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A Rayleigh-Plesset-like equation is derived to model the radial oscillation of a contrast agent microbubble
attached to an elastic wall. The derived equation shows that contact with the wall affects the bubble oscillation as
if the bubble oscillated in a liquid with a changed (effective) density. As a result, depending on the wall
properties, the resonance frequency and the oscillation amplitude of the attached bubble can be either lower or
higher than those of the same bubble in an unbounded liquid. Numerical simulations were made to investigate
the acoustic response of an attached contrast microbubble. It was assumed that the bubble shell properties are
described by the Marmottant model and the properties of the wall correspond to walls of OptiCell chambers
commonly used in experiments. It has been found that contact with the wall can considerably change the
intensities of the fundamental component and the second harmonic in the spectrum of the bubble scattered
pressure relatively to their values in an unbounded liquid.

Introduction

Interest in the problem under study is motivated by the
fact that both in vitro and in vivo, the dynamics of contrast
agent microbubbles is affected by various boundaries, such
as walls of experimental containers and blood vessels.
Experimental data show that the proximity of boundaries
can produce considerable changes in the acoustic response
of a contrast microbubble [1-3]. For example, Garbin et al.
[3] observed that the oscillation amplitude of a BRI14
microbubble (Bracco Research SA, Geneva, Switzerland)
was suppressed by more than 50% near the wall of an
experimental  OptiCell chamber (BioCrystal, Ltd.,
Westerville, OH). Theoretically, however, the effect of a
boundary on the dynamics of a contrast microbubble is still
a little-studied problem. As a matter of fact, most available
theoretical models are restricted to the interaction of a
bubble with a rigid wall [4-8]. In models considering other
types of boundaries [9,10], it is assumed that the distance
between the bubble and the wall is much larger than the
radius of the bubble.

The purpose of the present study is to reveal how
contact with a boundary changes the acoustic response of a
contrast microbubble. To this end, a Rayleigh-Plesset-like
equation is derived that describes the radial oscillation of an
encapsulated bubble attached to an elastic wall. This
equation is then used in numerical simulations in order to
establish how contact with the wall affects the resonance
properties and the scattered echo of the attached bubble.

2 Theoretical model

The geometry of the system being investigated is shown
in Fig. 1. It is assumed that the bubble is surrounded by an
inviscid incompressible liquid and undergoes radial and
translational oscillations, remaining in contact with the wall
all the time. The effect of the wall is allowed for by using
the method of image sources. Namely, instead of the wall,
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Figure 1: An encapsulated bubble oscillating in contact
with an elastic wall.
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a virtual bubble is introduced, assuming that the moving
center of this bubble is at the same distance from the liquid-
wall interface as the moving center of the real bubble and
the radii of the bubbles are related by R,(¢) = eR,(f), where ¢
is a constant.

2.1 Scattered field in the liquid

The velocity potential in the liquid can be represented as
oL = @1 + @2, Where @, and ¢, are given by

0. =Y a, (R [r)" Pcosh) (o)

=35, (0)(1,/d)" P.(c0s6,), (2b)

0=, ()R )" Beost) @
5

- 2;)2”(:)(;»1 /d)" P(cosf)) - (2b)

Here, P, is the Legendre polynomial and d = 2R, is the
distance between the bubble centers. Equations (1b) and
(2b) are used to satisfy the boundary conditions on the
bubble surfaces. The functions b, and b, can be expressed
in terms of a;,, and a,, by using mathematical identities that
establish linkage between spherical harmonics in different
coordinates [11]. The result is the following:

o 1\ymU-1)
b, =ty EV G

2m+l Jm

3)

m=0

where j = 1,2 and C,,, = (ntm)!/(n!m!). The functions qa,
and a,, are found using the boundary conditions for the
normal component of the liquid velocity at the surfaces of
the bubbles, which are written as

0p,
or,

J

:Rj+5cjcos0j at r,=R.(1). “4)

where the overdot denotes the time derivative and x,(f) is
the position of the moving center of the jth bubble on the
axis z. Note that from x; = Ry — R; and x, — x; = 2R, it
follows that

X, =(-1yR,. (5)
Substituting Egs. (1), (2), (3), and (5) into Eq. (4), one finds
that the functions a;, and a,, can be calculated as follows:

(6)

- 5 30D
a, =—RRe" a,.

Here, oy, is a time-independent quantity given by
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where ﬂ,gfn) is calculated by the following recurrence

equations:
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Here, 6,, is the Kronecker delta,
integer part of (m-1)/2, and

[(m-1)/2] means the
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2.2 Scattered field inside the wall

It is assumed that the material of the wall behaves as an
elastic solid whose motion is governed by the following
equation [12]:

2
82

where u is the displacement vector, py is the wall density,
K is the bulk modulus, and # is shear modulus. We assume

(12)

which means that we allow for longitudinal (compressive)
waves in the wall material and neglect transverse (shear)
waves. The displacement potential ¢ is taken as

= pAu+ K+ y/3)V(V-u), (11)

u=Vo,,

y =D e (R /r) " Bieost). ()

To find ¢,, the boundary condition for the normal velocity
at the liquid-wall interface is used,

o
n-Vo, =n-V—L, (14)
@ o

where # is the inward unit normal to the wall. The resulting
expression for ¢, is found to be

2

— Rl n+l 3
n __n+3|:a1n +(_1) 3 aZn:' (15)

)

2.3 Calculation of ¢

To find ¢, the normal force balance on the liquid-wall
interface is used,

(16)

where p; is the time-varying pressure in the liquid and o, is
the normal component of the stress tensor of the wall
material, given by [12]

_pL:Gzz at ’/i:rZ’

(17

= K(V- u)+2y@; %V-u).
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As Eq.(16) is valid for any point on the liquid-wall
interface, one can use the limiting form of this equation at
ry = r, — oo, In this limit, the expressions for p; and o, take
the following form:

_p+e)d

R’R (18)
L " dt ( )
ﬁ(g -1 d
R’R, 19)
P04 i),
where p; is the liquid density and £ is given by
3K-2u va
=p, — (20)
f=p 3K+4u C1-v’

with v denoting Poisson’s ratio. Substitution of Egs. (18)
and (19) into Eq. (16) yields

=3ﬂ_p1,

. (21)
p.tB

2.4 Equation for the bubble radius

To obtain the equation for R,(¢), we apply the method of
the Lagrangian formalism. Recall that the presence of the
elastic wall is replaced with the presence of a virtual
bubble. As a result, we get the system of two bubbles
surrounded by an infinite liquid identical to the liquid
surrounding the real bubble. The kinetic energy of this
system is given by

_P 2
T_7LJ;(V<pL) av ., (22)

where V' is the volume occupied by the liquid. Equation
(22) can be recast to

=—7p,R'R, jqoL |r1:R1 (1-cos6,)sin6,d6,
0

—7p, RIR&” I¢L |, (€+c0s6,)sin6,d0, . (23)
0
The calculation of Eq. (23) gives the following result:
T= 3 pLR R E(e), (24)
where the function E(¢) is defined as
E(g)=6+5" +6& +(&’ —2)a,, + &'y,
SS—n B
+83Z 2n+1 [aln + (_1) aZn:' : (25)
n=2
The potential energy of the system can be written as
4
R riR)- o2 )00

where P, and P, are pressures that do work on the real
bubble and on the virtual bubble, respectively. The virtual
bubble is assumed to experience the same pressure
amplitude, i.e., |P,|=|P;|, but the pressure sign can be
opposite. If the bubbles pulsate in phase, ¢ > 0 and P, = P;.
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If they pulsate out of phase, ¢ < 0 and P, = —P;. As a
consequence, Eq. (26) becomes

4
U=—7R53(1+|g|3). 27)
Substituting Egs. (24) and (27) into the Lagrangian function
L =T— U and then into the Lagrangian equation,

d oL oL

. =0, (28)
dt OR OR,

one obtains the following equation for the bubble radius:

3 A@)

S pLT(S)

where the function 7(¢) is given by
E
re)=— &) (30)
6(1+|z[)

The pressure P;(f) can be written as

R _, R

1= LGo ( R j n. R 0o L

where Pg is the equilibrium gas pressure inside the real
bubble, y is the ratio of specific heats of the gas, #; is the
shear viscosity of the liquid, Py is the hydrostatic pressure
in the liquid, P, is the driving acoustic pressure, and the
term S describes the effect of encapsulation. Note that in
modern encapsulation models, such as [13] and [14], the
surface tension term is incorporated into the model
formulation. Therefore, we do not include it explicitly in
Eq. (31).

The scattered pressure produced by the bubble in the
far-field zone, i.e., at 7, >> Ry, can be evaluated from
Eq. (18), substituting the value of ¢ from Eq. (21). The
resulting expression is as follows:

P (R12R1 + ZRIRIZ) 2B
p.+ B

pL(rl >> R1)= (32)

Ul

3 Numerical simulations

Equation (29) shows that for a bubble being in contact
with a wall, the liquid density gains a dimensionless factor ¢
that depends on the mechanical properties of the wall. As a
consequence, the bubble oscillates as if it were in a liquid
with an effective density p.i = 7p;. Depending on the wall
properties, 7 can be either larger or smaller than 1 so the
effective density can be either higher or lower than the real
liquid density. This means that the resonance frequency of
an attached bubble can be respectively lower or higher than
the resonance frequency of the same bubble in an
unbounded liquid.

In the limiting case of a rigid wall, f — o, e = 1, and
Eq. (30) gives T = 1.48984. For real walls, values of 7 are
smaller. As an example, let us consider the wall of an
OptiCell chamber. Such chambers are widely used in
experiments on contrast agent microbubbles [3,15].
OptiCell chambers have polystyrene walls with the
following mechanical parameters: py = 1060 kg/m’, K =
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3.75 GPa, and x4 = 1.34 GPa. In the case that the adjacent
liquid is water with p, = 1000 kg/m’, one gets 7= 0.622024.
Differences in the behavior of a contrast agent microbubble
attached to a rigid wall and that of the same bubble attached
to an OptiCell wall are illustrated in Fig. 2. The simulations
have been carried out by means of the program package
MATHEMATICA (Wolfram Research, Inc., Champaign,
IL). The following values of the physical parameters were
used: Py =101.3 kPa, n, = 0.001 Pa-s, the surface tension of
water o, = 0.072 N/m, the sound speed ¢ = 1500 m/s, and y
= 1.07. The effect of encapsulation on the dynamics of the
bubble was simulated by the shell model developed by
Marmottant et al. [13]. A modification of this model
proposed by Overvelde et al. [15] was used. The values of
the shell parameters for the Marmottant model were also
adopted from [15]: shell viscosity ks = 0.6x10™ kg/s, shell
elasticity y = 2.5 N/m, and initial surface tension o(R,) =
0.02 N/m. These values were obtained in [15] for the
phospholipid-shelled  contrast agent BR-14. The
equilibrium gas pressure in Eq. (31) was calculated as Pgy =
Py + 20(Ry)/Ry. The bubble resting radius was set equal to
2 um. The bubble was insonified with a 10-cycle, 40 kPa
Gaussian pulse with a center frequency in the range 1.0 —
4.5 MHz. The parameters of the pulse correspond to the
conditions under which the values of the shell parameters
were evaluated in [15].
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Figure 2: Resonance curves for (a) the radial oscillation and
(b) the scattered pressure of an encapsulated microbubble
oscillating in an unbounded liquid (dashed line), in contact
with a rigid wall, and in contact with an OptiCell wall.

Figure 2(a) shows resonance curves for the bubble
radial oscillation. R, denotes the maximum value of the
bubble radius R(f) during the oscillation. The dashed line
corresponds to the bubble in an unbounded liquid.
Figure 2(b) shows resonance curves for the scattered
pressure of the bubble in the far-field zone. Py, stands for
the peak amplitude of the scattered pressure calculated by
Eq. (32) at r; = 0.01 m. As one can see in Fig. 2, contact
with the rigid wall decreases the resonance frequency of the
bubble as compared to its resonance frequency in an
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unbounded liquid, whereas contact with the OptiCell wall
increases the resonance frequency of the bubble. The
bubble oscillation amplitude can either decrease or increase
depending on the value of the driving frequency.
Figure 2(a) shows that the resonance frequency of a 2-ym-
radius bubble with the Marmottant shell is about 2.1 MHz
in an unbounded liquid. If the bubble is driven at, say, 1.9
MHz, contact with the rigid wall will increase the
oscillation amplitude of the bubble, whereas contact with
the OptiCell wall will decrease it. At 3 MHz, the reverse is
true. These results suggest that the model of a rigid wall
appears not to be an adequate approximation for walls
occurring in most applications associated with contrast
agent microbubbles.

(a)

22

21

R(®) (nm)

P@t) (Pa)

Time (us)

Figure 3: Examples of (a) radius-time and (b) pressure-time
curves for a 2-um-radius encapsulated bubble oscillating in
an unbounded liquid and in contact with an OptiCell wall.

Figure 3 provides examples of radius-time and pressure-
time curves for the same bubble as in Fig. 2. It is assumed
that the bubble is insonified with a 10-cycle, 40 kPa, 2.1
MHz Gaussian pulse. It is of interest to note that the
“Contact” curve in Fig. 3(a) shows the initiation of the
second harmonic in the bubble oscillation. The nonlinearity
of Eq. (32) increases this effect in the scattered pressure as
follows from the “Contact” curve in Fig. 3(b). The Fourier
spectra of the pressure-time curves shown in Fig. 3(b) are
presented in Fig. 4. The spectra are normalized to the
magnitude of the fundamental component of the spectrum
for the bubble in contact with the wall. Figure 4 confirms
that in the case being considered, contact with the OptiCell
wall gives rise to a strong second harmonic which even
predominates over the fundamental component. This
apparently occurs because contact with the wall shifts the
bubble resonance frequency so that it becomes closer to
twice the driving frequency and hence more favorable
conditions for the development of the second harmonic are
created.
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It is worth noting that Eq. (29) can be used even if the
mechanical properties of a wall are unknown. In this case,
the value of = can be evaluated by fitting simulated radius-
time curves to experimental data. Setting first ¢ = 1 and
fitting the experimental radius-time curve of a contrast
bubble being far away from a wall in question, one can
evaluate the shell parameters of this bubble. Then, fitting
the experimental radius-time curve of the same bubble
being in contact with the wall, one can find the value of ©
characterizing the mechanical properties of the wall.
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Figure 4: Fourier spectra of the pressure-time curves shown
in Fig. 3(b).

4 Conclusion

A Rayleigh-Plesset-like equation has been derived that
describes the radial oscillation of an encapsulated bubble
attached to an elastic wall. It has been found that the liquid
density in this equation gains a dimensionless factor 7 that
is dependent on the mechanical properties of the wall and
the density of the adjacent liquid. As a result, contact with
the wall affects the bubble oscillation as if the bubble
oscillated in a liquid with an effective density pegs = pz. In
the limiting case of a rigid wall, = 1.48984. For real walls,
7 is smaller. In particular, for polystyrene walls of OptiCell
chambers used in experiments, if the adjacent liquid is
water, 7 = 0.622024. Thus, depending on the wall
properties, T can be either larger or smaller than 1. This
means that the effective density can be either higher or
lower than the real liquid density and hence the resonance
frequency of an attached bubble can be respectively lower
or higher than the resonance frequency of the same bubble
in an unbounded liquid.

Numerical simulations have been made for a bubble with
shell properties similar to those used in the Marmottant
shell model. The simulations have shown that contact with
the rigid wall decreases the resonance frequency of the
bubble as compared to its resonance frequency in an
unbounded liquid, whereas contact with the OptiCell wall
increases the resonance frequency of the bubble. It has also
been found that the oscillation amplitude of the bubble
attached to the OptiCell wall can either decrease or increase
depending on the value of the driving frequency. The
simulations also revealed that contact with the wall can
considerably change the intensities of the fundamental
component and the second harmonic in the spectrum of the
bubble scattered pressure relatively to their magnitudes in
an unbounded liquid.
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In closing, it should be noted that the proposed theory
ignores the viscous properties of the wall and the
occurrence of transverse waves. It is not improbable that
these effects may be of importance and hence the
development of a theory that would take them into account
could be of great interest.
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