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Abstract 

 

Cation availability in peat may limit CH4 production and microbial activity and thereby 

impact rates of organic matter accumulation and the chemical character of the peat. We 

quantify total, soluble, and exchangeable cation concentrations, Exchange Site Saturation 

Levels (ESSL) and organic fractions in bog-peat profiles and compare these with fen-peat. 

Total and soluble cation concentrations are not correlated and these and exchangeable 

cation concentrations are lower in bog than fen peat. In all sites these vary with depth and 

the distribution patterns of individual cations are unique. This is explained by variation in 

ESSL, which is negatively correlated with Cation Exchange Capacity (CEC). Total cation 

concentrations in bog-peat are higher in the top and bottom fractions than in the middle. 

Soluble concentrations in surface bog-peat are low, because cations are trapped due to low 

ESSL. This does not occur in fen-peat, with lower CEC and higher ESSL. CEC is related 

to total organic matter content, not just to Sphagnum, which has been invoked as the 

explanatory variable of high CEC in peat bogs. There is a complexity in the mechanisms 

controlling cation availability in peat and we suggest that total, soluble and exchangeable 

cation fractions need to be taken into account in studies of cation limitation of microbial 

activity in organic soils. 

 

 

Keywords: cation exchange capacity; adsorption; decomposition; wetland; organic 

matter; trace element mobilization. 
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Introduction 

Organic matter decay is a key process in peatland functioning (Clymo, 1983). The control 

of microbial activity is only partly understood, but involves cations (Williams and 

Crawford, 1984; Gonzalez-Gil et al., 1999; Basiliko and Yavitt, 2001; Thomas and Pearce, 

2004), anions (Dise and Verry, 2001; Basiliko and Yavitt, 2001), a carbon source (Martin 

and Holding, 1978; Thomas and Pearce, 2004), and cation exchange capacity (Thomas and 

Pearce, 2004) at least. Comparisons between studies, and conclusions about the relative 

roles of different rate-limiting factors are difficult to draw because different indicators of 

decay rates, combined with different controlling factors have been investigated. For 

example, Coulson and Butterfield (1978) used mass loss whereas Yavitt et al. (2005) used 

CO2 and CH4 production whilst measuring ion concentrations in peat samples and 

correlating these to microbial activity. Experimental approaches have used anion and 

cation amendments to peat and measured microbial activities (e.g. Williams and Crawford, 

1984; Basiliko and Yavitt, 2001; Thomas and Pearce, 2004). Other cation treatments have 

also included carbon sources (Martin and Holding 1978) and mineral nutrients such as N 

and P (Williams and Crawford, 1984). Cations have also been added with different anions 

(e.g. Williams and Crawford, 1984; Basiliko and Yavitt, 2001; Thomas and Pearce, 2004), 

without necessarily factoring out the effects of the anions. 

There is further inconsistency about the cation fraction estimated to be available to 

the microbial community. Soluble and exchangeable cation fractions are those available to 

plants and microbial communities (Chapin III et al., 2002), but are also linked by 

geochemical processes to total cation concentration. Basiliko and Yavitt (2001) used 

soluble cation concentration, Yavitt et al. (2005) used the total content and Martin and 

Holding (1978) based their arguments on exchangeable cations. The ratios of the different 

fractions vary within and between sites (Gore and Allen, 1956; Waughman, 1980; Kyziol, 
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2002) and are influenced by ion exchange processes. Cations in solutions (ionic form) can 

react with exchange sites on organic matter or clay material (Tummavuori and Aho, 1980; 

Summer et al., 1991). The strength of adsorption equal between cations and can be 

increased by, (1) increased cation valency, (2) smaller hydrated size of the cation, and (3) 

increase of the strength of the site’s negative charge (Miller and Donahue, 1990). Also, 

Cation Exchange Capacity (CEC) increases with organic matter content (Puustjärvi, 1956) 

and Sphagnum species, which dominate the partially decomposed bulk and living layer of 

many northern bogs, have a CEC (Puustjärvi, 1956; Clymo, 1963) which may be higher 

than any other species (Painter, 1995). Therefore, in studies of the role of cations, the 

effects of CEC must also be carefully considered.  

Previous studies have shown that applied soluble cations can stimulate 

methanogenic activity in peat (Basiliko and Yavitt, 2001; Thomas and Pearce, 2004; Gogo 

and Pearce, 2009), and that microorganisms (in planktonic and aggregated states) use 

nutrients in solution (Teitzel and Parsek, 2003; Hall-Stoodley et al., 2004). The 

mechanisms of cation stimulation may be via direct nutrient stimulation, and be indirect, 

via release of limiting cations from exchange site reactions. Cation application can also 

alter carbon availability, as positively charged molecules, for example exo-enzymes, can 

be bound to exchange sites (Painter, 1995). CEC can play an important role in the 

occurrence and solubility of nutrients through the amount of cation exchange sites and 

their level of saturation. If exchange sites are in excess compared to cations, there remain 

sites available to inhibit exo-enzymes. Understanding the state of cations in peat and how 

the state of individual elements varies in relation to internal and external mechanisms is 

important to understanding the control of decay processes and the role of peatlands to act 

as carbon sinks or sources. 



5 

Here, we quantify cation concentrations in different fractions from three sites of 

differing CEC. We examine the interaction of cations with the CEC of peat to demonstrate 

the dynamic nature of cation availability in soluble form and further demonstrate variation 

in soluble to total cation concentration in relation to CEC. 

 

Materials and methods 

Study sites, collection and preparation of samples 

Peat cores were collected from each of three sites with a Russian or “D shape”corer (50 cm 

long; Jowsey, 1966) in January 2003. The first site, Ellergower Moss, is an undisturbed 

raised bog approximatively 6 m deep in its centre, situated near New Galloway, south-west 

Scotland. The surface is dominated by Sphagnum capillifolium, S. papillosum and S. 

cuspidatum and the bulk of the peat comprises partially decomposed Sphagnum.  Cores 

were taken close to the centre of the bog in an area dominated by Sphagnum papillosum. 

The second site, Cothill Fen is a disturbed minerotrophic calcareous fen about 2 m deep, 

situated near Oxford, south-central England. It is dominated by Phragmites with 

Sphagnum species (S. palustre and S. plumulosum) only present in very low abundance. 

The third site, Snelsmore Valley Mire, near Newbury, south-central England is a 

transitional valley mire about 2 m deep. The vegetation is composed predominantly of 

Sphagnum papillosum, S. palustre and Eriophorum angustifolium.  

At each site, cores were taken for each depth; four depths for Cothill and Snelsmore 

and eleven for Ellergower Moss. In the field, the depths of the profiles were not always the 

same (± 10 cm). In Cothill and Snelsmore, 3 core depths of 50 cm long were collected and 

the deepest depth (when the corer could be pushed no further) noted as >1.5 m (Table 1). 

In Ellergower Moss, 10 core depths of 50 cm long were collected and the deepest depth 

(when the corer could be pushed no further) noted as >5 m (Table 1). For each site the 
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cores were taken within an area of 2 m
2
.  At the time of collection the water table was at 

the surface of each of the sampling areas.  Each 50 cm core was placed in a sealed airtight 

bag (4 bags in each profiles from the fens and 10 bags for each profile in the gob), and 

subsequently stored at 5
o
C on the day of arrival at the laboratory for geochemical analysis. 

As the samples were stored in separated bags, no vertical transport was possible.  

Peat pH was measured with a Jenway 3051 pH meter (Jenway Ltd, England). After 

calibration with solutions at pH 4 and 7, the probe was directly introduced into the peat 

samples (25 cm intervals) until a stable pH measurement was achieved.  Prior to analysis, 

each peat core (0.5 m) was placed, within 24h hours after the collection on the site (to 

avoid prolonged microbial activity, in a tray and air dried for c.a. 1 week at 21°C. Samples 

were weighed daily until they reached a constant weight, when they were ground with a 

mortar and pestle and passed through a 1 mm sieve. Four replicates for each depth sample 

from each site were used for each analysis. 

 

Extraction methods and measurements of cation concentrations 

Four extractions of increasing strength were performed, following the methods of Ure 

(1991), University of Minnesota (2000), Karam (1993) and Hill and Siegel (1991).  These 

were: water extraction (soluble cations only), ammonium acetate extraction (exchangeable 

+ soluble cations), nitric acid on dry peat extraction (extractable + exchangeable + soluble 

cations) and nitric acid on ashes extraction (approximating total elements). For the first 

three extractions 2.5g of air-dried peat was placed in a 50 ml centrifuge tube prior to 

treatment. After extractant addition, mixing and centrifugation  the extracted solutions 

were filtered (Wathman no.4 ash-free cellulose filter paper, 20-25 µm, retention of coarse 

particles and gelatinous precipitates; Wathman, Maidstone, UK) into 50 ml volumetric 

flasks and made up to 50 ml with deionised water. Reagent blanks were prepared for each 
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extraction method following the same methods as for the samples, but excluding the peat. 

Samples were stored at 5°C (max. 72 h) until analysed with an Inductively Coupled Plasma 

Atomic Emission Spectrometer (ICPAES; Jobin Yvon JY 70c, Longjumeau, France), 

against calibrations defined with synthetic multi-element solutions. The elements analysed 

were K, Na, Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Al and Pb. The detection limits of the 

ICPAES were assessed for the six elements potentially present in low concentrations: Mn 

(0.001 mg l
-1

), Co (0.001 mg l
-1

), Ni (0.002 mg l
-1

), Cu (0.002 mg l
-1

), Zn (0.002 mg l
-1

) 

and Pb (0.02 mg l
-1

). The total content of a reference material (peat (Sphagnum) NJV94-2, 

Swedish University of Agricultural Sciences) was used as a control. The concentrations in 

µmol g
-1

 dry or organic matter were calculated as follows: 

 

 

 

The cation concentrations from the first three extractions were expressed on an 

organic matter basis as this is the pool potentially degradable by microbes. To assess the 

organic content, peat of each depth (50 cm intervals) was oven dried (80ºC), and placed in 

a muffle furnace for 4 h at 550ºC. The ash was weighed immediately and the percentage of 

the organic content was calculated as follow: 

% organic content = [(oven dry weight - ash weight)/oven dry weight] x 100 

The cation concentrations for the “total” content were expressed on a soil dry weight basis 

as cations from mineral particles as well as those bound to organic matter were measured. 

To assess chelating strength, the quotients of water extractable cations to 

ammonium acetate extractable ones were calculated. Because ammonium acetate extracts 

only soluble cations and exchangeable K, Na, Mg and Ca (Karam, 1993; University of 

Mass sample × Molar Mass Element (g × g mol
-1

)

Measure × Volume sample (µg l
-1

 × ml)

=[Element] (µmol g
-1

) 
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Minnesota, 2000), the analyses of water to ammonium acetate quotient were only 

conducted on K, Na, Mg and Ca. 

 

Cation Exchange Capacity (CEC) and assessment of Exchange Sites Saturation Level 

(ESSL) 

The technique used for this study was the method of displacement of cations by 1 M 

NH4OAc buffered at pH 7 (Karam, 1993). Air-dry peat (0.5 g) was shaken with 20 ml of 

NH4OAc and centrifuged at 5000 rev min
-1

 for 15 minutes in a 50 ml centrifuge tube. The 

supernatant was discarded and the extraction repeated. The sample was then washed twice 

with 10 ml methanol to remove the remaining ammonium present. Samples were then 

mixed with 20 ml of 0.5 M CaCl2 to return to solution the ammonium held on the exchange 

sites, centrifuged at 5000 rev min
-1

 for 10 minutes and the supernatant poured into a 100 

ml volumetric flask. This extraction was repeated and the volume made up with deionised 

water to 100 ml. The ammonium concentration was finally measured with an ammonium 

electrode (Jenway 3045 Ion Analyser, Jenway Ltd, England), the assumption being that the 

amount of NH4
+
 corresponds to the amount of negative charge occupied previously by K

+
, 

Na
+
, Mg

2+
, Ca

2+
 and H

+
. 

Exchange site saturation levels (ESSL) by macronutrient cations (K, Na, Mg and 

Ca), micronutrient cations (Mn, Fe, Ni, Co, Cu and Zn,) and Al and Pb are the quotient of 

ammonium acetate and nitric acid extractable cations versus CEC (modified from Hill and 

Siegel,1991; each expressed as cmol of positive or negative charge per gram of OM). A 

value less than 1 represents unsaturated exchange sites, whereas a value greater than 1 

represents saturated sites. Ammonium displaces mainly K
+
, Na

+
, Mg

2+
, Ca

2+
 and H

+
. 

Cations (such as Pb, Cu and Al) strongly bound to organic matter may not be fully 

displaced by NH4
+
. Calculating the ESSL with the nitric acid extraction assesses how much 
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of these strongly bound cations were not displaced by the ammonium acetate treatment.  At 

the pH of Ellergower Moss and Snelsmore all cations would have been in their most 

reduced form, whereas for Cothill cations e.g. Fe, Al and Mn may have been in chemical 

forms other than ionically bound to exchange sites. 

 

Data analysis 

All experimental designs were one- or two-way ANOVAs. The response variables for all 

experimental designs were all the soluble and total cations taken separately, the soluble and 

total sum of positive charge from macro- and micronutrients, soluble to exchangeable 

quotient (chelating strength) and CEC. 

The depth effect on response variables in Ellergower Moss was a one-way ANOVA 

design. However, because the residuals were normally distributed, but the variances were 

unequal, the Welch test was performed followed by a Tamhane post-hoc test (SPSS, 2004). 

For each response variable, the three sites were compared using the first four depths 

(max depth of Cothill and Snelsmore = 2 m) using a two-way factorial ANOVA (with site 

and depth as the main effects). The null hypotheses were: a) there are no differences in 

response variable between sites (pooling depths), b) there are no differences in response 

variable between depths (pooling sites) and c) there are no interactions between site and 

depth. When the data did not fulfil the ANOVA assumptions, the Aligned Rank 

Transformation (ART) method was performed (Richter and Payton, 1999), followed by a 

post hoc Tukey test, using Statistica (Statsoft, 2001). Because the ART method is non-

parametric, the results are presented as medians with ranges.  

 

Results 

Peat pH 
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Peat samples from Ellergower Moss (pH from 3.6 to 4.4; Table 1) and Snelsmore valley 

mire (pH from 4.2 to 4.6) were acidic and hence cations would be in their highest oxidation 

state (e.g. Al
3+

) and soluble cation concentrations controlled by cation exchange.  At such 

low pH values other chemical forms are absent.  In Cothill some of the cations may be in 

non-exchangeable forms because of higher pH (pH from 5.3 to 6.5). 

 

Cation concentrations in Ellergower Moss 

In Ellergower Moss, the total concentration of each cation changed with depth (Figures 1 

and 2; Welch one-way ANOVA, all P<0.0001). Soluble cation concentrations, other than 

Ni, Co, Cu and Pb, individually or summed, also changed with depth (Figures 1-4; Welch 

one-way ANOVA, all P<0.003). For the total concentrations in the bog peat, two distinct 

patterns were observed. Total Na and Mg (Figure 1) formed “D” shaped profiles (Shotyk, 

1988), with concentrations being lower at 0-0.5 m than at 2.5-3 m (Tamhane all 

P<0.0001). Total Ca (Figure 1c) Mn, Fe, Ni, Co, and Cu (Figure 2a-e) and Al (Figure 3) 

presented a “C” shaped profile, with lower content at 3-3.5 m than at 0-0.5 m and >5 m 

(Tamhane all P<0.025).  

Very different patterns were observed for soluble concentrations of cations. In the 

Ellergower Moss peat, for Na, K Ca (Figure 1) and the sum of macronutrients (Figure 4), 

there were some significant differences between depths, but soluble concentrations 

remained fairly constant throughout the profile. There was no significant difference for the 

soluble Zn concentrations whereas total Zn at 0-05 m was significantly higher than at all 

the other depths (Tamhane, all P<0.001). Soluble Mg and Mn (Figures 1 and 2) decreased 

with depth (0-0.5 m to 1.5-2 m versus 2-2.5 m to >5 m for Mg, and 0-0.5 m versus 1-1.5 m 

to 4-4.5 m, Tamhane all P<0.05). 
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Between site comparisons 

In between-site concentration comparisons of soluble cations, sums of soluble cations, total 

cations and sums of total cations differed between sites and depths with a significant 

site×depth interaction (all P<0.05). Some soluble cation concentrations were very low, 

which explains the high variability observed. 

 

Macronutrients: Both soluble and total Na in Cothill, especially at 0-0.5 m, was higher 

than for Snelsmore and Ellergower Moss (Tukey all P<0.005), and higher for Snelsmore 

than Ellergower Moss (Figure 1; Tukey all P<0.005). At each depth, soluble Mg in 

Ellergower Moss was at least 4 times lower than in the other two sites (Figure 1; Tukey all 

P<0.0002). However, total Mg was measured in higher concentrations for all depths at 

Ellergower Moss peat than in the other two sites (Figure 1). Soluble and total Ca was about 

80 and 200 times higher in Cothill than in Snelsmore and Ellergower Moss respectively, 

and higher in Snelsmore than in Ellergower Moss (Tukey all P<0.05; Figure 5).  

 

Micronutrients: At 0-0.5 m, soluble Mn was about 10 times higher in Snelsmore peat than 

in peat from the other sites (Figure 2, Tukey all P<0.002), whereas total Mn was the 

highest in Cothill peat (about 2 to 10 times higher, all P<0.05, Figure 2). For Fe, Ni, Co 

and Zn (Figure 2), highest soluble and total concentrations were measured in Snelsmore 

peat. Soluble Al (Figure 3) was between 10 and 140 times higher in Snelsmore peat (Tukey 

all P<0.003).  

 

Sum of micro- and macronutrients: At all depths, the sum of soluble and total 

macronutrients (K, Na, Mg and Ca) was higher in Cothill than in the other two sites (Tukey 
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all P<0.05; Figure 4). The sum of soluble macronutrients was higher in Snelsmore than in 

Ellergower Moss, especially at the surface, but the difference in terms of total content was 

much lower or even not significant. At all depths, the sum of soluble micronutrients (Mn, 

Fe, Co, Ni, Cu and Zn) was between 3 to 32 times higher in Snelsmore than in the other 

sites (Figure 4; Tukey all P<0.05). However, the sums of total micronutrients in Cothill 

and Snelsmore peat at 0-0.5 m (Figure 4) were not significantly different (P>0.05). Both 

sums of soluble and total micronutrients were lower in Ellergower Moss than in the other 

sites (Figure 4). 

 

Water / Ammonium Acetate quotient 

Quotients for Na and Mg (Figure 5) differed between sites and the interaction with depth 

was significant (ART ANOVA; all P<0.05). These cations are strongly adsorbed through 

exchange reactions in Ellergower Moss surface peat compared to the two other sites with 

the quotients of soluble to exchangeable cation for Na and Mg being lower in Ellergower 

Moss peat than elsewhere (Figure 5; Tukey all P<0.02).  In deeper peat (1-1.5 m and >1.5 

m) however, the quotients were higher for Cothill than either Snelsmore or Ellergower 

Moss (Tukey all P<0.05). Quotients for Na and Mg at the surface of Ellergower Moss were 

significantly higher than deeper than 2.5-3 m to >5 m (Tamhane all P<0.05). 

 

Cation Exchange Capacity and Exchange Site Saturation Level 

At each depth, the CEC in bog peat was higher than at the other sites (Table 1). For Cothill 

peat, CEC increased with depth, whereas it decreased in Snelsmore peat. In Ellergower 

Moss peat, the CEC decreased with depth until 1-1.5 m, and then increased to reach 

maximum values at 4-4.5 m (Table 1). For both Cothill and Snelsmore, CEC was 

correlated to organic matter content (both sites pooled r = 0.95, P<0.05). 
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Cothill peat was saturated by cations (Exchange Sites Saturation Level quotients 

>1, Figure 6). Because the quotient was already high with the ammonium acetate estimate, 

the quotient using nitric acid is not displayed. Furthermore, at pH > 6 in Cothill peat nitric 

acid may dissolve cations that are in chemical forms other than ionically bound to 

exchange sites and therefore any quotient may not necessarily reflect the degree of 

saturation of exchange sites. Both ammonium acetate and nitric acid quotient estimates 

were < 1 in Ellergower Moss (Figure 6) indicating unsaturated peat. The ammonium 

acetate derived quotient was < 1 for Snelsmore peat but the nitric acid derived quotients 

was >1 (Figure 6). 

 

Discussion and conclusion 

We have found that the totals and ratios of total, extractable, exchangeable and 

soluble cations, cation exchange capacity and exchange site saturation levels differ with 

depth through peat profiles and differ between peat from an acid bog, a mesotrophic 

calcareous fen and a transitional valley mire. Although between site differences are not 

surprising, cross-site comparisons can be used to elucidate control mechanisms. Within site 

(depth) differences may also indicate that cation-related limits to microbial activity may 

differ within a peat profile. 

Concentrations of cations in bog peat were compared to the two fen sites.  At all 

depths, the sum of soluble and total macronutrients (K, Na, Mg and Ca) was higher in 

Cothill than in the other two sites, because of the high Ca concentrations. The sum of 

soluble macronutrients was higher in Snelsmore than in Ellergower Moss, especially at the 

surface, but the difference in terms of total content was either lower or not significantly 

different. At all depths, the sum of soluble micronutrients (Mn, Fe, Co, Ni, Cu and Zn) was 

between 3 to 32 times higher and Al was between 10 and 140 times higher in Snelsmore 
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than in the other two sites. These micronutrients were possibly high in Snelsmore peat due 

to the surrounding area being used as an ammunition dump during the Second World War 

(West Berkshire Council, 2006; Evans, 2006). However, the sums of total micronutrients 

in Cothill and Snelsmore peat at 0-0.5 m were not significantly different. Both sums of 

soluble and total micronutrients were lower in the bog peat than in the fen peats. Soluble 

Mg in the bog was at least 4 times lower than in the fens but total Mg was measured in 

higher concentrations in Ellergower Moss peat due to its proximity to the sea and being 

exclusively rain-fed. 

Total cation concentrations varied between sites and with depth at each site.  This 

variation can be explained by site geomorphology, current internal and external processes 

and historical factors. Mg concentrations were greater than those of Ca at all depths in 

Ellergower Moss peat but Ca tended to increase towards the bottom of the profile and Mg 

tended to decrease, indicating a groundwater effect at the start of peat formation and 

dominance of rainfall as peat accumulates. For Cothill and Snelsmore, Ca concentrations 

were higher than Mg concentrations throughout, indicating the dominance of groundwater 

in these shallower peats within basins. 

Total Mn, Co, Zn, Fe, Ni and Cu concentrations profiles from Ellergower Moss had 

C shapes typical of those described in the literature (e.g. Mattson and Koutler-Andersson, 

1955; Shotyk, 1988; Hill and Siegel, 1991). The upward decrease in the profiles for all 

these cations from the bottom can be explained by the progressive independence of the 

system from the ground water as peat accumulates.  The high concentrations at the bottom 

may also indicate a continuing influence of mineral-rich water at the base of the bog, 

though this can only be resolved by hydrological study. The increase in Ellergower Moss 

of soluble Co and Ni with depth may be explained by weathering over time (Schlesinger, 
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1997; Kelly et al., 1998). Anthropogenic input, mineral uptake and plant /decomposer 

cycling are likely to dominate at the surface. 

Cu, Pb and Zn surface concentrations from ash and dry peat acid extractions are 

even higher than the bottom concentrations. Peat profiles act as archives for a wide variety 

of atmospheric constituents (Clymo et al., 1990; Shotyk, 1995). Anthropogenic releases of 

Pb, Cu, Zn and other metals are greater than from natural sources (Benjamin and 

Honeyman, 1994; Zaccone et al, 2007a) and produce heavy metal enrichment in peatlands 

through long-range transport (Mattson and Koutler-Anderson, 1955; Livett et al., 1979; 

Santelmann and Gorham, 1988; Zoltai, 1988; Steinnes, 1997). This may explain some of 

the upper part of the “C” shaped profiles. The high capacity of Ellergower Moss peat to 

conserve anthropogenic metallic cation inputs, through exchange reactions, could also 

explain why the total content of Zn and Pb are higher in Ellergower Moss than in Cothill.  

Very different patterns were observed for soluble concentrations of cations with 

some significant differences between depths, but soluble concentrations remained fairly 

constant throughout the profile.  High total cations do therefore not infer high soluble 

cations.  The lack of correlation between the two may be due to variation in Exchange Site 

Saturation Levels and Cation Exchange Capacity. 

 At the surface, the quotients of soluble to exchangeable cation for Na and Mg were 

lower in bog peat than in the fen peats. This indicates that these cations are strongly 

adsorbed through exchange reactions in Ellergower Moss peat compared to the peat from 

the two fen sites.  At each depth, the CEC in bog peat was higher than in peat from the 

other sites. Calculations of quotients of Exchange Sites Saturation Level (ESSL) indicate 

that Cothill peat was saturated by cations (quotient >1).  By contrast, Ellergower Moss peat 

is unsaturated (quotient <1). From the quotient calculated using the ammonium acetate 

extraction, Snelsmore peat is not saturated throughout the profile. However, when nitric 
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acid extractable cation concentrations are used, the peat is saturated at all depths. While 

this can be explained by the difference in Al concentrations yielded by the two types of 

extraction it also indicates that Snelsmore peat is saturated with a relatively large Al 

fraction. 

Despite the highest total and exchangeable Mg concentrations among sites being 

measured in Ellergower Moss, soluble Mg was lowest in this site. Thus, in Ellergower 

Moss peat there was a greater negative charge compared to peat from the two fen sites 

(Miller and Donahue, 1990). Andersen et al. (1987) demonstrated with Sphagnum species 

that, when exchange sites are less saturated with Mg, more heavy metals are adsorbed. 

Bunzl et al. (1976) demonstrated in Sphagnum peat that, when soluble cation 

concentrations are low, the cations are more adsorbed on exchange sites. The humification 

degree is important in determining which peat fraction binds the soluble cations. As the 

peat gets more and more humified with depth the proportion of many cations bound to 

humic acids increases downward a peat profile (Zaccone et al, 2007b). In Ellergower 

Moss, the peat is highly unsaturated by cations, as indicated by the Exchange Sites 

Saturation Level (ESSL), thus there are low concentrations of soluble cations. In the fen 

sites, ESSL were higher than in the bog. Exchange sites are probably completely saturated 

because of high Ca concentrations in Cothill and Al concentrations in Snelsmore. Because 

the peat is saturated with cations, the CEC in these sites is unlikely to reduce the amount of 

soluble cations. Soluble Na, Mg, Mn and Co concentrations were significantly positively 

correlated (Spearman correlation, all P<0.05) with ESSL (assessed with nitric acid). When 

the peat exchange sites are unsaturated (low ESSL), soluble cation concentrations are low. 

Thus, unsaturation of the Ellergower Moss peat explains why quotients were lower in the 

bog than in the fen sites and why Ellergower Moss was the poorest site in soluble Mg 

(despite high exchangeable concentrations of Mg).  
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It is known that Sphagnum (Clymo, 1963) and Sphagnum peat (Bunzl et al., 1976) 

have a high capacity to bind cations and this link is so strong that heavy metals such as Pb 

and Al are not necessarily exchangeable (ammonium acetate extractable). In addition, 

Bunzl (1974) showed that as peat becomes more saturated with Pb, the exchange reaction 

rate decreases. As soon as Zn and Pb are released into the system (soluble) from the 

relatively high total pool of the surface, they are instantaneously adsorbed because of the 

increased strength of adsorption (low quotient) found at the surface. Within Sphagnum 

species, CEC depends on their relative position to the water table: species of wet habitats 

have a relatively low CEC, whereas hummock forming species have a higher CEC 

(Spearing, 1972; Hájec and Adamec, 2009). Thus, as the system changes from fen to bog, 

the Sphagnum community may change towards a community that has an overall higher 

adsorption capacity. In this succession, the low amount of soluble nutrients would be 

determined first by the increasing independence of the system to the local groundwater, but 

also by the increased adsorption of the Sphagnum community. 

The bog, because of its ombrotrophic nature, has a low cation input (other than Mg) 

and due to the high CEC of the peat this further decreases the soluble amount of nutrients. 

This supports Painter’s (1991) view that bog peat has unsaturated exchange sites that binds 

cations to organic matter and may make them unavailable for microbial activity. However, 

microbes can release in the media exo-enzymes that would attack the organic matter and 

mobilize mineral nutrients (Sinsabaugh et al, 2009). These exo-enzymes can also be 

adsorbed onto exchange sites (Painter, 1995). This could occur especially in the bog where 

there was still a lot of exchange sites available to react with exo-enzymes (Figure 6). Such 

enzymatic inhibition is uspected to be of uttermost importance in the C storage in peat 

(Freeman et al, 2001) and peat exchange sites unsaturation could be a powerful tool to 

achieve such enzymatic inhibition. 
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CEC may affect not only soluble cations, but also their total content by adsorbing 

cations and thus preventing losses through leaching. The D shape of total and 

exchangeable K, Na and Mg profiles in the bog follows the overall shape of the organic 

matter content. Damman (1978) reported the same pattern for Mg from Scandinavian bogs. 

Malmer (1988) demonstrated that the CEC of Sphagnum, which dominate Ellergower 

Moss, determines the total concentrations of Na and Mg. The capacity of Sphagnum 

species to retain macronutrient cations liberated from the decomposed peat combined with 

a loss of peat mass could explain the “D” shape distribution. Compared to the surface, at 

the bottom the CEC was lower, which would retain less Mg. This demonstrates the 

essential role of the CEC of the Sphagnum itself and the peat formed from the partial decay 

of Sphagnum on the distribution of these elements. The high CEC of Ellergower Moss is 

not entirely due to the presence of Sphagnum. The work here demonstrates that when 

expressed on a per organic matter basis the CECs of the different peats were very similar. 

However, the CEC of Ellergower Moss was high, simply because of the relatively high 

concentration of organic matter at this site compared to the other two.  

We have demonstrated that at Ellergower moss, an undisturbed peat bog, CEC is an 

important factor in determining the size of each cation pool. With a high CEC, cations are 

not in solution due to the large number of free exchange sites. They may be more available 

at the other sites due to a lack of availability of exchange sites. The exchange sites of 

Snelsmore peat are saturated by macro- and micronutrient cations and such a “mopping 

up” of cations is unlikely. Al is a determinant cation affecting the ESSL: because this 

element is probably in its Al
3+

 form (acidic conditions), it may occupy many exchange 

sites. Overall, the highest soluble cation concentrations were found at Snelsmore and 

Cothill. However, as peat is building in Snelsmore, the CEC will be increasing at the 

surface and the exchange sites may becomes less and less saturated. One can note that the 
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exchange capacity of Sphagnum peat, in contrary to Carex peat, is less sensitive to varying 

pH, at least for Cu (Ringqvist and Öborn, 2002). As the peat water becomes more acidic 

with peatland development, the exchange capacity of Sphagnum peat would not decrease, 

in contrary to Carex peat, and would keep along the succession from fen to bog the same 

capacity to bind cations indifferently from the pH. This would asure the high exchange 

capacity of Sphagnum peat, and hence the high ESSL, even at very low pH. As peat 

becomes unsaturated, exo-enzymes are likely to be more and more inhibited. If CEC does 

decrease the availability of cations, through both strong binding and inhibition of exo-

enzymes activity, a positive feedback may exist which reduces microbial activity through 

decrease of available nutrients, which in turn increases overall CEC as the organic fraction 

increases. If this is the case then a sudden change in the rate of peat accumulation may 

occur. This change may be reinforced by Sphagnum, which grows in low nutrient 

conditions and has a high number of exchange sites when both living and dead. For other 

plant species (like Phragmites), it is only the peat derived from them that has a high 

number of exchange sites (Moorhead et al., 2000). We suggest that the changes of soluble 

cation concentrations at the bottom of the Ellergower Moss profile demonstrate this sudden 

transition from one state to another. In Cothill, the high concentration of Ca saturates all 

the exchange sites, leading them to play only a minor role in the distribution of cations. 

There are few studies in the literature on the availability of cations in peat 

(Williams and Crawford, 1984; Thomas and Pearce, 2004) and none on the effect of Pb or 

Al. We demonstrate that patterns of soluble and total cations are not equivalent. This may 

lead to misinterpretations in the literature with some authors using soluble and others total 

cation concentrations when interpreting microbial mineral nutrition studies. There is a need 

to determine which cation fraction is available to microbes in other studies to fully 

understand microbial activity and care needs to be taken in cross site comparisons. 
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Although only one site of each type of peatland was studied here, they were representative 

of their own type. However, this study encourages similar investigations on different types 

of peatlands to confirm the conclusions. This study also encourages to study enzymatic 

activity in relation to exchange site saturation, as large amount of available sites may have 

an inhibitory effect that would enhance the lack of soluble cations by preventing 

mineralization. We further demonstrate that CEC is more closely related to organic matter 

content than Sphagnum per se. 
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TABLES  

Table 1. Organic matter content, CEC and pH (mean ± s.e.) of  peat from the three sites (Cothill, Snelsmore and Ellergower Moss). 

  OM content / % of dry mass   CEC /cmol kg-1   pH 

 Depth (m) Cothill   Snelsmore   Ellergower   Cothill   Snelsmore   Ellergower   Cothill   Snelsmore   Ellergower 

0.0-0.5 36.0 ± 0.8  85.8 ± 0.2  97.4 ± 0.1  22.1 ± 1.5  68.1 ± 0.8  95.2 ± 5.4  6.5 ± 0.1  4.3 ± 0.0  3.6 ± 0.1 

0.5-1.0 43.5 ± 0.7  63.5 ± 0.7  98.3 ± 0.1  30.4 ± 3.0  45.2 ± 1.2  64.2 ± 4.4  6.5 ± 0.1  4.4 ± 0.2  3.8 ± 0.1 

1.0-1.5 55.6 ± 0.6  34.7 ± 1.9  98.2 ± 0.0  46.3 ± 2.1  28.3 ± 2.9  57.6 ± 6.8  6.4 ± 0.1  4.5 ± 0.2  4.3 ± 0.1 

1.5-2.0 62.9 ± 0.3  20.4 ± 0.7  98.3 ± 0.0  59.9 ± 2.7  10.4 ± 1.2  65.5 ± 0.5  5.3 ± 0.0  4.2 ± 0.1  4.1 ± 0.2 

2.0-2.5     97.7 ± 0.1      66.7 ± 2.1      4.1 ± 0.1 

2.5-3.0     98.4 ± 0.0      71.9 ± 2.8      4.3 ± 0.2 

3.0-3.5     98.7 ± 0.0      82.1 ± 6.0      4.3 ± 0.0 

3.5-4.0     98.6 ± 0.1      92.9 ± 1.9      4.2 ± 0.1 

4.0-4.5     98.3 ± 0.1      106.8 ± 5.0      4.3 ± 0.1 

4.5-5.0     98.2 ± 0.1      91.7 ± 5.2      4.3 ± 0.1 

> 5.0         97.9 ± 0.1           93.8 ± 1.2           4.4 ± 0.1 
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FIGURES CAPTIONS 

Figure 1 Profiles of median (± min and max values) soluble and total macronutrients (Na, 

Mg, K, Ca) in Cothill (♦), Snelsmore (□) and Ellergower Moss (▲) (n = 4 in all cases). 

 

Figure 2 Profiles of median (± min and max values) soluble and total micronutrients (Mn, 

Fe, Ni, Co, Cu, Zn) in Cothill (♦), Snelsmore (□) and Ellergower Moss (▲) (n = 4 in all 

cases). 

 

Figure 3 Profiles of median soluble and total Pb and Al (± min and max values) in Cothill 

(♦), Snelsmore (□) and Ellergower Moss (▲) (n = 4 in all cases). 

 

Figure 4 Profiles of median soluble and total sum of micronutrients and macronutrients (± 

min and max values) in Cothill (♦), Snelsmore (□) and Ellergower Moss (▲) (n = 4 in all 

cases). 

 

Figure 5 Quotient of water soluble to ammonium acetate exchangeable Na and Mg 

concentrations (± min and max values) in Cothill (♦), Snelsmore (□) and Ellergower Moss 

(▲) (n = 4 in all cases). 

 

Figure 6 Exchange Site Saturation Level by cations as express by the quotient of the sum 

of charges extracted with ammonium acetate (♦) or nitric acid (□) on CEC. 
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Figure 6. 

0

0.5

1

1.5

2

0 1 2 3 4

Quotient of saturation
D

e
p

th
 (

m
)

0

1

2

3

4

5

6

0 1 2 3 4

0

0.5

1

1.5

2

0 1 2 3 4

Ammonium

acetate

Nitric Acid

(a) Cothill (b) Snelsmore (c) Ellergower Moss


