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A subspace fitting method based on finite

elements for identification and localization of

damages in mechanical systems

G. Gautier, R. Serra and J.-M. Mencik

ENI Val de Loire, Université François Rabelais de Tours, LMR laboratory,

Rue de la Chocolaterie, BP 3410, F-41034 Blois Cedex, France

Abstract

In this work, a subspace fitting method based on finite elements for identification

of modal parameters of a mechanical system is proposed. The technique uses prior

knowledge resulting from a coarse finite element model (FEM) of the structure. The

proposed technique is applied to identify the parameters of several mechanical sys-

tems under deterministic and stochastic excitations. Numerical experiments highlight

the relevance of the technique compared to the conventional identification techniques.

Identification, localization and estimation of severity of damages are carried out.

Keywords: subspace identification, subspace fitting, modal analysis, damage local-

ization, finite elements.
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1 Introduction

The process of implementing a damage detection strategy is referred to as structural

health monitoring (SHM). In recent decades, SHM has attracted worldwide attention

due to its significance in the safety evaluation of mechanical structures. The vibration-

based SHM process basically involves the observation of a structure over time using

dynamic response measurements from an array of sensors, the extraction of damage-

sensitive features and the statistical analysis of these features to determine the current

state of structural health. SHM can be defined as a four step process [1]: i) determina-

tion that damage is present in the structure, ii) determination of the geometric location

of the damage, iii) quantification of the severity of the damage and iv) prediction of

the remaining service life of the structure.

Vibration-based damage detection [2] is often implemented by identifying changes

in the structural dynamic properties before and after damage. So far numerous dam-

age detection techniques have been proposed where the damage features used include

natural frequencies, frequency response function, mode shape, mode shape curvature,

modal strain energy, modal flexibilities, etc.

Most vibration-based damage detection methods require the modal properties that

are obtained from measured signals through the system identification techniques. They

normally need intact structural states (undamaged state) or baseline FEM so that struc-

tural damage can be identified.

For a linear dynamical system, the subspace model is well suited for capturing the

system eigenstructure under operational conditions. The subspace methods can treat

system under deterministic or stochastic excitation. The key idea behind subspace

identification algorithms is to consider a block Hankel matrix (i.e. constructed from

the output and input measurements of a structure) and to project this matrix onto a

subspace which is well suited for identifying the structure modal parameters. The

procedure consists in formulating an observability matrix from a singular value de-

composition of the block Hankel matrix (i.e. once projected onto the considered sub-

space). Different algorithms, which the best knowns are grouped under the acronyms

N4SID, MOESP and CVA [3], allow access to the observability matrix and performing

a “shift invariance” procedure of this observability matrix to recovered modal infor-

mations. Unfortunately, if the observability matrix is contaminated by noise, it would

be introduces errors.

It is therefore preferable to use the subspace fitting method [4], in which the observ-

ability matrix is minimized through a theoretical observability matrix. Although it-

erative, this method takes the advantage of incorporating prior information about the

system.

In this work, we propose a method, in which prior information, from modal data

of a coarse FEM of the healthy structure, is introduced in a subspace fitting proce-

dure. The subspace fitting improves the identification of modal frequencies compared

to the shift invariance. Incorporating the prior information from the eigenvectors re-

duces the CPU costs. The method is used for fault identification. For a simulated

beam, the method is also able to localize and estimate the severity of damage. Figure
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1 summarizes the different steps of this work.

Figure 1: Flow chart of the proposed method.

2 Finite element formulation and state space represen-

tation

The linear, time invariant, N degrees of freedom of a FEM of a mechanical system

considered in this work is one for which the equation of motion and the output equa-

tion can be written in matrix form as

Mq̈(t) + γq̇(t) + Kq(t) = u(t), (1)

where M ∈ R
N×N , γ ∈ R

N×N and K ∈ R
N×N are the mass, damping and stiffness

matrices respectively, u(t) is the vector with nodal forces and q(t) is the vector of

nodal displacements with (•̇) and (•̈) denoting the first and second order derivatives

with respect to time t. The free vibrating solutions of equation (1) are usually sought

in the following form

y(t) = eΛtΦ. (2)
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Substituting equation (2) into equation (1) gives

(Λ2M + Λγ + K)Φ = 0, (3)

where Λ and Φ refer to the complex eigenvalues and corresponding mode shapes of

the structure, respectively. The dynamic behavior of the structure can be assessed by

mean of the following continuous-time state-space model

{

ẋ(t) =Acx(t) + Bcu(t),

x(t) =
[

qT q̇T
]T

,
(4)

where

Ac =

[

0 I

−M−1K −M−1
γ

]

, (5)

and

Bc =

[

0

M−1

]

. (6)

Ac ∈ C
2N×2N is the state transition matrix characterizing the dynamics of the sys-

tem, while Bc is an input matrix. After discretization in time, the state-space model

of the mechanical structure is to be expressed as

{

xk+1 = Axk + Bfk,

yk = Cxk,
(7)

where

A = eAcTs and B = (A − I)Ac
−1Bc (8)

where Ts is the discrete-time step and C is an output matrix ∈ R
l×2N , with l the num-

ber of outputs .

If the system is corrupted by some measurement noise and unknown inputs, Equa-

tions (7) are expressed as

{

xk+1 = Axk + Bfk + wk,

yk = Cxk + vk.
(9)

The stochastic terms wk and vk are unknowns noise process and noise output. If it

is assumed that they have a discrete white noise nature with an expected value equal

to zero and that they have covariance matrices equal to

E

[[

wp

vp

]

[

wT
q vT

q

]

]

=

[

Q S

ST R

]

δpq, (10)

where δ denotes the Kronecker symbol.

In modal analysis applications, the modal parameters are extracted from the state

space model. An eigenvalue decomposition is applied to the dynamical system matrix

A

A = ΨΛΨ−1, (11)
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where Ψ =

[

Φ

ΛΦ

]

∈ C
2N×2N is the eigenvector matrix (in the present case, it is

assumed that the matrix Ψ is invertible) and Λ ∈ C
2N×2N is the diagonal eigenvalue

matrix. The matrix Λ contains the 2N discrete-time eigenvalues µi, of which the

complex conjugated pairs contribute to the vibration modes. They are related to the

continuous-time eigenvalues λi as

µi = eλiTs . (12)

The resonance frequencies fi and the damping ratios ξi can then be found from

λi, λ
∗
i = −ξifi ± j

√

(1 − ξ2
i )fi. (13)

3 Subspace Identification method

Among the algorithms that identify experimentally the modal parameters of a mechan-

ical structure, subspace identification algorithms have gained increasing attention due

to their inherent robustness and their ability to deal with a large numbers of inputs and

outputs. Subspace identification techniques derive models for linear systems solely by

applying well-conditioned operations.

Many algorithms have been developed [3] to estimate the matrices of the state-

space model. We are interested in those grouped under the acronym MOESP [5],

since they simply provide, the matrices of modal parameters of the system.

Block Hankel matrices with input and output data are the basic starting point for

subspace identification algorithms. An input block Hankel matrices is defined as fol-

lows

U =



























u1 u2 u3 . . . uj

u2 u3 u4 . . . uj+1
...

...
... . . .

...

ui ui+1 ui+2 . . . ui+j−1

ui+1 ui+2 ui+3 . . . ui+j

ui+2 ui+3 ui+4 . . . ui+j+1
...

...
... . . .

...

u2i u2i+1 u2i+2 . . . u2i+j−1



























=

(

Up

Uf

)

, (14)

where the number of block rows i in Up and Uf is a user-defined index, which is large

enough, i.e. il ≥ n, the number of columns j is typically equal to s − 2i + 1, where

s is the number of available data samples. The subscript ’p’ stands for ’past’ and the

subscript ’f’ for ’future’. The output block Hankel matrices Y, Yp and Yf are defined

in a similar way.

The MOESP algorithms, start from the so called past and future data equations

constructed from Equations (9)

Yp = ΓiXp + HiUp + Np, (15)

Yf = ΓiXf + HiUf + Nf , (16)
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where Γi =
(

CT [CA]T . . . [CAi−1]T
)T

∈ R
li×n is the extended observability

matrix, Xp (respectively Xf ) is a past (respectively future) state sequence, Hi is a

block Toeplitz matrix of the (unknown) impulse response from u to y and Np (re-

spectively Nf ) a particular combinaison of the past (respectively future) block Hankel

matrices of the perturbations v and w. For simultaneously removing the term HiUf

from Yf and decorrelating the noise, it is proposed to consider the following quan-

tity YfΠU⊥
f

, where ΠU⊥
f

= I − Uf
T (UfUf

T )−1Uf is an orthogonal projection for

Ordinary-MOESP. In practice, this projection can be obtained by performing a LQ-

factorization of the input and output data, which is numerically much more efficient

than evaluating the large projection matrix

[

Uf

Yf

]

=

[

L11 0

L21 L22

] [

Q1

Q2

]

. (17)

Now, it can be equivalently written

YfΠU⊥
f

= ΓiXfΠU⊥
f

= L22Q2. (18)

As a result, it turns out that

range(Γi) = range(L22). (19)

Thus, the column-space of L22 serves as a basis for the column space of the ex-

tended observability matrix Γi. Performing a singular value decomposition of L22

gives

L22 = UnΣnV
T
n , (20)

where n is the number of dominant singular values and also the order of underlying

system including the noise model.

The columns of Un provide a basis for Γi. A gap between successive singular

values will often indicate the system order.

4 Identification of the parameters of the structure

4.1 Shift invariance

An estimate for the matrices A and C, up to a similarity transformation, can then be

obtained by enforcing the shift invariance structure of the observability matrix [3] as

follows: Ĉ is equal to the first l rows of Γ̂ and Â is equal to Γ̂
†
Γ̂, with Γ̂ and Γ̂ denote

notations for Γ̂ with its last, respectively first l lines removed and where Γ̂† is the

pseudo-inverse of Γ̂.

The shift invariance property is not satisfied exactly for finite data when stochastic

disturbances are present and hence it has to be solved approximately.
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4.2 Subspace fitting

Subspace fitting method [4, 6] exploit the full structure of the extended observability

matrix. The problem is reformulated in a separable non linear least square fitting

minimization problem [7] of the form

min
A,C,T

||Γ̂ − ΓthT||2F , (21)

where Γth =
(

CT [CA]T . . . [CAi−1]T
)T

is a function of the elements of A

and C. Just as there are many realizations or coordinate systems that can be used to

describe the state space, there are many identifiable A and C matrices that can be

chosen, each yielding a different T ∈ R
n×n matrix that satisfies equation (21).

Subspace fitting uses the fact that T that appears linearly in the model function

ΓthT can be optimally expressed as a linear least squares (LS) solution depending

on the matrices {A,C}: TLS = Γth
†Γ̂. Therefore, this closed formula of T can be

plugged into the original minimization problem, yielding the equivalent problem only

in {A,C}:

min
A,C

||P⊥(A,C)Γ̂||2F = min
A,C

[

trace(P⊥(A,C)Γ̂Γ̂
H

)
]

, (22)

where P⊥ =
(

I − ΓthΓth
†
)

can be obtained from the QR decomposition of Γth and

Γ̂
H

is the conjugate transpose of Γ̂.

Γth = QR =
[

Q1 Q2

]

[

R1

0

]

, (23)

and

P⊥ = Q2Q2
H , (24)

where R1 ∈ C
n×n, Q1 ∈ C

j×n and Q2 ∈ C
j×(j−n). This problem is solved with an

iterative procedure like a form of Newton’s method.

One of the advantages of the problem formulation considered herein is that any

prior knowledge about the structure of A and C can be directly incorporated into the

problem.

5 Prior knowledge from FEM

By using the eigenvalue decomposition of A and by constructing C in agreement with

the experimental output sensors placement (see Figure 2 for construction examples),

the theoretical observabilty matrix Γth can be expressed in the modal basis as

Γth =











Cmod

CmodΛ
...

CmodΛ
i−1











, (25)
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where Cmod = CΨ. If the eigenvectors are known, the subspace fitting is reduced to

the identification of modal frequencies

Λ̂ = arg min
Λ

[

trace(P⊥(Λ)Γ̂Γ̂
H

)
]

. (26)

Furthermore A and C can be retrieved in the modal basis, which constitutes an

interesting feature of the proposed approach.

Figure 2: Examples for output matrix construction.

To verify the subspace fitting method and its possibilities, a numerical example is

presented. An Euler Bernoulli cantilever beam made of four elements where only

bending in a single plane is considered. Each node has two degrees of freedom,

namely the translational displacement and bending rotation. The eigenvectors are

extracted from the healthy FEM where Young’s modulus (E) is 78 × 109 N/m2 and

the mass density (ρ) 7.85 × 103 kg/m3. The length of the beam (L) is 1 m, width

0.01 m and thickness 0.01 m. The beam is clamped at one of its end. The beam

is excited randomly on its free end and the displacements for each node is recorded

with sampling frequency of 5 kHz. Different levels of signal to noise ratio (SNRdB),

i.e amplitude ratio between signal and noise expressed using the logarithmic deci-

bel scale, are added to the signal and the algorithm Ordinary-MOESP is applied as

shown in the flow chart. First, from the identified observability matrix (Γ̂), the modal

frequencies are identified either by shift invariance or subspace fitting. Results are

summarized in Table 1.

The SNRdB, shown that when the noise increases, the shift invariance is less effi-

cient. The subspace fitting method with and without prior knowledge were performed,

and the results were not dissociated in this case because they produce results equals in

term of accuracy due to the fact as same error threshold is used.

The fact that low frequencies are less estimated as higher frequencies is under-

standable by the fact that the subspace identification methods are based on statistical

8



SNRdB theoretical fre-

quencies

6.8 42.4 119.5 235.8 438.6 704.4 1116.8 1832.4

50 shift invariance 11.6 43.4 120.5 236.3 438.7 704.4 1116.8 1832.3

subspace fitting 18 97.1 121.2 232.5 438.7 704.3 1116.8 1832.3

40 shift invariance X 56.6 126.8 273.7 439.0 706.0 1116.8 1832.5

subspace fitting X 67.3 125.5 252.1 438.9 705.6 1116.8 1832.4

30 shift invariance X X 119.4 X 439.8 705.2 1116.4 1825.1

subspace fitting X X 130.1 253.5 439.7 705.5 1116.5 1837.7

20 shift invariance X X X X 590.7 722.1 1118.3 1861.4

subspace fitting X X X 296.8 405.7 706.1 1116.3 1868.4

15 shift invariance X X X X 530.7 650.7 1266.6 1950.1

subspace fitting X X X 235.2 415.5 658.5 1249.5 1823.3

Table 1: Comparison between shift invariance and subspace fitting (best result in yel-

low, X: unidentified frequency).

concepts for which the length of signals are assumed to be sufficiently large compared

to the dynamics of the mechanical system. For a finite-length signal, the slow dynam-

ics is less repeated than the fast dynamics. It explains the best identification of high

frequencies.

The subspace fitting with and without prior knowledge are compared by using the

CPU time taken for identify the eigenvalues for the beam with different numbers of

elements (Table 2).

The main advantage of the prior knowledge based approach is that it enables the

Number of elements 2 3 4 5

CPU time with prior knowledge (sec) 0.87 1.83 2.94 9.98

CPU time without prior knowledge (sec) 6.76 33.61 110.90 960.82

Table 2: Comparison of CPU times for subspace fitting with and without prior knowl-

edge.

CPU times to be largely decreased. In the case of the beam of five elements, the CPU

time is reduced by more than 95 %.

6 Characterization of damages

There are a number of approaches to the modeling of damages in beam structures.

The simplest way to model a damage consists in modifying locally the stiffness of one

element composing the whole FEM [8]. The damage can therefore be written:

Kdamaged(p, s) = Khealthy − ∆K(p, s), (27)
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{

Ψdamaged(p, s) ≡ Ψhealthy,

Λdamaged(p, s) = Λhealthy − ∆Λ(p, s),
(28)

where p is the damage position and s the percentage of stiffness reduction.

The theoretical damaged observability matrix is then written:

Γth
damaged

=











Cmod

CmodΛdamaged

...

CmodΛ
i−1
damaged











=











Cmod

Cmod (Λhealthy − ∆Λ(p, s))
...

Cmod (Λhealthy − ∆Λ(p, s))i−1











, (29)

where Cmod = CΨhealthy and Λhealthy are known for the healthy FEM and ∆Λ is

the problem unknown, that depends only to p and s. The subspace fitting method, for

the damaged problem, is then reduced to the minimization of ∆Λ through p ans s, i.e:

∆Λ̂ = arg min
p,s

[

trace(P⊥(∆Λ)Γ̂damagedΓ̂
H

damaged)
]

. (30)

The method is applied to the Euler Bernoulli cantilever beam made of 10 elements.

The eigenvectors and eigenvalues are extracted from the healthy FEM. Then a damage

is introduced. Displacements of the beam under random excitation are recorded with

an sampling frequency of 10 kHz for the three nodes 1, 5, and 10 and noise is added .

The damaged observability matrix (Γ̂damaged) is obtained with the MOESP algorithm

in agreement with the output matrix constructed in Figure 3.

The residues resulting of the subspace fitting with prior knowledge are plotted for

Figure 3: Output matrix for the beam with outputs recorded at nodes 1, 5 and 10.

different experimental damage localizations (elements 2 and 8) and severities (5% and

15%).

As displayed in Figure 4, minimums are obtained in accordance with experimental

damage localizations and severities.
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Figure 4: Residues plotted for the four experimental cases.

7 Conclusion

In this paper a method in which prior knowledge from modal data of a coarse FEM is

introduced in a subspace fitting procedure. It was shown that subspace fitting improves

the identification of modal frequencies compared to the shift invariance for signals

corrupted by noise.

Incorporating a prior knowledge from the eigenvectors of undamaged coarse FEM

in a subspace fitting method largely decreases the CPU coasts.

The efficiency of this method is used numerically for identification, localization

and estimation of damage in mechanical system and very good results are obtained.
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