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In order to improve the tissue characterization, the probability density function of ultrasonic backscattered 
echoes which may be treated as random signals, is modeled by using Nakagami statistical distribution. Recently, 
it has been found that Nakagami statistical model constitutes a quite good model in tissue characterization due to 
its simplicity and general character. 
In the present study, computer simulations and experiments on phantoms have been carried out to test the 
validity of Nakagami distribution in order to model the backscattered envelope of ultrasonic signals in the 
nonlinear case.  
Experiments were performed using a 5MHz linear array connected to an open research platform. A 
commercially available phantom was used to mimic tissue backscatter. For different sizes and positions of the 
sampling window,  the RF signals have been genrated at different frequencies and bandwidths, and the received 
echoes have been filtered around the center frequency and around twice the center frequency. Obtained signals 
have been analyzed in order to evaluate the Nakagami parameter (m), the scaling parameter (Ω) and the 
probability density function. These latter results have been compared to those obtained by using Field II 
software. 

1 Introduction 
Many researchers have used stochastic models to 

describe the probability density function (PDF) of the 
envelope of the backscattered echo of tissues which may be 
treated as a random signal. The parameters of these 
distributions depend on some characteristics such as the 
density (number of scatterers within the transducer 
resolution cell) and scattering amplitude related to the size 
of the scatterers. Among the commonly used distributions, 
we can quote Rayleigh distributions (square root of an 
exponential distribution), K-distribution [1] (square root of 
the product of a Gamma distribution with an exponential 
distribution), and Nakagami (square root of a Gamma 
distribution). The Rayleigh model which is commonly used 
[2], needs some conditions such as the presence of a large 
number of randomly located scatterers. Wagner [3] 
classifies the other models according to their Signal to 
Noise Ratio (SNR) compared with the SNR of Rayleigh 
distribution. The first class called pre-Rayleigh (SNR < 
1.91) describes heterogeneous texture. The second, called 
Rayleigh (SNR=1.91), defines the homogenous texture 
class. The third corresponding to the periodic texture is the 
post-Rayleigh class (SNR > 1.91). 

The K-distribution was shown to model pre-Rayleigh 
and Rayleigh texture [4, 5]. The two K-distribution 
parameters, provide information on the number of 
scatterers, the variation in the scattering amplitude and the 
average scattering amplitude. But it is not enough general 
to describe the statistics of the backscattered echo from 
range cells containing a periodic alignment of scatterers 
giving rise to post-Rayleigh.  Recently Nakagami statistical 
model initially proposed to describe the statistics of radar 
echoes, was shown to be able to quantitatively characterize 
biological tissues thanks to its two parameters, Nakagami 
parameter (m) and scaling parameter Ω [6]. In addition to 
the scattering amplitude and density, this model can take 
into account the regularity of the scatterers spacing [7]. 
Nakagami statistical model has comparatively less 
computational complexity than the other models and is 
enough general to describe a wide range of scattering 
conditions in medical ultrasound, including pre-Rayleigh, 
Rayleigh and post-Rayleigh distributions. Although the 
Nakagami distribution can fit well with the PDF of the 
ultrasonic envelope, a multiple statistical distribution may 
be more appropriate to model the envelope statistics, 
because the ultrasonic signals returned from the tissues may 
contain contributions from more than one mechanism [8]. 

This paper is organized as follows. First, we introduce 
Nakagami model and its parameters. Secondly , computer 
simulations and experiments on phantoms are processed 
with the estimation of the PDF and the two Nakagami 
parameters. The comparison, the discussion, and some 
concluding remarks close up the paper. 

2 Statistical model: Nakagami 
distribution 

The probability density function, of the envelope f(R) of 
the backscattered signal can be described in terms of the 
Nakagami distribution and is defined by: 

 ݂(ܴ) = 2݉௠ܴଶ௠ିଵ
Γ(݉)Ω௠ ݁ି௠Ωோమܷ(ܴ) 

 
(1) 

 
where ． ．Γ( ) and U( ) are the Gamma function and the unit 
step function, respectively. Nakagami parameter (m) and 
scaling parameter (Ω) can be calculated as follows: 
 ݉ = ሾܧ(ܴଶ)ሿଶܧሾܴଶ −  ሿଶ (2)(ଶܴ)ܧ

  
and 

Ω =  (3) (ଶܴ)ܧ
  

where E( . ) is the statistical mean. The scaling parameter 
refers to the average power of the backscattered envelope. 
Moreover, the Nakagami parameter is particularly useful 
for characterizing the probability distributions of ultrasonic 
backscattered envelopes, including the statistical conditions 
for pre-Rayleigh, Rayleigh, and post-Rayleigh distributions. 
When the resolution cell of the ultrasonic transducer 
contains a large number of randomly distributed scatterers, 
the envelop statistics of the ultrasonic backscattered signals 
obeys the Rayleigh distribution. If the resolution cell 
contains the scatterers with randomly varying scattering 
cross sections having comparatively high degree of 
variance, the envelop statistics are pre-Rayleigh 
distributions. If the resolution cell contains periodically 
located scatterers in addition to randomly distributed 
scatterers, the envelop statistics are post-Rayleigh 
distributions. Because the values of m ranging between 0 
and 1 reflect statistics ranging from pre-Rayleigh to 
Rayleigh distributions and larger values correspond to the 
PDFs of post-Rayleigh or Rician distributions, thus the 
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Nakagami parameter can be used to classify the properties 
of tissues. This has been validated in computer simulations 
experiments on phantoms [6, 8] and clinical measurements 
[9]. 

It is possible to see that the Nakagami distribution can 
be identified as belonging to the Gamma distribution class. 
If we define a new random variable A of Gamma 
distribution with parameters (α; β) and	R = √A, the 
probability density function f(R) can be written as: 

 ݂(ܴ) = 2βα
Γ(α) ܴଶαିଵ݁ିఉோమܷ(ܴ) (4) 

 
which is a Nakagami distribution with parameter (m =α; 

Ω = α/ β). For convenience, we use the density given by the 
Eq. (4). as the density function of the Nakagami distribution 
with parameters (α; β). The second order moment of this 
distribution is then given by: 

(ଶܴ)ܧ  = α
β

 (5) 

3 Experimental and theoretical 
results on phantoms 

Both experimental measurements and computer 
simulations were carried out to explore the effect of some 
physic parameters on the estimation of the Nakagami 
statistical parameters. 

The experimental arrangement includes an ultrasonic 
phantoms, a 5MHz linear array connected to an open 
research platform which is connected to a computer in order 
to visualize the machine interface where RF signals and B-
scan ultrasound images are displayed, as well as the 
different windows allowing the selection of various 
physical parameters of the system such as the transmission 
frequency, the bandwidth, the number of time samples of 
the RF signals, etc…. For different positions of the 
sampling window, the RF signals have been acquired at 
different frequencies (from 2 to 6 MHz) bandwidths of the 
excitation waveforms. The received RF waveforms are then 
filtered around the center frequency and around twice the 
center frequency in order to detect an eventual non linear 
effect. Tissues are known to be a nonlinear propagation 
medium and generate new frequency components. To better 
characterize tissue properties, it is necessary to take into 
account the nonlinear behavior in the statistical model. 

For the simulation, we used Field II software, developed 
by Jorgen Jensen [10] at the Technical University of 
Denmark, which is dedicated to the calculation of the 
pressure field at any point and whose major interest is to 
simulate probes of complex shape. By extension it allows 
the simulation of RF signals. This software has the 
advantage of simulating the contributions of the probe 
characteristics (shape, shooting strategy, excitation ...) on a 
2D or 3D digital phantom and obtains the corresponding RF 
signals [11]. Ultrasound images are obtained by examining 
tissue which is defined by their reflectivity, with a probe 
itself characterized by its impulse response. Ultrasonic RF 
signals thus result from summing the responses of the 
diffusers during the ultrasonic wave propagation. 

The results obtained from measurements and 
simulations were compared in order to study the effect of 
some physical parameters of the phantom on the sensitivity 

of the Nakagami parameters, in particular Nakagami 
parameter (m).  

The theoretical and experimental results are obtained for 
two square sampling windows of size 0.3 cm2 located at 
different positions inside the phantom, and for two different 
transmitting bandwidths (80% and 90%). The results show 
the same evolution of the Nakagami parameters according 
to the physical parameters. Changes in position of the 
sampling windows and bandwidth, does not influence too 
much on this evolution for the two transmitting ultrasonic 
frequency (Figures (1) and (2)). For the central frequency 
of 5 MHz, in most cases, the values of the Nakagami 
parameter are very close. 

 

 

Figure 1: Comparison of theoretical and experimental 
values of Nagakami parameters versus the transmitting 

frequency for different transmitted bandwidths and without 
filtering the detected waveforms. 

 

Figure 2: Comparison of theoretical and experimental 
values of the scale parameter versus the transmitted 

frequency for different bandwidths and without filtering the 
received signals.  

The Nakagami parameter according to the transmission 
frequency and the position of the sampling window and of 
the bandwidth, increases with the filtering and it is more 
important in the case of a filtering around 2f0 (Figures (3) 
and (4)). 

 

Figure 3: Comparison of theoretical and experimental 
values of Nagakami parameters versus the transmitted 

frequency for different values of the transmitted bandwidths 
and with a filtering of the received signal around 2f0.  
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Figure 4: Comparison of theoretical and experimental 
values of Nagakami parameters versus the filtering in the 

case for a transmitted frequency f0=5MHz.  

Moreover we have tested the effect a nonlinear 
logarithmic compression on the envelopes of the echo 
signals, given by the expression [12]:  ܼ = logଵ଴	(ܴ + 1). 

We notice the same evolution of the new Nakagami 
parameters estimated by a non linear logarithmic 
compression when compared to the original parameters 
previously estimated. Nevertheless we can notice that the 
variation of the former values of m and Ω are respectively 
in the range 0.8 to 1.8 and 0.05 to 0.2 respectively, while 
after the logarithmic compression these values are 
respectively in the range 10 - 26 for m and 0 - 0.8 for Ω 
(Figures (5) and (6)). 

 

Figure 5: Comparison of theoretical and experimental 
values of Nagakami parameters versus the transmitted 

frequency for different values of the bandwidth after a non 
linear logarithmic compression of the envelope and without 

filtering.  

 

Figure 6: Comparison of theoretical and experimental 
values of Nagakami Parameters versus the transmitted 
frequency for different bandwidths after a non linear 

logarithmic compression and without filtering.  

Figures ((7.a), (7.b), (8.a), (8.b)) represent the 
probability density function (PDF) of the backscattered 
envelope before and after nonlinear logarithmic 
compression for theoretical and experimental envelopes, 
respectively. 

 
(a) 

 

(b) 

Figure 7: The probability density function (PDF) of the 
theoretical backscattered envelope. 

 (a)Before logarithmic compression; (b) After 
logarithmic compression. 

 

 

(a) 

 

 
(b) 

Figure 8: The probability density function (PDF) of the 
experimental backscattered envelope. 

 (a)Before logarithmic compression; (b) After 
logarithmic compression. 

4 Conclusion 
The evolution of Nakagami parameters versus the 

physical parameters, such as the bandwidth, the emission 
frequency, the filtering around this frequency and the 
location of a sampling window in the phantom, is less 
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Nakagami fit (m=1.090 et Ω=0.164)
Experimental data
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Nakagami fit (m=19.091 et Ω=0.4170)
Experimental data
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important comparatively to the case when a nonlinear 
logarithmic compression is used. Thus the non linear 
logarithmic compression leads to Nagakami parameters 
more sensitive to the variation of the physical parameters, 
and then improves the sensitivity of the filtering around 
twice the centred frequency; this result would be used for 
improving the quality of images obtained by harmonic 
imagery. 
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