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Abstract

In this paper, a method based on subspace fitting is proposed for identification of faults in me-
chanical systems. The method uses the modal information from an observability matrix, provided by
a stochastic subspace identification. It is used for updating a Finite Element Model through the Vari-
able Projection algorithm. Experimental example aims to demonstrate the ability and the efficiency
of the method for diagnosis of structural faults in a mechanical systems.

1 Introduction
Detecting the damages in vibrating mechanical systems, at the earliest stage, is a crucial task in many
industrial sectors. Emergence of cracks is one example of damages occurring in a mechanical system
during its service life. Such phenomena can be understood as modifications of the modal parameters
of the structure (say the eigenfrequencies, the wave shapes and the damping factors). Identifying these
modal parameters and analyzing their variations in the time domain appears as an efficient means for
detecting and localizing these damages within the structure.
In recent years, sensibility-based Finite Element Model (FEM) updating methods [1, 11, 12, 15] have
been successfully used for damage assessment. In general, updating a FEM in structural dynamics
consist in adjusting the variables of numerical model to those provided by experimental datas.
In this work, a technique which is based on the subspace fitting methods [6, 7, 13] is presented. The
key idea behind subspace methods [4, 9, 14] is to consider a block Hankel matrix constructed from
the input/output vibrational signals of a mechanical system; the procedure consists in projecting this
Hankel matrix onto a subspace which is well suited for identifying the related modal parameters. The
procedure also consists in formulating an observability matrix using the QR factorization and sin-
gular value decomposition (SVD) procedure. Subspace fitting methods differ from the conventional
subspace methods in exploiting the whole observability matrix, rather than applying a simple shift
invariance procedure. This yields the modal parameters of the mechanical system to be identified
accurately in a least squares sense.
The prosed method aims at using any a priori information about the system dynamic which is deliv-
ered from a FEM can be incorporated into the problem. The theoretical observability matrix can be
built and is accounted for to solve the problem. This error between the experimental and numerical
solutions can be minimized through modal parameters using the Variable Projection (VP) algorithm
[2, 5, 23, 24].
The paper is organized as follow. In section two, the basics of the proposed method are presented.
The subspace fitting method is explained. In section three, an optimized algorithm is proposed which
enables the FEM of the system to be updated using the VP algorithm. Considering the damages of
the system is discussed in section four. The procedure allows the proposed method to be applied to a
structural health monitoring. An experimental experiment is finally presented in section five, which
show the capabilities of the method to detect, localize and diagnosis damages in an Euler Bernoulli
beam.
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2 Objective function
Subspace fitting [6] is a concept that exploits, the inherent shift structure of the observability matrix.
The observability matrix is obtained through a subspace identification technique, but in a different way
compared to the classical subspace methods. The objective is to find a FEM that best fit, in the least
square sense, the experimental data that represents the vibrating behavior of a complex mechanical
system. The subspace fitting is based on the following relation

Γexp = Γ(θ)T, (1)

where Γexp is the discrete observability matrix issue from a subspace identification procedure
. Γ is the theoretical observability matrix that depend on {θj}j , that is a set of parametrization pa-
rameters. Just as there are many realizations or coordinates systems that can be used to describe the
state-space, there are many identifiable parametrizations θj that can be chosen [7], each yielding a
different T that satisfies Eq.(1).

The proposed method aims at establishing a theoretical observability matrix, which is based from
a finite element model of the considered mechanical system. Using these FEM the modal parameters
are obtained by solving the following quadratic eigenproblem

(µ2
jM + µjC + K + iD)Φj = 0, (2)

where M, K, C and D ∈ Rn×n are the mass, stiffness, viscous damping and structural damping
matrices of the FEM respectively. The solution of the eigenproblem are {µj ,Φj}, the continuous
complex modal parameters composed of complex eigenvalues ∈ C2n×2n and eigenvectors ∈ Cn×2n

respectively.
Sampling FEM at rate ∆t yields the discrete stochastic modal state space form

qk+1 = Λqk + wk (3)
yk = Φobsqk + vk (4)

where Λ = eµ∆t and Φobs ∈ Cly×2n are the complex mode shapes at the ly output locations. wk

and vk ∈ R2n×1 are respectively process and measurement noise vectors. λj is connected to the jth
modal frequency fj and damping ratio ζj by

{λj , λ∗j} = e(−2πfjζj±i2πfj
√

1−ζ2j )∆t. (5)

From the state-space representation, the theoretical observability matrix is obtained by

Γ =


Φobs

Φobseµ∆t

...
Φobse(α−1)µ∆t

 , (6)

where α is an integral number which is chosen greater than twice the system order [4], also µ =
diagk{µk}. Due to the effects of noise, only an estimate of Γexp, says Γ̂ can be obtained by subspace
identification [14]. If one assumes that Γ depends on a set of scalar parameters θ = {θj} yields the
identification problem to be formulated as

{θ̂, T̂} = min‖Γexp − Γ(θ)T‖2F , (7)

where ‖.‖F denotes the Froebenus norm.
This problem can be resolved with the VP algorithm. This algorithm uses the fact that T can be
optimally expressed (for a θ fixed) as T̂ = Γ(θ̂)+Γexp, where Γ(θ)+ is the Moore-Penrose pseudo

inverse Γ(θ)+ =
(
ΓH(θ)Γ(θ)

)−1

ΓHth(θ̂). By using this solution for T the objective function to
minimize can be expressed as

θ̂ = argmin||r(θ)||22 (8)

where

r(θ) = vec
{

(I− Γ(θ)Γ(θ)+)Γexp

}
(9)
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3 Optimization algorithm
The Gauss-Newton algorithm is used to solve the minimization problem for r(θ). This algorithm is
based on the following relation [25]

θf+1 = θf − βfH−1g. (10)

where βf is a step size. g and H are, respectively, the Gradient and the Hessian matrices of
||r(θ)||22 defined as

gi = 2Re

{
rH

∂r

∂θi

}
, (11)

Hij ≈ 2Re

{
∂rH

∂θi

∂r

∂θj

}
, (12)

where [23]

∂r(θ)

∂θj
= vec

{
− ∂

∂θj

(
ΓΓ+

)
Γexp = −

(
∂Γ

∂θj
Γ+ + Γ

∂Γ+

∂θj

)
Γexp

}
, (13)

= vec

{
− ∂Γ

∂θj
Γ+Γexp − Γ

(
−ΓΓ+ ∂Γ

∂θj
Γ+ + (ΓHΓ)−1 ∂ΓH

∂θj
[I− ΓΓ+]

)
Γexp

}
,(14)

= vec

{{
−[I− ΓΓ+]

∂Γ

∂θj
Γ+ − Γ(ΓHΓ)−1 ∂Γ

∂θj
[I− ΓΓ+]

}
Γexp

}
, (15)

= vec

{
−

{
[I− ΓΓ+]

∂Γ

∂θj
Γ+ +

(
[I− ΓΓ+]H

∂Γ

∂θj
Γ+

)H}
Γexp

}
. (16)

This expression can be simplified to yield [2, 5, 24]

∂r(θ)

∂θj
≈ −vec

{
[I− ΓΓ+]

∂Γ

∂θj
Γ+Γexp

}
, (17)

since it is assumed that the second term can be neglected compared to the other term at the neighbor-
hood of the optimum.
The Gauss-Newton algorithm is applied to identified the matrix Γ (see Eq.(6)). In the present frame-
work, the matrix Γ is assumed to depend on a the complex eigenvalues and eigenvectors of the
quadratic eigenproblem (Eq.(2)), namely {µk} and {Φobsk }. Also, these parameters are assumed to
depend on a set of scalar parameters denoted as {θj}. Such parameters may refer to the material
characteristics of the structure. The strategy for identifying these parameters can be explained as
follows
Step 1 Consider initial guests for the eigenvectors {Φobsk } and minimize ||r(θ)||22 with constant

eigenvectors. Extract parameters {θ1
j};

Step f ≥ 2 Update the eigenvectors {Φobsk } and the eigenvalues {µk} with respect to the parameters
{θf−1
j } evaluated at step f−1. Minimize ||r(θ)||22, with respect to the eigenvalues only. Extract

parameters {θfj }.
The fact that the eigenvectors are constant in the minimization problem, for each iteration, is consid-
ered here to circumvent the problem of mixing the derivatives of both scalar and vectorial parameters
which could penalize the convergence rate of the algorithm. Considering Eq.(6), the derivative for Γ
with respect to {θfj } can be expressed as

∂Γ(θ)

∂θj
=
∑
k

∂Γ(θ)

∂µk

∂µk
∂θj

. (18)

where
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∂Γ

∂µk
=


0

Φobs∆tdiagj{δjk}eµ∆t

Φobs2∆tdiagj{δjk}e2µ∆t

...
Φobs(α− 1)∆tdiagj{δjk}e(α−1)µ∆t

 , (19)

and

∂µk
∂θj

=
µk(θj + ∆θj)− µk(θj)

∆θj
(20)

is the eigenvalue sensibility, obtained numerically, with respect to a variation in the parameter θj .

4 Damage updating
When damage appears, the modal parameters change according to the damaged physical parame-
ters. Diagnosis is performed by updating the FEM through the damaged physical parameters. It is
acknowledged that natural frequencies can be measured more accurately than mode shapes. In this
paper, it is assumed that the mode shape variations introduced by damage are less important than
measurement errors. This allows that the eigenvectors don’t need to be updated at each iteration of
the Gauss-Newton algorithm. This simplification leads to significant reduction of CPU costs.

5 Case study of a fixed-free beam structure using experimental
data
Through an experimental application, the updating procedure is detailed. To this end, the FEM up-
dating method using experimental modal data is applied in two steps. In the first step, the initial FEM
is tuned to the undamaged state to obtain a reference model. In the second step, the reference model
is updated in order to identify the damage.

5.1 Experimental description
The experimental studied mechanical structure is a beam. Its geometrical properties are a length of
L = 34.6 cm, a width of l = 2.49 cm, a breath of e = 0.53 cm and a density of ρ = 7850 kg.m−3 .
Furthermore, the second moment of area is calculated with the relation I = l × e3/12. A part of the
beam (4.6 cm) is constrained in a vise as shown in Figure (1).

Figure 1: Structure description
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The Power Spectral Density (PSD) of the vise is performed (Figure 2). It shows a natural frequency
around 137 Hz.
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Figure 2: Frequency response of the vise

Themechanical structure is excited with an Impact Hammer. The input signal is assumed to be un-
known. Output signals are recorded with three accelerometers during 10 s, with sampling frequency
of 1.6 kHz. An obtained output signal is shown in Figure 2.
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Figure 3: Output signal

This is typically an impulse response.

5.2 Stochastic subspace identification
For an overview of the dynamical behavior, a stochastic subspace identification is performed. By using
theMOESP algorithm [14], the identified natural frequencies are plotted according to the model order
of the experimental observability matrix, in a stabilization diagram. When a frequency is stabilized,
it is assumed to have a physical meaning.

So as to better understanding, the stabilization diagram is superimposed with the PSD in Figure 4.
In the frequency bandwidth [0−800]Hz four stabilized frequencies are present, whose the frequency
of the vise.
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Figure 4: Stabilization diagram

5.3 Safe FEM updating
An fixed-free Euler Bernoulli cantilever beam, where only bending in a single plane, is considered.
Each node has two degrees of freedom, namely the translational displacement and bending rotation.
Modeling of the beam is performed by a FEM. The elementary mass and stiffness matrices are re-
spectively obtained by

Me =
ρ× l × e× le

420


156 22l2e 54 −13le

4l2e 13le −3l2e
156 −22le

sym 4l2e

 Ke = E×I


12/l3e 6/l2e −12/l3e 6/l2e

4/le −6/l2e 2/le
12/l3e −6/l2e

sym 4/le

 .
(21)

The structural damping is obtained by

De = 0.01×Ke. (22)

The beam is modeled with 15 elements, i.e. an element length of le = 2 cm. The previous
stochastic subspace identification allowed to see that only three modes are present in the frequency
band of interest. To calculate the theoretical observability matrix, only the five first modes are kept.
It improves the computation time without introducing large errors. On the other hand, due to the geo-
metrical properties of the beam, superior modes leads to an ill-conditioning of FE matrices. Among
the beam proprieties, only the Young’s modulus is unknown. It is updated using the method described
in this article. The updating procedure is initialized with a Young’s modulus value of 200GPa, which
is a typical value for this kind of material. At the end, the updated value is 167 GPa. In parallel, for
better visualization of the updating results the residue used in this minimization procedure is plotted,
in Figure 5, for a Young’s modulus between 100 and 300 GPa. The only minimum is that reached
by the optimization procedure. No local minimum between the initial and readjusted value is came
distort the results.

A comparison is made between experimental and modeled natural frequencies before and after
updating, for the first three modes, in Table 1.

Experimental FEM
Mode Before updating After updating
Number Frequency (Hz) Frequency (Hz) error (%) Frequency (Hz) error (%)

1 43.21 48.02 11.13 43.87 1.53
2 275.6 300.9 9.18 275.0 2.2
3 756.7 842.6 11.48 769.9 1.74

Table 1: Natural frequencies comparison

At this stage, all FEM parameters are properly adjusted.
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Figure 5: Young’s modulus updating

5.4 Damage diagnosis
As shown in Figure 6, a damage is performed by drilling the beam to 3 cm of the embedding with a
drill bit of 4 mm in diameter.

Figure 6: Performed damage

The damage is assumed to causes a loss of elementary rigidity that is sought to readjust. The
different values of the residue, obtained for a variation of the element localization and percentage of
stiffness reduction, are shown in Figure 7.

Figure 7: Minimum of the residue.

Theminimum is obtained for the second element with a loss of local rigidity of 78 %. The obtained
localization corresponds to the created damage.
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6 Conclusion
In this paper, by modifying subspace fitting method an optimized algorithm was proposed which
enables the FEM of the system to be updated. Experimental experiment was presented which shown
the capabilities of the method to localize faults in mechanical beam. The procedure can be extended
to a structural health monitoring.
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