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ABSTRACT

Over the past twenty years, in ultrasound imaging, contrast

and resolution were improved by using the nonlinearties of

the medium. One of the most common techniques which used

this properties is the pulse inversion imaging. The optimiza-

tion of this imaging system that we proposed has consisted in

finding the optimal command. However, the properties which

enable to make an optimal command was not known and that

is why we seek the best optimal command by exciting the

system by random sequences. In this study, we proposed two

steps in our analysis: an analysis and a modelling stage. The

proposed model took into account the nonlinearity of the opti-

mal command and enabled to describe the optimal command

by using some parameters. If the synthetic model was used in

the pulse inversion imaging system, the contrast can reach the

same performances.

Index Terms— Modelling, optimal command, optimiza-

tion, pulse inversion, ultrasound imaging.

1. INTRODUCTION

Over the past twenty years, improvements in sensitivity of

ultrasound imaging systems have provided more accuracy of

contrast and resolution in medical applications [1] as well as

in nondestructive testing [2]. The use of ultrasound imaging

was revolutionized when the nonlinear interaction between

the ultrasonic wave and the medium was taken into account.

However, obtaining an ideal method has been limited. Good

separation of the harmonic components requires a limited

pulse bandwidth [3], which reduces the axial resolution as in

second harmonic imaging [4].

Several imaging methods have been proposed to im-

prove contrast and/or resolution. Some techniques have been

only based on post-processings, such as second harmonic

imaging [4], subharmonic imaging [5], super harmonic imag-

ing [6] or attenuation correction [7]. Other imaging methods

are based on post-processings with encoding which can en-

able to increase the contrast while ensuring a good axial

resolution: the pulse inversion imaging [8], power modula-

tion [9], contrast pulse sequencing [10], pulse subtraction [11]

and harmonic chirp imaging [12]. The one of the most com-

monly used is the pulse inversion imaging, that is reason why

this study focused on this system in simulation.

For optimally using the pulse inversion imaging, the trans-

mitted pulse must be correctly chosen. The problem is to find

the optimal command x⋆(t) of the pulse inversion imaging

system which provides the best contrast C:

x⋆(t) = argmax
x(t)

(C (x(t))) , (1)

Nowadays, although any method can solve satisfactorily

and optimally this problem, several techniques have been

shown that it was important to find the optimal command

to maximize the contrast. The first solution is an analytic

solution developped by Reddy and Szeri [13]. Unfortunately,

the problem solution requires (i) inaccessible a priori knowl-

edge of the medium and the transducer and (ii) hard solver

implementation. The second solution carried on regardless

the previous difficulties to transform the shape optimization

in a suboptimal parametric optimization, e.g. the transmit

frequency [14]. Another original solution could be a method

based on the Monte-Carlo method whose the main drawback

is the large number of tests to reach the optimal command.

For example, to find the optimal command which maximized



the contrast, the random process needed more one million

tests. However, the random process works without inacces-

sible a priori knowledge to find an optimal solution, that is

reason why this study used the solution of this method.

In this paper, we proposed to find the properties of this op-

timal command in order to build an excitation controlled with

a low number of parameters transforming the shape optimiza-

tion problem into a parametric optimization problem. The

first aim of this study was to analyze the optimal command

of a pulse inversion imaging system. Secondly, we modelized

the optimal command from analysis information to describe a

new optimized excitation scheme.

2. OPTIMAL COMMAND ANALYSIS

2.1. Pulse Inversion Imaging System

The analysis was applied to the optimal command of the pulse

inversion imaging system for a medical application, i.e. ul-

trasound contrast imaging. In this context, the optimal com-

mand maximized the contrast C described by the contrast-to-

tissue ratio (CTR). It is defined as the ratio of the energy Eb

backscattered by the area of the medium perfused by ultra-

sound contrast agents and the energy Et backscattered by the

area of the non-perfused medium [15].

The simulation model of the pulse inversion imaging sys-

tem [8] followed the same process as an in-vivo setup.

The optimal command x1(t) and the same signal in op-

posite phase x2(t) were generated digitally by Matlab (Math-

works, Natick, MA, USA). The transmitted power was equal

to the power of a 400 kPa Gaussian-modulated sinusoidal

pulse by adjusting the amplitude of the optimal command.

They were filtered by the transfer function of the ultrasound

transducer; centred at 3 MHz with a fractional bandwidth of

90% at −3 dB. Note that to take into account imperfections

in our simulation, a white noise ε(t) was added to x1(t). The

signal to noise ratio (SNR) was chosen at 50 dB.

The pulses were then sent in a contrast agent and a tissue

model. Firstly, the free simulation program BUBBLESIM [16]

was used to calculate the oscillation and scattered echo for

a contrast agent microbubble by digitally solving a modified

version of the Rayleigh-Plesset equation. The ultrasound

contrast agent simulated had properties of encapsulated mi-

crobubbles of SonoVue (Bracco Research SpA, Geneva,

Switzerland). A 1 nm phospholipid monolayer [17] with

a shear modulus of 46 MPa [18] imprisons 2.5 µm ball [19]

of sulfur hexafluoride gas (SF6) [19]. Secondly, the tissue

responses were simulated by fat globules with a density of

928 kg/m3 [20]. The computation of their response was based

on the Rayleigh backscattering [21] for a small fat ball of 10
µm; this size was chosen to approximate the small size of fat

cells.

The echo y1(t) of the pulse x1(t) and the echo y2(t)of

the pulse x2(t) were filtered by the transfer function of the

same ultrasound transducer. The sum z(t) of the two echoes

y1(t) and y2(t) formed a radiofrequency line of the image and

extract the even harmonic components. Finally, the CTR was

measured on the sum z(t).

2.2. Temporal and Frequential Analysis
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Fig. 1. (a) Optimal command of the pulse inversion imaging

and the synthetic signal modelized with orders (8,2) and (b)

their respective spectra.

The Fig. 1a shows the optimal command x1(t) of the

pulse inversion imaging system after random optimization

process. The optimal command was asymmetric. Firstly, the

positive peak was greater than the negative peak. Secondly,

the length of the first arch was different to the length of the

second arch. The compression was thus more different to the

dilatation for the pulse x1(t) and conversely for x2(t). Since

the nonlinear behavior of the microbubble was sensitive to

the phase, the even harmonic components of the microbubble

response may be improved as well as the CTR. Note that in

this case, the CTR reached 31.62 dB.

The Fig. 1b shows the spectrum of the optimal command

x1(t). The spectrum revealed harmonic components, in par-

ticulary the fourth and the fifth harmonics, whereas the second

harmonic was missing. These harmonics components must be

responsible to the asymmetry shown in the Fig. 1a.

To summarize our analysis, the optimal command was

nonlinear. This result is very important since it is the first time

that it has been mentionned. The model of the optimal com-

mand must take into account frequential multicomponents by

including harmonic components.

3. OPTIMAL COMMAND MODELLING

The aim of the model was to identify the properties of the

optimal command by using parameters Ξ. The modelling

minimized the mean square error (MSE) between the optimal



command x1(t) and the synthetic signal x̂(t) (Fig. 2):

Ξ
⋆ = argmin

Ξ

(MSE) = argmin
Ξ

(

T
∑

t=0

[x1(t)− x̂(t)]
2

)

(2)

where Ξ
⋆ are the optimal parameters and T the length of the

signals. Then the synthetic signal x̂(t) was sent to the pulse

inversion imaging in order to verify the good performances of

our model in particularly for the CTR.

Model
Pulse Inversion

Imaging
System

CTR
x(t) x(t)

Fig. 2. Block diagram of the optimal command modelling.

From the previous analysis, the optimal command must be

modelized by taking into account nonlinearities. The model

parameters Ξ must expressed the harmonic components.

Moreover, since the contrast agent behavior can have subhar-

monic components [5], we proposed to add this properties by

including half-whole harmonic components. The modelling

signal x̂(t) could be written in a base of Gaussian-modulated

sinusoidal pulse as follows:

x̂(t) = G(t) ·

M
∑

k=1

α1,k cos (2πkf0t+ θ1,k)

+

N
∑

k=1

α2,k cos

(

2π

(

k −

1

2

)

f0t+ θ2,k

)

,

(3)

where t is the time, G(t) the same Gaussian function used for

the random signal, f0 the optimal frequency,M the number of

whole harmonic components, α1,1, . . . , α1,M the whole har-

monic amplitudes, θ1,1, . . . , θ1,M the phases for whole har-

monic components, N the number of half-whole harmonic

components, α2,1, . . . , α2,N the half-whole harmonic ampli-

tudes and θ2,1, . . . , θ2,N the phases for half-whole harmonic

components. Consequently, the model order was written ac-

cording M and N such as (M,N). Note that in the case

where N is equal to 0, the half-whole harmonic components

α2 and θ2 were not taken into account.

The modelling required to seek the optimal parameters:

Ξ
⋆ = [f⋆

0 ,α
⋆
1,1, . . . , α

⋆
1,M , α⋆

2,1, . . . , α
⋆
2,M ,

θ⋆1,1, . . . , θ
⋆
1,M , θ⋆2,1, . . . , θ

⋆
2,M ].

(4)

The optimization frequency was led by an iterative pro-

cess. Indeed, it was not possible to write the optimization fre-

quency in an algebraic expression unlike for the coefficients

α and the phases θ. For each iteration i of the frequency op-

timization, the coefficients α and the phases θ was optimized

by an algebraic process.

3.1. Amplitude and Phase Optimization

This step optimized the amplitudes and the phases for a fre-

quency f0. In this case, the problem could be written in

an algebraic expression by using the trigonometric identity

cos (a+ b) = cos a cos b− sin a sin b:

x = Ψϑ, (5)

where the optimal command was

x
T = [x(1), . . . , x(T )],

the amplitudes and phases were collected together such as:

ϑ
T = [α1,1 cos θ1,1,−α1,1 sin θ1,1, . . . ,

α1,M cos θ1,M ,−α1,M sin θ1,M ,

α2,1 cos θ2,1,−α2,1 sin θ2,1, . . . ,

α2,N cos θ2,N ,−α2,N sin θ2,N ].

Finally, the base of Gaussian-modulated sinusoidal pulse

were written on a matrix form:

Ψ
T = (Ψ1,Ψ2, . . . ,ΨT ) ,

where

Ψt = [G(t) cos (2πf0t) , G(t) · sin (2πf0t) , . . . ,

G(t) · cos (2πMf0t) , G(t) · sin (2πMf0t) ,

G(t) · cos (πf0t) , G(t) · sin (πf0t) , . . . ,

G(t) · cos (2π (N − 1/2)f0t) ,

G(t) · sin (2π (N − 1/2) f0t)]

Finally the coefficients was found by least squares method:

ϑ = (ΨT
Ψ)−1

Ψ
T
x (6)

Note here that a vector is in bold, a matrix was in bold and

underlined.

3.2. Frequency Optimization

The frequency optimization was led by an iterative process,

because it was not possible to write the problem on an alge-

braic form. The optimal frequency f⋆
0 was thus sought by a

Newton-Raphson algorithm by minimizing the MSE such as:

fi+1 = fi −
MSE(fi)

MSE′(fi)
, (7)

where i is the iteration and MSE′(fi) the derivative of the

MSE when f0 = fi. However, the analytic MSE was not

accessible. The algorithm was thus presented in a discrete

form [22]:

fi+1 = fi −
MSE(fi) (fi − fi−1)

MSE(fi)− MSE(fi−1)
(8)

Note that for each iteration i, there is the amplitude and

phase optimization.



3.3. Results

Fig. 3 shows the MSE for different orders M and different

orders N . For each MSE, the parameters Ξ were optimal.

The MSE decreased when the order M and N increased. The

optimal command could be approach by using harmonic and

subharmonic components. More precisely, the case without

subharmonic imaging (i.e. N = 0) did not enable to reach the

minimum of MSE. This result confirmed our hypothesis on

subharmonic components.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Order M

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

 

 
N =  0
N =  1
N =  2
N =  4
N =  6
N =  8
N = 10

Fig. 3. MSE according the order M of whole harmonic com-

ponents and the order N of half-whole harmonic components.

Fig. 4 shows the CTR obtained when the command was

modelized with different orders M and different orders N .

For each CTR, the parameters Ξ were optimal. The CTR in-

creased when the order M and N increased. This result con-

firmed the previous result with the MSE. Moreover, when the

model used only a linear signal (i.e. the model (1,0)), the

CTR reached 30.3 dB. A linear pulse did not enable to max-

imize the CTR in the pulse inversion imaging system. The

best solution was obtained for the model (8,2) where the CTR

reached 31.58 dB close to the 31.62 dB obtained with the

optimal command solved by Monte-Carlo method. As an il-

lustration, the synthetic signal was compared to the optimal

command in Fig. 1. The synthetic signal was close and the

main error may come with the error of high harmonic compo-

nents.

Fig. 5 shows the MSE during the iterative optimization of

the frequency for the model (8,2). To prove the good perfor-

mances, the empirical MSE was measured empirically for the

frequency f0 between 0.5 and 2 MHz. The MSE had an only

minimum. This result confirmed the use of a local optimiza-

tion algorithm like the Newton-Raphson algorithm. When the

iterative optimization was applied, the MSE reached the min-

imum after around 70 iterations.

Fig. 6 shows the amplitudes α and the phases θ according

to the order of the harmonic components for the model (8,2).

Note that the optimal frequency was 0.77 MHz. The ampli-

tude coefficients showed that the harmonic components were

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
31.4

31.42

31.44

31.46

31.48

31.5

31.52

31.54

31.56

31.58

31.6

Order M

C
T

R
 (

dB
)

 

 

N =  0
N =  1
N =  2
N =  4
N =  6
N =  8
N = 10

Fig. 4. CTR according the order M of whole harmonic com-

ponents and the order N of half-whole harmonic components

when the synthetic signal was sent in the pulse inversion

imaging system.
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Fig. 5. MSE during the iterative optimization of the frequency

for the case of the model (8,2).

important and confirmed that the optimal command was non-

linear. Moreover, the phase was different for each component.

Indeed, our model was able to take into account the phase of

each components unlike in the case of a Volterra model.

4. DISCUSSION AND CONCLUSIONS

Contrast in pulse inversion imaging was optimized by a non-

linear command. The analysis of the optimal command led

us to take into account a pulse with many components. More

precisely, by using the knowledge of the microbubble behav-

ior, the optimal command was modelized with harmonic and

subharmonic components. However, to give more freedom,

the resulting model was described by the frequency f0 of the

fundamental, the amplitude and the phase for each compo-

nents. The advantage of our model was to take into account

the phase for each components.

Our model showed us that it was necessary to include har-
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the model (8,2). The optimal frequency was 0.77 MHZ

monic components to reach the best contrast. Usually, a linear

input signal was sent to the pulse inversion imaging system

without reaching a high contrast. The model was the first step

to understand the properties of the optimal command. The

modelling signal enabled to reach closer performances of the

optimal command.

To conclude, the model described the optimal command

with some parameters. This description may help us to seek

automatically the optimal command by transforming the

shape optimization in a parameter optimization.
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