|

2

n .



10 BRUNO COLBOIS, AHMAD EL SOUFI, AND ALEXANDRE GIROUARD

Step 4

Assuming now that

µ (B(x2k, rk)) <
1

16kNM(r0)2
I0(Ω)

I(Ω)
|Σ|, (2.8)

we show that

λk(Σ)|Σ|
2

n ≤
8NM(r0)

r2k

I(Ω)

I0(Ω)
|Σ|

2

n .

Indeed, from the construction of the balls B(xj , rk) (see step 2), one
has, ∀x ∈ M0 = M \ ∪2k

j=1B(xj , 4rk),

µ(B(x, rk)) ≤ µ(B(x2k, rk)) <
1

16kNM(r0)2
I0(Ω)

I(Ω)
|Σ|

with µ(Σ0) = |Σ0| >
1
2
I0(Ω)
I(Ω)

|Σ| (see (2.4)). Hence, ∀x ∈ M0, we have

4NM(r0)
2µ(B(x, rk)) <

µ(Σ0)

2k
. (2.9)

This enables us to apply Lemma 2.1 with K = 2k and r = rk to
the metric measure space M endowed with the Riemannian distance d
and the restriction µ0 of the measure µ to Σ0, namely for a Borelian
O ⊂ M , we have µ0(O) = µ(O ∩ Σ0). In particular,

µ0(M) = µ(Σ0) = |Σ0| >
1

2

I0(Ω)

I(Ω)
|Σ|. (2.10)

The relation (2.9) becomes

4NM(r0)
2µ0(B(x, rk)) <

µ0(M)

2k
. (2.11)

Thus, we deduce the existence of 2k measurable sets A1, . . . , A2k in
M0 satisfying both :

µ(Ai) ≥
µ0(Σ0)

4kNM(r0)
for all i

and d(Ai, Aj) ≥ 3rk if i 6= j. Denote by

Ark
i = {x ∈ M ; d(x,Ai) < rk}

the rk-neighborhood of Ai. A priori, we have no control over µ0(A
rk
i ),

but since d(Ai, Aj) ≥ 3r for i 6= j, the Ark
i are mutually disjoint and

there exist k sets amongst them, say Ark
1 , . . . , Ark

k , which satisfy

µ0(A
rk
i ) ≤

|Σ|

k
for i = 1, . . . , k.
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As in [13], we construct for each i ≤ k, a test function ϕi with support
in Ark

i and which is defined for all x ∈ Ark
i by

ϕi(x) = 1−
d(x,Ai)

rk
.

Observing that |∇ϕi(x)| ≤
1
rk

almost everywhere in Ark
i , a straightfor-

ward calculation shows that the Rayleigh quotient of the restriction of
ϕi to Σ, that we still denote by ϕi, satisfies

R(ϕi) ≤
1

r2k

µ0(A
r
i )

µ0(Ai)
<

1

r2k

|Σ|
µ0(M)

4NM (r0)

and, because of (2.10), we have

R(ϕi) ≤
8NM(r0)

r2k

I(Ω)

I0(Ω)
.

Thus,

λk(Σ)|Σ|
2

n ≤ max
1≤i≤k

R(ϕi)|Σ|
2

n ≤
8NM(r0)

r2k

I(Ω)

I0(Ω)
|Σ|

2

n .

Step 5

We are now ready to conclude the proof.

From the two previous steps, we see that in all cases, one has

λk(Σ)|Σ|
2

n ≤
16NM(r0)

2

r2k

I(Ω)

I0(Ω)
|Σ|

2

n

with |Σ|
2
n

r2k
=
(

4n+2ρnk
I0(Ω)

) 2

n |Σ|
2
n

Ω
2

n+1

= (4n+2ρnk)
2

n

(
I(Ω)
I0(Ω)

) 2

n
. Thus,

λk(Σ)|Σ|
2

n ≤ 256 (16ρn)
2

n NM(r0)
2

(
I(Ω)

I0(Ω)

)1+ 2

n

k
2

n .

�

Proof of Theorem 2.1. Let k be a positive integer. If k < k0, then
λk(Σ) ≤ λk0(Σ). Together with Proposition 2.1, this yields for all k ≥ 1,

λk(Σ)|Σ|
2

n ≤ 256 (16ρn)
2

n NM(r0)
2

(
I(Ω)

I0(Ω)

)1+ 2

n

max
{

k0
2

n , k
2

n

}

.



12 BRUNO COLBOIS, AHMAD EL SOUFI, AND ALEXANDRE GIROUARD

We clearly have max
{

k0
2

n , k
2

n

}

≤ (k0 − 1)
2

n + k
2

n , with k0 − 1 ≤

1
16ρn

I0(Ω)
rn
0

|Ω|n/(n+1). Consequently

λk(Σ)|Σ|
2

n ≤ 256NM(r0)
2

{

I(Ω)1+
2

n

I0(Ω)

|Ω|2/(n+1)

r20
+ (16ρn)

2

n

(
I(Ω)

I0(Ω)

)1+ 2

n

k
2

n

}

.

Replacing |Ω|2/(n+1) by |Σ|
2
n

I(Ω)
2
n
, we get

λk(Σ) ≤ 256NM(r0)
2 I(Ω)

I0(Ω)

{

1

r20
+

(

16ρn
I(Ω)

I0(Ω)

k

|Σ|

) 2

n

}

.

�

3. Proof of Theorems 1.1 and 1.2 and comments

The proofs of these theorems rely on Bishop-Gromov comparison
results and the following packing lemma (see [28] Lemma 3.6)

Lemma 3.1. Let (X, d, ν) be a locally compact metric measure space
and let r, R and V be positive numbers with r < R and such that,
∀x ∈ X,

ν(B(x, 2R))

ν(B(x, r
4
))

≤ V.

Then each ball of radius R in X can be covered by ⌊V ⌋ balls of radius
r. In particular, when the ambient space is the standard R

n+1, then

any ball of radius R can be covered by
(
8R

r

)n+1
balls of radius r.

Proof of Theorem 1.1. Let Ω be a bounded domain in R
n+1. With the

notations of the last section, one clearly has r−(Ω) = ∞,

I0(Ω) = I0(R
n+1) = (n+ 1)ω

1

n+1

n+1

and, from Lemma 3.1, ∀r > 0, NM(r) ≤ 32(n+1). We then apply
Theorem 2.1 to get, after letting r0 go to infinity, ∀k ≥ 1,

λk(Σ)|Σ|
2/n ≤ γnI(Ω)

1+2/nk2/n

with γn = 210n+18+8/n

(n+1)
ω

1

n+1

n+1 . �

Proof of Theorem 1.2. Let (M,h) be a complete Riemannian manifold
of dimension n+ 1 whose Ricci curvature tensor satisfies

Ric ≥ −na2h

for some constant a. Let Ω be a bounded domain in M with regular
boundary Σ = ∂Ω. To prove Theorem 1.2, we treat separately the
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three following cases:

- Case a = 0, that is M has nonnegative Ricci curvature. From Bishop-
Gromov comparison results (see [26, p.156]) we deduce that for all
x ∈ M and all r > 0, |B(x, r)| ≤ ωn+1r

n+1, |∂B(x, r)| ≤ ρnr
n and

|B(x, 8r)|

|B(x, r/4)|
≤ 32(n+1).

Thus, r−(Ω) = ∞ and, applying Lemma 3.1, NM(r) ≤ 32(n+1) for all
r > 0. Replacing in (2.1) and letting r0 go to infinity we get, for all
k ≥ 1,

λk(Σ)|Σ|
2

n ≤ 210(n+1)+8 (16ρn)
2

n

(
I(Ω)

I0(Ω)

)1+ 2

n

k
2

n .

- Case a = 1. The volumes of a ball and of a sphere of radius r in the
hyperbolic space H

n+1 of curvature −1 and dimension n + 1 are given
by

V−1(n, r) = ρn

∫ r

0

(sinh s)n ds and S−1(n, r) = ρn (sinh r)
n .

We define the constant r(n) to be the largest r > 0 such that (sinh r)n ≤
2rn and set

V (n) = sup
0<r<r(n)

V−1(n, 8r)

V−1(n, r/4)
.

Again, the Bishop-Gromov comparison theorem gives, for all x ∈ M
and all positive r < r(n),

|B(x, r)| ≤ V−1(n, r) < 2ωn+1r
n+1, |∂B(x, r)| ≤ S−1(n, r) < 2ρnr

n,

|B(x, 8r)|

|B(x, r/4)|
≤

V−1(n, 8r)

V−1(n, r/4)
≤ V (n).

Thus, r−(Ω) ≥ r(n) > 0 and, applying Lemma 3.1, NM(r) ≤ V (n)
for all r < r(n). Applying Theorem 2.1 we get

λk(Σ) ≤ 256V 2(n)
I(Ω)

I0(Ω)

{

1

r2(n)
+

(

16ρn
I(Ω)

I0(Ω)

k

|Σ|

) 2

n

}

that is

λk(Σ) ≤ αn
I(Ω)

I0(Ω)
+ βn

(
I(Ω)

I0(Ω)

)1+2/n (
k

|Σ|

)2/n

, (3.1)

with αn = 256V 2(n)
r2(n)

and βn = (16ρn)
2

n αn.
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- Case a 6= 0. The metric h̃ = a2h is such that Rich̃ ≥ −nh̃. The

metric g̃ = a2g induced on Σ by h̃ is so that λk(Σ, g̃) =
1
a2
λk(Σ) and

|(Σ, g̃)| = an|Σ| while the isoperimetric ratio is invariant under scaling.
Thus, applying the inequality (3.1) to Ω considered as a domain in

(M, h̃) we get

1

a2
λk(Σ) ≤ αn

I(Ω)

I0(Ω)
+ βn

(
I(Ω)

I0(Ω)

)1+2/n(
k

an|Σ|

)2/n

,

which gives, after simplification, the desired inequality.
In conclusion, inequality (1.4) is proved with

αn = 0 and βn = 210(n+1)+8 (16ρn)
2

n (3.2)

if a = 0, and

αn = 256
V 2(n)

r2(n)
and βn = (16ρn)

2

n αn (3.3)

if a 6= 0. �

Example 3.1. The aim of the following construction is to show that
the boundedness of the sectional curvature does not suffice to get an es-
timate such as (1.2). Indeed, We will construct a sequence of manifolds
(Mi, hi) whose sectional curvature is between −1 and 0, each contain-
ing a domain Ωi with boundary Σi such that I(Ωi) = 1, |Σi| tends to
infinity with i, and λ3(Σi) is bounded below by a positive constant.

According to [5], there exists a sequence Ni of compact hyperbolic
manifolds of dimension n ≥ 2 whose volume tends to infinity with i
while λ2(Ni) does not converge to zero. We can assume that |Ni| > i
and λ2(Ni) > C for some positive constant C. For each i, set Mi =

Ni × R and Ωi = Ni × (−Li, Li) ⊂ Mi with Li = (2|Ni|)
1

n . We endow
Mi with the product metric, so that the sectional curvature of Mi is
between −1 and zero. The boundary Σi of the domain Ωi consists
of two disjoint copies of Ni. Therefore, λ1(Σi) = λ2(Σi) = 0 and
λ3(Σi) = λ2(Ni) > C. On the other hand, we have |Σi| = 2|Ni| > 2i,

|Ωi| = 2Li|Ni| = (2|Ni|)
n+1

n and I(Ωi) = 1.

Example 3.2. Let (M,h) be any compact Riemannian manifold of
dimension n + 1 ≥ 3. Then there exists a sequence Ωi of domains
in M with smooth boundaries Σi, and a positive constant C such that
λ2(Σi)|Σi|

2

n ≥ C while |Σi| and I(Ωi) go to zero as i tends to infinity.

In particular, there exist no constants An and Bn such that the
sequence Ωi satisfies an inequality like (1.6).
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Let us first assume that (M,h) is flat in a geodesic ball B(x0, r)
centered at some x0 ∈ M . This ball is isometric to a Euclidean ball
of radius r. Let Si be a sequence of Euclidean spheres of radius r/i
that we embed isometrically as hypersurfaces Σi into B(x0, r) ⊂ M .
For each i, the hypersurface Σi bounds a domain Ωi which contains the
complement of B(x0, r). This sequence of domains Ωi satisfies :

|Ωi| = |M | − ωn+1

(r

i

)n+1

,

|Σi| = ρn

(r

i

)n

,

that is, |Σi| and I(Ωi) go to zero a i tends to infinity. On the other
hand,

λ2(Σi)|Σi|
2

n = λ2(Si)|Si|
2

n = nρ
2

n
n .

Now, for a general compact Riemannian manifold (M,h), it is possi-
ble to deform the metric h into a metric h′ which is quasi-isometric to
h with quasi-isometry ratio close to 1, and so that (M,h′) is flat in a
small geodesic ball B(x0, r). The sequence Ωi of domains constructed
above with respect to h′ would be such that, for the metric h, |Σi|

and I(Ωi) go to zero a i tends to infinity while λ2(Σi)|Σi|
2

n is bounded
below by a positive constant.

4. Proof of Lemma 2.1

Let (X, d, µ) be a complete, locally compact metric measure space,
where µ is a finite measure. We assume that for all r > 0, there exists
an integer N(r) such that each ball of radius 4r can be covered by N(r)
balls of radius r. Let us first prove the following :

Lemma 4.1. Let β be a positive number satisfying β ≤ µ(X)
2

, and let
r > 0 be such that, for all x ∈ X,

µ (B(x, r)) ≤
β

2N(r)
.

Then there exist two open subsets A and D of X with A ⊂ D, such
that µ(A) ≥ β, µ(D) ≤ 2N(r)β and d(A,Dc) ≥ 3r.

Proof of Lemma 4.1. For each positive integer m we denote by Um(r)
the set of unions of m balls of radius r, that is,

Um(r) :=

{
m⋃

j=1

B
(
xj, r

)
; x1, . . . , xm ∈ X

}

,
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and consider the evaluation Ψm of the measure µ on Um(r), that is

Ψm : Xm = X ×X × · · · ×X
︸ ︷︷ ︸

m times

−→ R

with

Ψm(x
1, . . . , xm) = µ

(
m⋃

j=1

B
(
xj, r

)

)

.

Since (X, d) is a complete locally compact metric space and µ(X) <
+∞, the function Ψm achieves its maximum ξ(m) at some point am =
(a1m, . . . , a

m
m) ∈ Xm (not necessary unique), that is,

µ

(
m⋃

j=1

B
(
xj , r

)

)

≤ µ

(
m⋃

j=1

B
(
ajm, r

)

)

for any (x1, . . . , xm) ∈ Xm.
Now, from the assumptions of the Lemma one clearly has ξ(1) ≤
β

2N(r)
≤ β. On the other hand, for m large enough, we necessarily

have ξ(m) ≥ 3β
2
(indeed, it suffices to consider a ball B(z, R) satisfying

µ(B(z, R)) ≥ 3
4
µ(X) and notice that it can be covered with a finite

number of balls of radius r). In conclusion, there exists an integer
k ≥ 2 such that ξ(k) ≥ β and ξ(k − 1) ≤ β.
We set A :=

⋃

1≤j≤k

B
(
ajk, r

)
and D :=

⋃

1≤j≤k

B
(
ajk, 4r

)
. From their

definitions, these sets satisfy µ(A) = ξ(k) ≥ β, and d(A,Dc) ≥ 3r.
We still need to check that µ(D) ≤ 2N(r)β. Indeed, according to
our hypotheses, each ball B

(
ajk, 4r

)
can be covered by N(r) balls of

radius r. Hence, D can be covered by kN(r) balls of radius r, namely
D ⊂

⋃

1≤j≤kN(r)

Bj , where the Bj are balls of radius r. From kN(r) ≤

2(k − 1)N(r), it follows that this union of balls can be written as
⋃

1≤j≤kN(r)

Bj =
⋃

1≤j≤2N(r)

Wj where each Wj ∈ Uk−1(r). It follows that

µ(D) ≤ µ





2N(r)
⋃

j=1

Wj



 ≤

2N(4r)
∑

j=1

µ(Wj) ≤ 2N(r)ξ(k − 1) ≤ 2N(r)β.

�

Proof of Lemma 2.1. Let K ≥ 2 be an integer and r > 0 a positive
number such that, ∀x ∈ X

µ(B(x, r)) ≤
µ(X)

4N2(r)K
.
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Our aim is to construct K µ-measurable subsets A1, ..., AK of X such

that, ∀i ≤ K, µ(Ai) ≥
µ(X)

2N(r)K
and, for i 6= j, d(Ai, Aj) ≥ 3r.

For simplicity, we set α = µ(X)
2N(r)K

. We shall construct, using a finite

induction, K pairs (A1, D1) , . . . , (AK , DK) of sets such that, ∀j ≤ K,

(0) Aj ⊂ Dj

(1) Aj ⊂ (∪j−1
i=1Di)

c

(2) µ(Aj) ≥ α

(3) µ(Dj) ≤ 2N(r)α = µ(X)
K

(4) d(Aj, (∪
j
i=1Di)

c) ≥ 3r.

Indeed, the family A1, ..., AK will then satisfy the desired properties
since µ(Aj) ≥ α and, if k < j, d(Ak, Aj) ≥ d(Ak, (∪

k
i=1Di)

c) ≥ 3r

(notice that Aj ⊂ (∪j−1
i=1Di)

c ⊂ (∪k
i=1Di)

c since k < j).
To initiate the iteration it suffices to apply Lemma 4.1 with β = α.

Therefore, there exist two open sets A1 and D1 satisfying A1 ⊂ D1 and






µ(A1) ≥ α

µ(D1) ≤ 2N(r)α = µ(X)
K

d(A1, D
c
1) ≥ 3r.

Now, assume that we have already constructed, for a certain j < K, j
couples (A1, D1) , . . . , (Aj , Dj) satisfying the induction hypothesis. We

endowX with the measure µj+1 defined by µj+1(U) = µ(U∩(∪j
i=1Di)

c).
From the induction hypothesis, one has

µj+1(X) = µ((∪j
i=1Di)

c) ≥ µ(X)−

j∑

i=1

µ(Di) ≥ µ(X)(1−
j

K
) ≥

µ(X)

K
.

Therefore, for all x ∈ X , one has

µj+1(B(x, r)) ≤ µ(B(x, r)) ≤
µ(X)

4N2(r)K
≤

µj+1(X)

4N2(r)
.

This allows us to apply Lemma 4.1 to the metric measure space (X, d, µj+1)

with β = α = µ(X)
2N(r)K

≤
µj+1(X)

2N(r)
. Thus, there exist two open sets A and

D satisfying A ⊂ D, µj+1(A) ≥ α, µj+1(D) ≤ 2N(r)α = µ(X)
K

and
d(A,Dc) ≥ 3r. We define the couple (Aj+1, Dj+1) by

Aj+1 = A ∩ (∪j
i=1Di)

c , Dj+1 = D ∩ (∪j
i=1Di)

c.

It remains to check that the family {(A1, D1) , . . . , (Aj+1, Dj+1)} sat-
isfies the induction hypothesis. Indeed, the three first properties of
this hypothesis are immediate consequences of the construction. To
see that d(Aj+1, (∪

j+1
i=1Di)

c) ≥ 3r we only need to observe that D =
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Dj+1 ∪
(
D ∩ ∪j

i=1Di

)
⊂ ∪j+1

i=1Di which implies d(Aj+1, (∪
j+1
i=1Di)

c) ≥
d(A,Dc) ≥ 3r.

�
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Argand 11, Case postale 158, 2009 Neuchâtel Switzerland

E-mail address : bruno.colbois@unine.ch
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