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ON THE L2-CRITICAL NONLINEAR SCHRÖDINGER

EQUATION WITH A NONLINEAR DAMPING.

DARWICH MOHAMAD.

Abstract. We consider the Cauchy problem for the L2-critical nonlin-
ear Schrödinger equation with a nonlinear damping. According to the
power of the damping term, we prove the global existence or the exis-
tence of finite time blowup dynamics with the log-log blow-up speed for
‖∇u(t)‖L2 .

1. Introduction

In this paper, we study the blowup and the global existence of solutions
for the focusing NLS equation with a nonlinear damping (NLSap):
{

iut +∆u+ |u| 4du+ ia|u|pu = 0, (t, x) ∈ [0,∞[×R
d, d = 1, 2, 3, 4.

u(0) = u0 ∈ H1(Rd)
(1.1)

with initial data u(0) = u0 ∈ H1(Rd) where a > 0 is the coefficient of fric-

tion and p ≥ 1. Note that if we replace +|u| 4du by −|u| 4du , (1.1) becomes
the defocusing NLS equation.

Equation (1.1) arises in various areas of nonlinear optics, plasma physics
and fluid mechanics. Fibich [7] noted that in the nonlinear optics context,
the origin of the nonlinear damping is multiphoton absorption. For example,
in the case of solids the number p corresponds to the number of photons it
takes to make a transition from the valence band to the conduction band.
Similar behavior can occur with free atoms, in this case p corresponds to
the number of photons needed to make a transition from the ground state
to some excited state or to the continuum.

The Cauchy problem for (1.1) was studied by Kato [11] and Cazenave [3]
and it is known that if p < 4

d−2 , then the problem is locally well-posed in

H1(Rd): For any u0 ∈ H1(Rd), there exist T ∈ (0,∞] and a unique solution
u(t) of (1.1) with u(0) = u0 such that u ∈ C([[0, T ]);H1(Rd)). Moreover, T
is the maximal existence time of the solution u(t) in the sense that if T < ∞
then lim

t→T
‖u(t)‖H1(Rd) = ∞.

Let us notice that for a = 0 (1.1) becomes the L2-critical nonlinear Schrödinger
equation:

{

iut +∆u+ |u| 4du = 0
u(0) = u0 ∈ H1(Rd)

(1.2)

Key words and phrases. Damped Nonlinear Schrödinger Equation, Blow-up, Global
existence.
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2 DARWICH MOHAMAD.

For u0 ∈ H1, a sharp criterion for global existence for (1.2) has been exhib-
ited by Weinstein [25]: Let Q be the unique positive solution to

∆Q+Q|Q| 4d = Q. (1.3)

For ‖u0‖L2 < ‖Q‖L2 , the solution of (1.2) is global in H1. This follows from
the conservation of the energy and the L2 norm and the sharp Gagliardo-
Nirenberg inequality:

∀u ∈ H1, E(u) ≥ 1

2
(

∫

|∇u|2)
(

1−
(

∫

|u|2
∫

|Q|2
)

2
d

)

.

On the other hand, there exists explicit solutions with ‖u0‖L2 = ‖Q‖L2 that
blow up in finite time in the regime 1

T−t
.

In the series of papers [15,23], Merle and Raphael have studied the blowup
for (1.2) with ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + δ, δ small and have proven the
existence of the blowup regime corresponding to the log-log law:

‖u(t)‖H1(Rd) ∼
(

log |log(T − t)|
T − t

)
1
2

. (1.4)

In [6], Darwich has proved in case of the linear damping (p = 0), the global
existence in H1 for ‖u0‖L2 ≤ ‖Q‖L2 , and has showed that the log-log regime
is stable by such perturbations (i.e. there exist solutions blows up in finite
time with the log-log law).
Numerical observations suggest that this finite time blowup phenomena per-
sists in the case of the nonlinear damping for p < 4

d
( see Fibich [7] and [21]).

Passot and Sulem [21] have proved that the solutions are global in H1(R2)
in the case where the power of the damping term is strictly greater to the
focusing nonlinearity. The case where the power of the damping term is
equal to the focusing nonlinearity, ”small damping prevents blow-up ? ”was
an open question for Sparber and Antonelli in their paper [1] and for Fibich
and Klein in their paper [8]. Our results can gives an answer for their open
problem, at least for the L2-critical case. In fact, our aim in this paper is
study for each value of (d, p), the existence of blow-up solutions as well as
global existence criteria. And know if the regime log-log still stable by such
perturbations.
Let us now our results:

Theorem 1.1. Let u0 in H1(Rd) with d = 1, 2, 3, 4:

(1) if 4
d−2 > p ≥ 4

d
, then the solution of (1.1) is global in H1.

(2) if 1 ≤ p < 4
d
and 1 ≤ p ≤ 2, then there exists 0 < α < ‖Q‖L2 such

that for any u0 ∈ H1 with ‖u0‖L2 < α, the emanating solution is
global in H1.

(3) if 1 ≤ p < 4
d
, then there exists δ0 > 0 such that ∀a > 0 and ∀δ ∈

]0, δ0[, there exists u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 + δ, such that the
solution of (1.1) blows up in finite time in the log-log regime.

(4) if 1 ≤ p < 4
d
, then there does not exists an intial data u0 with

‖u0‖L2 ≤ ‖Q‖L2 such that the solution u of (1.1) blow up in finite
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time with this law:

1

(T − t)β−ǫ
. ‖∇u(t)‖L2(Rd) .

1

(T − t)β+ǫ
,

for any β ∈]0, 2
pd
[ and 0 < ǫ < 2−βpd

8+pd
.

Remark 1.1. Note that, part (4) of Theorem 1.1 prove in particular that
we dont have the blowup in the regime log-log for any p ∈ [1, 4

d
[ and in the

regime 1
t
for d = 1 and 1 ≤ p < 2, for initial data with critical or subcritical

mass.

In the ”critical” case p = 4
d
, we have more precisely :

Theorem 1.2. Let p = 4
d
, then the initial-value probem (1.1) is globally

well posed in Hs(Rd), s ≥ 0. Moreover, there exist unique u+ in L2 such
that

‖u(., t) − eit∆u+‖L2 −→ 0, t −→ +∞, (1.5)

where eit∆ is the free evolution.

Remark 1.2. Theorem 1.2 and part (1) and (2) of Theorem 1.1 still hold
in the defocusing case.

Remark 1.3. Note that if u(t, .) is a solution of (NLSa,p) then u(−t, .) is
a solution of (NLS−a,p), then we dont have the scattering in −∞, because
this changes the sign of the coefficient of friction.

Acknowledgments. I would like to thank my advisor Prof. Luc Molinet
for his rigorous attention to this paper, Dr. Christof Sparber for his remarks
and Prof. Baoxiang Wang for having given me the reference of Lemma 3.1.

2. Proof of part (4) of Theorem 1.1

Special solutions play a fundamental role for the description of the dynam-
ics of (NLS). They are the solitary waves of the form u(t, x) = exp(it)Q(x),
where Q solves:

∆Q+Q|Q| 4d = Q. (2.1)

The pseudo-conformal transformation applied to the stationary solution
eitQ(x) yields an explicit solution for (NLS)

S(t, x) =
1

| t | d2
Q(

x

t
)e−i

|x|2

4t
+ i

t

which blows up at T = 0.
Note that

‖S(t)‖L2 = ‖Q‖L2 and ‖∇S(t)‖L2 ∼ 1

t
(2.2)

It turns out that S(t) is the unique minimal mass blow-up solution in H1

up to the symmetries of the equation ( see [14]).
A known lower bound ( see [19]) on the blow-up rate for (NLS) is

‖∇u(t)‖L2 ≥ C(u0)√
T − t

. (2.3)
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Note that this blow-up rate is the one of S(t) given by (2.2) and log-log
given by (1.4). Now, we will prove the part (4) of Theorem 1.1.

For this we need the following Theorem ( see [10]) :

Theorem 2.1. Let (vn)n be a bounded family of H1(Rd), such that:

lim sup
n→+∞

‖∇vn‖L2(Rd) ≤ M and lim sup
n→+∞

‖vn‖
L

4
d
+2 ≥ m. (2.4)

Then, there exists (xn)n ⊂ R
d such that:

vn(·+ xn) ⇀ V weakly,

with ‖V ‖L2(Rd) ≥ ( d
d+4 )

d
4
m

d
2+1+1

M
d
2

‖Q‖L2(Rd).

Let us recall the following quantities:

L2-norm : ‖u(t, x)‖L2 =

∫

|u(t, x)|2dx.

Energy : E(u(t, x)) = 1
2‖∇u‖2

L2 − d
4+2d‖u‖

4
d
+2

L
4
d
+2
.

Kinetic momentum : P (u(t)) = Im(

∫

∇uu(t, x)).

Remark 2.1. It is easy to prove that if u is a solution of (1.1) on [0, T [,
then for all t ∈ [0, T [ it holds

d

dt
‖u(t)‖L2 = −2a

∫

|u|p+2 , (2.5)

d

dt
E(u(t)) = −a(‖u

p

2∇u‖2L2 − Cp‖u‖
4
d
+2+p

L
4
d
+2+p

) (2.6)

and
d

dt
P (u(t)) = −2aIm

∫

u|u|p∇u . (2.7)

where Cp =
4+2d+pd
4+2d .

Now we are ready to prove part (4) of Theorem 1.1:
Suppose that there exist an initial data u0 with ‖u0‖L2 ≤ ‖Q‖L2 , such that
the corresponding solution u(t) blows up with the following law

1

(T − t)β−ǫ
. ‖∇u(t)‖L2(Rd) .

1

(T − t)β+ǫ
,

where β; 0 < β < β(p, d) = 2
pd

and 0 < ǫ < 2−βpd
8+pd

.

Recall that

E(u(t)) = E(u0)− a

∫ t

0
K(u(τ))dτ, t ∈ [0, T [, (2.8)
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where K(u(t)) = (‖u p

2∇u‖2
L2 − Cp‖u‖

4
d
+2+p

L
4
d
+2+p

).

By Gagliardo-Nirenberg inequality and (2.5), we have:

E(u(t)) . E(u0) +

∫ t

0
‖u‖

4
d
+p− p

2

L2 ‖∇u‖2+
pd

2

L2 . E(u0) +

∫ t

0
‖∇u‖2+

pd

2

L2

Since the choise of ǫ, we obtain that

0 6 lim
t→T

∫ t

0
‖∇u(τ)‖2+

pd

2

L2 dτ

‖∇u(t)‖2L2(Rd)

. lim
t→T

(T − t)
1
2
(2−βpd−ǫ(8+pd)) = 0, (2.9)

let

ρ(t) =
‖∇Q‖L2(Rd)

‖∇u(t)‖L2(Rd)

and v(t, x) = ρ
d
2u(t, ρx)

(tk)k a sequence such that tk → T and ρk = ρ(tk), vk = v(tk, .). The family
(vk)k satisfies

‖vk‖L2(Rd) ≤ ‖u0‖L2(Rd) ≤ ‖Q‖L2(Rd) and ‖∇vk‖L2(Rd) = ‖∇Q‖L2(Rd) .

Remark that lim
k−→+∞

E(vk) = 0, because:

0 ≤ 1

2
(

∫

|∇vk|2)
(

1−
(

∫

|vk|2
∫

|Q|2
)2
)

≤ E(vk) = ρ2kE(u0)− aρ2k

∫ tk

0
K(u(τ))dτ

≤ ρ2kE(u0) +
1

‖∇u(tk)‖2L2(Rd)

∫ tk

0
‖∇u(τ)‖2+

pd

2

L2 dτ

then using (2.9), the energy of vk tends to 0. Which yields

‖vk‖
4
d
+2

L
4
d
+2

→ d+ 2

d
‖∇Q‖2L2(Rd) . (2.10)

The family (vk)k satisfies the hypotheses of Theorem 2.1 with

m
4
d
+2 =

d+ 2

d
‖∇Q‖2L2(Rd) and M = ‖∇Q‖L2(Rd) ,

thus there exists a family (xk)k ⊂ R and a profile V ∈ H1(R) with ‖V ‖L2(Rd) ≥

‖Q‖L2(Rd), such that,

ρ
d
2
k u(tk, ρk ·+xk) ⇀ V ∈ H1 weakly. (2.11)

Using (2.11), ∀A ≥ 0

lim inf
n→+∞

∫

B(0,A)
ρdn|u(tn, ρnx+ xn)|2dx ≥

∫

B(0,A)
|V |2dx.

But limn→+∞
1
ρn

= +∞ thus 1
ρn

> A, ρnA < 1. This gives immediately:

lim inf
n→+∞

sup
y∈R

∫

|x−y|≤1
|u(tn, x)|2dx ≥ lim inf

n→+∞

∫

|x−xn|≤ρnA

|u(tn, x)|2dx ≥
∫

|x|≤A

|V |2dx.

This it is true for all A > 0 thus :
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lim inf
n→+∞

sup
y∈R

∫

|x−y|≤1
|u(tn, x)|2dx ≥

∫

Q2, (2.12)

then

‖u0‖L2 > lim inf
n→+∞

sup
y∈R

∫

|x−y|≤1
|u(tn, x)|2dx > ‖Q‖L2 .

This gives the proof, the fact that ‖u0‖L2 ≤ ‖Q‖L2 .

3. Global existence.

In this section, we prove assertion (1) and (2) of Theorem 1.1 and Theorem
1.2. To prove part (1), we will prove that the H1-norm of u is bounded
for any time. To prove part (2), we use generalised Gagliardo-Nirenberg
inequalities to show that the energy is non increasing. Finally to prove
Theorem 1.2, we etablish an a priori estimate on the critical Strichartz
norm.

Theorem 3.1. Let p ≥ 1 for d = 1, 2 or 1 ≤ p ≤ 4
d−2 for d ≥ 3, then

the initial-value probem (1.1) is locally well posed in H1(Rd)(If p < 4
d−2 the

minimal time of the existence depends on ‖u0‖H1 .) .

Proof: See [3] page 93 Theorem 4.4.1.

To prove the following proposition, we will proceed in the same way as in
the section 3.1 in [21].

Proposition 3.1. Let u be a solution of (1.1) and 4
d−2 > p > 4

d
then

‖∇u(t)‖L2(Rd) ≤ ‖∇u(0)‖L2(Rd)e
a
( −4t
pd−4

)

.

Proof : Multiply Eq. (1.1) by ∆u , integrate and take the imaginary
part, this gives

1

2

d

dt

∫

|∇u|2dx+a

∫

|u|p|∇u|2+aℜ
∫

u∇|u|p∇udx = −4

d
ℑ
∫

u∇uℜ(u∇u)|u| 4d−2.

(3.1)
In the l.h.s, a simple calculation shows that the third term rewrites in the

form p
4

∫

|u|p−2(∇|u|2)2.Equation (3.1) becomes:

1

2

d

dt

∫

|∇u|2dx+ a

∫

|u|p|∇u|2 + a
p

4

∫

|u|p−2(∇|u|2)2 ≤ 2

d

∫

|u| 4d |∇u|2.
(3.2)

To estimate the r.h.s of (3.2), we rewrite it as ( p > 4
d
)

∫

|u| 4d |∇u|2 =
∫

|u| 4d |∇u|
8
pd |∇u|2−

8
pd .

Now by Hölder inequality we obtain that
∫

|u| 4d |∇u|2 ≤ (

∫

|u|p|∇u|2)
4
pd (

∫

|∇u|2)1−
4
pd .

Then inequality (3.2) takes the form:

d

dt
w(t) + 2av(t) ≤ 4

d
v(t)

4
pdw(t)

1− 4
pd .



BLOWUP 7

where w(t) =

∫

|∇u|2 and v(t) =

∫

|u|p|∇u|2.

Using Young’s inequality ab ≤ ǫaq +Cǫ
− 1

q−1 bq
′
, 1
q
+ 1

q′
= 1, with q = pd

4 and

ǫ = ad
2 we obtain :

d

dt
w(t) ≤ a

− 1
pd
4 −1w(t).

This ensures that:

w(t) ≤ w(0)ea

(

− 4t
pd−4

)

.2

This show that the H1-norm of u is bounded for any time and gives directly
the proof of part one of Theorem 1.1 in the case p > 4/d.

Now we will prove the global existence for small data, for this we will use the
following generalized Gagliardo-Niremberg inequalities (see for instance [9]):

Lemma 3.1. Let q, r be any real numbers satisying 1 ≤ q, r ≤ ∞, and let
j, m be any integers satisfying 0 ≤ j < m. If u is any functions in Cm

0 (Rd),
then

‖Dju‖Ls ≤ C‖Dmu‖ar‖u‖1−a
q

where

1

s
=

j

d
+ a(

1

r
− m

d
) + (1− a)

1

q
,

for all a in the interval
j

m
≤ a ≤ 1,

where C is a constant depending only on d, m, j,q,r and a.

As a direct consequence we get :

Lemma 3.2. Let 1 ≤ p ≤ 2 and v ∈ C∞
0 (Rd) then:

∫

|v| 4d+2+p ≤ C(

∫

|∇(|v| p+2
2 )|2)× (

∫

|v|2) 2
d .

where c > 0 depending only on d and p.

Proof: Take s =
4
d
+2+p

1+ p

2
, q = 2

1+ p

2
r = 2, j = 0 and m = 1,then by Lemma

3.1 we obtain that:

|u|
L

4
d
+2+p

1+
p
2

≤ C|∇u|
4+2p

8
d
+4+2p

L2 |u|
8
d

8
d
+4+2p

L

2
1+

p
2

.

Taking u = |v|1+ p

2 , we obtain our lemma. �
Now we can prove the following proposition:

Proposition 3.2. Let 1 ≤ p ≤ 2. There exists 0 < α = α(p, d) < ‖Q‖L2 ,
such that for any u0 ∈ H1 with ‖u0‖L2 < α, it holds

d

dt
E(u(t)) ≤ 0, ∀t > 0.
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Proof: We can whrite that:

d

dt
E(u(t)) = a

(

Cp

∫

|u| 4d+p+2 − 4

(p+ 2)2

∫

|∇(|u|
p+2
2 )|2

)

,

then by Lemma 3.2 we obtain that:

d

dt
E(u(t)) ≤ a(

∫

|∇(|u| p+2
2 )|2)(CpC(

∫

|u|2) 2
d − 4

(p+ 2)2
)

Choosing α
2
d < 4

(p+2)2
1

CpC
, and using that ‖u(t)‖L2 ≤ ‖u0‖L2 for all t ≥ 0

(see 2.5 below) we get the result. �
Now the proof of part (2) of Theorem 1.1 follows from the sharp Gagliardo-
Nirenberg inequality :

∀u ∈ H1, E(u) ≥ 1

2
(

∫

|∇u|2)
(

1−
(

∫

|u|2
∫

|Q|2
)

2
d

)

.

Proposition 3.2 together with the above inequality ensure that the H1-norm
of u is uniformly bounded in time. This leads to the global existence result
for small initial data when 1 ≤ p ≤ 2.

3.1. Critical case ( p = 4
d
). Now we will treat the critical case and prove

Theorem 1.2. First let us prove that, if the solution blows up in finite time
T , then ‖u‖

L
4
d
+2([0,T ];L

4
d
+2(Rd))

= +∞.

Proposition 3.3. Let u be the unique maximal solution of (1.1) in [0, T ∗);
if T ∗ < ∞, then ‖u‖Lσ([0,T ],Lσ) = ∞ where σ = 4

d
+ 2.

To prove this claim, denoting by S(·) the free evolution of the linear
Schrödinger equation and defining the notion of admissible pair in the follow-
ing way : An ordered pair (q, r) is called admissible if 2

q
+ d

r
= d

2 , 2 < q ≤ ∞,

we will use the following proposition:

Proposition 3.4. There exists δ > 0 with the following property. If u0 ∈
L2(Rd) and T ∈ (0,∞] are such that ‖S(.)u0‖Lσ([0,T ],Lσ) < δ, there ex-

ists a unique solution u ∈ C([0, T ], L2(Rd)) ∩ Lσ([0, T ], Lσ(Rn)) of (1.1).
In addition, u ∈ Lq([0, T ], Lr(Rd)) for every admissible pair (q, r); for t ∈
[0, T ].Finally, u depends continuously in C([0, T ], L2(Rd))∩Lσ([0, T ], Lσ(Rd))
on u0 ∈ L2(Rn). If u0 ∈ H1(Rd), then u ∈ C([0, T ],H1(Rd)).

See [4] for the proof.

We need also the following lemma ( see [4]):

Lemma 3.3. Let T ∈ (0,∞], let σ = 4
d
+ 2, and let (q, r) be an admis-

sible pair. Then, whenever u ∈ Lσ([0, T ], Lσ(Rd)), it follows that F (u) =

−i

∫ t

0
S(t− s)(|u| 4du+ ia|u|pu)ds ∈ C([0, T ],H−1(Rd)) ∩ Lq(0, T, Lr(Rd)).

Furthermore, there exists K, independent of T , such that

‖Fv−Fu‖Lq(]0,T [,Lr) < K(‖u‖
4
d

Lσ(]0,T [,Lσ(Rd))
+‖v‖

4
d

Lσ(]0,T [,Lσ(Rd))
)‖u−v‖Lσ(]0,T [,Lσ(Rd))

(3.3)
for every u, v ∈ Lσ(]0, T [, Lσ(Rd)).



BLOWUP 9

Proof of Proposition 3.3:
Let u0 ∈ L2(Rd). Observe that‖S(.)u0‖Lσ(0,T.Lσ) −→ 0 as T −→ 0. Thus

for sufficiently small T , the hypotheses of Proposition 3.4 are satisfied. Ap-
plying iteratively this proposition, we can construct the maximal solution
u ∈ C([0, T ∗), L2(Rd))) ∩ Lσ([0, T ∗), Lσ(Rd)) of (1.1). We proceed by con-
tradiction, assuming that T ∗ < ∞, and ‖u‖Lσ(]0,T [,Lσ) < ∞. Let t ∈ [0, T ∗).
For every s ∈ [0, T ∗ − t) we have

S(s)u(t) = u(t+ s)− F (u(t+· ))(s).

From (3.3), we thus obtain

‖S(.)u(t)‖Lσ ([0,T ∗−t),Lσ(Rd)) ≤ ‖u‖Lσ(]t,T ∗[,Lσ) +K(‖u‖Lσ(]t,T ∗[,Lσ))
4
d
+1

Therefore, for t fixed close enough to T ∗, it follows that

‖S(.)u(t)‖Lσ ([0,T ∗−t),Lσ(Rd)) ≤ δ.

Applying Proposition 3.4, we find that u can be extended after T ∗, which
contradicts the maximality.

Corollary 3.1. For p = 4
d
, the solution of (1.1) is global.

Proof Multiply equation (1.1) by u, and take the imaginary part to
obtain:

d

dt
‖u(t)‖2L2 + 2a‖u‖

4
d+2

L
4
d
+2

= 0.

Hence ∀t ∈ R+

‖u‖
L

4
d
+2[0,t[L

4
d
+2(Rd)

≤ 1

2a
‖u0‖2L2 .

The global existence follows then directly from Propostion 3.3. Now to finish
the proof of Theorem 1.2, we will prove the scattering:
Let v(t) = e−it∆u(t) := S(−t)u(t) then

v(t) = u0 + i

∫ t

0
S(−s)(|u(s)| 4du(s) + ia|u(s)| 4du)ds.

Therefore for 0 < t < τ ,

v(t)− v(τ) = i

∫ t

τ

S(−s)(|u(s)| 4du(s) + ia|u(s)| 4du)ds.

It follows from Strichartz’s estimates (see the proof of Lemma 4.2) that:

‖v(t)−v(τ)‖L2 = ‖i
∫ t

τ

S(−s)(|u(s)| 4du(s)+ia|u(s)| 4du)ds‖L2 ≤ C ‖ u ‖
4
d
+1

L
4
d
+2([t,τ ]×Rd)

.

The right hand side goes to zero when t, τ −→ +∞, then scattering follows
from the Cauchy criterion.
This completes the proof of Theorem 1.2.
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4. Blow up solution.

In this section, we will prove the existence of the explosive solutions in
the case 1 ≤ p < 4/d.

Theorem 4.1. Let 1 ≤ p < 4/d. There exist a set of initial data Ω in H1,
such that for any 0 < a < a0 with a0 = a0(p) small enough, the emanating
solution u(t) to (1.1) blows up in finite time in the log-log regime.

The set of initial data Ω is the set described in [15] in order to initialize
the log-log regime. It is open in H1. Using the continuity with regard to
the initial data and the parameters, we easily obtain the following corollary:

Corollary 4.1. Let 1 ≤ p < 4/d and u0 ∈ H1 be an initial data such that
the corresponding solution u(t) of (1.2) blows up in the loglog regime. There
exist β0 > 0 and a0 > 0 such that if v0 = u0 + h0, ‖h0‖H1 ≤ β0 and a ≤ a0,
the solution v(t) for (1.1) with the initial data v0 blows up in finite time.

Assertion (3) of Theorem 1.1 now follows directly from this corollary
together the results of [15] on the L2-critical NLS equation and a scaling
argument in order to drop the smallness condition on the damped coefficient
a > 0.
Now to prove Theorem 4.1, we look for a solution of (1.1) such that for t
close enough to blowup time, we shall have the following decomposition:

u(t, x) =
1

λ
d
2 (t)

(Qb(t) + ǫ)(t,
x− x(t)

λ(t)
)eiγ(t), (4.1)

for some geometrical parameters (b(t), λ(t), x(t), γ(t)) ∈ (0,∞)× (0,∞)×
R
d ×R, here λ(t) ∼ 1

‖∇u(t)‖
L2

, and the profiles Qb are suitable deformations

of Q related to some extra degeneracy of the problem.

Note that we will abbreviated our proof because it is very very close to
the case of linear damping (p = 0 see Darwich [6]). Actually, as noticed
in [22], we only need to prove that in the log-log regime the L2 norm does
not grow, and the growth of the energy( resp the momentum) is below 1

λ2

(resp 1
λ
) . In this paper, we will prove that in the log-log regime, the growth

of the energy and the momentum are bounded by:

E(u(t)) . log(λ(t))λ(t)−
pd

2 , P (u(t)) . log(λ(t))λ(t)1−
pd

4 .

Let us recall that a fonction u :[0, T ] 7−→ H1 follows the log-log regime if
the following uniform controls on the decomposition (4.1) hold on [0, T ]:

• Control of b(t)

b(t) > 0, b(t) < 10b(0). (4.2)

• Control of λ:

λ(t) ≤ e−e
π

100b(t)
(4.3)

and the monotonicity of λ:

λ(t2) ≤
3

2
λ(t1),∀ 0 ≤ t1 ≤ t2 ≤ T. (4.4)
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Let k0 ≤ k+ be integers and T+ ∈ [0, T ] such that

1

2k0
≤ λ(0) ≤ 1

2k0−1
,

1

2k+
≤ λ(T+) ≤ 1

2k+−1
(4.5)

and for k0 ≤ k ≤ k+, let tk be a time such that

λ(tk) =
1

2k
, (4.6)

then we assume the control of the doubling time interval:

tk+1 − tk ≤ kλ2(tk). (4.7)

• control of the excess of mass:
∫

|∇ǫ(t)|2 +
∫

|ǫ(t)|2 e−|y| ≤ Γ
1
4

b(t). (4.8)

4.1. Control of the energy and the kinetic momentum in the log-
log regime. We recall the Strichartz estimates. An ordered pair (q, r) is
called admissible if 2

q
+ d

r
= d

2 , 2 < q ≤ ∞. We define the Strichartz norm

of functions u : [0, T ]× R
d 7−→ C by:

‖u‖S0([0,T ]×Rd) = sup
(q,r)admissible

‖u‖Lq
tL

r
x([0,T ]×Rd) (4.9)

and

‖u‖S1([0,T ]×Rd) = sup
(q,r)admissible

‖∇u‖Lq
tL

r
x([0,T ]×Rd) (4.10)

We will sometimes abbreviate Si([0, T ] × R
2) with Si

T or Si[0, T ], i = 1, 2.

Let us denote the Hölder dual exponent of q by q′ so that 1
q
+ 1

q′
= 1. The

Strichartz estimates may be expressed as:

‖u‖S0
T
≤ ‖u0‖L2 + ‖(i∂t +∆)u‖

L
q′

t Lr′
x

(4.11)

where (q, r) is any admissible pair. Now we will derive an estimate on the
energy, to check that it remains small with respect to λ−2:

Lemma 4.1. Assuming that (4.2)-(4.8) hold, then the energy and kinetic
momentum of the solution u to (1.1) are controlled on [0, T ] by:

|E(u(t))| ≤ C(log(λ(t))λ(t)−
pd

4 ), (4.12)

|P (u(t))| ≤ C(log(λ(t))λ(t)1−
pd

4 ). (4.13)

To prove this lemma, we shall need the following one:

Lemma 4.2. Let u be a solution of (1.1) emanating for u0 in H1. Then u

∈ C([0,∆T ],H1) where ∆T = ‖u0‖
d−4
d

L2 ‖u0‖−2
H1, and we have the following

control
‖u‖S0[t,t+∆T ] ≤ 2 ‖u0‖L2 , ‖u‖S1[t,t+∆T ] ≤ 2 ‖u0‖H1(Rd) .
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Proof of Lemma 4.1: According to (4.7) each interval [tk, tk+1], can be

divided into k intervals, [τ jk , τ
j+1
k ] such that the estimates of the previous

lemma are true. From (2.6) and the Gagliardo-Nirenberg inequality, we
obtain that:

d

dt
E(u(t)) . ‖u‖

4
d
+p− pd

2

L2 ‖∇u‖2+
pd

2

L2

Using (2.5) this gives

∫ τ
kj+1

τ
j

k

d

dt
E(u(t))dt ≤ C

∫ τ
j+1
k

τ
kj

‖∇u(t)‖2+
pd

2

L2 ,

then by Lemma 4.2, we obtain that:
∫ τ

kj+1

τ
j

k

d

dt
E(u(t))dt ≤ C(τkj+1 − τkj)λ

−2− pd

2 (τkj )

Note that τ j+1
k − τ jk ∼ λ2(τ jk) ∼ λ2(tk), then

∫ τ
j+1
k

τ
j

k

d

dt
E(u(t))dt ≤ Cλ− pd

2 (tk)

Summing from j = 1 to Jk ≤ CK, we obtain that:

Jk
∑

j=1

∫ τ
j+1
k

τ
j

k

d

dt
E(u(t))dt ≤ Ckλ− pd

2 (tk)

Now taking T+ = T and summing from K0 to K+, we obtain:
∫ T+

0

d

dt
E(u(t))dt ≤ CK+λ− pd

2 (T+) . Clog(λ(T ))λ− pd

2 (T ).

Note that log (λ(T ))λ− pd

2 (T ) is small with to respect 1
λ2 because p < 4

d
.

Now we prove (4.13): From (2.7) we have :

| d
dt

P (u(t))| ≤
∫

|u||∇u||u|p

By Gagliardo-Nirenberg inequality we have:

‖u‖2p+2
L2p+2 ≤ ‖u‖2p+2−dp

L2 ‖∇u‖dp
L2

then
d

dt
P (u(t)) ≤ (

∫

|u|2(p+1))
1
2 ‖∇u‖L2 ≤ C ‖∇u‖1+

pd

2

L2 .

Then:
∫ τ

j+1
k

τ
j

k

d

dt
P (u(t)) ≤ C(τ j+1

k − τ jk)
∥

∥

∥
∇u(τ jk)

∥

∥

∥

1+ pd

2

L2
≤ C ‖∇u(tk)‖

−1+ pd

2

L2

Summing successively into j and k we obtain that:
∫ T+

0

d

dt
P (u(t)) . log(λ(T+))λ1− pd

2 (T+).

Remark that this quantity is small with to respect 1
λ
because p < 4

d
. 2
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