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Abstract We study the existence of solutions to the equation —A,u + g(z,u) = p when
g(x,.) is a nondecreasing function and p a measure. We characterize the good measures,
i.e. the ones for which the problem has a renormalized solution. We study particularly the
cases where g(z,u) = |z| ™ |u|?" v and g(z,u) = sgm(u)(eﬂulA —1). The results state that a
measure is good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel
capacities.

1 Introduction

Let © € RY be a bounded domain containing 0 and g : © x R — R be a Caratheodory
function. We assume that for almost all x € Q, r — g(z,r) is nondecreasing and odd. In
this article we consider the following problem

—Apu+glz,u) =p in Q
0 (1.1)

u= in 00

where Apu = div (|Vu|p_2 Vu), (1 < p < N), is the p-Laplacian and p a bounded measure.
A measure for which the problem admits a solution, in an appropriate class, is called a good
measure. When p = 2 and g(x,u) = g(u) the problem has been considered by Benilan and
Brezis [4] in the subcritical case that is when any bounded measure is good. They prove
that such is the case if N > 3 and g satisfies

/ g(s)s_%:; ds < oo. (1.2)
1

The supercritical case, always with p = 2, has been considered by Baras and Pierre [3] when
g(u) = |u|* "w and ¢ > 1. They prove that the corresponding problem to (1.1 ) admits a
solution (always unique in that case) if and only if the measure p is absolutely continuous
with respect to the Bessel capacity C2 o (¢ = ¢/(¢ — 1)). In the case p # 2 it is shown
by Bidaut-Véron [6] that if problem (1.1 ) with 8 = 0 and g(s) = |s|" 's (¢ > p—1 > 0)

admits a solution, then p is absolutely continuous with respect to any capacity C, S
’qt+l-p

for any € > 0.

In this article we introduce a new class of Bessel capacities which are modelled on Lorentz
spaces L*7 instead of LY spaces. If G, is the Bessel kernel of order o« > 0, we denote by
L%%9(RN) the Besov space which is the space of functions ¢ = G * f for some f € L*4(RY)
and we set [|¢||, , , = [ flls, (a norm which is defined by using rearrangements). Then we

set
CO‘751Q(E) = inf{”f”&q : f Z O? GOt * f Z 1 on E} (13)

for any Borel set E. We say that a measure p in (2 is absolutely continuous with respect to
the capacity Coq s,q if ,

VE C Q, E Borel , Cy 5 4(E) =0= |u| (E) =0. (1.4)
We also introduce the Wolff potential of a positive measure p € M4 (RY) by

W) = [ (MBI T (1)

2



ifa >0, 1< s < a'!N. When we are dealing with bounded domains 2 C By and
w € My (Q), it is useful to introduce truncated Wolff potentials.

Wi i) = [ (%)% (16)

We prove the following existence results concerning

(1.7)

u =

—Apu+ |z|7ﬁ g(u) =p in Q
0 in 02

Theorem 1.1 Assumel <p < N,qg>p—1and0< 8 < N and pu is a bounded Radon
measure in §2.

1-If g(s) = |s|*" " s, then (1.7 ) admits a renormalized solution if . is absolutely continuous
with respect to the capacity C

Ng q .
P Ng=G-DIN-8) ' aFi-»p
2- If g satisfies

/100g(s)sq1ds < 00 (1.8)

then (1.7 ) admits a renormalized solution if p is absolutely continuous with respect to the
capacity C

Ng .
P NG Dw = 'L
Furthermore, in both case there holds

—cWi(;iam @ [ ](z) Sulz) < cWiiiam @ [wt](z) for almost all x € Q. (1.9)

where ¢ 1s a positive constant depending on p and N.

In order to deal with exponential nonlinearities we introduce for 0 < o < N the fractional
maximal operator (resp. the truncated fractional maximal operator), defined for a positive
measure pu by

p(Bi(x))

M () = sup 5

t>0

o (resp Mol = sup M) Lo

and the n-fractional maximal operator (resp. the truncated n-fractional maximal operator)

M) = gy (o ML) = e SEE) o)

where 1 > 0 and
b — (—Int)™" ifo<t<s L1
n(t) = (In2)=" ift >3 (1.12)

Theorem 1.2 Assume 1 <p < N, 7 >0 and A > 1. Then there exists M > 0 depending
on N,p,7 and \ such that if a measure in Q, p = p+ — pu~ can be decomposed as follows

pt=fi+u and p~ = fa+ v, (1.13)



where f; € L1 (Q) and v; € ML (Q) (5 =1,2), and if

(p=D(A-1)
p,2diam () [Vj < Ma (114)
Loo(Q)
there exists a renormalized solution to
—Apu + sign(u) (eT|“|A - 1) =pu n Q
? (1.15)
u=20 m Of.

and satisfies (1.9 ).

Our study is based upon delicate estimates on Wolff potentials and 7n-fractional maximal
operators which are developed in the first part of this paper.

2 Lorentz spaces and capacities

2.1 Lorentz spaces

Let (X, %, @) be a measured space. If f : X — R is a measurable function, we set S¢(t) :=
{z € X :|f|(x) >t} and A\f(t) = a(Sf(t)). The decreasing rearrangement f* of f is defined
by

fr(t) =inf{s > 0: Xs(s) < t}.

It is well known that (®(f))* = ®(f*) for any continuous and nondecreasing function ® :
Ry — R;. We set

t
o= /O P V>0,

and, for 1 < s < ooand 1< ¢ < oo,

T (/owt%(f**(t))q%)% e 1)

supesst%f**(t) if g =00
>0

It is known that L®9(X,a) is a Banach space when endowed with the norm ||| . ,. Fur-
thermore there holds (see e.g. [12])

the left-hand side inequality being valid only if s > 1. Finally, if f € L®9(RY) (with
1 < ¢,s < 0o and «a being the Lebesgue measure) and if {p,} C C°(RY) is a sequence of
mollifiers, fxpn, — f and (fx, )*pn — fin L¥9(RY), where x,, is the indicator function
of the ball B,, centered at the origin of radius n. In particular C°(R") is dense in L*4(RY).

tsf* (2.2)

1
ts f* < o<
I sy S Mo < 525

: ‘

)
La(RT,4t)



2.2 Wolff potentials, fractional and 7n-fractional maximal operators

If D is either a bounded domain or whole RY, we denote by (D) (resp 9M’(D)) the set
of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M4 (D)
and 9 (D) respectively. If 0 < R < oo and p € M4 (D) and R > diam (D), we define, for
a>0and 1 <s<a !N, the R-truncated Wolff-potential by

R T "
Wgs[u](ac) :/0 (%) % for a.e. z € RV, (2.3)

If hy(t) = min{(—1Int)™",(In2)""7} and 0 < a < N, the truncated n-fractional maximal
operator is
w(Bi(x
M () = sup AEHE).

o<t<r tN =%y (t)

If R = oo, we drop it in expressions (2.3 ) and (2.4 ). In particular
u(Bi(x)) <tV hy ()M glu](x)- (2.5)

We also define G, the Bessel potential of a measure p by

for a.e. x € RV, (2.4)

Galpl(@) = | Calz —y)dp(y) Vo e RY, (2.6)

where G,, is the Bessel kernel of order « in RY.
Definition 2.1 We denote by L%*9(RY) the Besov space the space of functions ¢ = G * f
for some f € L¥9(RY) and we set 19l as.q = 1fllsq- If we set

Cosq(E) = inf{Hst’q : f>0,Guxf>1 onE}, (2.7)

then Cu,s,q i @ capacity, see [1].

2.3 Estimates on potentials

In the sequel, we denote by |A| the N-dimensional Lebesgue measure of a measurable set
A and, if F,G are functions defined in RV, we set {F > a} := {z € RY : F(z) > a},
{G<b}={zeRY :G(z) <b} and {F > a,G < b} :={F > a} N{G < b}. The following
result is an extension of [14, Th 1.1]

Proposition 2.2 Let 0<n<p—1,0<ap < N andr > 0. There exist co > 0 depending
on N,a,p,n and ey > 0 depending on N,o,p,n,r such that, for all u € M, (RY) with

diam(supp(p)) <r and R € (0,00], € € (0,€0], A > (M(JRN))ﬁ l(r, R) there holds,

[{WE, 1] > 32, (ML, plul) 77 < e

—1— pf;in __p=1 R (28)
< ¢pexp ( (Z(p—f;) apln2e Pln) {WZE (1] > A}
N—« . _N—ap _N—ap . N—ap —N—ap .
where I(r, R) = <=5 (mln{r, R}y =1 — R p-1 ) if R < oo, I(r,R) = S =3Fr~ 71 if

R = co. Furthermore, if n = 0, ¢ is independent of r and (2.8 ) holds for all u € MM (RY)
with compact support in RN and R € (0,00], € € (0,€0], A > 0.



Proof. Case R = co. Let A > 0; since W, p[u] is lower semicontinuous, the set
Dy = {Wa,p[u] > )‘}
is open. By Whitney covering lemma, there exists a countable set of closed cubes {Q;};
such that Dy = U;Q;, Q; N Q; =0 for i # j and
diam(Qi) S dist (Qi; Dg\) S 4d1am(Q1)
Let € > 0 and F, = {me[,u] > 3, (Mgp[,u])zﬂ%l < 6)\}. We claim that there exist ¢y =
co(N,a,p,m) > 0 and €9 = eg(N, o, p,n,7) > 0 such that for any Q € {Q;}:, € € (0, ¢0) and

1

A > (u(RY))P=TI(r, 00) there holds
—1-— % __p—1
[Fea N Q[ < coexp < <Iﬁ> € 7napln 2) Q.- (2.9)

The first we show that there exists ¢; > 0 depending on N, «,p and n such that for any
Q € {Q;}; there holds
Feﬁ,\ﬂQCEey)\ VeE(O,Cl],A>O (210)

where )
Eon = {o € Q: W3 @u](2) > A, (Mg, [1)(2)) 77 < e} (2.11)

Infact, take @ € {Q;}; such that Q@ N F. x # 0 and let zg € DY such that dist (zq,Q) <
4diam(Q) and Wy p[u](zg) < A For k € N, rg = 5diam(Q) and = € F. x N Q, we have

2k+1r0 B ﬁ
[ ey
QkTO t —ap t
where
k 142k+1

" 1 k1, L
A:/2 EE (u(]lv?t(w)))‘” ﬂamdB:/2 ) (*M(ﬁt(x)))p dt
2k t—ep t gk 1t2kHL t—ap t
142k

Since

U(Bo(@)) < Ny (DM, ) (@) < £V R, (£)(eA) . (2.12)
Then

ok+1,,

2kt N—« —1 +1
tN=aph, (£)(N)P~1\ P T dt L dt
B | () ea ()77 G
2 0 trmar 2

142kt t PR L t
142k 142k "0

Replacing h,(t) by its value we obtain B < c2eX27F after a lengthy computation where ¢y

depends only on p and 7. Since § := (%) NZ:IP, then 1 —§ < ¢327% where ¢3 depends only
on ]\; —7, thus

(1-6)A< 032;@/2“1“ (M) et

2kT0 tN—Ozp t
2o dt
< c32—m/ (hy (1)) 7T &
2’“7‘0 t

< cq27Fe,



where ¢4 = ¢4(N,a, p,m) > 0.
By a change of variables and using that for any x € F. xNQ and t € [ro(1+2%), ro(1+2F+1)],
B 4k, (z) C Bi(zg), we get

k

142

1

” k1 B sk, ﬁ ” k41 1
5A :/ o(142F+1) H( H%)(x) ﬂ _ / o (142511 (M(Bt(wQ))) 1
T t - T

o0(142%) tN—ap o(14+2%) tN—ap t
Therefore
k41, - r kt1 a1
rio tN—O(p t - T0(1+2k) tN—O(p t ’

with ¢5 = ¢5(N, a, p, ) > 0. This implies

liG&ﬁﬂgfﬁ?gmﬂ+meﬁﬂ@2y%%§u+%@x 213

tN—ap o tN—ap

since W p[u](zq) < A If € € (0,¢1] with ¢; = (2¢5)7" then
1
o0 71
tN—ap t
ro
which implies (2.10 ).

_1
Now, we let A > (u(R™))7=1 [(r,00). Let By be a ball with radius r such that supp(p) C Bi.
We denote By by the ball concentric to By with radius 2r. Since © ¢ B,

Waplul(z) = /TOO (7M£§tii))) - % < (W(RY)) 7T (1, 00).

Thus, we obtain Dy C Bs. In particular, ro = 5 diam(Q) < 20r.

Next we set mg = M, so that 27™ry < 271 if m > my. Then for any x € E, )

In 2
o 7T dt ro dt
[0 (e Lo [T o
27Tn7<0 t 277”7‘0 t
27moro o di ro —n di
geA/ (—1nt)f—”1—+eA/ (In2)7 1 —
2-mrg t 2-m0 1 t

o)~ T
S

For the last inequality we have used al=7T —plT et < (a— b)lfp%l valid for any a > b > 0.
Therefore,

1
T0 — —1
w(Be(x))\ Pt dt  2(p—1) _ o e
e 2 ) P—T e\ A N P 2.14
/2 < N—ap t_p—l—nm € m e N,m >m ( )

—mpy



Set

i+

then ) )
Wity ul(e) < 22t s W o)
20—1) 4 =
S ooy O 2 e

i=m-+1
for all m > mo T . We deduce that, for g > 0,

) - (2 _ 2(p—1) mi—F5 e
{er.i;lgl()>(l P ))\}

|Ee,k| S

S {er l%l >2 Bi—m— 1)( _B) (1_1)2(1)%7’”1137]16) )\}
< i {x €Q: gi(x) >27P0—m=(1 —27F) (1 — Mmlzo”le) )\}’ .
i=m—+1 pilin
(2.15)

Next we claim that

e €Q:gile) > 9}l < S5 gmior gy e, (210

To see that, we pick z¢ € F. » and we use the Chebyshev’s inequality

1 p—1
o [ o o
—it1 1 p—1
_ 1 02 (B () \ 7T dt
T oop—1 tN—ap ? dx
S Q ro2=1%

1 M(BTOQ—i+1($)) o
/Q -4

— Sp—l (TOQ—i)N—ap

{z € @Q:gi(x) > s} <

Thanks to Fubini’s theorem, the last term A of the above inequality can be rewritten as

1
~ L (g2 )N / /RNXBW 1 ) (W) dply)do
/Q-i—B (O)/XBTUZi+1(y)($)d$dﬂ(y)
ro27 i+1

= |Bro2-i+1(y)] dpa(y)
N— p/QJrBT02 101 (0) 0

—27P1P (@ + Bry2-+1(0))

1 2_iapr(01p:u’(BTo(1+27i+l) (‘TO)))



since Q4B,ya-i+1(0) C Byy(142-i+1)(20). Using the fact that pu(By(x0)) < (In2)~ 1N =P (eA)P~!
for all t > 0 and o = 5diam(Q), we obtain

. 1
A < cs(N,n) -2 PGP (ro(1+ 27N TP (AP < oo (N, ) el QI eV,
which is (2.16 ). Consequently, (2.15 ) can be rewritten as
= C Na —to -
INEDS (N, ) ey
i=m+1 (Q*ﬁ(i*mfl)(l —276) (1 - @mlfﬁe) )\)
p—1-n
p—1
< ¢(N, U)Q*(erl)ap ( x _S — ) Q| ( as Z 9(B(p—1)—ap)(i-m—1)
1- p_anm le i=m+1
(2.17)
If we choose 8 = f(a,p) so that 3(p — 1) — ap < 0, we obtain
p—1 L
€ 1
|E€,A| < 27 MP =1y 1 |Q| vYm > m” K (218)
1-— mm r—lg

1

-1
Py mo+1

where ¢19 = c10(N, o, p,m) > 0. Put ¢¢ = min{ ,cl}. For any € € (0,¢eg] we

choose m € N such that

—1 —1

-1 = ]ﬁ% 1 ])f% 1= pr 1 pr
A B " l<m< (BTN (2 "
2(p—1) € 2(p — 1) P
Then
2(p—1)
<1p177
and

e e .
9—mep < 20‘10*04’(2(7;:1:17)7)7)7147( 1)p = < 2°P exp (ap 1112 —1- 77) Pt € pp11n> )
);

_1)

Combining these inequalities with (2.18 ) and (2.10 ), we get (2.9 )
In the case n = 0 we still have for any m € N A, e>0and x 6 Ee,/\

o0

Wi, lul(@) < med+ Y gi(w)

1=m-+1

Accordingly (2.18 ) reads as

€

p—1
|Ee x| < c1027™P ( ) Q] Vm € N, A\ e > 0 with me < 1.

1 —me



Put €9 = min{$,c1}. For any € € (0,¢] and m € N satisfies e 1 —2 <m < e ' — 1, we
finally get from (2.10 )

|Fe,)\ N Q| S |Ee,/\| S 01022047 exp (704)671 In 2) |Q|a (219)

which ends the proof in the case R = co.

Case R < co. For A > 0, Dy = {W[F_ > A} is open. Using again Whitney covering
lemma, there exists a countable set of closed cubes Q := {Q;} such that U;Q; = Dy,
QiNQ; =0 for i # j and dist (Q;, D§) < 4diam(Q;). If @ € Q : is such that diam (Q) > %,
there exists a finite number ng of closed dyadic cubes {Pjo};%; such that Uj? Pj o = Q,
PigNPo=0ifi#jand £ < diam (Pjq) < 8. Weset @' = {Q € Q:diam (Q) < £},
Q" ={Pg:1<i<ng, Qe Qdiam(Q) > ¥} and F=Q UQ".

For € > 0 we denote again F, y = {Wﬁp[u] > 3, (MZ;D,R[M])ﬁ < e)\}. Let Q € F such
that F. x N Q # 0 and ro = 5diam (Q).

If dist (D5, Q) < 4diam(Q), that is if there exists zg € DS such that dist (zg,Q) <
4diam (Q) and W[ [u](zq) < X, we find, by the same argument as in the case R = oo,
(2.13 ), that for any x € F, x N Q there holds

[ (BT on 220

tN—ap

where ¢11 = ¢11(N, o, p,m) > 0.
If dist (D%, Q) > 4diam (Q), we have % < diam (Q) < % since @ € Q”. Then, for all
x € F. N Q, there holds

R OuBu@) \ 7T dt _ R (NP (In2) (e \ T e
ro tN—ap t = Jsr tN—ap t

16

= (In2) 7T 1n 8 ¢\ (2.21)
( 5

< 2€e.

Thus, if we take € € (0, c12] with ¢1o = min{1, ¢j;'}, we derive
Fe,,\ M Q C Ee,,\, (2.22)

where )
Bon = { Wit > 0 (M2, 4lul) " e}

Furthermore, since = ¢ Bs,

R 2N\ 7T 1
whn = [ (M) S ) e

10



Thus, if A > (w(RY))"" " i(r, R) then D C By which implies ro = 5 diam(Q) < 20r.
The end of the proof is as in the case R = oc. O

In the next result we list a series of equivalent norms concerning Radon measures.

Theorem 2.3 Assumea >0,0<p—1<g<oo,0<ap <N and0 < s <oo. Then there
exists a constant c13 = c13(N, o, p,q, s) > 0 such that for any R € (0,00] and u € M4 (RY),
there holds

ci [|Wa,lu] < [Map,r[p ]Hp " < ez [WEL [l

HLq,s(]RN) = , L7 T @y (2.23)

HLq,s(RN)'

For any R > 0, there exists c14 = c14(N, o, p, q, s, R) > 0 such that for any p € M (RV),

b Wl oy < 1Gapl ey SO IWE ey (229)
In (2.24 ), Hnyp[,u]Hqus(RN) can be replaced by ||Map, r[p ]Hzlpl1 a——
Proof. We denote p, by xp, p for n € N*.
Step 1 We claim that
W21 vy < o Ml e (2.25)

From Proposition 2.2 there exist positive constants ¢g = co(N, @, p),a = a(e,p) and ¢y =
€o(V, o, p) such that for allm € N*, t > 0,0 < R < 0o and 0 < € < ¢q, there holds

‘{Wﬁp[un] > 3t, (MZP,R[un])Til < et}’ < coexp (—ae™t) [{WE [ua] > t}].  (2.26)

In the case 0 < s < 00 and 0 < ¢ < 0o, we have

s

[{WE [n] > 3t} " < ersexp (—gae ) (W) >t} +cl5H(l\/ﬂ.lp,z:c[/m])ﬁ >6t} ’

with ¢15 = ¢15(N, a, p, ¢, 8) > 0.
Multiplying by t*~! and integrating over (0, 00), we obtain

s dt i s dt
/ t* | {WE un] > 3t} " < c¢15 €Xp (—gae_l) / t* |[{WE [un] >t} "
0 0

o0
+ci5 / t°
0
By a change of variable, we derive

(3 5 — ¢15exp (——ae 1))/0 ts‘{Wap,un] >t}

.
S%/ e
p—1Jp

11

2 dt
-

3
QU
=

(ML, alu) > ¢} 5



We choose € small enough so that 37° — c15exp (—gae_l) > 0, we derive from (2.2 ) and
[ = 5,/ ||\

So < 00

Lea(m o) for any f € L¥0*2(RY) with 0 < s1 < 00,0 <

L52( dt)
R / 71
HWOQP[M"]HLQ,S(RN) S C13 ”MO&ILR[MHH L—q—l 71(RN)
and (2.25 ) follows by Fatou’s lemma. Similarly, we can prove (2.25 ) in the case s = oo.

Step 2 We claim that

1
R P
Wl e ey = €13 [ Map, 1 I L Sr— (2.27)
For R > 0 we have
2R T
jin(Be(@)) | 7 dt
W ll(0) = Why (o) + [ (L)
1 (2.28)
pn(Bar(z)) ) 77
< W ) + (P )
Thus
pn(B2r(z)) -

Consider {z,}™, C By such that By C [/~ 1 B1(2). Thus Bagr(x) C Ui, Br(x + Rz) for
any £ € RY and R > 0. Then

_ ,un(BgR(ac)) = pn(Bz (x4 Rzi)) -
Hx : 7RN7040 < T Z; RN op >
m BR(:C+RZZ)) 1.,
< Z { N —ap > Etf"
=1
i pn(Bz(@) 1
S Z { RZ»L : RNiiozp > Etp
i=1

2 —1
2 7 _—¢p

RN —ap - mt '
Moreover fI‘OHl (228 )

RN—ozp

<M> oW, o)

thus

Hx n(Bop(@) tpl}’ < me WE 1](2) > 11t}’.

RN ap O pT
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This leads to

{z:W z) > 2t} < m+1)‘{x:wgm[un](x)> 111&}’Vt>0

2mpr-1

This implies

IWeslk < e [|Wel,

HLp T p— 1(]RN) ]HLp_ETvﬁ(RN)'

with ¢16 = c16(N, a, p, ¢, 8) > 0. By Fatou’s lemma, we get

WG, e ) < 10 W2 il e - 220
On the other hand, from the identity in (2.28 ) we derive that for any p € (0, R),
B, () \ ™
W2E](z) > W2 T) > c17 su (M> ,
2 lule) > W) > e sup (A
with ¢17 = ¢17(N, a, p) > 0, from which follows
Welllul(z) > err (Map,r[u](2)) 7T . (2.30)

Combining (2.29 ) and (2.30 ) we obtain (2.27 ) and then (2.23 ). Notice that the estimates
are independent of R and thus valid if R = oc.

Step 8 We claim that (2.24 ) holds. By the previous result we have also

~1 R
i [Wh albl]| ey gy < IMeplil o s oy < 018 [WE Dl a2

(2.31)

where ¢15 = c15(V, a, p, ¢, s) > 0. For R > 0, the Bessel kernel satisfies[18, V-3-1]

XBr (:C)
_ x b _lal
C191 (XBz\I?EaZ)> < Gap(a) < c1g <+&p> + cige 2 vz € RY,
|| ||
where ¢19 = c19(N, « ) > 0. Therefore
XBR XB% —Ld

o N | < Gaplp] < 1o e ) [+ crge” 2 pu. (2.32)

By integration by parts, we get

<| l’ff) « ) = (N — ap) Wi

which implies
€20 HW%,Q[M]’

Lp_z_l’ﬁ(RN) < ”GQP[M]”Lﬁ’ﬁ(RN) ’

13



|z

where cog = ca0(N, @, p,q,8) > 0. Furthermore ez < co1xp, * e Z (z) where cg; =
Pl
¢21(N, R) > 0, thus

LI
* < co1 (XB * e 7) * (L = Co1€

eié

vl

Since
Xpy * pz) = p(Bg (2)) < e Wik 5ul()
where cog = coa(N, a, p, R) > 0, we derive with cag = ca1c20

_ L
e x 1 < coge” 2 *W}%,Q[u].

Using Young inequality, we obtain

B ||
e 2

<cozlle” 2 % W%Q[U]‘

"

9 __s_ 9 __s_
Lp—1'p—1 (]RN) Lp—1"p—1 (]RN)

< e | W L[]

ae e (2.34)
Lp—1'p—1(RN) L1, (RN)

< cos HW%,Q[H]’

q s .
Lp—1'p—1(RN)

where co5 = co5(N, o, p, R) > 0.
Since by integration by parts there holds as above

XBr R Br(x
<| |Nfap> (@) = (N — ap)W &, o[ul(w) + 2N_ap% < c2s Wz 5[u](2),

where cog = co6(N, v, p) > 0 we obtain

Xn ) wp SCWHW&Q[M]‘ P (2.35)
|| P 4 _s_ 2 LP-1'p-1
LP—1'p—1 (]RN)
where co7 = co7(N, @, p,q,s) > 0. Thus
IGaplbll, s ey gy < cos [Wheolidl]| | o - (2.36)

where cog = cag(N, , p, q, s, R) > 0.
follows by combining (2.32 ), (2.34 ) and (2.35 ). Then, combining (2.33 ), (2.36 ) and using
(2.31), (2.23 ) we obtain (2.24 ). O

Remark. Proposition 5.1 in [17] is a particular case of the previous result.

Theorem 2.4 Let a > 0, p > 1, 0<n<p—1,0< ap < N andr > 0. Set oy =

_p—1
(1’{(—;__%) r apln2. Then there exists cag > 0, depending on N, «, p, n and r such that

14



for any R € (0,00], 6 € (0,80), u € M (RY), any ball By C RN with radius < r and ball
By concentric to By with radius double B1’s radius, there holds

R .
ﬁ/ exp s (Waplne)@) 7177 ) < o (2.37)
Bs HM p—1-—mn 60_6

ap, R[”Bl]HLw(Bl)

where pp, = xp, . Furthermore, if n = 0, ca9 is independent of r.

< o0o. By Proposition 2.2-
Lo (By)

(2.8 ) with u = pp,, there exist ¢y > 0 depending on N, «, p,n and ¢y > 0 depending on
1

N,a,p,n and r such that, for all R € (0,00], € € (0, €], t > (,uB1 (RN)) »=1 [(r', R) where 7’

is radius of B; there holds,

_1
{WE s ) > 38, (M, gl )77 < et}

L - (2.38)
< ¢o exp ( (Z(_p—l__f)l) e ozpln26_v1n> ‘{W 1B, ] > t}|

Proof. Let u € M4 (RY) such that M = HMZp,R['U’Bl]

Since (up, (RN))"~T (1", R) < %(hl 2)" 51 M7 1, thus in (2.8 ) we can choose

p—1 1 4 N —
' =t 'M7T Vt>max{e !,
Loo (RN) p— 1

e=t" 1HMO‘177 [B,] (ln2 - I}Mp T

and as in the proof of Proposition 2.2, {W [np,] > t} C Bs.

Then
HW ,uB1 > 3t} n Bg’ < cpexp ( ({4)(%1_—17)1) p—1-7 apln2M™ p}ntpplln) |BQ| .
(2.39)
This can be written under the form
[{F >t} N0 Ba| < |Ba| X(0.t] + o exp (—00t) | B2| X(tg,00) ()- (2.40)

where F = M~ 7=1=7 (W[ [up,])*~'~" and to = (3 max{e, !, Np__ol‘p (In 2)_F}) B
Take 6 € (0,d9), by Fubini’s theorem

/ exp (0F () d 5/00 exp (68) {F > t} N Bo| dt
Bo 0

Thus,
to oo
/ exp (0F(x)) dx < 6/ exp (0t) dt | Ba| + ¢od exp (— (09 — 0) t) dt | Ba|
B 0 to
< (exp (dto) — 1) [ B2 |
which is the desired inequality. (]

Remark. By the proof of Proposition 2.2, we see that ¢y > where c3g =

2 Tmax(Lin0r)
p—1 p—1
cso(N, o, p,m) > 0. Thus, tg < ¢33 (max(1,1n407))»=7-7. Therefore cag < 32 €xp (033 (max(l,lnél()r))fl*")

where c32 and c33 depend on NV, o, p and 7.
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2.4 Approximation of measures

The next result is an extension of a classical result of Feyel and de la Pradelle [11]. This type
of result has been intensively used in the framework of Sobolev spaces since the pioneering
work of Baras and Pierre [3], but apparently it is new in the case of Bessel-Lorentz spaces.
We recall that a sequence of bounded measures {yu,} in Q converges to some bounded
measure g in  in the narrow topology of MP(Q) if

lim | ¢du, = /qﬁdu Vo € Cp(9) := C(2) N L>(Q). (2.41)
Q Q

n—oo

Theorem 2.5 Assume Q is an open subset of RN. Leta > 0,1 < s <00, 1< ¢q < o
and p € ML(Q). If v is absolutely continuous with respect to Co 54 in S, there exists a
nondecreasing sequence {p,} C MY (Q) N (L¥*YRN))’, with compact support in Q which
converges to p weakly in the sense of measures. Furthermore, if p € 9313_(9), then py, — p
in the narrow topology.

Proof. Step 1. Assume that u has compact support. Let ¢ € L**4(RY) and 6 its Ca.s.q-
quasicontinuous representative. Since p is abolutely continuous with respect to Cy 5,4, We
can define the mapping
63 Pé)= [ *dula
RN

where p|q is the extension of p by 0 in Q¢. By Fatou’s lemma, P is lower semicontinuous
on L*%4(RN). Furthermore it is convex and potitively homogeneous of degree 1. If Epi(P)
denotes the epigraph of P, i.e.

Epi(P) = {(¢,t) € L*I(RY) x R:t > P(¢)},

it is a closed convex cone. Let € > 0 and ¢g € C°, ¢ > 0. Since (¢o, P(¢o) — €) ¢ Epi(P),
there exist £ € (L**4(RY))’, a and b in R such that

a+bt+03) <0 Y(o,t) € Epi(P), (2.42)

a+ b(P(¢o) — €) + £(¢o) > 0. (2.43)

Since (0,0) € Epi(P), a < 0. Since (s¢, st) € Epi(P) for all s > 0, sta + bt + £(¢) < 0,
which implies

bt+6(6) <0 V(¢,t) € Epi(P).
Finally, since (0,1) € Epi(P), b < 0. But if b = 0 we would have ¢(¢) < —a for all
¢ € L**9(RY). which would lead to £ = 0 and a > 0 from (2.43 ), a contradiction.

Therefore b < 0. Then, we put 0(¢) = —&f) and derive that, for any (¢,t) € Epi(P), there
holds 6(¢) < t, and in particular

0(¢) < P(¢) Vo€ L¥URY). (2.44)

Since ¢ < 0 == P(¢) = 0, 0 is a positive linear functional on L%*4(R¥). Furthermore

sup  |0(p)| = sup O(¢p) < sup  P(¢) = P(1) = p(Q).
¢ € CE(RN) ¢ € C°(RY) ¢ € C(RY)
l¢llpoe <1 lAllpee <1 lAllpoe <1
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By the Riesz representation theorem, there exists o € M, (RY) such that
0(p) = / pdo Vo € C(RY). (2.45)
RN

Inequality (2.44 ) implies 0 < 0 < plg. Thus supp(c) C supp(pla) = supp(p) and o
vanishes on Borel subsets of C, 5 4 capacity zero, as u does it, besides (2.45 ) also values for
all p € C>°(RY) . From (2.43 ), we have

Godo = 0(d) > P(¢o) — €+% > / dodp|a—e.
RN RN

This implies
0< | odiula—0) <. (2.46)
RN

It remains to prove that o € (L**4(RY))’. For all f € C°(RY), f > 0, there holds

| Gelfldr = 0(GalfD) < 10l zoca@myy [Galflllzasar) (2.47)
since § = —b~ and ¢ € (L**9(RY)). Now, given f € L>4(RY), f > 0 and a sequence
of molifiers {pn}, (xB, f) * pn € C°(RY) and (xB, f) * pn — f in L¥9(RY), where x,, is
the indicator function of the ball B,, centered at the origin of radius n. Furthermore, there
is a subsequence {ny} such that lim, oo Ga[(XB., f) * pn,](2) = Galf](2), Ca,sq-quasi
everywhere. Using Fatou’s lemma and lower semicontinuity of the norm

NGa[f]dU < liminfy,, o0 NGa[(XBnk f) * pn,Jdo
R R

Ga[(XBnk f) * pn,]

< lim info, o0 10l o

<Nl (Losa@myy 1GalflllLasa@ry -

Therefore (2.47 ) also holds for all f € L%9(RY), f > 0. Consequently o € M’ (RY) N
(L**49(RN)) satisfies

/}RNGa[f]da

Step 2. We assume that p has no longer compact support. Set Q,, = {z € Q : dist (z, Q°) >
n~l x| < n}, then Q, C Q, C Q41 C Q for n > ng such that Q,, # 0. Let {¢,} C
C>(RY) be an increasing sequence such that 0 < ¢, < 1, ¢,, = 1 in a neighborhood of Q,,
and supp(¢n) C Qpy1. and let v, = ¢, p. For n > ng there is o,, € MG (RY) N (L¥S9(RY))
with 0 < o, < v, and

< N0l zosa@ryy 1Galflllpocamyy V€ LYRY). (2.48)

1
2> Q%d(unan)z/ﬂnd(unan)[nd(uan)_

n

17



We set p, = sup{o1,02,...,0,}, then {u,} is nondecreasing and supp(u,) C Q,41, and
fi € MY (RY) N (L*2(RY))'. Finally, let ¢ € C.(2) and m € N* such that supp(¢) C Qy,.
For all n > m, we have

‘/ﬂwun - /QMM} < ‘/ﬂnd(u ~ i)

Thus g, — p weakly in the sense of measures.

Step 3. Assume that p € 9% (Q). Then 1, (Q2) < p(2). Thus

1
P Ly

pn(82) = pin(Qng) + Z Mn(ﬁkJrl \ Q)

k:’no

Since the sequence {1, } is nondecreasing and limy o0 fin(Qxr1 \ Q&) = (1 \ Qi )by the
previous construction, we obtain by monotone convergence

Jim 11, (Q) = p(Q2n) + D> Qi1 \ ) = p(Q)
k=ng

Next we consider ¢ € Cp(Q) := C(2) N L*>°(Q2), then

[ - /Qédu‘ < ‘/ﬂd(u ~ i)

Thus p, — p in the narrow topology of measures. 0

81 Loo () < (1(2) = pn (D)) [|8]] Lo () — O

As a consequence of Theorem 2.5 and Theorem 2.3 we obtain the following.

Theorem 2.6 Letp—1<s1 <00, p—1<s3<00,0<ap<N,R>0 and p € M, (Q).

If w is absolutely continuous with respect to the capacity C,,, = sa__, there exists a
's1—pF1’sg—ptl

nondecreasing sequence {p,} C M4 (Q) with compact support in @ which converges to u in
the weak sense of measures and such that me[,un] € Lsvs2(RN), for all n. Furthermore,

if p e Sﬁi (Q), pun converges to to p in the narrow topology.

Proof. By Theorem 2.5 there exists a nondecreasing sequence { i, } of nonnegative measures
with compact support in €2, all elements of (L“*” STopFL a3 pFI (RM))’, which converges weakly

top. Ifp e 9)?1_’F (), the convergence holds in the narrow topology. Noting that for a positive
measure ¢ in RY,

Goplo] € L7171 (RY) = 0 € (L7 7w 7571 (RV))

it implies Gaplun] € L77T7°T(RY). Then, by Theorem 2.3, W& [u,] € L*52(RY).
O
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3 Renormalized solutions

3.1 Classical results

Although the notion of renormalized solutions is becoming more and more present in the
theory of quasilinear equations with measure data, it has not yet acquainted a popularity
which could avoid us to present some of its main aspects. Let €2 be a bounded domain in
RN, If u € MP(Q), we denote by pt and pu~ respectively its positive and negative part. We
denote by M(£2) the space of measures in Q which are absolutely continuous with respect
to the csﬁp-capacity defined on a compact set K C Q by

c?,p(K):inf{/ |V¢|pdx:¢ZXK,¢EC§°(Q)}. (3.1)
Q

%p-capacity.
Classically, any u € () can be written in a unique way under the form g = g + s
where 119 € Mo () NIMP(Q) and ps € M, (). We recall that any g € Mo(2) NMP(Q) can
be written under the form po = f — div g where f € L'(Q) and g € L Q).

For k > 0 and s € R we set Ty(s) = max{min{s, k}, —k}. We recall that if u is a
measurable function defined and finite a.e. in Q, such that Ty (u) € Wy(€) for any k > 0,
there exists a measurable function v :  — RY such that V7}(u) = X|u|<k? a.e. in © and
for all £k > 0. We define the gradient Vu of u by v = Vu. We recall the definition of a
renormalized solution given in [10].

We also denote M, (2) the space of measures in 2 with support on a set of zero ¢

Definition 3.1 Let i = o+ p1s € MP(Q). A measurable function u defined in Q and finite
a.e. is called a renormalized solution of

—Apu =4 in

u=20 on 09, (3.2)

if Ti(u) € WaP(Q) for any k > 0, |V’ ™" € L™(Q) for any 0 < r < -, and u has the

property that for any k > 0 there exist )\z, AL € fmi(Q) N Mo (), respectively concentrated
on the sets u = k and v = —k, with the property that )\Z — pf, Ay — pg in the narrow
topology of measures, such that

/ \Vul’~? VuVe dz = / ¢dpio + / GdN| — / PdA (3.3)
{lul<k} {lul<k} Q Q

for every ¢ € Wy P(Q) N L>(Q).

Remark. If u is a renormalized solution of problem (3.2 ) and p € M (Q), then u > 0 in €.
Indeed, taking k > m > 0 and ¢ = T, (max{—u,0}), then 0 < ¢ < m and we have

/ [Vul" "% VuVpde = / Ty (max{—u, 0})dpo + /Tm(max{—u, 0})dA;
{lu|<k} {lu|<k} Q

- / T (max{—u,0})dA;

Q

> —mA, (Q).
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Thus
; |V T (max{—u,0})[" <m\;(Q)

Letting k — oo, we obtain VT, (max{—u,0}) =0 a.e., thus v > 0 a.e. in Q.

We recall the following important results, see [10, Th 4.1, Sec 5.1].

Theorem 3.2 Let {u,} C MP(Q) be a sequence such that sup,, |pun| () < oo and let {u,}
be renormalized solutions of

—Apty, = fin in

Up =0 on 0f). (3.4)

Then, up to a subsequence, {u,} converges a.e. to a solution u of —Apu = p in the sense of

distributions in ), for some measure u € M°(Q), and for every k > 0, k‘l/ VT (u)|” < M
Q

for some M > 0.

Finally we recall the following fundamental stability result of [10] which extends Theo-
rem 3.2.

Theorem 3.3 Let = po + pt — py € MY(Q), with po = f — divg € Mo(Q), pf,u; €
MH(Q).  Assume there are sequences {fn} C LY(Q), {gn} < (LP ()N, {ni}, {2} C
M8 () such that f, — f weakly in L'(Q), g, — g in LP () and div g, is bounded in
M (), nt — ut and n2 — p in the narrow topology. If pn = fn — div g, +nL —n? and
un 18 a renormalized solution of (3.4 ), then, up to a subsequence, u, converges a.e. to a
renormalized solution u of (3.2 ). Furthermore Ty (un) — Ti(u) in WyP(2).

3.2 Applications
We present below some interesting consequences of the above theorem.
Corollary 3.4 Let u € M*(Q) with compact support in  and w € MP(Q). Let {fn} C

LY (Q) which converges weakly to f € LY () and p, = pn * u where {p,} is a sequence of
mollifiers. If u, is a renormalized solution of

—Aptp = frn + tin +w mn Q
Uy =0 on 012, (3.5)
then, up to a subsequence, u, converges to a renormalized solution of
-Au=f+p+w in Q
u=0 on 0f2. (3.6)

Proof. We write w = h — divg+wl —w; and p=h—divg+ uf — p;, with h, he LY(Q),
9,9 € (Lp, ()N, h, g, pt and p; with support in a compact set K C Q. For ng large
enough, p,, * I, pp * g, pn * pTand p, * p; have also their support in a fixed compact subset
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of Q for all n > ng. Moreover p,, xh — h and p, xg — g in L'(Q) and (Lp/ (2))N respectively
and div p, * g — div g in W12 (Q). Therefore

fn+,un+w:fn+h+pn*h_div(g+pn*g)+w:+pn*uj_w; — Pn ¥
is an approximation of the measure f + p+ w in the sense of Theorem 3.3. This implies the

claim. O

Corollary 3.5 Let p; € M (Q), i = 1,2, and {p;n} C ML(Q) be a nondecreasing and
converging to p; in M4 (Q). Let {fn} C L'(Q) which converges to some f weakly in L' ().
Let {9,} C MP(QY) which converges to some ¥ € M4(Q) in the narrow topology. For any
n € N let u,, be a renormalized solution of

*Apun = fn + Hin — H2,n + 1971 in Q
U, =0 on 0f). (3.7)
Then, up to a subsequence, u, converges a.e. to a renormalized solution of problem
—Apu=f+p —p2+79 in §2 (3.8)
u=20 on 0RQ. '

The proof of this results is based upon two lemmas

Lemma 3.6 For any p € Mo(Q) NINE (Q) there exists f € L'(Q) and h € W=L2'(Q) such
that u= f + h and

£l ) + 1Pl 10 () + [P llans () < 5p(€2). (3.9)

Proof. Following [9] and the proof of [7, Th 2.1], one can write i = ¢y where y € W12 ()N
M8 () and 0 < ¢ € L1(Q,7). Let {Q,}nen, be an increasing sequence of compact subsets
of Q such that U,Q, = Q. We define the sequence of measures {vy, }nen, by

vn = Tn(X0,®)Y — Tn-1(x0, ,¢)y forn >2
vy = Ti(xa, ¢)7-

o0
Since v, > 0, then Zuk = u with strong convergence in 9M°(Q), [Vkllone () = ve(€)
k=1

and Z [Vkllope (o) = 1(§2). Let {pn} be a sequence of mollifiers. We may assume that
k=1
Nn = Pn *Vn € CSO(Q),
17 = vnllw 10 ) < 27" 1(2)
Set fn = th then an”Ll(Q) < ZHTHCHLI(Q) < ZHVkab(Q) < w(Q). If we define
k=1

k=1 k=1
n

f = 1imy oo fn, then f € LNQ) with | f]l 1 q) < #(R). Set hy = Y (vx — n), then
k=1

b, € W12 (Q) NP (Q), 1nllyy 107 () < 2u(2) and hy, converges strongly in w12 (Q)

to some h which satisfies [|Ally -1 (q) < 20(2). Since p = f 4+ h and [[Allgps o) < 20(2),

the result follows. g
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Lemma 3.7 Let p € ML (Q). If {pn} C M (Q) is a nondecreasing sequence which con-
verges to pu in IMMP(Q), there exist F,, F € L*(), Gp,G € W1 (Q) and jin s, jts € Mo (Q)
such that

,U/n:,U/nO""Mns:Fn'*'Gn"'Mns and N:MO+N52F+G+M55
such that F, — F in LY(Q), G, — G in W=7 (Q) and in MO(Q) and i, s — ps in M),
and
[Fnll 1) + 1Gallw-10r @) + 1Gallans ) + 110 s lone ) < 61(82). (3.10)

Proof. Since {p,} is nondecreasing {0} and {u, s} share this property. Clearly
e = bl (@) = o = pnollaws (@) + l1ts = pnsllows (@) »

thus pino — po and pin s — s in MP(Q). Furthermore ||1“n8||£mb(ﬂ) < ps(Q) < (). Set
oo =0 and fin9 = tino — n—10 for n € N,. From Lemma 3.6, for any n € N, one can find
fn € LX), hyy € WL (Q) N ONP(Q) such that fino = fn + hyn and

IfnllLr) + lanllw 1.0 @) + [1Bnlloe ) < 5fino(€2).

If we define F,, = fy and G, =Y hy, then p,0 = F, + Gy, and
k=1 k=1

[Enll 1) + 1Gnlly -1 () + 1Gnllops o) < 5io(€2).

Therefore the convergence statements and (3.10 ) hold. U

Proof of Corollary 3.5. We set v, = fr, + tin1 — tin,2 + Uy and v = f + 1 — p2 + 9. From
Lemma 3.7 we can write

Vn:fn+F1n_F2n+G1n_G2n+M1ns_,U/2n5+79n

and
v=f+F —F+G -G+ pis— pas + 9,

and the convergence properties listed in the lemma hold. Therefore we can apply Theo-
rem 3.3 and the conclusion follows. |

In the next result we prove the main pointwise estimates on renormalized solutions.

Theorem 3.8 Let Q be a bounded domain of RN . Then there exists a constant ¢ > 0,
dependent on p and N such that if u € MP(Q) and u is a renormalized solution of problem
(3.2 ) there holds

—eWI ] < u(e) < WSOt ace. in Q. (3.11)
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Proof. We claim the there exist renormalized solutions u; and ug of problem (3.2 ) with
respective data u and pu~ such that

—ug <u<u a.e. in Q. (3.12)

We use the decomposition p = p* —u= = (ug — pud) — (g — p5). We put ug, = Ty (u),
Mk = 1ju)<kitro + )\; — AL, Uk = 1{|u\<k},U(J)r + )\z. Since p € Mo(Q), problem (3.2 ) with
data py admits a unique renormalized solution (see [7]), and clearly uy is such a solution.
Since v, € M(2), problem (3.2 ) with data v admits a unique solution wuy; which is
furthermore nonnegative and dominates uy a.e. in . From Corollary 3.5, {uy 1} converges
a.e. in Q to a renormalized solution u; of (3.2 ) with data ™ and u < uy. Similarly —u < us
where ug is a renormalized solution of (3.2 ) with x~. Finally, from [17, Th 6.9] there is a
positive constant ¢ dependent only on p and N such that

up(z) < ch;lfam Qut] and wo(z) < cWi?f“m u7] ae. in Q. (3.13)

This implies the claim. U

4 Equations with absorption terms

4.1 The general case

Let g : QxR +— R be a Caratheodory function such that the map s — g(x, s) is nondecreasing
and odd for almost all z € Q. If U is a function defined in 2 we define the function go U in
Q by

goU(z) =g(x,U(x)) for almost all z € 2.

We consider the problem

—Apu+gou=p in Q

u=0 in 0Q. (4.14)
where p € MP(Q). We say that u is a renormalized solution of problem (4.14 ) if gou € LY(Q)
and w is a renormalized solution of

—Ayu=p—gou in Q
u=20 in 09. (4.15)
Theorem 4.1 Let u; € Qﬁi (Q), i = 1,2, such that there exists a nondecreasing sequences
{in} C ME(Q), with compact support in Q, converging to p; and g o (CWi‘Zf‘lmQ[ui,n]) €
LY(Q) with the same constant c as in Theorem 3.8. Then there exists a renormalized solution

of

—Apu+gou=p — 2 in Q
such that _ _
—eWI n](2) < u(w) < eWEF Y u](2)  ace. in . (4.17)
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Lemma 4.2 Assume g belongs to L>°(Q x R), besides the assumptions of Theorem 4.1. Let
i € MY(Q) (i =1,2), with compact support in Q. Then there exist renormalized solutions
u, u;, v; (i =1,2) to problems

—Apu+gou=2A — A in

v =) o0, (4.18)
—Ayu;+go Zi i ())\z EZ 297 (4.19)
7Apzz - Si Z gﬂ, (4.20)

such that
— W15 g (@) < —va(w) < —us(w) < ulx) (4.21)

< ui(2) < vi(@) < WG D ()
for almost all x € Q2.
Proof. Let {pn} be a sequence of mollifiers, A\;,, = pn * As, (i = 1,2) and A\, = A1, — Ao -

Then, for ng large enough, A1, A2, and A, are bounded with compact support in € for all
n > ng and by minimization there exist unique solutions in VVO1 "P(Q) to problems

—App +gou, = A, in Q
Up =0 in 09,
—ApUin + GO Uin = Ain in
Ujn = 0 in 8(2,
—Ap’l)i,n = )‘iﬂl in
Vin = 0 in GQ,

and by the maximum principle, they satisfy
—Ug () < —ugpn(z) < up(z) < upp(z) <vin(x), Vee, Vn>ng. (4.22)

Since the A; are bounded measure and g € L*°(Q2 x R) the the sequences of measures
Din—an—goun}, {Nin—gou;,} and {\;,,} are uniformly bounded in 9*(2). Thus, by
Theorem 3.2 there exists a subsequence, still denoted by the index n such that {u,}, {uin},
{vin} converge a.e. in Q to functions {u}, {u;}, {vi} (i =1,2) when n — co. Furthermore
gou, and g o u;, converge in L1(2) to g ou and g o u; respectively. By Corollary 3.4,
we can assume that {u}, {u;}, {v;} are renormalized solutions of (4.18 )-(4.20 ), and by
Theorem 3.8, v;(z) < cWiHam Q) ](z), a.e. in Q. Thus we get (4.21). O

Lemma 4.3 Let g satisfy the assumptions of Theorem 4.1 and let \; € M%(Q) (i = 1,2),
with compact support in Q such that g o (cWiiiam @) [)\i]) € LY(Q), where c is the constant
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of Theorem 4.1. Then there exist renormalized solutions u, u; of the problems (4.18 )-(4.19
) such that

—eWHE D Da](@) < —us(e) < u(a) < w(@) < Wi D) (4.23)

for almost all x € Q. Furthermore, if w;, 0; have the same properties as the \; and satisfy
w; < N\ < 6;, one can find solutions u,,, and ug, of problems (4.19 ) with right-hand respective
side w; and 0;, such that u,, < u; < ug,.

Proof. From Lemma 4.2 there exist renormalized solutions uy, u; , to problems

—Apuy +Th(goun) = A1 — Ao in Q
Uy =0 on 012,
and
—Apui,n + Tn(g o) ui,n) =\ in Q
Uiy =0 on 012,
i = 1,2, and they satisfy
—cWiiwm @ Ao])(z) < —ugpn(z) < up(z) < up,(z) < cWiffam @ [A1](z)- (4.24)

Since / lgounldr < A ()4 A2(R2) and /g ou; pdr < X;(Q2) thus as in Lemma 4.2 one can
Q Q

choose a subsequence, still denoted by the index n such that {u,, u1,n, vz, } converges a.e. in

Q to {u,uy,us} for which (4.24 ) is satisfied a.e. in Q. Since go (CW2 diam (1) [/\1]) € LY(Q)

Lp
we derive from (4.24 ) and the dominated convergence theorem that T,,(g o u,) — g o u and
To(gouin) = gou; in L(Q). Tt follows from Theorem 3.3 that u and u; are respective

solutions of (4.18 ), (4.19 ). The last statement follows from the same assertion in Lemma 4.2.
O

Proof of Theorem 4.1. From Lemma 4.3, there exist renormalized solutions u,, u;, to
problems

_Apun +goun = pin— t2n in
Up =0 on 0f),
and )
_Apui,n +gOoUin = [hin in Q
Ui =0 on 012,

i = 1,2 such that {u;,} is nonnegative and nondecreasing and they satisfy
— W5 V) (2) < —unn(@) < wnle) < wra(e) < W Plu](@) (4.25)

a.e. in . As in the proof of Lemma 4.3, up to the same subsequence, {u1 ,}, {u2,} and
{un} converge to ui, uz and w a.e. in Q. Since g o u;, are nondecreasing, positive and

g o Uindr < p;n(2) < pi(2), it follows from the monotone convergence theorem that

Q
{g o u;n} converges to g ou; in LY(Q). Finally, since |gou,| < gowus + gouz, {goun}
converges to gowu in L'(£2) by dominated convergence. Applying Corollary 3.5 we conclude
that w is a renormalized solution of (4.16 ) and that (4.17 ) holds. O
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4.2 Proofs of Theorem 1.1 and Theorem 1.2

We are now in situation of proving the two theorems stated in the introduction.

Proof of Theorem 1.1. 1- Since pu is absolutely continuous with respect to the capacity
, uT and p~ share this property. By Theorem 2.6 there exist two

P NG DR i
nondecreasing sequences {p1,,} and {p2,} of positive bounded measures with compact
support in  which converge to ™ and p~ respectively and which have the property that

W 1in] € LNN_jﬂ’q(RN), for i = 1,2 and all n € N. Furthermore, with R = diam (Q),

[ W) < [7 () 0 (W) ©)

q

< e /O mtiﬁ (W3R [ia])" (1)) at

N (4.26)
2R, . q
< can [WEElminlll] s
< oQ.
Then the result follows from Theorem 4.1.
2- Because p is absolutely continuous with respect to the capacity C so are

Ng
P NGOy
put and p~. Applying again Theorem 2.6 there exist two nondecreasing sequences {p1,n}
and {psa,,} of positive bounded measures with compact support in £ which converge to u™

and p~ respectively and such that W [u;,] € LNLjﬂ’l(RN ). This implies in particular

* _N=8
(Wilin]() (t) < esst™ 7o, Yt > 0, (4.27)

for some c34 > 0. Therefore, by Theorem 2.3
1 2R & 1\" 2R *
/ng (W3 i) (2)) do < /O (W) (t)g (C (W3 [1in]) (t)) dt

Sess [ o (e (Wit ()

1l q N_p (4.28)
< 036/ —9 (035Ct_N_") dt
0o IV
< 037/ g(t)t—atdt
< 00,
where a > 0 depends on |, cs5¢, N, 8, ¢. Thus the result follows by Theorem 4.1. O

Proof of Theorem 1.2. Again we take R = diam (Q). Let {Q,}nen, be an increasing
sequence of compact subsets of €2 such that U, 2, = Q. We define p; , = T (xa, fi) + X, Vi
(i =1,2). Then {u1,,} and {2, } are nondecreasing sequences of elements of MY () with
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compact support, and they converge to u™ and p~ respectively. Since for any € > 0 there
exists ¢, > 0 such that

A - A
(Wﬁi[um]) <enr1+ (1+¢) (W%f,[ui]) , (4.29)
a.e. in €, it follows
exp (T (chfZ[m,n])A) < Ce,c XD (T(l +e€) (CW%Z[VZ']))\) . (4.30)
If there holds -
(-1 -1) pln2 \
M, or* i <\ =5 : 4.31
H P2l v L= (Q) (T(12)\C)’\ ( )
we can choose € > 0 small enough so that
In2
(14 €)c* < PR S
(r-1)(A-1) -1
(120)* M, 5" v
' L= (Q)

Hence, by Theorem 2.4 with n = w, exp (7’(1 +¢) (cW%f;[Vi]))\) € LY(Q), which

. A
implies exp (T (cWiC;mm @) [,uln]) ) € L'(Q). We conclude by Theorem 4.1. O
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