Semilinear fractional elliptic equations with gradient nonlinearity involving measures

Huyuan Chen, Laurent Veron

To cite this version:

Huyuan Chen, Laurent Veron. Semilinear fractional elliptic equations with gradient nonlinearity involving measures. Journal of Functional Analysis 266 (2014) 5467-5492. 2013. <hal00856008v6>

HAL Id: hal-00856008
https://hal.archives-ouvertes.fr/hal-00856008v6

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Semilinear fractional elliptic equations with gradient nonlinearity involving measures

Huyuan Chen ${ }^{1}$
Departamento de Ingeniería Matemática Universidad de Chile, Chile
Laurent Véron ${ }^{2}$
Laboratoire de Mathématiques et Physique Théorique
Université François Rabelais, Tours, France

Abstract

We study the existence of solutions to the fractional elliptic equation (E1) $(-\Delta)^{\alpha} u+\epsilon g(|\nabla u|)=\nu$ in an open bounded regular domain Ω of $\mathbb{R}^{N}(N \geq 2)$, subject to the condition (E2) $u=0$ in Ω^{c}, where $\epsilon=1$ or $-1,(-\Delta)^{\alpha}$ denotes the fractional Laplacian with $\alpha \in(1 / 2,1)$, ν is a Radon measure and $g: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is subcritical. Furthermore, the asymptotic behavior and uniqueness of solutions are described when $\epsilon=1, \nu$ is Dirac mass and $g(s)=s^{p}$ with $p \in\left(0, \frac{N}{N-2 \alpha+1}\right)$.

Contents

1 Introduction
 2

2 Preliminaries 6
2.1 Marcinkiewicz type estimates 6
2.2 Classical solutions 9
3 Proof of Theorems 1.1 and 1.2 11
3.1 The absorption case 11
3.2 The source case 15
4 The case of the Dirac mass 17

Key words: Fractional Laplacian, Radon measure, Green kernel, Dirac mass.
MSC2010: 35R11, 35J61, 35R06

[^0]
1 Introduction

Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be an open bounded C^{2} domain and $g: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$be a continuous function. The purpose of this paper is to study the existence of weak solutions to the semilinear fractional elliptic problem with $\alpha \in(1 / 2,1)$,

$$
\begin{align*}
(-\Delta)^{\alpha} u+\epsilon g(|\nabla u|)=\nu & \text { in } \quad \Omega \\
u=0 & \text { in } \quad \Omega^{\mathrm{c}} \tag{1.1}
\end{align*}
$$

where $\epsilon=1$ or -1 and $\nu \in \mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0,2 \alpha-1)$. Here $\rho(x)=$ $\operatorname{dist}\left(x, \Omega^{c}\right)$ and $\mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ is the space of Radon measures in Ω satisfying

$$
\begin{equation*}
\int_{\Omega} \rho^{\beta} d|\nu|<+\infty \tag{1.2}
\end{equation*}
$$

In particular, we denote $\mathfrak{M}^{b}(\Omega)=\mathfrak{M}\left(\Omega, \rho^{0}\right)$. The associated positive cones are respectively $\mathfrak{M}_{+}\left(\Omega, \rho^{\beta}\right)$ and $\mathfrak{M}_{+}^{b}(\Omega)$. According to the value of ϵ, we speak of an absorbing nonlinearity the case $\epsilon=1$ and a source nonlinearity the case $\epsilon=-1$. The operator $(-\Delta)^{\alpha}$ is the fractional Laplacian defined as

$$
(-\Delta)^{\alpha} u(x)=\lim _{\varepsilon \rightarrow 0^{+}}(-\Delta)_{\varepsilon}^{\alpha} u(x)
$$

where for $\varepsilon>0$,

$$
\begin{equation*}
(-\Delta)_{\varepsilon}^{\alpha} u(x)=-\int_{\mathbb{R}^{N}} \frac{u(z)-u(x)}{|z-x|^{N+2 \alpha}} \chi_{\varepsilon}(|x-z|) d z \tag{1.3}
\end{equation*}
$$

and

$$
\chi_{\varepsilon}(t)= \begin{cases}0, & \text { if } \quad \mathrm{t} \in[0, \varepsilon] \\ 1, & \text { if } \quad \mathrm{t}>\varepsilon\end{cases}
$$

In a pioneering work, Brezis [7] (also see Bénilan and Brezis [1]) studied the existence and uniqueness of the solution to the semilinear Dirichlet elliptic problem

$$
\begin{align*}
-\Delta u+h(u)=\nu & \text { in } \quad \Omega \\
u=0 & \text { on } \quad \partial \Omega \tag{1.4}
\end{align*}
$$

where ν is a bounded measure in Ω and the function h is nondecreasing, positive on $(0,+\infty)$ and satisfies that

$$
\int_{1}^{+\infty}(h(s)-h(-s)) s^{-2 \frac{N-1}{N-2}} d s<+\infty
$$

Later on, Véron [29] improved this result in replacing the Laplacian by more general uniformly elliptic second order differential operator, where $\nu \in \mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0,1]$ and h is a nondecreasing function satisfying

$$
\int_{1}^{+\infty}(h(s)-h(-s)) s^{-2 \frac{N+\beta-1}{N+\beta-2}} d s<+\infty
$$

The general semilinear elliptic problems involving measures such as the equations involving boundary measures have been intensively studied; it was initiated by Gmira and Véron [16] and then this subject has being extended in various ways, see $[4,6,18,19,20,21]$ for details and $[22]$ for a general panorama. In a recent work, Nguyen-Phuoc and Véron [24] obtained the existence of solutions to the viscous Hamilton-Jacobi equation

$$
\begin{align*}
-\Delta u+h(|\nabla u|)=\nu & \text { in } \quad \Omega \tag{1.5}\\
u=0 & \text { on } \quad \partial \Omega
\end{align*}
$$

when $\nu \in \mathfrak{M}^{b}(\Omega), h$ is a continuous nondecreasing function vanishing at 0 which satisfies

$$
\int_{1}^{+\infty} h(s) s^{-\frac{2 N-1}{N-1}} d s<+\infty
$$

During the last years there has also been a renewed and increasing interest in the study of linear and nonlinear integro-differential operators, especially, the fractional Laplacian, motivated by great applications in physics and by important links on the theory of Lévy processes, refer to $[8,12,13$, $10,14,26,28,27]$. Many estimates of its Green kernel and generation formula can be found in the references [3, 11]. Recently, Chen and Véron [13] studied the semilinear fractional elliptic equation

$$
\begin{align*}
(-\Delta)^{\alpha} u+h(u)=\nu & \text { in } \quad \Omega \\
u=0 & \text { in } \quad \Omega^{\mathrm{c}} \tag{1.6}
\end{align*}
$$

where $\nu \in \mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0, \alpha]$. We proved the existence and uniqueness of the solution to (1.6) when the function h is nondecreasing and satisfies

$$
\int_{1}^{+\infty}(h(s)-h(-s)) s^{-1-k_{\alpha, \beta}} d s<+\infty
$$

where

$$
k_{\alpha, \beta}= \begin{cases}\frac{N}{N-2 \alpha}, & \text { if } \quad \beta \in\left[0, \frac{\mathrm{~N}-2 \alpha}{\mathrm{~N}} \alpha\right] \tag{1.7}\\ \frac{N+\alpha}{N-2 \alpha+\beta}, & \text { if } \quad \beta \in\left(\frac{\mathrm{N}-2 \alpha}{\mathrm{~N}} \alpha, \alpha\right]\end{cases}
$$

Our interest in this article is to investigate the existence of weak solutions to fractional equations involving nonlinearity in the gradient term and with Radon measure. In order the fractional Laplacian be the dominant operator in terms of order of differentiation, it is natural to assume that $\alpha \in(1 / 2,1)$.

Definition 1.1 We say that u is a weak solution of (1.1), if $u \in L^{1}(\Omega)$, $|\nabla u| \in L_{l o c}^{1}(\Omega), g(|\nabla u|) \in L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ and

$$
\begin{equation*}
\int_{\Omega}\left[u(-\Delta)^{\alpha} \xi+\epsilon g(|\nabla u|) \xi\right] d x=\int_{\Omega} \xi d \nu, \quad \forall \xi \in \mathbb{X}_{\alpha} \tag{1.8}
\end{equation*}
$$

where $\mathbb{X}_{\alpha} \subset C\left(\mathbb{R}^{N}\right)$ is the space of functions ξ satisfying:
(i) $\operatorname{supp}(\xi) \subset \bar{\Omega}$,
(ii) $(-\Delta)^{\alpha} \xi(x)$ exists for all $x \in \Omega$ and $\left|(-\Delta)^{\alpha} \xi(x)\right| \leq C$ for some $C>0$,
(iii) there exist $\varphi \in L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ and $\varepsilon_{0}>0$ such that $\left|(-\Delta)_{\varepsilon}^{\alpha} \xi\right| \leq \varphi$ a.e. in Ω, for all $\varepsilon \in\left(0, \varepsilon_{0}\right]$.

We denote by G_{α} the Green kernel of $(-\Delta)^{\alpha}$ in Ω and by $\mathbb{G}_{\alpha}[$.$] the$ associated Green operator defined by

$$
\begin{equation*}
\mathbb{G}_{\alpha}[\nu](x)=\int_{\Omega} G_{\alpha}(x, y) d \nu(y), \quad \forall \nu \in \mathfrak{M}\left(\Omega, \rho^{\alpha}\right) . \tag{1.9}
\end{equation*}
$$

Using bounds of $\mathbb{G}_{\alpha}[\nu]$, we obtain in section 2 some crucial estimates which will play an important role in our construction of weak solutions. Our main result in the case $\epsilon=1$ is the following.

Theorem 1.1 Assume that $\epsilon=1$ and $g: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$is a continuous function verifying $g(0)=0$ and

$$
\begin{equation*}
\int_{1}^{+\infty} g(s) s^{-1-p_{\alpha}^{*}} d s<+\infty \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\alpha}^{*}=\frac{N}{N-2 \alpha+1} . \tag{1.11}
\end{equation*}
$$

Then for any $\nu \in \mathfrak{M}_{+}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0,2 \alpha-1)$, problem (1.1) admits a nonnegative weak solution u_{ν} which satisfies

$$
\begin{equation*}
u_{\nu} \leq \mathbb{G}_{\alpha}[\nu] . \tag{1.12}
\end{equation*}
$$

As in the case $\alpha=1$, uniqueness remains an open question. We remark that the critical value p_{α}^{*} is independent of β. A similar fact was first observed when dealing with problem (1.6) where the critical value $k_{\alpha, \beta}$ defined by (1.7) does not depend on β when $\beta \in\left[0, \frac{N-2 \alpha}{N} \alpha\right]$.

When $\epsilon=-1$, we have to consider the critical value $p_{\alpha, \beta}^{*}$ which depends truly on β and is expressed by

$$
\begin{equation*}
p_{\alpha, \beta}^{*}=\frac{N}{N-2 \alpha+1+\beta} . \tag{1.13}
\end{equation*}
$$

We observe that $p_{\alpha, 0}^{*}=p_{\alpha}^{*}$ and $p_{\alpha, \beta}^{*}<p_{\alpha}^{*}$ when $\beta>0$. In the source case, the assumptions on g are of a different nature from in the absorption case, namely
(G) $\quad g: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$is a continuous function which satisfies

$$
\begin{equation*}
g(s) \leq c_{1} s^{p}+\sigma_{0}, \quad \forall s \geq 0, \tag{1.14}
\end{equation*}
$$

for some $p \in\left(0, p_{\alpha, \beta}^{*}\right)$, where $c_{1}>0$ and $\sigma_{0}>0$.
Our main result concerning the source case is the following.
Theorem 1.2 Assume that $\epsilon=-1, \nu \in \mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0,2 \alpha-1)$ is nonnegative, g satisfies (G) and
(i) $p \in(0,1)$, or
(ii) $p=1$ and c_{1} is small enough, or
(iii) $p \in\left(1, p_{\alpha, \beta}^{*}\right), \sigma_{0}$ and $\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}$ are small enough.

Then problem (1.1) admits a weak nonnegative solution u_{ν} which satisfies

$$
\begin{equation*}
u_{\nu} \geq \mathbb{G}_{\alpha}[\nu] . \tag{1.15}
\end{equation*}
$$

We note that Bidaut-Véron, García-Huidobro and Véron in [5] obtained the existence of a renormalized solution of

$$
-\Delta_{p} u=|\nabla u|^{q}+\nu \quad \text { in } \Omega,
$$

when $\nu \in \mathfrak{M}^{b}(\Omega)$. We make use of some idea in [5] in the proof of Theorem 1.2 and extend some results in [5] to elliptic equations involving $(-\Delta)^{\alpha}$ with $\alpha \in(1 / 2,1)$ and $\nu \in \mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0,2 \alpha-1)$.

In the last section, we assume that Ω contains 0 and give pointwise estimates of the positive solutions

$$
\begin{align*}
(-\Delta)^{\alpha} u+|\nabla u|^{p}=\delta_{0} & \text { in } \quad \Omega, \\
u=0 & \text { in } \quad \Omega^{\mathrm{c}}, \tag{1.16}
\end{align*}
$$

when $0<p<p_{\alpha}^{*}$. Combining properties of the Riesz kernel with a bootstrap argument, we prove that any weak solution of (1.16) is regular outside 0 and is actually a classical solution of

$$
\begin{align*}
(-\Delta)^{\alpha} u+|\nabla u|^{p}=0 & \text { in } \quad \Omega \backslash\{0\}, \\
u=0 & \text { in } \quad \Omega^{\mathrm{c}} . \tag{1.17}
\end{align*}
$$

These pointwise estimates are quite easy to establish in the case $\alpha=1$, but much more delicate when the diffusion operator is non-local. We give sharp asymptotics of the behaviour of u near 0 and prove that the solution of (1.16) is unique in the class of positive solutions.

The paper is organized as follows. In Section 2, we study the Green operator and prove the key estimate

$$
\left\|\nabla \mathbb{G}_{\alpha}[\nu]\right\|_{M^{p_{\alpha}^{*}}\left(\Omega, \rho^{\alpha} d x\right)} \leq c_{2}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}
$$

Section 3 is devoted to prove Theorem 1.1 and Theorem 1.2. In Section 4, we consider the case where $\epsilon=1$ in (1.1) and ν is a Dirac mass. We obtain precise asymptotic estimate and derive uniqueness.
Aknowledgements. The authors are grateful to Marie-Françoise BidautVéron for useful discussions in the preparation of this work.

2 Preliminaries

2.1 Marcinkiewicz type estimates

In this subsection, we recall some definitions and properties of Marcinkiewicz spaces.

Definition 2.1 Let $\Theta \subset \mathbb{R}^{N}$ be a domain and μ be a positive Borel measure in Θ. For $\kappa>1, \kappa^{\prime}=\kappa /(\kappa-1)$ and $u \in L_{\text {loc }}^{1}(\Theta, d \mu)$, we set
$\|u\|_{M^{\kappa}(\Theta, d \mu)}=\inf \left\{c \in[0, \infty]: \int_{E}|u| d \mu \leq c\left(\int_{E} d \mu\right)^{\frac{1}{\kappa^{\prime}}}, \forall E \subset \Theta, E\right.$ Borel $\}$
and

$$
M^{\kappa}(\Theta, d \mu)=\left\{u \in L_{l o c}^{1}(\Theta, d \mu):\|u\|_{M^{\kappa}(\Theta, d \mu)}<\infty\right\}
$$

$M^{\kappa}(\Theta, d \mu)$ is called the Marcinkiewicz space of exponent κ, or weak L^{κ}-space and $\|\cdot\|_{M^{\kappa}(\Theta, d \mu)}$ is a quasi-norm.

Proposition 2.1 [2, 9] Assume that $1 \leq q<\kappa<\infty$ and $u \in L_{\text {loc }}^{1}(\Theta, d \mu)$. Then there exists $c_{3}>0$ dependent of q, κ such that

$$
\int_{E}|u|^{q} d \mu \leq c_{3}\|u\|_{M^{\kappa}(\Theta, d \mu)}\left(\int_{E} d \mu\right)^{1-q / \kappa}
$$

for any Borel set E of Θ.
The next estimate is the key-stone in the proof of Theorem 1.1.
Proposition 2.2 Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded C^{2} domain and $\nu \in$ $\mathfrak{M}\left(\Omega, \rho^{\beta}\right)$ with $\beta \in[0,2 \alpha-1]$. Then there exists $c_{2}>0$ such that

$$
\begin{equation*}
\left\|\nabla \mathbb{G}_{\alpha}[|\nu|]\right\|_{M^{p_{\alpha}^{*}}\left(\Omega, \rho^{\alpha} d x\right)} \leq c_{2}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)} \tag{2.3}
\end{equation*}
$$

where $\nabla \mathbb{G}_{\alpha}[|\nu|](x)=\int_{\Omega} \nabla_{x} G_{\alpha}(x, y) d|\nu(y)|$ and p_{α}^{*} is given by (1.11).

Proof. For $\lambda>0$ and $y \in \Omega$, we set

$$
\omega_{\lambda}(y)=\left\{x \in \Omega \backslash\{y\}:\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x)>\lambda\right\}, m_{\lambda}(y)=\int_{\omega_{\lambda}(y)} d x .
$$

From [11], there exists $c_{4}>0$ such that for any $(x, y) \in \Omega \times \Omega$ with $x \neq y$,

$$
\begin{gather*}
G_{\alpha}(x, y) \leq c_{4} \min \left\{\frac{1}{|x-y|^{N-2 \alpha}}, \frac{\rho^{\alpha}(x)}{|x-y|^{N-\alpha}}, \frac{\rho^{\alpha}(y)}{|x-y|^{N-\alpha}}\right\}, \tag{2.4}\\
G_{\alpha}(x, y) \leq c_{4} \frac{\rho^{\alpha}(y)}{\rho^{\alpha}(x)|x-y|^{N-2 \alpha}},
\end{gather*}
$$

and by Corollary 3.3 in [3], we have

$$
\begin{equation*}
\left|\nabla_{x} G_{\alpha}(x, y)\right| \leq N G_{\alpha}(x, y) \max \left\{\frac{1}{|x-y|}, \frac{1}{\rho(x)}\right\} . \tag{2.5}
\end{equation*}
$$

This implies that for any $\tau \in[0,1]$

$$
G_{\alpha}(x, y) \leq c_{4}\left(\frac{\rho^{\alpha}(y)}{|x-y|^{N-\alpha}}\right)^{\tau}\left(\frac{\rho^{\alpha}(x)}{|x-y|^{N-\alpha}}\right)^{1-\tau}=c_{4} \frac{\rho^{\alpha \tau}(y) \rho^{\alpha(1-\tau)}(x)}{|x-y|^{N-\alpha}},
$$

and then

$$
\begin{equation*}
\left|\nabla_{x} G_{\alpha}(x, y)\right| \leq c_{5} \max \left\{\frac{\rho^{\alpha}(y)}{\rho^{\alpha}(x)|x-y|^{N-2 \alpha+1}}, \frac{\rho^{\alpha \tau}(y) \rho^{\alpha(1-\tau)-1}(x)}{|x-y|^{N-\alpha}}\right\} . \tag{2.6}
\end{equation*}
$$

Letting $\tau=\frac{2 \alpha-1}{\alpha} \frac{N-\alpha}{N-2 \alpha+1} \in(0,1)$, we derive
$\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) \leq c_{5} \max \left\{\frac{\rho^{2 \alpha-1}(y) \rho_{\Omega}^{1-\alpha}}{|x-y|^{N-2 \alpha+1}}, \frac{\rho^{\frac{(2 \alpha-1)(N-\alpha)}{N-2 \alpha+1}}(y) \rho_{\Omega}^{\frac{(2 \alpha-1)(1-\alpha)}{N-2 \alpha+1}}}{|x-y|^{N-\alpha}}\right\}$.
where $\rho_{\Omega}=\sup _{z \in \Omega} \rho(z)$. There exists some $c_{6}>0$ such that

$$
\omega_{\lambda}(y) \subset\left\{x \in \Omega:|x-y| \leq c_{6} \rho^{\frac{2 \alpha-1}{N-2 \alpha+1}}(y) \max \left\{\lambda^{-\frac{1}{N-2 \alpha+1}}, \lambda^{-\frac{1}{N-\alpha}}\right\}\right\} .
$$

By $N-2 \alpha+1>N-\alpha$, we deduce that for any $\lambda>1$, there holds

$$
\begin{equation*}
\omega_{\lambda}(y) \subset\left\{x \in \Omega:|x-y| \leq c_{6} \rho^{\frac{2 \alpha-1}{N-2 \alpha+1}}(y) \lambda^{-\frac{1}{N-2 \alpha+1}}\right\} . \tag{2.7}
\end{equation*}
$$

As a consequence,

$$
m_{\lambda}(y) \leq c_{7} \rho^{(2 \alpha-1) p_{\alpha}^{*}}(y) \lambda^{-p_{\alpha}^{*}},
$$

where $c_{7}>0$ independent of y and λ.
Let $E \subset \Omega$ be a Borel set and $\lambda>1$, then

$$
\int_{E}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x \leq \int_{\omega_{\lambda}(y)}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x+\lambda \int_{E} d x .
$$

Noting that

$$
\begin{aligned}
\int_{\omega_{\lambda}(y)}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x & =-\int_{\lambda}^{\infty} s d m_{s}(y) \\
& =\lambda m_{\lambda}(y)+\int_{\lambda}^{\infty} m_{s}(y) d s \\
& \leq c_{8} \rho^{(2 \alpha-1) p_{\alpha}^{*}}(y) \lambda^{1-p_{\alpha}^{*}}
\end{aligned}
$$

for some $c_{8}>0$, we derive

$$
\int_{E}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x \leq c_{8} \rho^{(2 \alpha-1) p_{\alpha}^{*}}(y) \lambda^{1-p_{\alpha}^{*}}+\lambda \int_{E} d x
$$

Choosing $\lambda=\rho^{2 \alpha-1}(y)\left(\int_{E} d x\right)^{-\frac{1}{p_{\alpha}^{*}}}$ yields

$$
\int_{E}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x \leq\left(c_{8}+1\right) \rho^{2 \alpha-1}(y)\left(\int_{E} d x\right)^{\frac{p_{\alpha}^{*}-1}{p_{\alpha}^{*}}}, \quad \forall y \in \Omega
$$

Therefore,

$$
\begin{align*}
& \int_{E}\left|\nabla \mathbb{G}_{\alpha}[|\nu|](x)\right| \rho^{\alpha}(x) d x=\int_{\Omega} \int_{E}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x d|\nu(y)| \\
& \leq \int_{\Omega} \rho^{2 \alpha-1}(y)\left(\rho^{1-2 \alpha}(y) \int_{E}\left|\nabla_{x} G_{\alpha}(x, y)\right| \rho^{\alpha}(x) d x\right) d|\nu(y)| \\
& \leq\left(c_{8}+1\right) \int_{\Omega} \rho^{\beta}(y) \rho^{2 \alpha-1-\beta}(y) d|\nu(y)|\left(\int_{E} d x\right)^{\frac{p_{\alpha}^{*}-1}{p_{\alpha}^{*}}} \\
& \leq\left(c_{8}+1\right) \rho_{\Omega}^{2 \alpha-1-\beta}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}\left(\int_{E} d x\right)^{\frac{p_{\alpha}^{*}-1}{p_{\alpha}^{*}}} \tag{2.8}
\end{align*}
$$

As a consequence,

$$
\left\|\nabla \mathbb{G}_{\alpha}[|\nu|]\right\|_{M^{p_{\alpha}^{*}}\left(\Omega, \rho^{\alpha} d x\right)} \leq c_{2}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)},
$$

which ends the proof.
Proposition 2.3 [13] Assume that $\nu \in L^{1}\left(\Omega, \rho^{\beta} d x\right)$ with $0 \leq \beta \leq \alpha$. Then for $p \in\left(1, \frac{N}{N-2 \alpha+\beta}\right)$, there exists $c_{9}>0$ such that for any $\nu \in L^{1}\left(\Omega, \rho^{\beta} d x\right)$

$$
\begin{equation*}
\left\|\mathbb{G}_{\alpha}[\nu]\right\|_{W^{2 \alpha-\gamma, p}(\Omega)} \leq c_{9}\|\nu\|_{L^{1}\left(\Omega, \rho^{\beta} d x\right)} \tag{2.9}
\end{equation*}
$$

where $p^{\prime}=\frac{p}{p-1}, \gamma=\beta+\frac{N}{p^{\prime}}$ if $\beta>0$ and $\gamma>\frac{N}{p^{\prime}}$ if $\beta=0$.
Proposition 2.4 If $0 \leq \beta<2 \alpha-1$, then the mapping $\nu \mapsto\left|\nabla \mathbb{G}_{\alpha}[\nu]\right|$ is compact from $L^{1}\left(\Omega, \rho^{\beta} d x\right)$ into $L^{q}(\Omega)$ for any $q \in\left[1, p_{\alpha, \beta}^{*}\right)$ and there exists $c_{10}>0$ such that

$$
\begin{equation*}
\left(\int_{\Omega}\left|\nabla \mathbb{G}_{\alpha}[\nu](x)\right|^{q} d x\right)^{\frac{1}{q}} \leq c_{10} \int_{\Omega}|\nu(x)| \rho^{\beta}(x) d x \tag{2.10}
\end{equation*}
$$

where $p_{\alpha, \beta}^{*}$ is given by (1.13).

Proof. For $\nu \in L^{1}\left(\Omega, \rho^{\beta} d x\right)$ with $0 \leq \beta<2 \alpha-1<\alpha$, we obtain from Proposition 2.3 that

$$
\mathbb{G}_{\alpha}[\nu] \in W^{2 \alpha-\gamma, p}(\Omega),
$$

where $p \in\left(1, p_{\alpha, \beta}^{*}\right)$ and $2 \alpha-\gamma>1$. Therefore, $\left|\nabla \mathbb{G}_{\alpha}[\nu]\right| \in W^{2 \alpha-\gamma-1, p}(\Omega)$ and

$$
\begin{equation*}
\left\|\nabla \mathbb{G}_{\alpha}[\nu]\right\|_{W^{2 \alpha-\gamma-1, p}(\Omega)} \leq c_{9}\|\nu\|_{L^{1}\left(\Omega, \rho^{\beta} d x\right)} . \tag{2.11}
\end{equation*}
$$

By [23, Corollary 7.2], the embedding of $W^{2 \alpha-\gamma-1, p}(\Omega)$ into $L^{q}(\Omega)$ is compact for $q \in\left[1, \frac{N p}{N-(2 \alpha-\gamma-1) p}\right)$. When $\beta>0$,

$$
\begin{aligned}
\frac{N p}{N-(2 \alpha-\gamma-1) p} & =\frac{N p}{N-\left(2 \alpha-\beta-N \frac{p-1}{p}-1\right) p} \\
& =\frac{N}{N-2 \alpha+1+\beta}=p_{\alpha, \beta}^{*} .
\end{aligned}
$$

When $\beta=0$,

$$
\begin{aligned}
\lim _{\gamma \rightarrow\left(\frac{N}{p^{\prime}}\right)+} \frac{N p}{N-(2 \alpha-\gamma-1) p} & =\frac{N p}{N-\left(2 \alpha-N \frac{p-1}{p}-1\right) p} \\
& =\frac{N}{N-2 \alpha+1}=p_{\alpha, 0}^{*}
\end{aligned}
$$

Then the mapping $\nu \mapsto\left|\nabla \mathbb{G}_{\alpha}[\nu]\right|$ is compact from $L^{1}\left(\Omega, \rho^{\beta} d x\right)$ into $L^{q}(\Omega)$ for any $q \in\left[1, p_{\alpha, \beta}^{*}\right)$. Inequality (2.10) follows by (2.11) and the continuity of the embedding of $W^{2 \alpha-\gamma-1, p}(\Omega)$ into $L^{q}(\Omega)$.
Remark. If $\nu \in L^{1}\left(\Omega, \rho^{\beta} d x\right)$ with $0 \leq \beta<2 \alpha-1$ and u is the solution of

$$
\begin{aligned}
(-\Delta)^{\alpha} u=\nu & \text { in } \quad \Omega, \\
u=0 & \text { in } \quad \Omega^{\mathrm{c}},
\end{aligned}
$$

then for any $q \in\left[1, p_{\alpha, \beta}^{*}\right)$,

$$
\left(\int_{\Omega}|\nabla u|^{q} d x\right)^{\frac{1}{q}} \leq c_{10} \int_{\Omega}|\nu(x)| \rho^{\beta}(x) d x .
$$

2.2 Classical solutions

In this subsection we consider the question of existence of classical solutions to problem

$$
\begin{align*}
(-\Delta)^{\alpha} u+h(|\nabla u|)=f & \text { in } \quad \Omega, \\
u=0 & \text { in } \quad \Omega^{\mathrm{c}} . \tag{2.12}
\end{align*}
$$

Theorem 2.1 Assume $h \in C^{\theta}\left(\mathbb{R}_{+}\right) \cap L^{\infty}\left(\mathbb{R}_{+}\right)$for some $\theta \in(0,1]$ and $f \in$ $C^{\theta}(\bar{\Omega})$. Then problem (2.12) admits a unique classical solution u. Moreover, (i) if $f-h(0) \geq 0$ in Ω, then $u \geq 0$;
(ii) the mappings $h \mapsto u$ and $f \mapsto u$ are respectively nonincreasing and nondecreasing.

Proof. We divide the proof into several steps.
Step 1. Existence. We define the operator T by

$$
T u=\mathbb{G}_{\alpha}[f-h(|\nabla u|)], \quad \forall u \in W_{0}^{1,1}(\Omega)
$$

Using (2.6) with $\tau=0$ yields

$$
\begin{align*}
\|T u\|_{W^{1,1}(\Omega)} & \leq\left\|\mathbb{G}_{\alpha}[f]\right\|_{W^{1,1}(\Omega)}+\left\|\mathbb{G}_{\alpha}[h(|\nabla u|)]\right\|_{W^{1,1}(\Omega)} \\
& \leq\left(\|f\|_{L^{\infty}(\Omega)}+\|h(|\nabla u|)\|_{L^{\infty}(\Omega)}\right)\left\|\int_{\Omega} G_{\alpha}(\cdot, y) d y\right\|_{W^{1,1}(\Omega)} \\
& =c_{11}\left(\|f\|_{L^{\infty}(\Omega)}+\|h\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}\right) \tag{2.13}
\end{align*}
$$

where $c_{11}=\left\|\int_{\Omega} G_{\alpha}(\cdot, y) d y\right\|_{W^{1,1}(\Omega)}$. Thus $T \operatorname{maps} W_{0}^{1,1}(\Omega)$ into itself. Clearly, if $u_{n} \rightarrow u$ in $W_{0}^{1,1}(\Omega)$ as $n \rightarrow \infty$, then $h\left(\left|\nabla u_{n}\right|\right) \rightarrow h(|\nabla u|)$ in $L^{1}(\Omega)$, thus T is continuous. We claim that T is a compact operator. In fact, for $u \in W_{0}^{1,1}(\Omega)$, we see that $f-h(|\nabla u|) \in L^{1}(\Omega)$ and then, by Proposition 2.3 , it implies that $T u \in W_{0}^{2 \alpha-\gamma, p}(\Omega)$ where $\gamma \in\left(\frac{N(p-1)}{p}, 2 \alpha-1\right)$ and $2 \alpha-1>\frac{N(p-1)}{p}>0$ for $p \in\left(1, \frac{N}{N-2 \alpha+1}\right)$. Since the embedding $W_{0}^{2 \alpha-\gamma, p}(\Omega) \hookrightarrow W_{0}^{1,1}(\Omega)$ is compact, T is a compact operator.

Let $\mathcal{O}=\left\{u \in W_{0}^{1,1}(\Omega):\|u\|_{W^{1,1}(\Omega)} \leq c_{10}\left(\|f\|_{L^{\infty}(\Omega)}+\|h\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}\right)\right\}$, which is a closed and convex set of $W_{0}^{1,1}(\Omega)$. Combining with (2.13), there holds

$$
T(\mathcal{O}) \subset \mathcal{O}
$$

It follows by Schauder's fixed point theorem that there exists some $u \in$ $W_{0}^{1,1}(\Omega)$ such that $T u=u$.

Next we show that u is a classical solution of (2.12). Let open set O satisfy $O \subset \bar{O} \subset \Omega$. By Proposition 2.3 in [26], for any $\sigma \in(0,2 \alpha)$, there exists $c_{12}>0$ such that

$$
\|u\|_{C^{\sigma}(O)} \leq c_{12}\left\{\|h(|\nabla u|)\|_{L^{\infty}(\Omega)}+\|f\|_{L^{\infty}(\Omega)}\right\}
$$

and by choosing $\sigma=\frac{2 \alpha+1}{2} \in(1,2 \alpha)$, then

$$
\||\nabla u|\|_{C^{\sigma-1}(O)} \leq c_{12}\left\{\|h(|\nabla u|)\|_{L^{\infty}(\Omega)}+\|f\|_{L^{\infty}(\Omega)}\right\}
$$

and then applied [26, Corollary 2.4], u is $C^{2 \alpha+\epsilon_{0}}$ locally in Ω for some $\epsilon_{0}>0$. Then u is a classical solution of (2.12). Moreover, from [13], we have

$$
\begin{equation*}
\int_{\Omega}\left[u(-\Delta)^{\alpha} \xi+h(|\nabla u|) \xi\right] d x=\int_{\Omega} \xi f d x, \quad \forall \xi \in \mathbb{X}_{\alpha} \tag{2.14}
\end{equation*}
$$

Step 2. Proof of (i). If u is not nonnegative, then there exists $x_{0} \in \Omega$ such that

$$
u\left(x_{0}\right)=\min _{x \in \Omega} u(x)<0,
$$

then $\nabla u\left(x_{0}\right)=0$ and $(-\Delta)^{\alpha} u\left(x_{0}\right)<0$. Since u is the classical solution of (2.12), $(-\Delta)^{\alpha} u\left(x_{0}\right)=f\left(x_{0}\right)-h(0) \geq 0$, which is a contradiction.

Step 3. Proof of (ii). We just give the proof of the first argument, the proof of the second being similar. Let h_{1} and h_{2} satisfy our hypotheses for h and $h_{1} \leq h_{2}$. Denote u_{1} and u_{2} the solutions of (2.12) with h replaced by h_{1} and h_{2} respectively. If there exists $x_{0} \in \Omega$ such that

$$
\left(u_{1}-u_{2}\right)\left(x_{0}\right)=\min _{x \in \Omega}\left\{\left(u_{1}-u_{2}\right)(x)\right\}<0 .
$$

Then

$$
(-\Delta)^{\alpha}\left(u_{1}-u_{2}\right)\left(x_{0}\right)<0, \quad \nabla u_{1}\left(x_{0}\right)=\nabla u_{2}\left(x_{0}\right) .
$$

This implies

$$
\begin{equation*}
(-\Delta)^{\alpha}\left(u_{1}-u_{2}\right)\left(x_{0}\right)+h_{1}\left(\left|\nabla u_{1}\left(x_{0}\right)\right|\right)-h_{2}\left(\left|\nabla u_{2}\left(x_{0}\right)\right|\right)<0 . \tag{2.15}
\end{equation*}
$$

However,

$$
(-\Delta)^{\alpha}\left(u_{1}-u_{2}\right)\left(x_{0}\right)+h_{1}\left(\left|\nabla u_{1}\left(x_{0}\right)\right|\right)-h_{2}\left(\left|\nabla u_{2}\left(x_{0}\right)\right|\right)=f\left(x_{0}\right)-f\left(x_{0}\right)=0,
$$

contradiction. Then $u_{1} \geq u_{2}$.
Uniqueness follows from Step 3.

3 Proof of Theorems 1.1 and 1.2

3.1 The absorption case

In this subsection, we prove the existence of a weak solution to (1.1) when $\epsilon=1$. To this end, we give below an auxiliary lemma.

Lemma 3.1 Assume that $g: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$is continuous and (1.10) holds with p_{α}^{*}. Then there is a sequence real positive numbers $\left\{T_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} T_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} g\left(T_{n}\right) T_{n}^{-p_{\alpha}^{*}}=0
$$

Proof. Let $\left\{s_{n}\right\}$ be a sequence of real positive numbers converging to ∞. We observe

$$
\begin{aligned}
\int_{s_{n}}^{2 s_{n}} g(t) t^{-1-p_{\alpha}^{*}} d t & \geq \min _{t \in\left[s_{n}, 2 s_{n}\right]} g(t)\left(2 s_{n}\right)^{-1-p_{\alpha}^{*}} \int_{s_{n}}^{2 s_{n}} d t \\
& =2^{-1-p_{\alpha}^{\alpha} S_{n}^{-p_{\alpha}^{*}}} \min _{t \in\left[s_{n}, 2 s_{n}\right]} g(t)
\end{aligned}
$$

and by (1.10),

$$
\lim _{n \rightarrow \infty} \int_{s_{n}}^{2 s_{n}} g(t) t^{-1-p_{\alpha}^{*}} d t=0
$$

Then we choose $T_{n} \in\left[s_{n}, 2 s_{n}\right]$ such that $g\left(T_{n}\right)=\min _{t \in\left[s_{n}, 2 s_{n}\right]} g(t)$ and then the claim follows.

Proof of Theorem 1.1. Let $\beta \in[0,2 \alpha-1)$, we define the space

$$
C_{\beta}(\bar{\Omega})=\left\{\zeta \in C(\bar{\Omega}): \rho^{-\beta} \zeta \in C(\bar{\Omega})\right\}
$$

endowed with the norm

$$
\|\zeta\|_{C_{\beta}(\bar{\Omega})}=\left\|\rho^{-\beta} \zeta\right\|_{C(\bar{\Omega})} .
$$

Let $\left\{\nu_{n}\right\} \subset C^{1}(\bar{\Omega})$ be a sequence of nonnegative functions such that $\nu_{n} \rightarrow \nu$ in sense of duality with $C_{\beta}(\bar{\Omega})$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\bar{\Omega}} \zeta \nu_{n} d x=\int_{\bar{\Omega}} \zeta d \nu, \quad \forall \zeta \in C_{\beta}(\bar{\Omega}) \tag{3.1}
\end{equation*}
$$

By the Banach-Steinhaus Theorem, $\left\|\nu_{n}\right\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}$ is bounded independently of n. We consider a sequence $\left\{g_{n}\right\}$ of C^{1} nonnegative functions defined on \mathbb{R}_{+}such that $g_{n}(0)=0$ and

$$
\begin{equation*}
g_{n} \leq g_{n+1} \leq g, \quad \sup _{s \in \mathbb{R}_{+}} g_{n}(s)=n \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{L_{l o c}^{\infty}\left(\mathbb{R}_{+}\right)}=0 . \tag{3.2}
\end{equation*}
$$

By Theorem 2.1, there exists a unique nonnegative solution u_{n} of (1.1) with data ν_{n} and g_{n} instead of ν and g, and there holds

$$
\begin{equation*}
\int_{\Omega}\left(u_{n}+g_{n}\left(\left|\nabla u_{n}\right|\right) \eta_{1}\right) d x=\int_{\Omega} \nu_{n} \eta_{1} d x \leq C\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)} \tag{3.3}
\end{equation*}
$$

where $\eta_{1}=\mathbb{G}_{\alpha}[1]$. Therefore, $\left\|g_{n}\left(\left|\nabla u_{n}\right|\right)\right\|_{\mathfrak{M}\left(\Omega, \rho^{\alpha}\right)}$ is bounded independently of n. For $\varepsilon>0$ and $\xi_{\varepsilon}=\left(\eta_{1}+\varepsilon\right)^{\frac{\beta}{\alpha}}-\varepsilon^{\frac{\beta}{\alpha}} \in \mathbb{X}_{\alpha}$ which is concave in the interval $\left[0, \eta_{1}(\bar{\omega})\right]$, where $\eta_{1}(\bar{\omega})=\max _{x \in \Omega} \eta_{1}(x)$. By [13, Lemma 2.3 (ii)], we see that

$$
\begin{aligned}
(-\Delta)^{\alpha} \xi_{\varepsilon} & =\frac{\beta}{\alpha}\left(\eta_{1}+\varepsilon\right)^{\frac{1}{\alpha}}(-\Delta)^{\alpha} \eta_{1}-\frac{\beta(\beta-\alpha)}{\alpha^{2}}\left(\eta_{1}+\varepsilon\right)^{\frac{\beta-2 \alpha}{\alpha}} \int_{\Omega} \frac{\left(\eta_{1}(y)-\eta_{1}(x)\right)^{2}}{|y-x|^{N+2 \alpha}} d y \\
& \geq \frac{\beta}{\alpha}\left(\eta_{1}+\varepsilon\right)^{\frac{\beta-\alpha}{\alpha}}
\end{aligned}
$$

and $\xi_{\varepsilon} \in \mathbb{X}_{\alpha}$. Since

$$
\int_{\Omega}\left(u_{n}(-\Delta)^{\alpha} \xi_{\varepsilon}+g_{n}\left(\left|\nabla u_{n}\right|\right) \xi_{\varepsilon}\right) d x=\int_{\Omega} \xi_{\varepsilon} \nu_{n} d x
$$

we obtain

$$
\int_{\Omega}\left(\frac{\beta}{\alpha} u_{n}\left(\eta_{1}+\varepsilon\right)^{\frac{\beta-\alpha}{\alpha}}+g_{n}\left(\left|\nabla u_{n}\right|\right) \xi_{\varepsilon}\right) d x \leq \int_{\Omega} \xi_{\varepsilon} \nu_{n} d x .
$$

If we let $\varepsilon \rightarrow 0$, it yields

$$
\int_{\Omega}\left(\frac{\beta}{\alpha} u_{n} \eta_{1}^{\frac{\beta-\alpha}{\alpha}}+g_{n}\left(\left|\nabla u_{n}\right|\right) \eta_{1}^{\frac{\beta}{\alpha}}\right) d x \leq \int_{\Omega} \eta_{1}^{\frac{\beta}{\alpha}} \nu_{n} d x .
$$

Using [13, Lemma 2.3], we derive the estimate

$$
\begin{equation*}
\int_{\Omega}\left(u_{n} \rho^{\beta-\alpha}+g_{n}\left(\left|\nabla u_{n}\right|\right) \rho^{\beta}\right) d x \leq c_{13}\left\|\nu_{n}\right\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)} \leq c_{14}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)} . \tag{3.4}
\end{equation*}
$$

Thus $\left\{g_{n}\left(\left|\nabla u_{n}\right|\right)\right\}$ is uniformly bounded in $L^{1}\left(\Omega, \rho^{\beta} d x\right)$. Since $u_{n}=\mathbb{G}\left[\nu_{n}-\right.$ $\left.g_{n}\left(\left|\nabla u_{n}\right|\right)\right]$, there holds

$$
\begin{aligned}
\left\|\mid \nabla u_{n}\right\| \|_{M^{p_{\alpha}^{*}\left(\Omega, \rho^{\alpha} d x\right)}} & \leq\left\|\nu_{n}\right\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}+\left\|g_{n}\left(\left|\nabla u_{n}\right|\right)\right\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)} \\
& \leq c_{15}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)} .
\end{aligned}
$$

Since $\nu_{n}-g_{n}\left(\left|\nabla u_{n}\right|\right)$ is uniformly bounded in $L^{1}\left(\Omega, \rho^{\beta} d x\right)$, we use Proposition 2.4 to obtain that the sequences $\left\{u_{n}\right\},\left\{\left|\nabla u_{n}\right|\right\}$ are relatively compact in $L^{q}(\Omega)$ for $q \in\left[1, \frac{N}{N-2 \alpha+\beta}\right)$ and $q \in\left[1, p_{\alpha, \beta}^{*}\right)$, respectively. Thus, there exist a sub-sequence $\left\{u_{n_{k}}\right\}$ and some $u \in L^{q}(\Omega)$ with $q \in\left[1, \frac{N}{N-2 \alpha+\beta}\right)$ such that
(i) $u_{n_{k}} \rightarrow u$ a.e. in Ω and in $L^{q}(\Omega)$ with $q \in\left[1, \frac{N}{N-2 \alpha+\beta}\right)$;
(ii) $\left|\nabla u_{n_{k}}\right| \rightarrow|\nabla u|$ a.e. in Ω and in $L^{q}(\Omega)$ with $q \in\left[1, p_{\alpha, \beta}^{*}\right)$.

Therefore, $g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right) \rightarrow g(|\nabla u|)$ a.e. in Ω. For $\lambda>0$, we denote

$$
S_{\lambda}=\left\{x \in \Omega:\left|\nabla u_{n_{k}}(x)\right|>\lambda\right\} \quad \text { and } \quad \omega(\lambda)=\int_{S_{\lambda}} \rho^{\alpha}(x) d x .
$$

Then for any Borel set $E \subset \Omega$, we have that

$$
\begin{aligned}
& \int_{E} g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right)\left|\rho^{\alpha}(x) d x \leq \int_{E} g\left(\left|\nabla u_{n_{k}}\right|\right)\right| \rho^{\alpha}(x) d x \\
&=\int_{E \cap S_{\lambda}^{c}} g\left(\left|\nabla u_{n_{k}}\right|\right) \rho^{\alpha}(x) d x+\int_{E \cap S_{\lambda}} g\left(\left|\nabla u_{n_{k}}\right|\right) \rho^{\alpha}(x) d x \\
& \leq \tilde{g}(\lambda) \int_{E} \rho^{\alpha}(x) d x+\int_{S_{\lambda}} g\left(\left|\nabla u_{n_{k}}\right|\right) \rho^{\alpha}(x) d x \\
& \leq \tilde{g}(\lambda) \int_{E} \rho^{\alpha}(x) d x-\int_{\lambda}^{\infty} g(s) d \omega(s),
\end{aligned}
$$

where $\tilde{g}(s)=\max _{t \in[0, s]}\{g(t)\}$. But

$$
\int_{\lambda}^{\infty} g(s) d \omega(s)=\lim _{n \rightarrow \infty} \int_{\lambda}^{T_{n}} g(s) d \omega(s) .
$$

where $\left\{T_{n}\right\}$ is given by Lemma 3.1. Since $\left|\nabla u_{n_{k}}\right| \in M^{p_{\alpha}^{*}}\left(\Omega, \rho^{\alpha} d x\right), \omega(s) \leq$ $c_{16} s^{-p_{\alpha}^{*}}$ and

$$
\begin{aligned}
-\int_{\lambda}^{T_{n}} g(s) d \omega(s)=-[g(s) \omega(s)]_{s=\lambda}^{s=T_{n}} & +\int_{\lambda}^{T_{n}} \omega(s) d g(s) \\
\leq g(\lambda) \omega(\lambda)-g\left(T_{n}\right) \omega\left(T_{n}\right) & +c_{16} \int_{\lambda}^{T_{n}} s^{-p_{\alpha}^{*}} d g(s) \\
\leq g(\lambda) \omega(\lambda)-g\left(T_{n}\right) \omega\left(T_{n}\right) & +c_{16}\left(T_{n}{ }^{-p_{\alpha}^{*}} g\left(T_{n}\right)-\lambda^{-p_{\alpha}^{*}} g(\lambda)\right) \\
& +\frac{c_{16}}{p_{\alpha}^{*}+1} \int_{\lambda}^{T_{n}} s^{-1-p_{\alpha}^{*}} g(s) d s
\end{aligned}
$$

By assumption (1.10) and Lemma 3.1, it follows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{n}^{-p_{\alpha}^{*}} g\left(T_{n}\right)=0 \tag{3.5}
\end{equation*}
$$

Along with $g(\lambda) \omega(\lambda) \leq c_{16} \lambda^{-p_{\alpha}^{*}} g(\lambda)$, we have

$$
-\int_{\lambda}^{\infty} g(s) d \omega(s) \leq \frac{c_{16}}{p_{\alpha}^{*}+1} \int_{\lambda}^{\infty} s^{-1-p_{\alpha}^{*}} g(s) d s
$$

Notice that the above quantity on the right-hand side tends to 0 when $\lambda \rightarrow \infty$. It implies that for any $\epsilon>0$ there exists $\lambda>0$ such that

$$
\frac{c_{16}}{p_{\alpha}^{*}+1} \int_{\lambda}^{\infty} s^{-1-p_{\alpha}^{*}} g(s) d s \leq \frac{\epsilon}{2}
$$

and $\delta>0$ such that

$$
\int_{E} \rho^{\alpha}(x) d x \leq \delta \Longrightarrow \tilde{g}(\lambda) \int_{E} d x \leq \frac{\epsilon}{2}
$$

This proves that $\left\{g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right)\right\}$ is uniformly integrable in $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$. Then $g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right) \rightarrow g(|\nabla u|)$ in $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ by Vitali convergence theorem. Letting $n_{k} \rightarrow \infty$ in the identity

$$
\int_{\Omega}\left(u_{n_{k}}(-\Delta)^{\alpha} \xi+g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right) \xi\right) d x=\int_{\Omega} \nu_{n_{k}} \xi d x, \quad \forall \xi \in \mathbb{X}_{\alpha}
$$

it infers that u is a weak solution of (1.1). Since $u_{n_{k}}$ is nonnegative, so is u. Estimate (1.12) is a consequence of positivity and

$$
u_{n_{k}}=\mathbb{G}_{\alpha}\left[\nu_{n_{k}}\right]-\mathbb{G}_{\alpha}\left[g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right)\right] \leq \mathbb{G}_{\alpha}\left[\nu_{n_{k}}\right]
$$

Since $\lim _{n_{k} \rightarrow \infty} u_{n_{k}}=u$, (1.12) follows.

3.2 The source case

In this subsection we study the existence of solutions to problem (1.1) when $\epsilon=-1$.
Proof of Theorem 1.2. Let $\left\{\nu_{n}\right\}$ be a sequence of C^{2} nonnegative functions converging to ν in the sense of (3.1), $\left\{g_{n}\right\}$ an increasing sequence of C^{1}, nonnegative bounded functions defined on \mathbb{R}_{+}satisfying (3.2) and converging to g. We set $p_{0}=\frac{p+p_{\alpha, \beta}^{*}}{2} \in\left(p, p_{\alpha, \beta}^{*}\right)$, where $p_{\alpha, \beta}^{*}$ is given by (1.13) and $p<p_{\alpha, \beta}^{*}$ is the maximal growth rate of g which satisfies (1.14), and

$$
M(v)=\left(\int_{\Omega}|\nabla v|^{p_{0}} d x\right)^{\frac{1}{p_{0}}} .
$$

We may assume that $\left\|\nu_{n}\right\|_{L^{1}\left(\Omega, \rho^{\beta} d x\right)} \leq 2\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}$ for all $n \geq 1$.
Step 1. We claim that for $n \geq 1$,

$$
\begin{aligned}
(-\Delta)^{\alpha} u_{n} & =g_{n}\left(\left|\nabla u_{n}\right|\right)+\nu_{n} & & \text { in } \quad \Omega, \\
u_{n} & =0 & & \text { in } \quad \Omega^{\mathrm{c}}
\end{aligned}
$$

admits a solution u_{n} such that

$$
M\left(u_{n}\right) \leq \bar{\lambda},
$$

where $\bar{\lambda}>0$ independent of n.
To this end, we define the operators $\left\{T_{n}\right\}$ by

$$
T_{n} u=\mathbb{G}_{\alpha}\left[g_{n}(|\nabla u|)+\nu_{n}\right], \quad \forall u \in W_{0}^{1, p_{0}}(\Omega) .
$$

On the one hand, using (2.6) with $\tau=0$ yields

$$
\begin{aligned}
\left\|T_{n} u\right\|_{W^{1,1}(\Omega)} & \leq\left\|\mathbb{G}_{\alpha}\left[\nu_{n}\right]\right\|_{W^{1,1}(\Omega)}+\left\|\mathbb{G}_{\alpha}\left[g_{n}(|\nabla u|)\right]\right\|_{W^{1,1}(\Omega)} \\
& \leq c_{11}\left(\left\|\nu_{n}\right\|_{L^{\infty}(\Omega)}+\left\|g_{n}\right\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}\right),
\end{aligned}
$$

where $c_{11}=\left\|\int_{\Omega} G_{\alpha}(\cdot, y) d y\right\|_{W^{1,1}(\Omega)}$. On the other hand, by (1.14) and Proposition 2.4, we have

$$
\begin{align*}
\left(\int_{\Omega}\left|\nabla\left(T_{n} u\right)\right|^{p_{0}} d x\right)^{\frac{1}{p_{0}}} & \leq c_{2}\left\|g_{n}(|\nabla u|)+\nu_{n}\right\|_{L^{1}\left(\Omega, \rho^{\beta} d x\right)} \\
& \leq c_{2}\left[\left\|g_{n}(|\nabla u|)\right\|_{L^{1}\left(\Omega, \rho^{\beta} d x\right)}+2\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}\right] \tag{3.6}\\
& \leq c_{2} c_{1} \int_{\Omega}|\nabla u|^{p} \rho^{\beta} d x+c_{17} \sigma_{0}+2 c_{2}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)},
\end{align*}
$$

where $c_{17}=c_{2} \int_{\Omega} \rho^{\beta} d x$. Then we use Hölder inequality to obtain that

$$
\begin{equation*}
\left(\int_{\Omega}|\nabla u|^{p} \rho^{\beta} d x\right)^{\frac{1}{p}} \leq\left(\int_{\Omega} \rho^{\frac{\beta p_{0}}{p_{0}-p}} d x\right)^{\frac{1}{p}-\frac{1}{p_{0}}}\left(\int_{\Omega}|\nabla u|^{p_{0}} d x\right)^{\frac{1}{p_{0}}}, \tag{3.7}
\end{equation*}
$$

where $\int_{\Omega} \rho^{\frac{\beta p_{0}}{p_{0}-p}} d x$ is bounded, since $\frac{\beta p_{0}}{p_{0}-p} \geq 0$. Along with (3.6) and (3.7), we derive

$$
\begin{equation*}
M\left(T_{n} u\right) \leq c_{18} M(u)^{p}+c_{19}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}+c_{17} \sigma_{0} \tag{3.8}
\end{equation*}
$$

where $c_{18}=c_{2} c_{1}\left(\int_{\Omega} \rho^{\frac{\beta p_{0}}{p_{0}-p}} d x\right)^{\frac{1}{p}-\frac{1}{p_{0}}}>0$ and $c_{19}>0$ independent of n. Therefore, if we assume that $M(u) \leq \lambda$, inequality (3.8) implies

$$
\begin{equation*}
M\left(T_{n} u\right) \leq c_{18} \lambda^{p}+c_{19}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}+c_{17} \sigma_{0} \tag{3.9}
\end{equation*}
$$

Let $\bar{\lambda}>0$ be the largest root of the equation

$$
\begin{equation*}
c_{18} \lambda^{p}+c_{19}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}+c_{17} \sigma_{0}=\lambda \tag{3.10}
\end{equation*}
$$

This root exists if one of the following condition holds:
(i) $p \in(0,1)$, in which case (3.10) admits only one root;
(ii) $p=1$ and $c_{17}<1$, and again (3.10) admits only one root;
(iii) $p \in\left(1, p_{\alpha}^{*}\right)$ and there exists $\varepsilon_{0}>0$ such that $\max \left\{\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}, \sigma_{0}\right\} \leq \varepsilon_{0}$. In that case (3.10) admits usually two positive roots.
If we suppose that one of the above conditions holds, the definition of $\bar{\lambda}>0$ implies that it is the largest $\lambda>0$ such that

$$
\begin{equation*}
c_{18} \lambda^{p}+c_{19}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}+c_{17} \sigma_{0} \leq \lambda \tag{3.11}
\end{equation*}
$$

For $M(u) \leq \bar{\lambda}$, we obtain that

$$
M\left(T_{n} u\right) \leq c_{18} \bar{\lambda}^{p}+c_{19}\|\nu\|_{\mathfrak{M}\left(\Omega, \rho^{\beta}\right)}+c_{17} \sigma_{0}=\bar{\lambda}
$$

By the assumptions of Theorem 1.2, $\bar{\lambda}$ exists and it is larger than $M\left(u_{n}\right)$. Therefore,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(T_{n} u\right)\right|^{p_{0}} d x \leq \bar{\lambda}^{p_{0}} \tag{3.12}
\end{equation*}
$$

Thus T_{n} maps $W_{0}^{1, p_{0}}(\Omega)$ into itself. Clearly, if $u_{n} \rightarrow u$ in $W_{0}^{1, p_{0}}(\Omega)$ as $n \rightarrow \infty$, then $g_{n}\left(\left|\nabla u_{n}\right|\right) \rightarrow g_{n}(|\nabla u|)$ in $L^{1}(\Omega)$, thus T is continuous. We claim that T is a compact operator. In fact, for $u \in W_{0}^{1, p_{0}}(\Omega)$, we see that $\nu_{n}-g_{n}(|\nabla u|) \in L^{1}(\Omega)$ and then, by Proposition 2.3, it implies that $T_{n} u \in W_{0}^{2 \alpha-\gamma, p}(\Omega)$ where $\gamma \in\left(\frac{N(p-1)}{p}, 2 \alpha-1\right)$ and $2 \alpha-1>\frac{N(p-1)}{p}>0$ for $p \in\left(1, \frac{N}{N-2 \alpha+1}\right)$. Since the embedding $W_{0}^{2 \alpha-\gamma, p}(\Omega) \hookrightarrow W_{0}^{1, p_{0}}(\Omega)$ is compact, T_{n} is a compact operator.

Let

$$
\begin{gathered}
\mathcal{G}=\left\{u \in W_{0}^{1, p_{0}}(\Omega):\|u\|_{W^{1,1}(\Omega)} \leq c_{11}\left(\left\|\nu_{n}\right\|_{L^{\infty}(\Omega)}+\left\|g_{n}\right\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}\right)\right. \\
\text {and } M(u) \leq \bar{\lambda}\}
\end{gathered}
$$

which is a closed and convex set of $W_{0}^{1, p_{0}}(\Omega)$. Combining with (2.13), there holds

$$
T_{n}(\mathcal{G}) \subset \mathcal{G} .
$$

It follows by Schauder's fixed point theorem that there exists some $u_{n} \in$ $W_{0}^{1, p_{0}}(\Omega)$ such that $T_{n} u_{n}=u_{n}$ and $M\left(u_{n}\right) \leq \bar{\lambda}$, where $\bar{\lambda}>0$ independent of n. By the same arguments as in Theorem 2.1, u_{n} belongs to $C^{2 \alpha+\epsilon_{0}}$ locally in Ω, and

$$
\begin{equation*}
\int_{\Omega} u_{n}(-\Delta)^{\alpha} \xi=\int_{\Omega} g_{n}\left(\left|\nabla u_{n}\right|\right) \xi d x+\int_{\Omega} \xi \nu_{n} d x, \quad \forall \xi \in \mathbb{X}_{\alpha} \tag{3.13}
\end{equation*}
$$

Step 2: Convergence. By (3.12) and (3.7), $g_{n}\left(\left|\nabla u_{n}\right|\right)$ is uniformly bounded in $L^{1}\left(\Omega, \rho^{\beta} d x\right)$. By Proposition 2.3, $\left\{u_{n}\right\}$ is bounded in $W_{0}^{2 \alpha-\gamma, q}(\Omega)$ where $q \in\left(1, p_{\alpha, \beta}^{*}\right)$ and $2 \alpha-\gamma>1$. By Proposition 2.4 , there exist a subsequence $\left\{u_{n_{k}}\right\}$ and u such that $u_{n_{k}} \rightarrow u$ a.e. in Ω and in $L^{1}(\Omega)$, and $\left|\nabla u_{n_{k}}\right| \rightarrow$ $|\nabla u|$ a.e. in Ω and in $L^{q}(\Omega)$ for any $q \in\left[1, p_{\alpha, \beta}^{*}\right)$. By assumption (G), $g_{n_{k}}\left(\left|\nabla u_{n_{k}}\right|\right) \rightarrow g(|\nabla u|)$ in $L^{1}(\Omega)$. Letting $n_{k} \rightarrow \infty$ to have that

$$
\int_{\Omega} u(-\Delta)^{\alpha} \xi=\int_{\Omega} g(|\nabla u|) \xi d x+\int_{\Omega} \xi d \nu, \quad \forall \xi \in \mathbb{X}_{\alpha}
$$

thus u is a weak solution of (1.1) which is nonnegative as $\left\{u_{n}\right\}$ are nonnegative. Furthermore, (1.15) follows from the positivity of $\left.g\left(\mid \nabla u_{n}\right]\right)$.

4 The case of the Dirac mass

In this section we assume that Ω is an open, bounded and C^{2} domain containing 0 and u a nonnegative weak solution of

$$
\begin{align*}
(-\Delta)^{\alpha} u+|\nabla u|^{p}=\delta_{0} & \text { in } \quad \Omega, \\
u=0 \quad & \text { in } \quad \Omega^{\mathrm{c}} \tag{4.1}
\end{align*}
$$

where $p \in\left(0, p_{\alpha}^{*}\right)$ and δ_{0} is the Dirac mass at 0 . We recall the following result dealing with the convolution operator $*$ in Lorentz spaces $L^{p, q}\left(\mathbb{R}^{N}\right)$ (see [25]).

Proposition 4.1 Let $1 \leq p_{1}, q_{1}, p_{2}, q_{2} \leq \infty$ and suppose $\frac{1}{p_{1}}+\frac{1}{p_{2}}>1$. If $f \in$ $L^{p_{1}, q_{1}}\left(\mathbb{R}^{N}\right)$ and $g \in L^{p_{2}, q_{2}}\left(\mathbb{R}^{N}\right)$, then $f * g \in L^{r, s}\left(\mathbb{R}^{N}\right)$ with $\frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-1$, $\frac{1}{q_{1}}+\frac{1}{q_{2}} \geq \frac{1}{s}$ and there holds

$$
\begin{equation*}
\|f * g\|_{L^{r, s}\left(\mathbb{R}^{N}\right)} \leq 3 r\|f\|_{L^{p_{1}, q_{1}}\left(\mathbb{R}^{N}\right)}\|g\|_{L^{p_{2}, q_{2}}\left(\mathbb{R}^{N}\right)} \tag{4.2}
\end{equation*}
$$

In the particular case of Marcinkiewicz spaces $L^{p, \infty}\left(\mathbb{R}^{N}\right)=M^{p}\left(\mathbb{R}^{N}\right)$, the result takes the form

$$
\begin{equation*}
\|f * g\|_{M^{r}\left(\mathbb{R}^{N}\right)} \leq 3 r\|f\|_{M^{p_{1}\left(\mathbb{R}^{N}\right)}}\|g\|_{M^{p_{2}\left(\mathbb{R}^{N}\right)}} \tag{4.3}
\end{equation*}
$$

Proposition 4.2 Assume that $0<p<p_{\alpha}^{*}$ and u is a nonnegative weak solution of (4.1). Then

$$
\begin{equation*}
0 \leq u \leq \mathbb{G}_{\alpha}\left[\delta_{0}\right] \tag{4.4}
\end{equation*}
$$

$|\nabla u| \in L_{l o c}^{\infty}(\Omega \backslash\{0\})$ and u is a classical solution of

$$
\begin{align*}
(-\Delta)^{\alpha} u+|\nabla u|^{p}=0 & \text { in } \quad \Omega \backslash\{0\} \tag{4.5}\\
u=0 & \text { in } \quad \Omega^{\mathrm{c}}
\end{align*}
$$

Proof. Since $0<p<p_{\alpha}^{*}$, (4.1) admits a solution. Estimate (4.4) is a particular case of (1.12). We pick a point $a \in \Omega \backslash\{0\}$ and consider a finite sequence $\left\{r_{j}\right\}_{j=0}^{\kappa}$ such that $0<r_{\kappa}<r_{\kappa-1}<\ldots<r_{0}$ and $\bar{B}_{r_{0}}(a) \subset \Omega \backslash\{0\}$. We set $d_{j}=r_{j-1}-r_{j}, j=1, \ldots \kappa$. By (3.4) with $\beta=0$, it follows that

$$
\begin{equation*}
\int_{\Omega}\left(u+|\nabla u|^{p}\right) d x \leq c_{20} \tag{4.6}
\end{equation*}
$$

Let $\left\{\eta_{n}\right\} \subset \mathbb{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be a sequence of radially decreasing and symmetric mollifiers such that $\operatorname{supp}\left(\eta_{n}\right) \subset B_{\varepsilon_{n}}(0)$ and $\varepsilon_{n} \leq \frac{1}{2} \min \left\{\rho(a)-r_{0},|a|-r_{0}\right\}$ and $u_{n}=u * \eta_{n}$. Since

$$
\eta_{n} *(-\Delta)^{\alpha} \xi=(-\Delta)^{\alpha}\left(\xi * \eta_{n}\right)
$$

by Fourier analysis and
$\int_{\mathbb{R}^{N}}\left(u(-\Delta)^{\alpha}\left(\xi * \eta_{n}\right)+\xi * \eta_{n}|\nabla u|^{p}\right) d x=\int_{\mathbb{R}^{N}}\left(u * \eta_{n}(-\Delta)^{\alpha} \xi+\eta_{n} *|\nabla u|^{p} \xi\right) d x$ because η_{n} is radially symmetric, it follows that u_{n} is a classical solution of

$$
\begin{align*}
(-\Delta)^{\alpha} u_{n}+|\nabla u|^{p} * \eta_{n} & =\eta_{n} & & \text { in } \Omega_{n} \tag{4.7}\\
u_{n} & =0 & & \text { in } \Omega_{n}^{c}
\end{align*}
$$

where $\Omega_{n}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, \Omega)<\varepsilon_{n}\right\}$. We denote by $G_{\alpha, n}(x, y)$ the Green kernel of $(-\Delta)^{\alpha}$ in Ω_{n} and by $\mathbb{G}_{\alpha, n}$ the Green operator. Set $f_{n}=\eta_{n}-|\nabla u|^{p} *$ η_{n}, then $u_{n}=\mathbb{G}_{\alpha, n}\left[f_{n}\right]$. If we set $f_{n, r_{0}}=f_{n} \chi_{B_{r_{0}}(a)}, \tilde{f}_{n, r_{0}}=f_{n}-f_{n, r_{0}}$, we have

$$
\begin{aligned}
\partial_{x_{i}} u_{n}(x) & =\int_{\Omega_{n}} \partial_{x_{i}} G_{\alpha, n}(x, y) f_{n}(y) d y \\
& =\int_{\Omega_{n}} \partial_{x_{i}} G_{\alpha, n}(x, y) f_{n, r_{0}}(y) d y+\int_{\Omega_{n}} \partial_{x_{i}} G_{\alpha, n}(x, y) \tilde{f}_{n, r_{0}}(y) d y \\
& =v_{n, r_{0}}(x)+\tilde{v}_{n, r_{0}}(x)
\end{aligned}
$$

where
$v_{n, r_{0}}(x)=\int_{B_{r_{0}}(a)} \partial_{x_{i}} G_{\alpha, n}(x, y) f_{n}(y) d y=-\int_{B_{r_{0}}(a)} \partial_{x_{i}} G_{\alpha, n}(x, y)|\nabla u|^{p} * \eta_{n}(y) d y$
and

$$
\tilde{v}_{n, r_{0}}(x)=\int_{\Omega_{n} \backslash B_{r_{0}}(a)} \partial_{x_{i}} G_{\alpha, n}(x, y) f_{n}(y) d y
$$

We set $\rho_{n}(x)=\operatorname{dist}\left(x, \Omega_{n}^{c}\right)$, then by (2.4) and (2.5), we have

$$
\left|\partial_{x_{i}} G_{\alpha, n}(x, y)\right| \leq c_{4} N \max \left\{\frac{1}{|x-y|^{N-2 \alpha+1}}, \frac{\rho_{n}^{-1}(x)}{|x-y|^{N-2 \alpha}}\right\} .
$$

Thus, if $x \in B_{r_{1}}(a)$ and $y \in \Omega_{n} \backslash B_{r_{0}}(a)$, then $\rho_{n}(x)>d_{1}$ and $|x-y|>d_{1}$,

$$
\begin{equation*}
\left|\tilde{v}_{n, r_{0}}(x)\right| \leq c_{21} \int_{\Omega_{n} \backslash B_{r_{0}}(a)} f_{n}(y) d y \leq c_{20} c_{21}, \tag{4.8}
\end{equation*}
$$

where $c_{21}>0$ depends on $d_{1}^{-N+2 \alpha-1}, N$ and α. Furthermore, if $x \in B_{r_{1}}(a)$ and $y \in B_{r_{0}}(a)$,

$$
\begin{equation*}
\left|\partial_{x_{i}} G_{\alpha, n}(x, y)\right| \leq \frac{c_{4} N}{|x-y|^{N-2 \alpha+1}} . \tag{4.9}
\end{equation*}
$$

We have already use the fact that $y \mapsto|y|^{2 \alpha-N-1} \in L_{l o c}^{q_{1}}\left(\mathbb{R}^{N}\right)$ with $q_{1} \in$ $\left(\max \{1, p\}, p_{\alpha}^{*}\right)$. Since f_{n} is uniformly bounded in $L^{1}(\Omega)$, there exists $c_{22}>0$ such that

$$
\begin{equation*}
\left\|v_{n, r_{0}}\right\|_{M^{q_{1}\left(B_{r_{1}}(a)\right)}} \leq c_{22} . \tag{4.10}
\end{equation*}
$$

Combined with (4.8), it yields

$$
\begin{equation*}
\left\||\nabla u|^{p} * \eta_{n}\right\|_{M^{\frac{q_{1}}{p}}\left(B_{r_{1}}(a)\right)} \leq c_{23} . \tag{4.11}
\end{equation*}
$$

Next we set $f_{n, r_{1}}=f_{n} \chi_{B_{r_{1}}(a)}$ and $\tilde{f}_{n, r_{1}}=f_{n}-f_{n, r_{1}}$. Then

$$
\partial_{x_{i}} u_{n}=v_{n, r_{1}}+\tilde{v}_{n, r_{1}},
$$

where
$v_{n, r_{1}}(x)=\int_{B_{r_{1}}(a)} \partial_{x_{i}} G_{\alpha}(x, y) f_{n}(y) d y=-\int_{B_{r_{1}}(a)} \partial_{x_{i}} G_{\alpha}(x, y)|\nabla u|^{p} * \eta_{n}(y) d y$
and

$$
\tilde{v}_{n, r_{1}}(x)=\int_{\Omega_{n} \backslash B_{r_{1}}(a)} \partial_{x_{i}} G_{\alpha}(x, y) f_{n}(y) d y
$$

Clearly $\tilde{v}_{n, r_{1}}(x)$ is uniformly bounded in $B_{r_{2}}(a)$ by a constant c_{24} depending on the structural constants and $d_{2}=r_{1}-r_{2}$. Estimate (4.9) holds if we assume $x \in B_{r_{2}}(a)$ and $y \in B_{r_{1}}(a)$. Therefore,

$$
\left|v_{n, r_{1}}(x)\right| \leq c_{4} N \int_{B_{r_{1}}(a)} \frac{|\nabla u|^{p} * \eta_{n}(y)}{|x-y|^{N-2 \alpha+1}} d y .
$$

We derive from Proposition 4.1

$$
\left\|v_{n, r_{1}}\right\|_{M^{q_{2}}\left(B_{r_{2}}(a)\right)} \leq c_{24}\left\||\nabla u|^{p} * \eta_{n}\right\|_{M^{\frac{q_{1}}{p}}\left(B_{r_{1}}(a)\right)}
$$

with

$$
\begin{equation*}
\frac{1}{q_{2}}=\frac{p}{q_{1}}+\frac{1}{q_{1}}-1 \tag{4.12}
\end{equation*}
$$

Notice that $q_{2}>q_{1}$. Therefore

$$
\begin{equation*}
\left\||\nabla u|^{p} * \eta_{n}\right\|_{M^{\frac{q_{2}}{p}}\left(B_{r_{2}}(a)\right)} \leq c_{25} . \tag{4.13}
\end{equation*}
$$

We iterate this construction and obtain the existence of constants c_{j} such that

$$
\begin{equation*}
\left\||\nabla u|^{p} * \eta_{n}\right\|_{M^{\frac{q_{j}}{p}}\left(B_{r_{j}}(a)\right)} \leq \bar{c}_{j}, \quad \forall j=1,2, \ldots \tag{4.14}
\end{equation*}
$$

We pick $q_{1}=\frac{1}{2}\left(p_{\alpha}^{*}+p\right)$ if $p>1$ or $q_{1}=\frac{1}{2}\left(p_{\alpha}^{*}+1\right)$ if $p \in(0,1]$

$$
\begin{equation*}
\frac{1}{q_{j+1}}=\frac{p}{q_{j}}+\frac{1}{q_{1}}-1 \tag{4.15}
\end{equation*}
$$

If $p=1$, there exists $j_{0} \in \mathbb{N}$ such that $q_{j_{0}}>0$ and $q_{j_{0}+1} \leq 0$.
If $p \in\left(0, p_{\alpha}^{*}\right) \backslash\{1\}$, let $\ell=\frac{q_{1}-1}{q_{1}(p-1)}$, then $\ell=p \ell+\frac{1}{q_{1}}-1$, thus

$$
\begin{equation*}
\frac{1}{q_{j+1}}=\ell+p^{j}\left(\frac{1}{q_{1}}-\ell\right)=\ell-p^{j} \frac{q_{1}-p}{q_{1}(p-1)} \tag{4.16}
\end{equation*}
$$

Therefore there exists j_{0} such that $q_{j_{0}}>0$ and $q_{j_{0}+1} \leq 0$. This implies

$$
\begin{equation*}
\left\||\nabla u|^{p} * \eta_{n}\right\|_{L^{s}\left(B_{r_{j_{0}+1}}(a)\right)} \leq c_{26}, \quad \forall s<\infty \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\||\nabla u|^{p} * \eta_{n}\right\|_{L^{\infty}\left(B_{r_{j_{0}+2}}(a)\right)} \leq c_{27} \tag{4.18}
\end{equation*}
$$

with c_{27} independent of n. Letting $n \rightarrow \infty$ infers

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}\left(B_{r_{j_{0}+2}}(a)\right)} \leq c_{27}^{\frac{1}{p}} \tag{4.19}
\end{equation*}
$$

Combining this estimate with (4.4) and using [26, Corollary 2.5] which states

$$
\begin{align*}
&\|u\|_{C^{\beta}\left(B_{r_{j_{0}+3}}(a)\right)} \leq c(\|u\|_{L^{1}\left(\mathbb{R}^{N}, \frac{d x}{1+|x|^{N+2 \alpha}}\right)} \tag{4.20}\\
&\left.+\|u\|_{L^{\infty}\left(B_{r_{j_{0}+2}}(a)\right)}+\|\nabla u\|_{L^{\infty}\left(B_{r_{j_{0}+2}}(a)\right)}\right)
\end{align*}
$$

for any $\beta<2 \alpha$, we obtain that u remains bounded in $C^{1+\varepsilon}(K)$ for any compact set $K \subset \Omega \backslash\{0\}$ and some $\varepsilon>0$. Using now [26, Corollary 2.4], we obtain that $C^{2 \alpha+\varepsilon^{\prime}}(\Omega \backslash\{0\})$ for $0<\varepsilon^{\prime}<\varepsilon$. Futhermore u is continuous up to $\partial \Omega$. As a consequence it is a strong solution in $\Omega \backslash\{0\}$.

In the next result we give a pointwise estimate of ∇u for a positive solution u of (4.1).

Proposition 4.3 Assume that $R=\frac{1}{2} \operatorname{dist}(0, \partial \Omega), p \in\left(0, p_{\alpha}^{*}\right)$ and u is a nonnegative weak solution of (4.1). Then there exists $c_{28}>0$ depending on R, p and α such that

$$
\begin{equation*}
|\nabla u(x)| \leq c_{28}|x|^{2 \alpha-N-1}, \quad \forall x \in \bar{B}_{R / 4}(0) \backslash\{0\} . \tag{4.21}
\end{equation*}
$$

Proof. Up to a change of variable we can assume that $R=1$. For $0<|x| \leq 1$, there exists $b \in(0,1)$ such that $b / 2 \leq|x| \leq b$. We set

$$
u_{b}(y)=b^{N-2 \alpha} u(b y)
$$

Then

$$
(-\Delta)^{\alpha} u_{b}+b^{N+p(2 \alpha-N-1)}\left|\nabla u_{b}\right|^{p}=0 \quad \text { in } \quad \Omega_{b}:=b^{-1} \Omega
$$

Using [26, Corollary 2.5] with $\beta<2 \alpha$, for any $a \in \Omega_{b}$ such that $|a|=3 / 4$, there holds

$$
\begin{align*}
&\left\|u_{b}\right\|_{C^{\beta}\left(B_{\frac{3}{16}}(a)\right)} \leq c_{29}(\left\|u_{b}\right\|_{L^{1}\left(\mathbb{R}^{N}, \frac{d x}{1+|y|^{N+2 \alpha}}\right)}+\left\|u_{b}\right\|_{L^{\infty}\left(B_{\frac{3}{8}}(a)\right)} \\
&\left.+b^{N+p(2 \alpha-N-1)}\left\|\left|\nabla u_{b}\right|^{p}\right\|_{L^{\infty}\left(B_{\frac{3}{8}}(a)\right)}\right) . \tag{4.22}
\end{align*}
$$

Furthermore, by the same argument as in Proposition 4.2,

$$
\begin{equation*}
\left\|\left|\nabla u_{b}\right|^{p}\right\|_{L^{\infty}\left(B_{\frac{3}{8}}(a)\right)} \leq c_{30} \int_{\Omega_{b}}\left|\nabla u_{b}(y)\right|^{p} d y=c_{30} b^{p(N+1-2 \alpha)-N} \int_{\Omega}|\nabla u(x)|^{p} d x \tag{4.23}
\end{equation*}
$$

and from (4.4) and (2.4)

$$
u(x) \leq G_{\alpha}(x, 0) \leq \frac{c_{4}}{|x|^{N-2 \alpha}} \Longrightarrow u_{b}(y) \leq \frac{c_{4}}{|y|^{N-2 \alpha}}
$$

Then

$$
\left\|u_{b}\right\|_{L^{1}\left(\mathbb{R}^{N}, \frac{d y}{1+|y|^{N+2 \alpha}}\right)} \leq c_{4} \int_{\mathbb{R}^{N}} \frac{d y}{|y|^{N-2 \alpha}(1+|y|)^{N+2 \alpha}}=c_{31}
$$

If we take $\beta=1$, which is possible since $\alpha>1 / 2$, we derive

$$
\left|\nabla u_{b}(a)\right| \leq c_{32} \Longrightarrow|\nabla u(b a)| \leq c_{32}^{-1} b^{2 \alpha-N-1}
$$

In particular, with $|b|=4|x| / 3$ we derive (4.21) with $c_{28}=c_{32}^{-1}\left(\frac{4}{3}\right)^{2 \alpha-N-1}$.
We denote

$$
\begin{equation*}
c_{N, \alpha}=\lim _{x \rightarrow 0}|x|^{N-2 \alpha} G_{\alpha}(x, 0) . \tag{4.24}
\end{equation*}
$$

It is well known that $c_{N, \alpha}>0$ does not depend on the domain Ω and, by the maximum principle, $G_{\alpha}(x, 0) \leq c_{N, \alpha}|x|^{2 \alpha-N}$ in $\Omega \backslash\{0\}$.

Theorem 4.1 Let Ω be an open bounded C^{2} domain containing $0, \alpha \in\left(\frac{1}{2}, 1\right)$ and $0<p<p_{\alpha}^{*}$. If u is a positive solution of problem (4.1) and $\bar{B}_{R}(0) \subset \Omega$, it satisfies
(i) if $\frac{2 \alpha}{N-2 \alpha+1}<p<p_{\alpha}^{*}$,

$$
0<\frac{c_{N, \alpha}}{|x|^{N-2 \alpha}}-u(x) \leq \frac{c_{33}}{|x|^{(N-2 \alpha+1) p-2 \alpha}}, \quad x \in B_{R / 4}(0) \backslash\{0\}
$$

(ii) if $p=\frac{2 \alpha}{N-2 \alpha+1}$,

$$
0<\frac{c_{N, \alpha}}{|x|^{N-2 \alpha}}-u(x) \leq-c_{33} \ln (|x|), \quad x \in B_{R / 4}(0) \backslash\{0\}
$$

(iii) if $0<p<\frac{2 \alpha}{N-2 \alpha+1}$,

$$
0<\frac{c_{N, \alpha}}{|x|^{N-2 \alpha}}-u(x) \leq c_{33}, \quad x \in B_{R / 4}(0) \backslash\{0\}
$$

where c_{33} depends on N, p, α and R.
Furthermore, if $1 \leq p<p_{\alpha}^{*}$, this solution is unique.
Proof. The existence of a nonnegative weak solution is a consequence of the subriticality assumption; the fact that this solution is a classical solution in $\Omega \backslash\{0\}$ derives from Proposition 4.2. It follows by (4.4) and (4.6) that for any $x \in \Omega \backslash\{0\}$,

$$
\begin{align*}
\frac{c_{N, \alpha}}{|x|^{N-2 \alpha}}-u(x) & \leq \int_{\Omega} G_{\alpha}(x, y)|\nabla u(y)|^{p} d y \\
& \leq c_{28}^{p} c_{4} \int_{B_{\frac{R}{4}}(0)}|x-y|^{2 \alpha-N}|y|^{p(2 \alpha-N-1)} d y+c_{34}\|\nabla u\|_{L^{p}(\Omega)} \\
& \leq c_{35}\left[\int_{B_{\frac{R}{4}}(0)}|x-y|^{2 \alpha-N}|y|^{p(2 \alpha-N-1)} d y+1\right] \tag{4.25}
\end{align*}
$$

where $c_{34}, c_{35}>0$ depend on N, p and α. Next we assume $0<|x| \leq \frac{R}{16}$. Case: $\frac{2 \alpha}{N-2 \alpha+1}<p<p_{\alpha}^{*}$. We can write

$$
\int_{B_{\frac{R}{4}}(0)}|x-y|^{2 \alpha-N}|y|^{p(2 \alpha-N-1)} d y=E_{1}+E_{2}
$$

with

$$
E_{1}=\int_{B_{\frac{R}{4}(0)} \backslash B_{\frac{R}{8}}(0)}|x-y|^{2 \alpha-N}|y|^{p(2 \alpha-N-1)} d y \leq c_{36}
$$

where $c_{36}>0$ depends on N, α, p and R and

$$
\begin{aligned}
E_{2} & =\int_{B_{\frac{R}{8}}^{8}(0)}|x-y|^{2 \alpha-N}|y|^{p(2 \alpha-N-1)} d y \\
& =|x|^{2 \alpha-p(N+1-2 \alpha)} \int_{B_{\frac{R}{8 x \mid}(0)}}|\xi-\zeta|^{2 \alpha-N}|\zeta|^{p(2 \alpha-N-1)} d \zeta \\
& \leq \int_{|\zeta|>2}|\xi-\zeta|^{2 \alpha-N}|\zeta|^{p(2 \alpha-N-1)} d \zeta
\end{aligned}
$$

with $\xi=x /|x|$. Since $2 \alpha-N<0,|\xi-\zeta|^{2 \alpha-N} \leq(|\zeta|-1)^{2 \alpha-N}$, then

$$
E_{2} \leq c_{N} \int_{2}^{\infty}(r-1)^{2 \alpha-N} r^{p(2 \alpha-N-1)+N-1} d r=c_{37}
$$

Thus (i) follows.
Case: $\frac{2 \alpha}{N-2 \alpha+1}=p$. We see that

$$
E_{2}=\int_{B_{\frac{R}{8|x|}}(0)}|\xi-\zeta|^{2 \alpha-N}|\zeta|^{-2 \alpha} d \zeta,
$$

then clearly

$$
E_{2}=-\ln |x|+o(1) \quad \text { when } \quad|x| \rightarrow 0 .
$$

Thus (ii) follows.
Case: $0<p<\frac{2 \alpha}{N-2 \alpha+1}$. We have that
$E_{2}=\int_{\frac{B}{8|x|}(0)}|\xi-\zeta|^{2 \alpha-N}|\zeta|^{-2 \alpha} d \zeta=c_{29}|x|^{p(N+1-2 \alpha)-2 \alpha}+o(1) \quad$ when $|x| \rightarrow 0$.
Thus (iii) follows.
Uniqueness in the case $1 \leq p<p_{\alpha}^{*}$, is very standard, since if u_{1} and u_{2} are two positive solutions of (4.1), they satisfies

$$
\lim _{x \rightarrow 0} \frac{u_{1}(x)}{u_{2}(x)}=1
$$

Then, for any $\varepsilon>0, u_{1, \varepsilon}:=(1+\varepsilon) u_{1}$ is a supersolution which dominates u_{2} near 0 , it follows by the maximum principle that $w:=u_{2}-(1+\varepsilon) u_{1}$ satisfies

$$
(-\Delta)^{\alpha} w+\left|\nabla u_{2}\right|^{p}-\left|\nabla u_{1, \varepsilon}\right|^{p} \leq 0
$$

since w is negative near 0 and vanishes on $\partial \Omega$, if it is not always negative, there would exists $x_{0} \in \Omega \backslash\{0\}$ such that $w\left(x_{0}\right)$ reaches a maximum and $\left|\nabla u_{2}\left(x_{0}\right)\right|=\left|\nabla u_{1, \varepsilon}\left(x_{0}\right)\right|$, thus $(-\Delta)^{\alpha} w\left(x_{0}\right) \leq 0$, contradiction.
Remark. If $0<p<1$, the nonlinearity is not convex and uniqueness does hold only if two solutions u_{1} and u_{2} satisfy

$$
\lim _{x \rightarrow 0}\left(u_{1}(x)-u_{2}(x)\right)=0 .
$$

References

[1] Ph. Bénilan and H. Brezis, Nonlinear problems related to the ThomasFermi equation, J. Evol. Eq. 3, 673-770 (2003).
[2] Ph. Bénilan, H. Brezis and M. Crandall, A semilinear elliptic equation in $L^{1}\left(\mathbb{R}^{N}\right)$, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 2, 523-555 (1975).
[3] K. Bogdan, T. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic funcitons of Symmetric stable processes, Illinois J. Math. 46(2), 541-556 (2002).
[4] M. F. Bidaut-Véron, N. Hung and L. Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl. to appear.
[5] M. F. Bidaut-Véron, M. García-Huidobro and L. Véron, Remarks on some quasilinear equations with gradient terms and measure data, Contemp. Math. 595, 31-53 (2013).
[6] M. F. Bidaut-Véron and L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana 16, 477-513 (2000).
[7] H. Brezis, Some variational problems of the Thomas-Fermi type, Variational inequalities and complementarity problems, Proc. Internat. School, Erice, Wiley, Chichester, 53-73 (1980).
[8] L. Caffarelli and L. Silvestre, Regularity theory for fully non-linear integrodifferential equations, Comm. Pure Appl. Math. 62, 597-638 (2009).
[9] R. Cignoli and M. Cottlar, An Introduction to Functional Analysis, North-Holland, Amsterdam, 1974.
[10] H. Chen, P. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian, submitted.
[11] Z. Chen, and R. Song, Estimates on Green functions and poisson kernels for symmetric stable process, Math. Ann. 312, 465-501 (1998).
[12] H. Chen and L. Véron, Singular solutions of fractional elliptic equations with absorption, arXiv:1302.1427v1, [math.AP], 6 (Feb 2013).
[13] H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, arXiv:1305.0945v2 [math.AP], 15 (May 2013).
[14] P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. in Math. 226, 2712-2738 (2011).
[15] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, vol. 224 (1983).
[16] A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64, 271-324 (1991).
[17] P.L. Lions, Quelques remarques sur les problems elliptiques quasilineaires du second order, J. Analyse Math. 45 (1985).
[18] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal. 144, 201-231 (1998).
[19] M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77, 481-524 (1998).
[20] M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80, 879-900 (2001).
[21] M. Marcus and L. Véron, The boundary trace and generalized B.V.P. for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. 56, 689-731 (2003).
[22] M. Marcus and L. Véron, Nonlinear second order elliptic equations involving measures, Series in Nonlinear Analysis and Applications 21, De Gruyter, Berlin/Boston (2013).
[23] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (5), 521-573 (2012).
[24] T. Nguyen-Phuoc and L. Véron, Boundary singularities of solutions to elliptic viscous HamiltonJacobi equations, J. Funct. Anal. 263, 14871538 (2012).
[25] R. O'Neil, Convolution operators and $L(p, q)$ spaces, Duke Math. J., 30, 129-142 (1963).
[26] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl. to appear.
[27] L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, Comm. Pure Appl. Math. 60, 67-112 (2007).
[28] Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 256, 1842-1864 (2009).
[29] L. Véron, Elliptic equations involving Measures, Stationary Partial Differential equations, Vol. I, 593-712, Handb. Differ. Equ., NorthHolland, Amsterdam (2004).
[30] L. Véron, Existence and Stability of Solutions of General Semilinear Elliptic Equations with Measure Data, Adv. Nonlin. Stud. 13, 447-460 (2013).

[^0]: ${ }^{1}$ chenhuyuan@yeah.net
 ${ }^{2}$ Laurent.Veron@lmpt.univ-tours.fr

