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Résumé

Le but de cette thèse est d’étudier le spectre du sous-laplacien sur les variétés CR strictement
peusdoconvexes. Nous prouvons que le spectre du sous-laplacien ∆b est discret sur un domaine
borné Ω ⊂ M d’une variété CR strictement pseudoconvexe qui satisfait l’inégalité de Poincaré,
sous les conditions de Dirichlet au bord. Nous étudions le comportement des valeurs propres du
sous-laplacien ∆b sur une variété CR strictement pseudoconvexe compacte M, en tant que fonc-
tionnelle sur l’espace P+ de formes de contact positivement orientées sur M en dotant P+ d’une
topologie métrique naturelle. Nous établissons des inégalités pour les valeurs propres de ∆b sur
des variétés CR strictement pseudoconvexes ( éventuellement à bord non vide). Nos estimations
prolongent les résultats obtenus par P-C. Niu & H. Zhang [81] pour les valeurs propres du sous-
laplacien avec conditions de Dirichlet au bord sur un domaine borné du groupe de Heisenberg, et
sont dans l’esprit des inégalités de Payne-Pólya-Weinberger et Yang. Nous obtenons une nouvelle
borne inférieure sur la première valeur propre non nulle λ1(θ) du sous-laplacien ∆b sur une variété
CR strictement pseudoconvexe compacte M munie d’une forme de contact θ dont la connexion de
Tanaka-Webster est à courbure de Ricci minorée.

Mots clés : Sous-laplacien, valeur propre, Structure pseudohermitienne, Forme de contact,
Métrique de Webster, Métrique de Fefferman, Variété CR, Groupe de Heisenberg, Espace de
type Sobolev sur les variétés CR, Application harmonique sous- elliptique, Application semi-
isométrique, Tension de Levi, Formule de Bochner-Lichnerowicz, Inégalité universelle, Inégalité
de Reilly.

7



RÉSUMÉ

8



Abstract

The purpose of this thesis is to study the spectrum of sublaplacians on compact strictly pseu-
doconvex CR manifolds. We prove the discreteness of the Dirichlet spectrum of the sublaplacian
∆b on a smoothly bounded domain Ω ⊂ M in a strictly pseudoconvex CR manifold M satis-
fying Poincaré inequality. We study the behavior of the eigenvalues of a sublaplacian ∆b on a
compact strictly pseudoconvex CR manifold M, as functions on the set P+ of positively oriented
contact forms on M by endowing P+ with a natural metric topology. We establish inequalities for
the eigenvalues of ∆b on compact strictly pseudoconvex CR manifolds (possibly with nonempty
boundary) Our estimates extend those obtained by P-C. Niu & H. Zhang [81] for the Dirichlet
eigenvalues of the sublaplacian on a bounded domain in the Heisenberg group, in the spirit of
Payne-Pólya -Weinberger and Yang inequalities. We establish a new lower bound on the first
nonzero eigenvalue λ1(θ) of the sublaplacian ∆b on a compact strictly pseudoconvex CR manifold
M carrying a contact form θ whose Tanaka-Webster connection has Ricci curvature bounded from
below.

Keywords : Sublaplacian, Spectrum, pseudohermitian structure, contact form, Webster met-
ric, Fefferman metric, CR manifold, Heisenberg group, Sobolev type space, subeliptic harmonic
map, semi-isometric map, Levi tension field, Bochner-Lichnerowicz formula, universal inequality,
Reilly inequality.

9



ABSTRACT

10



Contents

Introduction 13

1 CR and Pseudohermitian Geometry 23
1.1 Tangential Cauchy-Riemann equations . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Pseudohermitian structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 The Fefferman metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Sublaplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Sobolev type spaces on CR manifolds . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 Dirichlet Spectrum of a Sublaplacian . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7 Generalized Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.8 Generalized Dirichlet eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 41

1.9 An energy space approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.10 Bochner-Lichnerowicz formula after A. Greenleaf . . . . . . . . . . . . . . . . . 46

1.11 Non-negativity of CR Paneitz operator . . . . . . . . . . . . . . . . . . . . . . . 60

2 Eigenvalues as functions of the contact structure 63
2.1 1-Parameter variations of the contact form . . . . . . . . . . . . . . . . . . . . . 63

2.2 Critical contact forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3 Eigenvalues ratio functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4 A topology on the space of oriented contact forms . . . . . . . . . . . . . . . . . 75

2.5 A max-mini principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.6 Continuity of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.7 Spectra of ∆b and � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Subelliptic Harmonic Maps and Spectrum of CR Manifolds 85
3.1 Levi tension field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Semi-isometric maps into Euclidean space . . . . . . . . . . . . . . . . . . . . . 88

3.3 Riemannian submersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Semi-isometric maps into Heisenberg groups . . . . . . . . . . . . . . . . . . . 95

11



CONTENTS

3.5 Reilly type inequalities on CR manifolds . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Horizontal Laplacians on Carnot groups . . . . . . . . . . . . . . . . . . . . . . 103

4 Pseudohermitian Bochner-Lichnerowicz formula 105
4.1 CR Paneitz operator and Chang-Chiu’s formula . . . . . . . . . . . . . . . . . . 105

4.2 Bochner-Lichnerowicz formulae on Fefferman spaces . . . . . . . . . . . . . . . 110

4.3 Curvature theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Pseudohermitian Bochner-Lichnerowicz formula . . . . . . . . . . . . . . . . . 124

4.5 A lower bound on λ1(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Curvature of the Fefferman metric . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7 The Chang-Chiu inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 A New proof of the CR Pohoz̆aev Identity and related Topics 139
5.1 Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Description of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Pohoz̆aev’s non existence results . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 Yamabe like problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

12



Introduction

The study of spectrae of compact orientable Riemannian manifolds is by now a well defined branch
of differential geometry, where differential geometric methods meet with methods from topology
and partial differential equations, including aspects of the theory of harmonic maps. The state of
the art, at the level of 1971, is described in the monograph by M. Berger & P. Gauduchon & E.
Mazet, [71], which is our main model in developing a similar theory within the CR category. The
relationship among spectral theory on Riemannian manifolds and harmonic maps starts with the
work by R.T. Smith, [86]-[87], and a description of that is already captured in monograph form,
cf. H. Urakawa, [52], an exposition of the main facts in the theory of harmonic maps, followed
closely by other people (cf. e.g. E. Barletta & S. Dragomir & H. Urakawa, [30]) in building an
analogous theory for maps from CR manifolds, as well as by us in the present thesis (cf. Chapter
3). Given a Riemannian manifold (M, g) there is a natural formally self-adjoint, positive, second
order differential operator ∆g, the Laplace-Beltrami operator associated to the metric g. Let σ(∆g)
be the spectrum of ∆g i.e. the set of all λ ∈ R such that ∆gu = λu for some u ∈ C∞(M,R). When
M is compact and orientable σ(∆g) is discrete

σ(∆g) = {λν(g) : ν ≥ 0}, 0 = λ0(g) < λ1(g) < · · · < λν(g) < · · · ↑ +∞, (1)

essentially as a consequence of ellipticity of ∆g. An array of results, too long to be fully mentioned
here, regards properties of the spectrum σ(∆g) as implied by the local geometric features of the
given Riemannian manifold (M, g), or the way σ(∆g) might characterize the Riemannian metric g
itself e.g. whether isospectral Riemannian manifolds are isometric. Let us quote the famous result
by A. Lichnerowicz, [12], and M. Obata, [72], according to which the first nonzero eigenvalue
λ1(g) may be estimated by below as

λ1(g) ≥
m

m − 1
k (2)

provided the Ricci curvature of (M, g) obeys to

Ricg(X, X) ≥ k g(X, X), X ∈ X(M). (3)

Here m is the dimension of M. While (2) is due to A. Lichnerowicz, [12], there is a rather spec-
tacular contribution by M. Obata, [72], proving that equality in (2) may only occur when (M, g)
is isometric to the sphere S m with the standard Riemannian metric. The quoted result exerted a
great influence on the mathematical community, prompting a series of generalizations in various
directions (mentioned later on in this Introduction), including the realm of CR, or rather pseudo-
hermitian, geometry, an issue discussed at some length in Chapter 4 of this thesis. Another result,
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INTRODUCTION

nowadays famous, intertwining differential geometry and PDEs methods, is the existence of an
asymptotic development

E ∼ (4πt)−m/2−r2/(4t) (u0 + u1t + · · · + uνtν + · · ·
)
, t → 0+ , (4)

of the fundamental solution E(x, y, t) to the heat equation on (M, g), here r = d(x, y). Development
(4) is due to S. Minakshisundaram & A. Pleijel, [99] (cf. also [71], 204-205) and the remarkable
fact is that uν ∈ C∞(M × M) are Riemannian invariants. More precisely if

Z(M, g; t) =

∞∑
ν=0

mνe−λµt

where mν is the multiplicity of the eigenvalue λν, then

Z(M, g; t) ∼ (4πt)−m/2 (
a0 + a1t + · · · + aνtν + · · ·

)
, t → 0+ , (5)

and the coefficients aν =
∫

M uν(x, x) dvg(x) may be computed in terms of the curvature of (M, g).
For instance

a0 = Vol(M, g), (6)

a1 =
1
6

∫
M
ρg dvg , (7)

a2 =
1

360

∫
M

(
2‖Rg‖

2 − 2‖Ricg‖
2 + 5ρ2

g

)
dvg . (8)

Here Rg, Ricg and ρg are respectively the curvature tensor field, the Ricci curvature, and the scalar
curvature of the metric g. Finally let us recall that the stability of the identity mapping 1M : M →
M, thought of as a harmonic map of (M, g) into itself, is related to the properties of σ(∆g) by a
result of R.T. Smith, [87]. Precisely if (M, g) is a compact Einstein manifold i.e.

Ricg(X,Y) = c g(X,Y), X,Y ∈ X(M),

for some c ∈ R, then the identity mapping 1M : M → M is weakly stable if and only if the first
nonzero eigenvalue of ∆g satisfies λ1(g) ≥ 2c. Also nullity of 1M is given by

null(1M) = dim Iso(M, g) + dim{u ∈ C∞(M,R) : ∆gu = 2cu} (9)

where Iso(M, g) is the isometry group of (M, g). To close, a particular importance for the themes
treated in this thesis present results such as S. Bando & H. Urakawa’s (cf. [90]) on the dependence
of individual eigenvalues λν(g) on the metric g (i.e. on the behavior of λν(g) as g varies in the space
of all Riemannian metrics on M, endowed with an appropriate topology) and the results by A. El
Soufi & S. Ilias (cf. [5]-[6]) on variational properties of eigenvalues λν(t) ≡ λν(gt) under a smooth
1-parameter deformation of the metric. All the mentioned results admit meaningful reformulations
on a compact strictly pseudoconvex CR manifold, in the presence of a given positively oriented
contact form, and reformulations are either treated in this thesis or indicated as potential research
work, to which the author of this thesis will devote further investigations.

The subject of this thesis is, as mentioned above, to start with a compact strictly pseudoconvex
CR manifold (M,T1,0(M)), of CR dimension n, fix a contact form θ ∈ P+ such that the corre-
sponding Levi form Gθ is positively definite, and study the spectrum σ(∆b) of a natural formally
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INTRODUCTION

self adjoint, positive, second order differential operator ∆b appearing on a pseudohermitian man-
ifold (M, θ) very much like the Laplacian of a Riemannian manifold. This is the sublaplacian of
(M, θ)

∆bu = −div(∇Hu), u ∈ C2(M). (10)

Here div : X(M)→ C∞(M) is the divergence operator associated to the volume form Ψθ = θ∧(dθ)n

and ∇Hu is the horizontal gradient. Strict pseudoconvexity (actually orientability and nondegener-
acy suffice) implies the existence of a unique globally defined nowhere zero, everywhere transverse
to the Levi distribution H(M) = Re{T1,0(M) ⊕ T0,1(M)}, tangent vector field T ∈ X(M) (the Reeb
vector of (M, θ)) determined by θ(T ) = 1 and T c dθ = 0. The vector field T may then be used to
extend the Levi form

Gθ(X,Y) = (dθ)(X, JY), X,Y ∈ H(M),

to a Riemmannian metric gθ on M (the Webster metric of (M, θ)) given by

gθ(X,Y) = Gθ(X,Y), gθ(X,T ) = 0, gθ(T,T ) = 1,

for any X,Y ∈ H(M). The horizontal gradient is then ∇Hu = ΠH∇u where ΠH : T (M) → H(M)
is the projection associated to the direct sum decomposition T (M) = H(M) ⊕ RT and ∇u is given
by gθ(∇u, X) = X(u) for any X ∈ X(M). So indeed forming ∇Hu is taking directional derivatives
of u only in the horizontal directions lying in H(M). Dropping T is then responsible for the
degeneration of ellipticity of ∆b, precisely in the T direction. The sublaplacian ∆b will be therefore
seen to be a degenerate elliptic operator in the sense of M. Bony, [58], this being recognized as
the main difficulty in building a theory similar to that for the Laplacian of a Riemannian manifold.
Although ∇Hu rises from omitting a direction in ∇u, the ordinary gradient with respect to the
Webster metric, studying the Riemannian geometry of (M, gθ) doesn’t lie within our purposes, for
reasons we wish to briefly explain. The CR structure T1,0(M) is but a recast, in the language of
complex vector bundles, of the tangential Cauchy-Riemann equations

∂b f = 0, f ∈ C1(M,C), (11)

and it is our philosophy, following the line of thought by S. Dragomir & G. Tomassini, [94], that
studying various geometric objects associated to θ on M will ultimately unveil local and global
properties of solutions to (11). These are related (cf. e.f. A. Boggess, [2]) to the pseudoconvexity
properties of M, as understood in complex analysis of functions of several complex variables.
On the other hand pseudoconvexity properties aren’t captured by the geometry of gθ but rather
are described by (the curvature of) the Tanaka-Webster connection ∇ of (M, θ). The Tanaka-
Webster connection ∇ and its curvature R∇ are among the geometric objects associated to (M, θ),
as mentioned above, and are made a preferrenial use with respect to the Levi-Civita connection
of (M, gθ) and its curvature. The source of basic results on CR and pseudohermitian geometry
that we closely follow through this thesis is the monograph by S. Dragomir & G. Tomassini, [94].
As recalled previously in this Introduction, the sublaplacian ∆b is but degenerate elliptic, yet it
is subelliptic of order ε = 1/2 (cf. e.g. G.B. Folland, [42]). Consequently, by a result of L.
Hörmander, [68], ∆b is hypoelliptic i.e. if u is a distribution solution to ∆bu = f with f ∈ C∞ then
u ∈ C∞ as well. A pseudodifferential calculus adapted to hypoelliptic operators, such as developed
by A. Menikoff & J. Sjöstrand, [13], shows that ∆b has a discrete spectrum

σ(∆b) = {λν(θ) : ν ≥ 0}, 0 = λ0(θ) < λ1(θ) < · · · < λν(θ) < · · · ↑ +∞, (12)
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as the Laplacian of a compact Riemannian manifold, to which ∆b formally resembles, except for
the degeneration of ellipticity, as explained above. The crucial property enjoyed by ∆b, as well as
∆g, is therefore its hypoellipticity, springing from subellipticity, and the author of this thesis joins
the opinion in [94] that subelliptic theory should play within CR geometry the strong, and more
consolidated, role played by elliptic theory in Riemannian geometry. Discreteness of σ(∆b) also
follows easily from the subelliptic estimates

‖u‖21/2 ≤ C
(
(∆bu , u)L2(M) + ‖u‖2L2(M)

)
, u ∈ C∞(M), (13)

(where ‖ · ‖s is the Sobolev norm of order s) together with a Kondrakov type lemma due essentially
to L.P. Rothschild & E.M. Stein, [69] (and a general functional analysis description of spectrae of
compact operators). Another proof of discreteness of σ(∆b), relying on the Poincaré lemma∫

Ω

ϕ2 Ψθ ≤ C
∫

Ω

‖∇Hϕ‖2 Ψθ , ϕ ∈ C∞0 (Ω,R), (14)

is given in Chapter 1 of this thesis for the Dirichlet spectrum of ∆b on a bounded (with respect to
the Carnot-Carathéodory distance function dH of the semi-Riemannian manifold (M, H(M), Gθ))
domain Ω ⊂ M in a complete (again with respect to dH) pseudohermitian manifold (M, θ).

The exposition is organized as follows. Chapter 1 gathers the preparatory material on tan-
gential Cauchy-Riemann equations (11) and geometric objects naturally associated to them once
a positively oriented contact form θ ∈ P+ is fixed, such as the Levi form Gθ, the Webster metric
gθ, the Tanaka-Webster connection ∇, and the Fefferman metric Fθ on M, the total space of the
canonical circle bundle S 1 → C(M)→ M over M. Especially Fθ, a Lorentzian metric onM, plays
a fundamental role in the derivation of an L2 Bochner-Lichnerowicz type formula that we derive
in Chapter 4. The sublaplacian ∆b of (M, θ) is then introduced and, following its description, a
weak L2 calculus in appropriate Sobolev type spaces W1,2

H (Ω) and W̊1,2
H (Ω) is presented in some

detail, by following essentially E. Barletta & S. Dragomir, [28]. To prove discreetness of Dirichlet
spectrum of ∆b on Ω one needs to solve first the generalized Dirichlet problem

∆bu = f in Ω, u = 0 on ∂Ω, (15)

by giving an appropriate L2 interpretation of the boundary condition in (15) i.e. by looking for
a solution u ∈ W̊1,2

H (Ω). When M = Hn i.e. Ω ⊂ Hn is a bounded domain in the Heisenberg
group, the Poincaré lemma (14) readily holds as a consequence of a Sobolev type lemma, while it
is our present level of understanding of the theory that for domains in arbitrary complete strictly
pseudoconvex manifolds M inequality (14) should be a basic assumption. While the solution to
(15) is known when M = Hn (by work in subelliptic theory, cf. e.g. A. Bonfiglioli & E. Lanconelli
& F. Uguzzoni, [3], or by folklore surrounding it), it appears nowhere (in the literature on CR
geometry) for domains Ω ⊂ M in an arbitrary complete strictly pseudoconvex CR manifold. We
therefore give two solutions to the generalized Dirichlet problem, both leading to the variational
solution to (15), one as a minimum of the functional

F(u) =
1
2

∫
Ω

‖∇Hu‖2 Ψθ − ( f , u)L2(Ω) , u ∈ W̊1,2
H (Ω),

and another exploiting the Friedrichs extension of the Lagrange sublaplacian ∆b,0 ≡ ∆b
∣∣∣
C∞0 (Ω).
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The last two sections in Chapter 1 are devoted to giving a proof to a pseudohermitian analog to
Bochner-Lichnerowicz formula due to A. Greenleaf, [9], (and with respect to which our Bochner-
Lichnerowicz type formula in Chapter 4 is an alternative) and its use in the proof of the non-
negativity of the CR Paneitz operator P0, due to S-C. Chang & H-L. Chiu, [92]. We repeat the
calculations in [92] both because we operate with different quantitative conventions (as to exterior
differential calculus in the de Rham algebra of M) and because non-negativity of P0 is a crucial
ingredient in the lower bound on λ1(θ) that we obtain in Chapter 4, very much as the bound got in
[92].

Chapter 2 exposes our results on the behavior of σ(∆b) as functions of the given positively
oriented contact form. The main results are an extension to the pseudohermitian category of a
result by A. El Soufi & S. Ilias, [6]-[7], on the behavior of λν(t) ≡ λν(θt) under a smooth 1-
parameter deformation {θt}|t|<δ of the contact form θ, followed by an extension of a result by S.
Bando & H. Urakawa, [90]. The result in [90] was that eigenvalues λν(g) of the Laplace-Beltrami
operator ∆g are continuous functions of g ∈ M, with respect to the natural topology on the space
M of all Riemannian metrics on the given manifold M. We prove a pseudohermitian analog to
that, by organizing the space of contact forms P as a topological space, whose topology is the
metric topology of an appropriate distance function on P, and by proving a max-min principle.

Chapter 3 aims to find bounds on the eigenvalues similar Payne-Pólya-Weinberger universal
inequalities [66]. These are (as established for the eigenvalues of the Dirichlet Laplacian on a
bounded domain in Rn)

λk+1 − λk ≤
4
n

1
k

k∑
i=1

λi

 , k ≥ 1. (16)

Inequalities (16) were improved by several authors (cf. [73], [45], [46]). For instance the following
inequality due to H.C. Yang, [46], implies (16)

k∑
i=1

(λk+1 − λi)2 ≤
4
n

k∑
i=1

λi(λk+1 − λi). (17)

Extensions of universal inequalities to bounded domains in Riemannian manifolds other than the
Euclidean space have also been obtained. Let us mention, for example, the following Yang’s type
inequality obtained by M.S. Ashbaugh, [73], for domains in the unit sphere S n ⊂ Rn+1 (cf also
[83])

k∑
i=1

(λk+1 − λi)2 ≤
4
n

k∑
i=1

(λk+1 − λi)(λi +
n2

4
). (18)

Equality holds for every k in (18) when λi are the eigenvalues of the Laplace-Beltrami operator on
the whole sphere, as observed by A. El Soufi & E.M. Harrell & S. Ilias, [8]. There inequality (18) is
recovered as a particular case of an inequality satisfied by the eigenvalues of the Laplace-Beltrami
operator of any n-dimensional compact Riemannian manifold M (with Dirichlet boundary condi-
tions if ∂M , ∅)

k∑
i=1

(λk+1 − λi)2 ≤
4
n

k∑
i=1

(λk+1 − λi)(λi +
1
4
‖H‖2∞) (19)

where H is the mean curvature vector field of an arbitrary isometric immersion of M into Euclidean
space Rn+p. P-C. Niu & H. Zhang, [81], were the first to address the same issue for subelliptic op-
erators. They obtained Payne-Pólya-Weinberger and Hile-Protter type inequalities for the Dirichlet
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eigenvalues of the sublaplacian on a bounded domain in the Heisenberg group Hn. The following
Yang type inequality was obtained in [8] as an improvement of the results in [81]

k∑
i=1

(λk+1(θ) − λi(θ))2 ≤
2
n

k∑
i=1

λi(θ)(λk+1(θ) − λi(θ)). (20)

Among our results (reported on in Chapter 3, cf. Corollary 3.8), we show that inequality (20)
remains valid for any compact strictly pseudoconvex CR manifold M, of CR dimension n, provided
it admits a Riemannian submersion over an open set of R2n which is constant on the characteristic
curves of M i.e. on the integral curves of the Reeb vector. The standard projection Hn → R2n

satisfies these assumptions. For domains in S 2n+1 we obtain the following inequality (cf. Corollary
3.4)

k∑
i=1

(
λk+1(θ) − λi(θ)

)2
≤

2
n

k∑
i=1

(
λk+1(θ) − λi(θ)

) (
λi(θ) + n2

)
(21)

which is sharp for k = 1. These results are particular cases of our more general Theorem 3.3.
We prove that the eigenvalues of the sublaplacian ∆b in a bounded domain Ω ⊂ M, with Dirichlet
boundary conditions if Ω , M, satisfy inequalities of the following form (cf. Theorem 3.3 for a
complete statement). For every integer k ≥ 1 and every p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) +
1
4
‖Hb( f )‖2∞

)
, (22)

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) +
1
2n
‖Hb( f )‖2∞, (23)

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) +

1
4

(
(1 +

2
n

)k
1
n − 1

)
‖Hb( f )‖2∞ (24)

where f is any C2 semi-isometric map from (M, θ) to a Euclidean space Rm and Hb( f ) is a vector
field similar to the tension field of f in Riemannian geometry. Moreover we show the inequalities
(22), (23) and (24) remain true when f is a semi-isometric map from (M, θ) to the Heisenberg group
Hm which maps the Levi distribution of M into that of Hm. For M compact without boundary we
establish Reilly type inequalities

λ2(θ) ≤
1

2nV(M, θ)

∫
M
‖Hb( f )‖2Rm , Vol(M, θ) ≡

∫
M

Ψθ , (25)

and show that equality holds in (25) if and only if f (M) is contained in a sphere S m−1(r) of radius
r =
√

2n/λ2(θ) and f : M → S m−1(r) is pseudoharmonic (in the sense of E. Barletta & S. Dragomir
& H. Urakawa, [31]). Reilly type results are also obtained for maps f from (M, θ) to Hm which
map the Levi distribution of M into that of Hm (cf. our Theorem 3.16).

The main ingredient in the proof of (2) is the Bochner-Lichnerowicz formula (cf. e.g. (G.IV.5)
in [71], p. 131)

−
1
2

∆g
(
‖du‖2

)
= ‖Hess(u)‖2 − g

(
Du , D∆gu

)
+ Ricg(Du,Du) (26)
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for any u ∈ C∞(M,R). The great fascination exerted by the Lichnerowicz-Obata theorem on the
mathematical community in the last fifty years prompted the many attempts to extend (26) and
(2) to other geometric contexts e.g. to Riemannian foliation theory (cf. S-D. Jung & K-R. Lee
& K. Richardson, [93], J. Lee & K. Richardson, [56], H-K. Pak & J-H. Park, [47]), to CR and
pseudohermitian geometry (cf. E. Barletta & S. Dragomir, [28], E. Barletta, [32], S-C. Chang
& H-L. Chiu, [92], H-L. Chiu, [48], A. Greenleaf, [9], S-Y. Li & H-S. Luk, [101]) and to sub-
Riemannian geometry (cf. F. Baudoin & N. Garofalo, [38]). Chapter 4 is devoted to a version of
the estimate (2) occurring in CR geometry. Given a compact strictly pseudoconvex CR manifold
(M,T1,0(M)) endowed with a positively oriented contact form θ, the pseudohermitian manifold
(M, θ) carries (by a result of N.Tanaka, [79], and S.M. Webster, [100]) (M, θ) carries a natural linear
connection ∇ (the Tanaka-Webster connection of (M, θ), cf. also [94], p. 25) whose Ricci tensor
field is formally similar to Ricci curvature in Riemannian geometry. It is then a natural problem
to look for a lower bound on λ1(θ) whenever Ric∇ is bounded from below. As the sublaplacian
may be written in divergence form as ∆bu = −div(∇Hu), the horizontal gradient ∇Hu appears to be
the pseudohermitian analog to the gradient Du in Riemannian geometry. The first step is then to
produce a pseudohermitian version of (26) i.e. compute ∆b(‖∇Hu‖2) (for an arbitrary eigenfunction
u of ∆b) in terms of the pseudohermitian Hessian ∇2u and the Ricci curvature Ric∇ of the Tanaka-
Webster connection. The first to realize the difficulties in producing a pseudohermitian analog to
(26) was A. Greenleaf, [9]. Indeed his Bochner-Lichnerowicz type formula

∆b
(
‖∇1,0u‖2

)
= 2

∑
α,β

(
uαβuαβ + uαβuαβ

)
+ 4i

∑
α

(uαu0α − uαu0α) + (27)

+2
∑
α,β

Rαβuαuβ + 2in
∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
+

+
∑
α

{uα (∆bu)α + uα (∆bu)α}

involves the torsion terms Aαβ (possessing no Riemannian counterpart). Here ∇1,0u =
∑
α uαTα

(notations and conventions as used in (27) are explained in § 2 of Chapter 4). However the attempt
to confine oneself to the class of Sasakian manifolds (M, gθ) (as in [32], since Sasakian metrics gθ
have vanishing pseudohermitian torsion i.e. Aαβ = 0) isn’t successful either: while torsion terms
may be controlled (when exploiting (27) integrated over M) by the L2 norm of ∇Hu, the main
technical difficulties actually arise from the occurrence of terms

∑
α (uαu0α − uαu0α) containing

covariant derivatives of ∇Hu in the "bad" real direction T transverse to H(M) (the Reeb vector of
(M, θ)).

The novelty brought by Chapter 4 is to establish first a version of Bochner-Lichnerowicz for-
mula for a natural Lorentzian metric Fθ (the Fefferman metric of (M, θ), cf. [59], [18]) on the total
space of the canonical circle bundle S 1 → C(M)

π
−→ M. Fefferman metric Fθ was discovered by

C. Fefferman, [17], in connection with the study of boundary behavior of the Bergman kernel of a
strictly pseudoconvex domain in Cn. An array of problems of major interest in CR geometry e.g.
the CR Yamabe problem, [24], the study of subelliptic harmonic maps, [54], and Yang-Mills fields
on CR manifolds, [31], are closely tied to the geometry of the Lorentzian manifold (C(M), Fθ). In-
deed the aforementioned problems are projections on M via π : C(M)→ M of Lorentzian analogs
to the corresponding Riemannian problems, as prompted by J.M. Lee’s discovery (cf. [59]) that
π∗� = ∆b, where � is the Laplace-Beltrami operator of Fθ (the wave operator on (C(M), Fθ)).
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For instance any S 1-invariant harmonic map Φ : (C(M), Fθ) → N into a Riemannian manifold N
projects on a subelliptic harmonic map φ : M → N (in the sense of [54] and [30]). The arguments
in [71] carry over in a straightforward manner (cf. our § 3 in Chapter 4) to Lorenzian geometry
and give (cf. (4.21) in Chapter 4)

−
1
2
� (Fθ(D f ,D f )) = F∗θ

(
D2 f , D2 f

)
− (D f )(� f ) + RicD(D f , D f ) (28)

and the corresponding integral formula (4.22) there. The projection on M of (28) then leads to
another analog (similar to A. Greenleaf’s formula (27)) to Bochner-Lichnerowicz formula and
then to a new lower bound on λ1(θ). Precisely we may state

Theorem 0.1. Let M be a compact, strictly pseudoconvex, CR manifold of CR dimension n. Let
θ ∈ P+ be a positively oriented contact form on M and ∆b the corresponding sublaplacian. Let
Ric∇ be the Ricci tensor of the Tanaka-Webster connection ∇ of (M, θ) and λ1(θ) ∈ σ(∆b) the first
nonzero eigenvalue of ∆b. If

Ric∇(X, X) ≥ k Gθ(X, X) (29)

for some constant k > 0 and any X ∈ H(M) then

λ1(θ) ≥
2n

(n + 2)(n + 3)

{
(n + 3)k − (11n + 19)τ0 −

ρ0

2(n + 1)

}
(30)

where τ0 = supx∈M ‖τ‖x and ρ0 = supx∈M ρ(x) ≥ nk , where τ and ρ are respectively the pseudo-
hermitian torsion and scalar curvature of (M, θ).

The lower bound (30) is nontrivial only for k sufficiently large (i.e. k must satisfy (4.101) in
§ 5 of Chapter 4). Let (M, gθ) be a Sasakian manifold (equivalently τ = 0, cf. e.g. [94]). Then
under the same assumption (i.e. (29) in Theorem 0.1) A. Greenleaf established the estimate (cf.
[9])

λ1(θ) ≥
nk

n + 1
. (31)

Lower bound (30) is sharper that (31) when

k >
ρ0

n(n + 3)
. (32)

If for instance M = S 2n+1 is the standard sphere in Cn+1, endowed with the canonical contact form
θ = (i/2)

(
∂ − ∂

)
|z|2, then ρ0 = 2n(n + 1) and k = 2(n + 1) hence (32) holds (and (30) is sharper

than (31)).

The projection of (28) on M gives

−
1
2

∆b
(
‖∇Hu‖2

)
=

∥∥∥ΠH∇
2u

∥∥∥2
− (∇Hu)(∆bu)+ (33)

+4(J∇Hu)(u0) −
3(n + 1)

n + 2
A(∇Hu , J∇Hu)+

+
n + 3
n + 2

Ric∇
(
∇Hu , ∇Hu

)
−

ρ

2(n + 1)(n + 2)
‖∇Hu‖2
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(the pseudohermitian Bochner-Lichnerowicz formula, cf. (4.91)) and the corresponding integral
formula (4.92). The main technical difficulty in the derivation of (33) is to compute the Ricci
curvature RicD of the Lorentzian manifold (C(M), Fθ). This is performed by relating the Levi-
Civita connection D of (C(M), Fθ) to the Tanaka-Webster connection ∇ of (M, θ) (cf. (4.23)-(4.27),
a result got in [31]) and adapting to S 1 → C(M) → M a technique originating in the theory of
Riemannian submersions (cf. [14]) and shown to work in spite of the fact that π : (C(M), Fθ) →
(M, gθ) isn’t a semi-Riemannian submersion (fibres of π are degenerate). The relationship among
D and ∇ may then be exploited to compute the full curvature tensor RD. Only its trace RicD is
evaluated in [59] and the formula there appears as too involved to be of practical use. Our result
(cf. (4.54)-(4.59) in Lemma 4.3 below) is simple, elegant and local frame free. This springs from
the decomposition

T (C(M)) = Ker(σ) ⊕ RS , Ker(σ) = H(M)↑ ⊕ RT ↑ ,

itself relying on the discovery (due to C.R. Graham, [18]) that σ ∈ Ω1(C(M)) (given by (4.17)
below) is a connection 1-form in the principal circle bundle S 1 → C(M) → M. As a byproduct
of Lemma 4.3 one reobtains the result by J.M. Lee, [59], that none of the Fefferman metrics
{Fθ ∈ Lor(C(M)) : θ ∈ P+} is Einstein. Integration of (33) over M produces (by (4.88) in Lemma
4.5) terms ‖u0‖L2 where u0 ≡ T (u) and u is an arbitrary eigenfunction of ∆b, corresponding to
a fixed eigenvalue λ ∈ σ(∆b). The L2 norm of the (restriction to the Levi distribution H(M)
) pseudohermitian Hessian ΠH∇

2u is estimated by using (4.94) (a result got in [32]). Torsion
terms and Ricci curvature terms are respectively estimated by (4.99) and as a consequence of the
assumption (29) in Theorem 0.1 (together with (4.98)). Finally to control ‖u0‖L2 one exploits a
fundamental result got in [92], and referred hereafter as the Chang-Chiu inequality (cf. (4.118) in
§ 4.7 of Chapter 4).

The last part contains a work taht is independent from the rest of the thesis. It deals with a new
proof of the CR Pohoz̆aev Identity.
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Chapter 1

CR and Pseudohermitian Geometry

1.1 Tangential Cauchy-Riemann equations

Let M be a connected C∞ differentiable manifold, of real dimension 2n + 1. Let T (M) ⊗ C → M
denote the complexified tangent bundle over M. A CR structure on M is a complex subbundle
T1,0(M) ⊂ T (M) ⊗ C, of complex rank n, such that

T1,0(M)x ∩ T0,1(M)x = {0x}, x ∈ M, (1.1)

Z,W ∈ C∞(U,T1,0(M)) =⇒ [Z,W] ∈ C∞(U,T1,0(M)), (1.2)

for any open set U ⊂ M. A pair (M,T1,0(M)) is a CR manifold and the integer n is its CR
dimension. Here T0,1(M) = T1,0(M) and overbars denote complex conjugation. Cf. [94], p. 3-4.
Also if E → M is a vector bundle over M then C∞(U, E) denotes the space of all C∞ sections in
E, defined on the open set U ⊂ M. When U = M one writes simply C∞(E) = C∞(M, E). If x ∈ M
then Ex is the fibre in E over x. The axiom (1.2) is often referred to as the (Frobenius) formal
integrability property (of the CR structure T1,0(M)). Standard examples of CR manifolds are real
hypersurfaces M ⊂ Cn+1 with the CR structure (induced by the complex structure of the ambient
space)

T1,0(M)x = [Tx(M) ⊗R C] ∩ T 1,0(Cn+1)x , x ∈ M.

Here T 1,0(Cn+1) → Cn+1 denotes the holomorphic tangent bundle over Cn+1 (the span of {∂/∂z j :
1 ≤ j ≤ n + 1} where (z1, · · · , zn+1) are the Cartesian complex coordinates on Cn+1).

Let (M,T1,0(M)) be a CR manifold, of CR dimension n. The tangential Cauchy-Riemann
operator is the first order differential operator

∂b : C∞(U,C)→ C∞(U,T0,1(M)∗),

(∂b f )Z = Z( f ), f ∈ C∞(U,C), Z ∈ C∞(U,T1,0(M)),

with U ⊂ M open. Next
∂b f = 0 (1.3)

are the tangential Cauchy-Riemann equations. Clearly ∂b may be defined on C1 functions, to
start with (and then ∂b f is but a continuous section in T0,1(M)∗). A C1 solution to the tangential
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Cauchy-Riemann equations (1.3) is a CR function on U. The space of CR functions f : U → C is
denoted by CR1(U,C).

CR structures on manifolds appear therefore as a bundle theoretic recast, within the realm of
differential geometry, of the tangential Cauchy-Riemann equations, discovered by H. Lewy, [49],
in his study of the boundary behavior of holomorphic functions on the Siegel domain. We recall
a few details on Lewy’s construction, leading to our main example of an open CR manifold, the
Heisenberg group.

Let Ω = {(z,w) ∈ Cn × C : Im(w) > |z|2} be the Siegel domain in Cn+1. Here |z|2 =
∑n
α=1 zαzα

for any z = (z1, · · · , zn) ∈ Cn. Also zα = zα. Let us consider the Dirichlet problem for the ordinary
Cauchy-Riemann system

∂F = 0 in Ω, (1.4)

F = f on ∂Ω. (1.5)

Here f ∈ C∞(∂Ω,C) and one is interested in the C∞ regularity up to the boundary of the solution
to (1.4)-(1.5) (rather then the existence problem). Let us assume that a C∞ up to the boundary
solution F ∈ C∞(Ω,C) does exist. Let us consider

ρ : Cn+1 → R, ρ(z,w) = Im(w) − |z|2 , (z,w) ∈ Cn+1,

(the defining function of the Siegel domain). For every a ∈ R we set

Ma = {(z,w) ∈ Cn+1 : ρ(z,w) = a}

so that Cn+1 appears as carrying the foliation F by level sets of ρ i.e. the leaf space of F is

M/F = {Ma : a ∈ R}.

For every ε > 0 the leaf Mε is contained in the Siegel domain while M0 is its boundary. Each leaf
Mε (ε ≥ 0) is a real hyperusrface in Cn+1 and hence a CR manifold with the induced CR structure

T1,0(Mε) = [T (Mε) ⊗ C] ∩ T 1,0(Cn+1).

A complex vector field Z of type (1, 0) on Cn+1 is tangent to Mε if and only if Z(ρε) = 0, where
ρε = ρ − ε. Hence T1,0(Mε) is (globally) the span of{

∂

∂zα
− 2izα

∂

∂w
: 1 ≤ α ≤ n

}
.

For M0 = ∂Ω a more precise statement is that {Lα : 1 ≤ α ≤ n} is a (global) frame of T1,0(∂Ω),
where Lα ∈ C∞(T (∂Ω) ⊗ C) is the unique complex vector field tangent to ∂Ω determined by

(dx j)Lα,x =

(
∂

∂zα
− 2izα

∂

∂w

)
x
, x ∈ ∂Ω ,

and j : ∂Ω→ Cn+1 is the inclusion. Let x ∈ Ω be an arbitrary point. As F is holomorphic in Ω(
∂F
∂zα

+ 2izα
∂F
∂w

)
(x) = 0. (1.6)

24



1.2. PSEUDOHERMITIAN STRUCTURES

As F is smooth up to the boundary we may take x → ∂Ω i.e. approach the boundary with x in
(1.6) so that to obtain for any x ∈ ∂Ω

0 =

(
∂F
∂zα

+ 2izα
∂F
∂w

)
(x) =

=
(
(dx j)Lx

)
(F) = Lx(F ◦ j) = Lx( f ) = (∂b f )xLx

so that the boundary data is a solution to the tangential Cauchy-Riemann equations ∂b f = 0 on ∂Ω

i.e. f ∈ CR∞(∂Ω,C).

For further use, we summarize Lewy’s construction above, as follows. Let Hn = Cn ×R be the
Heisenberg group i.e. the Lie group with the group law

(z, t) · (w, s) = (z + w , t + s + Im(z · w)), (z, t), (w, s) ∈ Hn ,

where z ·w =
∑n
α=1 zαwα. Let us consider the left invariant complex vector fields Tα ∈ C∞(T (Hn)⊗

C) given by

Tα =
∂

∂zα
+ izα

∂

∂t
, 1 ≤ α ≤ n.

Tα = Tα are referred to as the Lewy operators. Then
[
Tα , Tβ

]
= 0 hence

T1,0(Hn)x = SpanC
{
Tα,x : 1 ≤ α ≤ n

}
, x ∈ Hn ,

is a (left invariant) CR structure, of CR dimension n, on Hn. Let us consider the map

f : Hn → ∂Ω,

f (z, t) = (z , t + i|z|2), (z, t) ∈ Hn ,

where Ω ⊂ Cn+1 is the Siegel domain. Then f is a CR isomorphism that is a C∞ diffeomorphism
and a CR map i.e. (dx f )T1,0(Hn)x ⊆ T1,0(∂Ω) f (x) for any x ∈ Hn (and actually equality occurs, as
dx f is a R-linear isomorphism). This follows from

(dx f )Tα,x = Lα, f (x) , x ∈ Hn , 1 ≤ α ≤ n.

1.2 Pseudohermitian structures

The Levi distribution of the CR manifold (M,T1,0(M)) is

H(M) = Re{T1,0(M) ⊕ T0,1(M)}.

It carries the complex structure J : H(M)→ H(M) given by

J(Z + Z) = i(Z − Z), Z ∈ T1,0(M),

(with i =
√
−1). A pseudohermitian structure is a globally defined, nowhere zero, section θ ∈

C∞(H(M)⊥) in the conormal bundle H(M)⊥ → M defined by

H(M)⊥x = {ω ∈ T ∗x (M) : Ker(ω) ⊃ H(M)x}, x ∈ M.
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1.2. PSEUDOHERMITIAN STRUCTURES

Under the mere assumption that M is orientable, pseudohermitian structures always exist. Cf.
S.M. Webster, [100]. The Levi form is

Lθ(Z,W) = −i(dθ)(Z,W), Z,W ∈ T1,0(M).

The given CR manifold M is nondegenerate (respectively strictly pseudoconvex) if Lθ is nonde-
generate i.e. Lθ(Z,W) = 0 for any W ∈ T1,0(M) yields Z = 0 (respectively positive definite i.e.
Lθ(Z,Z) > 0 for any Z , 0) for some θ. Let P be the set of all pseudohermitian structures. Given
a pseudohermitian structure θ ∈ P, any other pseudohermitian structure θ̂ ∈ P is given by θ̂ = λθ

for some C∞ function λ : M → R \ {0}. Thus

dθ̂ = (dλ) ∧ θ + λ dθ

hence (as θ(Z) = 0 for any Z ∈ T1,0(M))

Lθ̂(Z,W) = −i(dθ̂)(Z,W) = −iλ(dθ)(Z,W)

hence
Lθ̂ = λ Lθ . (1.7)

Consequently, if Lθ is nondegenerate then so does Lθ̂ i.e. nondegeneracy is a CR invariant property.
A property will be termed CR invariant if it is invariant under a transformation θ̂ = λθ of the pseu-
dohermitian structure (i.e. that property depends on the CR structure alone, rather than depending
on the choice of pseudohermitian structure). The following terminology is also in use. A CR man-
ifold on which a pseudohermitian structure has been fixed is commonly called a pseudohermitian
manifold. A given pseudohermitian manifold (M, θ) is termed nondegenerate (respectively strictly
pseudoconvex) if Lθ is nondegenerate (respectively positive definite).

If Lθ is positive definite for some θ ∈ P then L−θ is negative definite, so that strict pseudo-
convexity is not a CR invariant property. However the comment shows that P admits the natural
orientation P+ consisting of all θ ∈ P such that Lθ is positive definite.

We assume from now on that (M,T1,0(M)) is a nondegenerate CR manifold, of CR dimension
n. If this is the case then each pseudohermitian structure θ is a contact form i.e. θ ∧ (dθ)n is a
volume form on M. For any contact form θ ∈ P there is (cf. e.g. [94]) a unique globally defined
tangent vector field T ∈ X(M), transverse to the Levi distribution, determined by

θ(T ) = 1, (dθ)(T, X) = 0, X ∈ X(M).

T is referred to as the Reeb vector field of (M, θ). Correspondingly M carries a natural semi-
Riemannian metric gθ (the Webster metric) which we proceed to recall. Let θ ∈ P be a contact
form and let T ∈ X(M) be the Reeb vector field of (M, θ). Then gθ is given by

gθ(X,Y) = (dθ)(X, JY), gθ(X,T ) = 0, gθ(T,T ) = 1,

for any X,Y ∈ H(M). For each u ∈ C1(M,R) let ∇u be the gradient of u with respect to gθ i.e.

gθ(X,∇u) = X(u), X ∈ X(M).

The horizontal gradient is ∇Hu = ΠH∇u where ΠH : T (M) → H(M) is the projection associated
to the direct sum decomposition T (M) = H(M) ⊕ RT . Let Gθ be given by

Gθ(X,Y) = (dθ)(X, JY), X,Y ∈ C∞(H(M)),
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1.2. PSEUDOHERMITIAN STRUCTURES

(the real Levi form). Clearly Lθ and theC-linear extension of Gθ to H(M)⊗C coincide on T1,0(M)⊗
T0,1(M). If the given contact form θ is positively oriented i.e. θ ∈ P+ then the Webster metric gθ is
a Riemannian metric. Also the pair (H(M),Gθ) is a sub-Riemannian structure on M (in the sense
of [89]) and the Webster metric gθ is a contraction of Gθ. Precisely, let dH(x, y) be the Carnot-
Carathéodory distance function (cf. [57], [89]) defined as the infimum of lengths (with respect to
Gθ) of piecewise C1 curves tangent to H(M) joining two points x, y ∈ M. If dθ is the distance
function associated to the Riemannian metric gθ then dθ(x, y) ≤ dH(x, y) for any x, y ∈ M.

For any fixed contact form θ ∈ P on M there is (cf. e.g. [94]) a unique linear connection ∇ (the
Tanaka-Webster connection) on M such that i) the Levi distribution H(M) is parallel with respect
to ∇, ii) ∇J = 0, ∇gθ = 0, iii) if T∇ is the torsion tensor field of ∇ then

T∇(Z,W) = 0, T∇(Z,W) = 2iGθ(Z,W)T, Z,W ∈ T1,0(M),

τ ◦ J + J ◦ τ = 0.

Here τ (the pseudohermitian torsion) is the vector valued 1-form on M given by τ(X) = T∇(T, X)
for any X ∈ X(M). When M is strictly pseudoconvex and θ ∈ P+ it may be shown (cf. e.g. [94])
that τ = 0 if and only if the Webster metric gθ is Sasakian (in the sense of [22]). By a result of
S. Webster, [100], τ is symmetric i.e. Gθ(τX,Y) = Gθ(X, τY) for any X,Y ∈ H(M), and traceless
i.e. trace(τ) = 0. By a result in [94] (cf. Lemma 1.3, p. 37) the Levi-Civita connection ∇gθ of the
semi-Riemannian manifold (M, gθ) and the Tanaka-Webter connection ∇ of (M, θ) are related by

∇gθ = ∇ + (Ω − A) ⊗ T + τ ⊗ θ + 2 θ � J. (1.8)

Here Ω = −dθ and � denotes the symmetric tensor product e.g. α � β = 1
2 (α ⊗ β − β ⊗ α) for any

α, β ∈ Ω1(M). In particular (as a consequence of (1.8))

∇
gθ
X Y = ∇XY + (Ω(X,Y) − A(X,Y))T, (1.9)

∇
gθ
X T = JX, ∇gθ

T X = ∇T X + JX, ∇gθ
T T = 0 (1.10)

for any X,Y ∈ C∞(H(M)).

Traces of holomorphic functions on real hypersurfaces M ⊂ Cn+1 (carrying the induced CR
structure) are CR functions (of class C∞) and indeed CR functions enjoy properties similar to
those of holomorphic functions. Limitations may occur. For instance any Levi flat (i.e. Gθ = 0)
CR manifold admits non trivial real valued CR functions (the local defining submersions of the
Levi foliation F of M such that T (F ) = H(M), cf. [29]) whilst, as well known, real valued
holomorphic functions are constants. Nevertheless

Lemma 1.1. If M is a connected nondegenerate CR manifold then any real valued CR function is
a constant.

Proof. The proof relies on the existence of the Tanaka-Webster connection. Let {Tα : 1 ≤ α ≤
n} be a local frame of T1,0(M), defined on the open set U ⊂ M. We set

gαβ = Gθ(Tα , Tβ), ∇TATB = ΓC
ABTC , Tα = Tα ,

α, β, · · · ∈ {1, · · · , n}, A, B, · · · ∈ {1, · · · , n, 1, · · · , n, 0}, T0 = T,
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1.3. THE FEFFERMAN METRIC

for some C∞ functions ΓA
BC ∈ C∞(U,C) (the Christoffel symbols of the Tanaka-Webster connec-

tion). Axiom (iii) in the description of ∇ yields (for Z = Tα and W = Tβ)

Γ
γ

αβ
Tγ − Γ

γ

βα
Tγ − [Tα , Tβ] = 2igαβT. (1.11)

Let f be a real valued ( f = f ) CR function on M i.e. Tγ( f ) = 0 on U. By complex conjugation
Tγ( f ) = 0 too. Thus (by applying (1.11) to f and exploiting the nondegeneracy of the matrix[
gαβ(x)

]
at any x ∈ U) T ( f ) = 0 on U. Therefore f is locally constant. Q.e.d.

Let M be a strictly pseudoconvex CR manifold and θ ∈ P+ a positively oriented contact form.
Let d vol(gθ) be the volume form of the (oriented) Riemannian manifold (M, gθ) i.e. for any local
coordinate neighborhood (U, xi) on M

d vol(gθ) =
√

G dx1 ∧ · · · ∧ dx2n+1 ,

G = det
[
(gθ)i j

]
, (gθ)i j = gθ(∂/∂xi , ∂/∂x j),

on U. By a result in [51] there is a constant Cn > 0 depending only1 on the CR dimension n such
that

d vol(gθ) = Cn Ψθ . (1.12)

The precise form of the constant Cn is given in [31]. Let div : X(M)→ C∞(M,R) be the divergence
operator with respect to the volume form Ψθ i.e.

LXΨθ = div(X) Ψθ , X ∈ X(M),

where LX denotes the Lie derivative. By (1.12) div is precisely the divergence operator of the
Riemannian manifold (M, gθ) i.e. locally

div(X) =
1
√

G

∂

∂xi

(√
G Xi

)
, X = Xi ∂/∂xi .

1.3 The Fefferman metric

Let M be a strictly pseudoconvex CR manifold and θ ∈ P+ a positively oriented contact form. A
p-form ω ∈ C∞(ΛpT ∗(M)⊗C) is a (p, 0)-form (or a form of type (p, 0)) if T0,1(M) cω = 0. Here c
denotes interior product i.e. X cω = iXω for any X ∈ X(M). Unlike the case of complex geometry,
top degree (p, 0)-forms aren’t (n, 0)-forms but rather (n + 1, 0)-forms, where n denotes the CR
dimension. Indeed given a local frame {Tα : 1 ≤ α ≤ n} ⊂ C∞(U,T1,0(M)) let {θα : 1 ≤ α ≤ n} be
the complex valued 1-forms on U determined by

θα(Tβ) = δαβ , θα(Tβ) = 0, θα(T ) = 0.

{θα : 1 ≤ α ≤ n} is referred to as an adapted local coframe (local frame of T1,0(M)∗). Then any
(p, 0)-form ω on M may be locally represented as sums of exterior monomials of the form

θα1 ∧ · · · ∧ θαp , θ ∧ θα1 ∧ · · · ∧ θαp−1 ,

1Depending on the CR dimension and the signature of the Levi form Lθ, in the nondegenerate case (cf. [31]).
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1.3. THE FEFFERMAN METRIC

with C∞(U,C)-coefficients. A top degree (p, 0)-form ω is therefore locally represented as

ω = λ θ ∧ θ1 ∧ · · · ∧ θn

for some λ ∈ C∞(U,C). We denote by K(M)→ M the complex line bundle whose sections are the
(n + 1, 0)-forms on M (the canonical line bundle). The multiplicative group GL+(1,R) = (0,+∞)
of the positive reals acts on K0(M) = K(M) \ {zero section} in a natural manner. Let C(M) =

K0(M)/GL+(1,R) and π : C(M) → M be the quotient space and projection. The synthetic object
(C(M), π,M, S 1) is a principal bundle (the canonical circle bundle over M, cf. e.g. Definition 2.9
in [94], p. 119). We setM = C(M) for simplicity. By a remarkable finding of C. Fefferman, [17],
the total space M of the canonical circle bundle carries a natural Lorentzian metric (the Feffer-
man metric) associated to a choice of θ ∈ P+. The original construction in [17] is related to the
investigations in [16] (on the boundary behavior of the Bergman kernel of a domain Ω ⊂ Cn+1)
and produces a Lorentzian metric on ∂Ω × S 1 for each smoothly bounded strictly pseudoconvex
domain Ω ⊂ Cn+1. Here we recall the successive construction due to J.M. Lee, [59], producing
the Fefferman metric on M for an arbitrary strictly pseudoconvex manifold (abstract i.e. not nec-
essarily embedded as a real hypersurface in Cn+1). When M is the boundary of a domain in Cn+1,
or merely a real hypersurface in Cn+1, the canonical circle bundle is trivial (C(M) ≈ M × S 1)
and the Lorentzian metrics on M (as in [59]) and M × S 1 (as in [17]) are related by a conformal
diffeomorphism.

Let θ ∈ P+ be a positively oriented contact form on M. The Fefferman metric is the Lorentzian
metric Fθ onM given by

Fθ = π∗G̃θ + 2(π∗θ) � σ, (1.13)

σ =
1

n + 2

{
dγ + π∗

(
iωαα −

i
2

gαβ dgαβ −
ρ

4(n + 1)
θ

)}
. (1.14)

Cf. Definition 2.15 and Theorem 2.4 in [94], p. 128-129. As to the notations in (1.13)-(1.14) we
define G̃θ by G̃θ = Gθ on H(M) ⊗ H(M) and G̃θ(T,W) = 0 for any W ∈ X(M). Moreover γ is a
local fibre coordinate on M. Precisely if {Tα : 1 ≤ α ≤ n} ⊂ C∞(U,T1,0(M)) is a local frame of
T1,0(M) and {θα : 1 ≤ α ≤ n} is the corresponding adapted coframe then each class z ∈ M admits
a representative ω ∈ K0(M)x i.e.

z = [ω] ∈ C(M)x , x ∈ M, ω = λ
(
θ ∧ θ1 ∧ · · · ∧ θn

)
x
,

and the fibre coordinate in (1.14) is defined by

γ(z) = arg
λ

|λ|

where arg : S 1 → [0, 2π). Moreover ωβα are the (local) connection 1-forms of the Tanaka-Webster
connection, relative to the local frame {Tα : 1 ≤ α ≤ n} i.e.

∇TβTα = ωβ
α ⊗ Tα .

Also [gαβ] = [gαβ]
−1 i.e. gαβg

βγ = δ
γ
α. Finally if R∇ is the curvature tensor field of ∇ and

Rαβ = Ric(Tα , Tβ),
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Ric(X,Y) = trace
{
Z ∈ X(M) 7−→ R∇(Z,Y)X

}
, X,Y ∈ X(M),

(Rαβ is the pseudohermitian Ricci curvature, cf. Definition 1.29 in [94], p. 50) then ρ = gαβRαβ
(the pseudohermitian scalar curvature). The Fefferman metric Fθ is a Lorentz metric on M (a
semi-Riemannian metric of signature (− + · · ·+)) and its restricted conformal class {eu◦πFθ : u ∈
C∞(M,R)} is a CR invariant (cf. e.g. [59]).

1.4 Sublaplacians

Let M be a strictly pseudoconvex CR manifold, of CR dimension n, and θ ∈ P+. The sublaplacian
of (M, θ) is the second order differential operator ∆b given by

∆bu = −div
(
∇Hu

)
, u ∈ C2(M,R). (1.15)

Definitions together with Green’s identity yield the useful identity∫
M

u ∆bu Ψθ =

∫
M
‖∇Hu‖2 Ψθ , u ∈ C∞0 (M,R).

In particular ∆b is a positive operator. Let ∆gθ be the Laplace-Beltrami operator (on functions) of
the Riemannian manifold (M, gθ)

∆gθu = −div(∇u), u ∈ C2(M,R).

Then (Greenleaf’s formula, cf. [94])
∆b = ∆gθ + T 2 (1.16)

on functions, where T is the Reeb vector field of (M, θ). As a consequence of (1.15) the sublapla-
cian is locally given by

∆bu = −

2n∑
a=1

{
Xa(Xau) − (∇Xa Xa)(u)

}
(1.17)

where {Xa : 1 ≤ a ≤ 2n} is a local Gθ-orthonormal frame in H(M). Indeed the volume form
Ψθ = θ ∧ (dθ)n is parallel with respect to the Tanaka-Webster connection (∇Ψθ = 0) hence the
divergence of a tangent vector field X ∈ X(M) may be computed as

div(X) = trace {Y ∈ X(M) 7→ ∇Y X}

hence locally

div(X) =

2n∑
a=1

gθ(∇Xa X, Xa) + gθ(∇T X,T ).

In the case of interest X = ∇Hu ∈ H(M) and H(M) is∇-parallel hence gθ(∇T∇
Hu,T ) = θ(∇T∇

Hu) =

0.

Let (U, xi) be a local coordinate system on M and {Xa : 1 ≤ a ≤ 2n} a Gθ-orthonormal frame
of H(M) defined on the same open set U ⊂ M. Moreover let us set

Xa = bi
a
∂

∂xi , 1 ≤ a ≤ 2n,
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∇∂/∂x j
∂

∂xk = Γi
jk

∂

∂xi ,

bi
a , Γi

jk ∈ C∞(U,R), 1 ≤ i, j, k ≤ 2n + 1.

Then

∆bu = −

2n+1∑
i j=1

∂

∂xi

(
ai j ∂u
∂x j

)
+

2n+1∑
j=1

a j ∂u
∂x j , (1.18)

ai j ≡

2n∑
a=1

bi
ab j

a , a j ≡
∂ai j

∂xi + aikΓ
j
ik .

It should be observed that the matrix
[
ai j(x)

]
is but positive semi-definite for any x ∈ U, which is

to say that ∆b is degenerate elliptic. Indeed
[
ai j(x)

]
is not positive definite, for θx is a characteristic

direction. Let X∗a be the formal adjoint of Xa i.e.

X∗a f = −
∂

∂xi

(
bi

a f
)
− bi

aΓi
i j f , f ∈ C1

0(U).

We shall make use of the Hörmander operator HX (associated to the system of vector fields X =

{Xa : 1 ≤ a ≤ 2n}) given by

HXu =

2n∑
a=1

X∗aXau. (1.19)

It is straightforward (cf. e.g. [94], p. 113) that locally ∆b = HX . Through this thesis, by a
distribution on (M, θ) one means a continuous linear functional on C∞0 (M). This is not the ordinary
approach on an arbitrary C∞ manifold (cf. [67], p. 142-145) for in that case given u ∈ L1

loc(M) and
ϕ ∈ C∞0 (M) there is no invariant manner of integrating uϕ (so that to identify f with a continuous
linear functional on C∞0 (M)). In the case at hand however, one integrates with respect to the
volume form Ψθ i.e. Tu(ϕ) =

∫
M uϕΨθ. Let L be a differential operator and T a distribution on

M. Then LT is the distribution given by (LT )ϕ = T (L∗ϕ) where L∗ is the formal adjoint of L. The
differential operator L is hypoelliptic if given f ∈ C∞(M) any distribution solution T to LT = f is
C∞ i.e. there is u ∈ C∞(M) such that T = Tu. We recall that a formally selfadjoint second order
differential operator L : C∞(M) → C∞(M) is subelliptic of order ε (with 0 < ε ≤ 1) at a point
x ∈ M if there is an open neighborhood U ⊂ M of x such that

‖u‖2ε ≤ C
(∣∣∣(Lu, u)L2

∣∣∣ + ‖u‖2L2

)
, u ∈ C∞0 (U). (1.20)

Here ‖ · ‖s is the Sobolev norm of order s (cf. e.g. [104], p. 216-217). The Sobolev norms ‖ · ‖s are
recalled explicitly in § 1.5 where we also prove a version of (1.20) for a compact manifold. The
sublaplacian ∆b is known (cf. Theorem 2.1 in [94], p. 114) to be subelliptic of order ε = 1/2 at
any x ∈ M

‖u‖21/2 ≤ C
(
(∆bu, u)L2 + ‖u‖2L2

)
, u ∈ C∞0 (U).

As such ∆b is (by a result due to J.J. Kohn & L. Nirenberg, [55]) hypoelliptic and satisfies the a
priori estimates

‖u‖2s+1 ≤ Cs
(
‖∆bu‖2s + ‖u‖2L2

)
, u ∈ C∞0 (U), s ≥ 0.
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Let Ω ⊂ RN be a domain and let L be a second order differential operator with real valued C∞

coefficients defined in Ω

Lu(x) = −

N∑
i, j=1

ai j(x)
∂2u

∂xi ∂x j +

N∑
i=1

ai(x)
∂u
∂xi + a(x)u. (1.21)

We adopt the following terminology (due to J.M. Bony, [58]). The differential operator L is de-
generate elliptic (in the sense of Bony) if i) the matrix

[
ai j(x)

]
is positive semi-definite, but not

positive definite, at each x ∈ Ω i.e.

N∑
i, j=1

ai j(x)ξiξ j ≥ 0, ξ = (ξ1, · · · , ξn) ∈ Rn ,

ii) a(x) ≥ 0 for any x ∈ Ω, and iii) L may be written as

Lu =

r∑
a=1

Xa(Xau) + Y(u) + au

for some C∞ vector fields Xa,Y ∈ X(Ω). The sublaplacian ∆b is a degenerate elliptic (in the
sense of J.M. Bony) second order differential operator on M (cf. the discussion above or [94],
p. 111-119). Degenerate elliptic operators satisfy a useful weak form of the maximum principle
(cf. Theorem 3.28 in [94], p. 209). Precisely if a C2 function u achieves at x0 a nonpositive local
maximum then (Lu)(x0) ≥ 0. If additionally this maximum if < 0 and a(x0) > 0 then (Lu)(x0) > 0.

This thesis is mostly concerned with the study of spectrae of sublaplacians on strictly pseudo-
convex manifolds, so we review the basic terminology (in general spectral theory, cf. e.g. [104], p.
365) for the specific case of ∆b : D(∆b) ⊂ L2(M) → L2(M). The resolvent set ρ(∆b) ⊂ C consists
of all complex numbers λ ∈ C such that ∆b − λI : D(∆b) → L2(M) is an invertible map such that
(∆b − λI)−1 ∈ B(L2(M)). Here B(L2(M)) is the Banach algebra of all bounded linear operators
A : L2(M) → L2(M). The operator R(λ; ∆b) = (λI − ∆b)−1 is known as the resolvent of ∆b. The
spectrum of ∆b is the set σ(∆b) = C \ ρ(∆b).

1.5 Sobolev type spaces on CR manifolds

Let M be a strictly pseudoconvex CR manifold. Abstract CR manifolds with boundary were
considered in [95]. Through this section we only deal with bounded (with respect to the Carnot-
Carathéodory distance function dH) domains Ω ⊂ M with C2 boundary. Let θ be a fixed contact
form on M and set Ψθ = θ ∧ (dθ)n for simplicity. Let π : E → M be a Riemannian vector
bundle with the Riemannian bundle metric h. We denote by L2(EΩ) the space of all L2 sections in
EΩ = π−1(Ω) (the portion of E over Ω) that is s ∈ L2(EΩ) if h(s, s) ∈ L1(Ω) i.e.

∫
Ω

h(s, s) Ψθ < ∞.
If Ω × R is the trivial vector bundle over Ω we write briefly L2(Ω) = L2(Ω × R). If u ∈ C1(Ω,R)
and X ∈ C∞0 (Ω,H(M)) then (by Green’s lemma)∫

Ω

gθ(∇Hu, X) Ψθ =

∫
Ω

X(u) Ψθ = (1.22)

=

∫
∂Ω

u gθ(X, ν) da −
∫

Ω

u div(X) Ψθ = −

∫
Ω

u div(X) Ψθ.
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Here ν is the outward unit normal on ∂Ω and the divergence of X is computed with respect to the
volume form Ψθ i.e. LX Ψθ = div(X) Ψθ (LX denotes the Lie derivative). The simple calcula-
tion (1.22) suggests a calculus with functions which are but weakly differentiable along the Levi
distribution, cf. [28].

A function u ∈ L1
loc(Ω) is weakly differentiable along the Levi distribution if there is a section

Yu in H(Ω) such that ‖Yu‖ = gθ(Yu,Yu)1/2 ∈ L1
loc(Ω) and∫

Ω

gθ(Yu , X) Ψθ = −

∫
Ω

u div(X) Ψθ, X ∈ C∞0 (H(Ω)).

Such Yu is unique up to a set of measure zero and is denoted by Yu = ∇Hu (the weak horizontal
gradient of u). Let D(∇H) = W1,2

H (Ω) be the space consisting of all u ∈ L2(Ω) such that u
is weakly differentiable along the Levi distribution and ∇Hu ∈ L2(H(Ω)). Therefore the weak
horizontal gradient may be regarded as a linear operator ∇H : D(∇H) ⊂ L2(Ω) → L2(H(Ω)) of
Hilbert spaces (densely defined, as C∞0 (Ω) ⊂ D(∇H)). Moreover W1,2

H (Ω) is a Hilbert space with
the inner product

( f , g)W1,2
H

=

∫
Ω

f g Ψθ +

∫
Ω

gθ(∇H f ,∇Hg) Ψθ

(cf. Proposition 3 in [28], p. 7). In particular W1,2
H (Ω) is reflexive. For further use let W̊1,2

H (Ω) be
the closure of C∞0 (Ω) in W1,2

H (Ω).

Lemma 1.2. Let Ω ⊂ M be a domain satisfying the Poincaré inequality∫
Ω

ϕ2 Ψθ ≤ C
∫

Ω

‖∇Hϕ‖2 Ψθ (1.23)

for some constant C > 0 and any ϕ ∈ C∞0 (Ω,R). Then i)

‖ϕ‖W̊1,2
H

=

(∫
Ω

‖∇Hϕ‖2 Ψθ

) 1
2

is a norm on C∞0 (Ω,R). Also ii)

‖ϕ‖W̊1,2
H
≤ ‖ϕ‖W1,2

H
≤ (1 + C)

1
2 ‖ϕ‖W̊1,2

H

for any ϕ ∈ C∞0 (Ω,R) i.e. ‖ · ‖W̊1,2
H

and ‖ · ‖W1,2
H

are equivalent norms on C∞0 (Ω,R). In particular iii)

W̊1,2
H (Ω) is a Hilbert space with the inner product

ab( f , g) =

∫
Ω

gθ(∇H f ,∇Hg) Ψθ.

Proof. i) If ϕ ∈ C∞0 (Ω) is a test function such that ‖ϕ‖W̊1,2
H

= 0 then ‖∇Hϕ‖ = 0 a.e. in Ω.

Yet ‖∇Hϕ‖ is continuous and the measure associated to the volume form Ψθ is Borelian, hence
‖∇Hϕ‖ = 0 everywhere in Ω. Thus ∇Hϕ = 0 so that ϕ is a real valued CR function, and then a
constant c ∈ R. Yet ϕ is zero at the boundary so c = 0.

ii) For every ϕ ∈ C∞0 (Ω,R)

‖ϕ‖2
W1,2

H
= ‖ϕ‖2L2 + ‖∇Hϕ‖2L2 ≥ ‖∇

Hϕ‖2L2 = ‖ϕ‖2
W̊1,2

H
,
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‖ϕ‖2
W1,2

H
= ‖ϕ‖2L2 + ‖∇Hϕ‖2L2 ≤ (C + 1)‖∇Hϕ‖2L2 = (C + 1)‖ϕ‖2

W̊1,2
H
,

so that
‖ϕ‖W̊1,2

H
≤ ‖ϕ‖W1,2

H
≤ (1 + C)1/2 ‖ϕ‖W̊1,2

H
, ϕ ∈ C∞0 (Ω,R).

Q.e.d.

Let (∇H)∗ : D[(∇H)∗] ⊂ L2(H(Ω)) → L2(Ω) be the adjoint of ∇H i.e. i) D[(∇H)∗] consists of
all X ∈ L2(H(Ω)) such that ∫

Ω

gθ(∇Hu, X) Ψθ =

∫
Ω

uX∗Ψθ

for some X∗ ∈ L2(Ω) and any u ∈ D(∇H), and ii) (∇H)∗X = X∗. Then C∞0 (H(Ω)) ⊂ D[(∇H)∗]
and the restriction of (∇H)∗ to C∞0 (H(Ω)) is −div. It is customary to set D(∆b) = {u ∈ D(∇H) :
∇Hu ∈ D[(∇H)∗]} and refer to the linear operator (∇H)∗ ◦ ∇H : D(∆b) ⊂ L2(Ω) → L2(Ω) as the
sublaplacian of (M, θ), as well. Then

∆bu =
(
(∇H)∗ ◦ ∇H

)
u, u ∈ C∞0 (Ω). (1.24)

Let N = 2n + 1 and let û denote the Fourier transform of a function2 u ∈ C∞0 (RN). For every s ∈ R
we consider the Sobolev norm

‖u‖s =

(
(2π)−N/2

∫
RN

(
1 + |ξ|2

)s ∣∣∣û(ξ)2
∣∣∣2 dξ

)1/2

,

and the inner product

(u, v)s = (2π)−N/2
∫
RN

(
1 + |ξ|2

)s
û(ξ)v̂(ξ) dξ,

for any u, v ∈ C∞0 (RN). Let Hs(RN) be the Hilbert space got as the completion of C∞0 (RN) with
respect to the norm ‖ · ‖s. Next let us consider a compact N-dimensional manifold M without
boundary (∂M = ∅). Let U = {Uλ}λ∈Λ be a finite open covering of M with domains of local
coordinate systems χλ : Uλ → R

N such that χλ(Uλ) = RN . Moreover let {ϕλ}λ∈Λ be a C∞ partition
of unity subordinated to the open coveringU

ϕλ ∈ C∞(M), Supp(ϕλ) ⊂ Uλ , 0 ≤ ϕλ ≤ 1,
∑
λ∈Λ

ϕλ = 1.

Let us consider the Sobolev norms

‖u‖Ss =

∑
λ∈Λ

‖(uϕλ) ◦ χ−1
λ ‖

2
s

1/2

,

and the inner products
(u, v)Ss =

∑
λ∈Λ

(
(uϕλ) ◦ χ−1

λ , (vϕλ) ◦ χ−1
λ

)
s
,

for every u, v ∈ C∞(M), where S ≡ {(Uλ , χλ , ϕλ) : λ ∈ Λ}. Definitions clearly depend on the
choice of the system S (and this is captured in the notation). The map

u ∈ C∞(M) 7−→
(
(uϕλ) ◦ χ−1

λ

)
λ∈Λ
∈ C∞0 (RN)|Λ|

2Unless otherwise specified functions are assumed to be complex valued.
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is a linear injective operator C∞(M) → C∞0 (RN)|Λ|. Here |Λ| is the cardinality of the (finite) set
Λ. The composition of this operator with the inclusion C∞0 (RN)|Λ| → Hs(RN)|Λ| furnishes a linear
injective map

ηSs : C∞(M)→ Hs(RN)|Λ| .

Let us denote by HSs (M) the closure of the image of ηSs in the Hilbert space Hs(RN)|Λ|. Also let
us identity C∞(M) with its canonical image in HSs (M). HSs (M) is a closed subspace of Hs(RN)|Λ|

hence a Hilbert space itself. From now on, for fixed S we write merely ‖ · ‖s and Hs(M). Let M be
a compact strictly pseudoconvex CR manifold and θ ∈ P+. Let ∆b be the sublaplacian of (M, θ).
The estimates (1.20) imply

‖u‖21/2 ≤ C
{
(∆bu, u)L2 + ‖u‖2L2

}
, u ∈ C∞(M), (1.25)

for some constant C > 0 depending only on M. Indeed (by (1.20))(
‖u‖S1/2

)2
=

∑
λ∈Λ

‖(uϕλ) ◦ χ−1
λ ‖

2
1/2 ≤

≤
∑
λ∈Λ

Cλ

{
(∆b(uϕλ) , uϕλ)L2 + ‖uϕλ‖2L2

}
for some Cλ > 0 and

∆b(uϕλ) = u ∆bϕλ + ϕλ∆bu + 2 Gθ(∇Hu , ∇Hϕλ),∑
λ∈Λ

(∆b(uϕλ) , uϕλ)L2 =
∑
λ

ϕλ (∆b(uϕλ) , u)L2 ≤

(as (∆b(uϕλ), uϕλ)L2 ≥ 0 and ϕλ ≥ 0 yield (∆b(uϕλ), u)L2 ≥ 0 and then one may exploit ϕλ ≤ 1)

≤
∑
λ

∫
M

{
u ∆bϕλ + ϕλ ∆bu + 2 Gθ(∇Hu , ∇Hϕλ)

}
u Ψθ =

=

∫
M

u ∆b(
∑
λ

ϕλ) + (
∑
λ

ϕλ) ∆bu + 2 Gθ

∇Hu , ∇H(
∑
λ

ϕλ)


 u Ψθ =

=

∫
M

(∆bu) u Ψθ = (∆bu , u)L2 ,

∑
λ∈Λ

‖uϕλ‖2L2 =
∑
λ

∫
M
|u|2ϕ2

λ Ψθ ≤

(as ϕλ ≤ 1)

≤
∑
λ

∫
M
|u|2ϕλ Ψθ = ‖u‖2L2

so that (1.25) holds with C = max{Cλ : λ ∈ Λ}.

We shall make use of the ordinary Sobolev spaces W s,p(Ω) with s ∈ R and 1 < p < ∞ and an
arbitrary domain Ω ⊂ RN , as built in [85], p. 204. Another method of constructing fractional order
spaces (in terms of Fourier transforms of tempered distributions) furnishes the spaces Hs,p(Ω), cf.
[85], p. 219. The spaces W s,p(Ω) and Hp,s(Ω) are known to coincide when s ∈ Z and 1 < p < ∞
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or when s ∈ R and p = 2. Our considerations so far (related to the subelliptic estimates (1.20))
only required the spaces Hs(RN) = Hs,2(RN). A general embedding result we shall make use of
is Theorem 7.58 in [85], p. 218-219. This is stated for Ω = RN yet holds for domains Ω ⊂ RN

possessing the regularity properties requested in Theorem 7.41, [85], p. 207. These requirements
are satisfied by the unit ball Ω = BN = {x ∈ RN : |x| < 1} so that for any s > 0, 1 < p ≤ q < ∞ and
1 ≤ K ≤ N the following embedding holds

W s,p(BN) −→ Wχ,q(BK), χ ≡ s −
N
p

+
K
q
, (1.26)

provided that either i) χ ≥ 0 and p < q, or ii) χ > 0 and χ ∈ R \ Z, or iii) χ ≥ 0 and 1 < p ≤ 2. We
wish to specialize (1.26) to the case

s =
1
2
, p = 2, K = N,

that is
W1/2 , 2(BN) −→ WN/q−(N−1)/2 , q(BN), 2 ≤ q < ∞, (1.27)

holding when
N
q
≥

N − 1
2

. (1.28)

On the other hand we need the Kondrakov lemma (cf. e.g. Theorem 2.33 in [102], p. 53). Let
k ∈ Z, k ≥ 0, and p, q ∈ R such that

1 ≥
1
p
>

1
q
−

k
N
> 0. (1.29)

Moreover let Ω ⊂ RN be a bounded open set whose boundary ∂Ω is C1 (Lipschitzian actually
suffices). Then the embedding

Wk,q(Ω) −→ Lp(Ω) (1.30)

is compact3. We wish to specialize (1.30) to

Ω = BN , p = 2, k =
N
q
−

N − 1
2

, 2 ≤ q < ∞, (1.31)

with the requirements (1.28)-(1.29). Solving for q in (1.31) gives

q =
N

k +
N − 1

2

, k ∈ Z, k ≥ 0. (1.32)

It is straightforward that the numbers q ∈ R given by (1.32) satisfy Kondrakov lemma’s require-
ment (1.29) with p = 2 hence for any k ∈ Z, k ≥ 0, the embedding

Wk,N/(k+(N−1)/2)(BN) −→ L2(BN) (1.33)

is compact. Let us set k = 1 in (1.33) so that the embedding

W1, 2N/(N+1)(BN) −→ L2(BN)
3The image by (1.30) of any bounded set in Wk,q(Ω) is compact in Lp(Ω).
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is compact, as well. The composition with (1.27) then gives the compact embedding

W1/2 , 2(BN) −→ L2(BN). (1.34)

Embedding (1.34) yields

Lemma 1.3. Let M be a compact strictly pseudoconvex CR manifold without boundary. Then
H1/2(M) = W1/2, 2(M) admits a compact embedding into L2(M).

Proof. We may cover M with a finite number of open sets which are domains of local co-
ordinate charts whose image is the unit ball B2n+1. The proof of Lemma 1.3 is then a verbatim
repetition of the arguments in the proof of Theorem 2.34 in [102], p. 55 (replacing the use of
Theorem 2.33 in [102], p. 53, by that of (1.34) above).

Lemma 1.4. On any compact strictly pseudoconvex CR manifold the operator (∆b+I)−1 : D((∆b+

I)−1) ⊂ L2(M)→ L2(M) is compact.

Proof. The estimate (1.25) may be written

‖u‖21/2 ≤ C ((∆b + I)u , u)L2 , u ∈ C∞(M), (1.35)

hence Ker(∆b + I) = (0). Consequently we may consider the inverse

∆b + I : C∞(M)→ R(∆b + I) ⊂ C∞(M)

is invertible, where R(A) denotes the range of the operator A. Therefore we may consider the
inverse

(∆b + I)−1 : D
(
(∆b + I)−1

)
= R(∆b + I) ⊂ L2(M)→ H1/2(M).

Let v ∈ D
(
(∆b + I)−1

)
and let us apply (1.35) to the function u = (∆b + I)−1(v) followed by the

Cauchy-Schwartz inequality

‖(∆b + I)−1v‖21/2 ≤ C
(
v , (∆b + I)−1v

)
L2 ≤ C‖v‖L2 ‖(∆b + I)−1v‖L2 .

Moreover, there is a continuous embedding H1/2(M)→ L2(M) so that

‖u‖L2 ≤ C′‖u‖1/2 , u ∈ H1/2(M),

for some constant C′ > 0 independent of u. Thus

‖(∆b + I)−1v‖21/2 ≤ C′′‖v‖L2‖(∆b + I)−1v‖1/2

(with C′′ = CC′) or
‖(∆b + I)−1v‖1/2 ≤ C′′‖v‖L2

so that (∆b + I)−1 is a continuous operator. Finally (by Lemma 1.3) the embedding H1/2(M) →
L2(M) is compact hence (∆b + I)−1 : D((∆b + I)−1) ⊂ L2(M) → L2(M) is compact (as the
composition of a compact operator with a continuous operator). Q.e.d.

Corollary 1.5. The spectrum σ(∆b) of the sublaplacian on any compact strictly pseudoconvex
pseudohermitian manifold is discrete.

Proof. Follows from Lemma 1.4 together with the general result in functional analysis that
completely continuous linear operators (here (∆b + I)−1) have discrete spectrae.
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1.6 Dirichlet Spectrum of a Sublaplacian

Let M be a strictly pseudoconvex CR manifold and Ω ⊂ M a smoothly bounded (with respect to
the Carnot-Carthéodory metric) domain. Let θ be a contact form on M, such that the Levi form
Lθ is positive definite, and let ∆b be the sublaplacian of the pseudohermitian manifold (M, θ). The
scope of this section is to study the Dirichlet problem

∆bu = λu in Ω, u = 0 on ∂Ω, (1.36)

where λ ∈ R is a parameter. A number λ ∈ R is an eigenvalue of (1.36) if there is a function
u ∈ W̊1,2

H (Ω) \ {0} satisfying the functional equation

ab(u, ϕ) = λ(u, ϕ)L2 , ϕ ∈ W̊1,2
H (Ω). (1.37)

We shall show that

Theorem 1.6. Let (M, θ) be a strictly pseudoconvex pseudohermitian manifold and Ω ⊂ M a
bounded (with respect to the Carnot-Carathéodory metric dH) domain satisfying Poincaré inequal-
ity. If the metric space (M, dH) is complete then the Dirichlet problem (1.36) admits an infinite
sequence of eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λν ≤ · · · and an infinite sequence of eigenfunc-
tions {uν}ν≥1 ⊂ W̊1,2

H (Ω) corresponding to the eigenvalues {λν}ν≥1 such that limν→∞ λν = +∞ and
(uµ, uν)L2 = δµν.

"By Poincare’ inequality we mean∫
Ω

ϕ2 Ψθ ≤ C
∫

Ω

‖∇Hϕ‖2 Ψθ , ϕ ∈ C∞0 (Ω,R). (1.38)

Besides from (1.38) proof of Theorem 1.6 relies on the compactness of the inclusion W̊1,2
H (Ω) →

L2(Ω).

1.7 Generalized Dirichlet problem

Let Ω ⊂ M be a bounded domain in a strictly pseudoconvex CR manifold and let θ be a contact
form on M with Lθ positive definite. Let ∆b be the sublaplacian of (M, θ). We shall solve the
homogeneous Dirichlet problem

∆bu = f in Ω, u = 0 on ∂Ω. (1.39)

A function u0 ∈ W̊1,2
H (Ω) is a generalized solution to the Dirichlet problem (1.39) if ab(u0, ϕ) =

( f , ϕ) for any ϕ ∈ W̊1,2
H (Ω). Let

(∇H)∗ : D[(∇H)∗] ⊂ L2(H(Ω))→ L2(Ω)

be the adjoint of ∇H i.e. i)D[(∇H)∗] consists of all X ∈ L2(H(Ω)) such that∫
Ω

gθ(∇Hu, X) Ψθ =

∫
Ω

uX∗Ψθ
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for some X∗ ∈ L2(Ω) and any u ∈ D(∇H), and ii) (∇H)∗X = X∗. Then C∞0 (H(Ω)) ⊂ D[(∇H)∗]
and the restriction of (∇H)∗ to C∞0 (H(Ω)) is −div. It is customary to set D(∆b) = {u ∈ D(∇H) :
∇Hu ∈ D[(∇H)∗]} and refer to the linear operator (∇H)∗ ◦ ∇H : D(∆b) ⊂ L2(Ω) → L2(Ω) as
the sublaplacian of (M, θ), as well. Then ∆b = (∇H)∗ ◦ ∇H on C∞0 (Ω). Consequently, any strong
solution u0 ∈ C2(Ω)∩C(Ω) to (1.39) is also a generalized solution and, viceversa, any generalized
solution u0 ∈ W̊1,2

H (Ω) ∩C2(Ω) is a strong solution to (1.39). We shall establish the following

Theorem 1.7. Let M be a strictly pseudoconvex CR manifold and θ a contact form on M. Let Ω ⊂

M be a bounded domain on which the Poincaré inequality (1.38) holds. Then for any f ∈ L2(Ω)
the Dirichlet problem (1.39) admits a unique generalized solution.

To prove Theorem 1.7 we set

Eb(u) =
1
2

ab(u, u), F(u) = Eb(u) − ( f , u), u ∈ W̊1,2
H (Ω).

Lemma 1.8. i) For each u ∈ W̊1,2
H (Ω) the functional ϕ 7→ ab(u, ϕ) is continuous on W̊1,2

H (Ω). ii)
For each f ∈ L2(Ω) the functional ϕ 7→ ( f , ϕ)L2 is continuous on W̊1,2

H (Ω). iii) F is differentiable
at any u ∈ W̊1,2

H (Ω) and its Gateaux derivative is given by

F′(u)ϕ = ab(u, ϕ) − ( f , ϕ)L2 , ϕ ∈ W̊1,2
H (Ω). (1.40)

iv) F is strictly convex and
lim

Eb(u)→∞
F(u) = +∞. (1.41)

Proof. i) For any u, ϕ ∈ W̊1,2
H (Ω) (by Cauchy’s inequality, both pointwise on (H, gθ) and L2)

|ab(u, ϕ)| ≤
∫

Ω

‖∇Hu‖ ‖∇Hϕ‖Ψθ ≤

≤ ‖∇Hu‖L2‖∇
Hϕ‖L2 = 2Eb(u)1/2Eb(ϕ)1/2

and E1/2
b is a norm on W̊1,2

H (Ω).

ii) By Poincaré’s inequality (1.38)∣∣∣( f , ϕ)L2

∣∣∣ ≤ ‖ f ‖L2 ‖ϕ‖L2 ≤
√

2C‖ f ‖L2 Eb(ϕ)1/2. (1.42)

Besides from implying (ii) the simple estimate (1.42) is essential in establishing property (1.41) of
F.

iii) We start by recalling a few standard notions familiar within the variational treatment of
elliptic partial differential equations (cf. e.g. [23]). Most of the underlying methods are sufficiently
general to apply to ∆b or admit ad hoc adaptations to the case of interest, as shown below. Given
a real Hilbert space H a functional A : H → R is differentiable at the point u ∈ H in the
direction v ∈ H if the limit limλ→0 λ

−1 [A(u + λv) − A(u)] exists and then the limit is denoted
by A′(u; v) ∈ R. If the limit A′(u; v) exists for any v ∈ H then A is differentiable at u and the
functional v ∈ H 7−→ A′(u; v) ∈ R is the differential of A at u. If the differential of A at u is
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linear and continuous then A is commonly said to be Gateaux differentiable and the functional
v ∈ H 7−→ A′(u; v) ∈ R is denoted by A′(u) and referred to as the Gateaux derivative of A at u.

The bilinear form ab is symmetric, hence q = 2Eb is a quadratic4 form. Also (by (i) in Lemma
1.8) ab(u, ·) is continuous for any fixed u, hence q is differentiable and its Gateaux derivative at
u ∈ W̊1,2

H (Ω) is 2ab(u, ·). Finally (by (ii) in Lemma 1.8) ( f , ·)L2 is differentiable at u and coincides
with its Gateaux derivative at any u. Thus F is differentiable and (1.40) holds.

iv) A functional A : H → R is convex if A(λu + (1 − λ)v) ≤ λ A(u) + (1 − λ)A(v) for any
u, v ∈ H and any λ ∈ [0, 1]. If the above inequality is strict for any u , v then A is strictly convex.
A general result, that we are going to use in the sequel, is that any positive quadratic form is a
convex functional and any positive definite quadratic form is a strictly convex functional.

The quadratic form q(u) = ab(u, u) is positive definite. This situation should be compared to
that of an arbitrary uniformly elliptic operator in divergence form (where uniform ellipticity im-
plies coercivity of the associated quadratic form cf. e.g. [23]). In the case at hand, the sublaplacian
∆b isn’t elliptic yet already

Lemma 1.9. E1/2
b is a norm on W̊1,2

H (Ω).

This follows from Lemma 1.2 . Strict convexity of q then yields strict convexity of F. Finally
(by (1.42))

F(u) = Eb(u) − ( f , u)L2 ≥ Eb(u) −
√

2C‖ f ‖L2 Eb(u)1/2

for any u ∈ W̊1,2
H (Ω), and t2 −

√
2C‖ f ‖L2 t → +∞ as t → +∞ thus proving (1.41). Q.e.d.

To proceed we need to recall a few standard results from the calculus of variations. LetH be a
real Hilbert space and A : H → R an arbitrary functional. Then u0 ∈ H is a global minimum point
of A if A(u0) ≤ A(u) for any u ∈ H . The number A(u0) ∈ R is the global minimum of A. Here we
shall only be interested in global minima of certain functionals. We remind however that u0 ∈ H is
a local minimum point if there is a neighborhood of u0 such that the inequality A(u0) ≤ A(u) holds
on that neighborhood. Let A : H → R be a Gateaux differentiable functional. By a standard result,
if u0 ∈ H is a local minimum point of A then A′(u0) = 0 (i.e. A′(u0)v = 0 for any v ∈ H). Also if
the functional A : H → R is convex and Gateaux differentiable then A′(u0) = 0 is a necessary and
sufficient condition for u0 ∈ H to be a global minimum point of A. Finally, we shall make use of
the following results. If the convex and Gateaux differentiable functional A : H → R satisfies the
condition lim‖u‖H→∞ A(u) = +∞ then A has at least a global minimum point. Also if A : H → R
is a strictly convex functional then A admits at most one global minimum point.

At this point we may end the proof of Theorem 1.6. Strict convexity together with (1.41)
imply the existence of a global minimum point u0 ∈ W̊1,2

H (Ω) for F. Consequently F′(u0)ϕ = 0 for
any ϕ ∈ W̊1,2

H (Ω) or ab(u0, ϕ) = ( f , ϕ)L2 i.e. u0 is a generalized solution to the Dirichlet problem
(1.39). Uniqueness of the solution is again a standard consequence of strict convexity. Indeed if
u1 ∈ W̊1,2

H (Ω) satisfies ab(u1, ϕ) = ( f , ϕ)L2 then F′(u1) = 0 on W̊1,2
H (Ω) so that (as F is convex and

differentiable) u1 is a global minimum point of F. Let us set d = F(u0) = F(u1). Finally if u0 , u1

4LetH be a Hilbert space and b : H×H → R a R-bilinear form. b is symmetric if b(u, v) = b(v, u) for any u, v ∈ H .
A functional q : H → R is a quadratic form if q(u) = b(u, u) for some symmetric bilinear form b : H ×H → R. The
quadratic form q : H → R is positive if q(u) ≥ 0 for any u ∈ H . A quadratic form q : H → R is positive definite if
q(u) > 0 for any u ∈ H \{0}. A quadratic form q : H → R is coercive if there is a constant γ > 0 such that q(u) ≥ γ‖u‖2

H

for any u ∈ H .
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then (by strict convexity)

F((1 − t)u0 + tu1) < (1 − t)F(u0) + tF(u1) = d,

for any 0 < t < 1, a contradiction.

1.8 Generalized Dirichlet eigenvalue problem

To start with, we need a brief preparation of functional analysis (cf. e.g. [104]). Let H be a
real Hilbert space and T : H → H a continuous linear map. A number λ ∈ R is an eigen-
value of T if there is u ∈ H \ {0} such that Tu = λu (and then u is an eigenvector of T cor-
responding to the eigenvalue λ). Standard functional analysis methods apply to the study of
eigenvalues and eigenvectors of selfadjoint completely continuous operators. T is selfadjoint if
(Tu, v)H = (u,Tv)H for any u, v ∈ H . Also T is compact if it maps bounded sets in compact sets.
A continuous compact operator is completely continuous. Completely continuous operators map
weakly convergent sequences in strongly convergent sequences. By the norm of T one understands
‖T‖ = sup‖u‖H=1 ‖Tu‖H = sup‖u‖H=1 = |(Tu, u)H | (the last equality is a consequence of the fact that
T is selfadjoint). A general result we rely on is that a selfadjoint completely continuous operator
T : H → H has at least one eigenvalue and one eigenvector. Moreover, if T : H → H is selfad-
joint then eigenvectors corresponding to distinct eigenvalues are orthogonal. Also if T : H → H
is selfadjoint and completely continuous then to any eigenvalue λ ∈ R \ {0} there corresponds
a finite number of linearly independent eigenvectors. Finally, the crucial results from functional
analysis that we shall use in the sequel, may be stated as follows. Let T : H → H be selfadjoint
and completely continuous. Then i) T admits at most an infinite sequence of eigenvalues and ii)
the only accumulation point of the sequence of eigenvalues is 0. Also iii) if {uν}ν≥1 is the orthonor-
mal system consisting of the eigenvectors of T corresponding to the eigenvalues of T then for any
u ∈ H one has Tu =

∑∞
ν=1(Tu, uν)Huν.

Under the assumptions of Theorem 1.6, for each f ∈ L2(Ω) there is a unique u ∈ W̊1,2
H (Ω)

such that ab(u, ϕ) = ( f , ϕ)L2 for any ϕ ∈ W̊1,2
H (Ω). We may then consider the map GD : L2(Ω) →

L2(Ω) given by GD( f ) = u, hence the tautology ab(GD f , ϕ) = ( f , ϕ)L2 . We shall show that GD is
linear, continuous, self-adjoint and compact, so that the functional analysis result recalled above
applies to its spectrum σ(GD). The usefulness of GD is due to the relationship among the spectrae
of GD and the Dirichlet problem (1.36): if λ is an eigenvalue of (1.36) and u an eigenfunction
corresponding to λ then µ = 1/λ ∈ σ(GD) and u ∈ Eigen(GD; µ), and conversely. For instance if
ab(u, ϕ) = λ(u, ϕ)L2 then GD(λu) = u hence, once linearity of GD is proved, 1/λ ∈ σ(GD).

Lemma 1.10. i) GD is linear, ii) GD is continuous, iii) GD is self-adjoint, and iv) GD is compact.

Proof. i) By the very definition of GD

ab(GD(α f + βg), ϕ) = (α f + βg, ϕ)L2 =

= ab(αGD( f ) + βGD(g), ϕ)L2 , ϕ ∈ W̊1,2
H (Ω),

for any f , g ∈ L2(Ω), α, β ∈ R, hence ab(GD(α f + βg) − (αGD( f ) + βGD(g)), ϕ) = 0. Since GD is
W̊1,2

H (Ω)-valued, one may use the previous identity for ϕ ≡ GD(α f + βg) − (αGD( f ) + βGD(g)) so
that Eb(ϕ) = 0 yielding ϕ = 0.
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ii) For each f ∈ L2(Ω) (by the Poincaré inequality)

‖GD f ‖2L2 =

∫
Ω

(GD f )2 Ψθ ≤ C
∫

Ω

‖∇HGD f ‖2 Ψθ =

= C ab(GD f ,GD f ) = C ( f ,GD f )L2 ≤ C ‖ f ‖L2‖GD f ‖L2

hence
‖GD f ‖L2 ≤ C ‖ f ‖L2 (1.43)

i.e. GD is bounded.

iii) If GD f = 0 then ( f , ϕ)L2 = ab(GD f , ϕ) = 0 hence (as W̊1,2
H (Ω) is dense in L2(Ω)) f = 0 i.e.

G is injective. Let G−1
D be the inverse of GD : L2(Ω)→ R(GD). Then

(G−1
D u, ϕ)L2 = (u,G−1

D ϕ)L2 , u, ϕ ∈ R(GD). (1.44)

Indeed
(G−1

D u, ϕ)L2 = ab(GDG−1
D u, ϕ) = ab(u, ϕ) = ab(ϕ, u) =

= ab(GDG−1
D ϕ, u) = (G−1

D ϕ, u)L2 = (u,G−1
D ϕ)L2 .

Finally for any f , g ∈ L2(Ω) (by (1.44) with u = GD f and ϕ = GDg)

(GD f , g)L2 = (GD f ,G−1
D GDg)L2 = (G−1

D GD f ,GDg)L2 = ( f ,GDg)L2 .

iv) Let B ⊂ L2(Ω) be a bounded subset i.e. ‖ f ‖L2 ≤ C1 for any f ∈ B and some constant
C1 > 0. Then (by (1.43))

Eb(GD f ) =
1
2

ab(GD f ,GD f ) =
1
2

( f ,GD f )L2 ≤

≤
1
2
‖ f ‖L2‖GD f ‖L2 ≤

C
2
‖ f ‖2L2 ≤

CC2
1

2

so that GD(B) is a bounded subset of W̊1,2
H (Ω). Finally, the inclusion W̊1,2

H (Ω)→ L2(Ω) is compact,
hence GD(B) is a compact subset of L2(Ω). Q.e.d.

At this point we may prove Theorem 1.6. By Lemma 1.10 the map GD : L2(Ω) → L2(Ω)
admits at most an infinite sequence of eigenvalues and the only accumulation point of σ(GD) is 0.
If σ(GD) = {µν : ν ≥ 1} we set λν = 1/µν. Let {uν : ν ≥ 1} be eigenfunctions of GD corresponding
to {µν : ν ≥ 1}. We assume the elements of σ(GD) are labeled such that |µ1| ≥ |µ2| ≥ · · · ≥

|µν| ≥ · · · and the system {uν : ν ≥ 1} is orthonormal. By the comment preceding Lemma 1.10 the
spectrum of the Dirichlet eigenvalue problem (1.36) is at most countable |λ1| ≤ |λ2| ≤ · · · ≤ |λν| ≤

· · · and one may easily check that λν > 0 for any ν ≥ 1. Indeed GDuν = µνuν yields

2µνEb(uν) = µν ab(uν , uν) = ab(GDuν , uν) = ‖uν‖2L2

hence µν > 0. Once again one should observe that in the known case where ∆b is replaced by an
uniformly elliptic operator, positivity of eigenvalues follows from the coercivity of the associated
quadratic form (while the failure of ∆b to be elliptic is immaterial due to the fact that E1/2

b is
already a norm).
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To see that (1.36) admits an infinite sequence of eigenvalues, one starts by showing that the
range R(GD) is infinite dimensional. Let u ∈ C∞0 (Ω) and let us set f = ∆bu so that u is a strong
solution to the Dirichlet problem (1.39). In particular ab(u, ϕ) = ( f , ϕ)L2 for any ϕ ∈ W̊1,2

H (Ω).
Thus GD f = u, proving that R(GD) ⊃ C∞0 (Ω). Yet C∞0 (Ω) is infinite dimensional, hence so does
R(GD). Let us assume now that GD has but a finite number of eigenvalues σ(GD) = {µ1, · · · , µk}.
Then GD f =

∑k
ν=1(GD f , uν)L2 uν for any f ∈ L2(Ω), hence {u1, · · · , uk} is a linear basis of R(GD)

i.e. dimR R(GD) < ∞, a contradiction.

Finally as µ1 ≥ µ2 ≥ · · · ≥ µν ≥ · · · and µν > 0 it follows that {µν}ν≥1 is convergent to
some µ ∈ R. Thus µ is an accumulation point of σ(GD) hence µ = 0 and we may conclude that
limν→∞ λν = +∞. Q.e.d.

1.9 An energy space approach

Let (M, θ) be a strictly pseudoconvex pseudohermitian manifold and Ω ⊂ M a smoothly bounded
domain. Let us consider the sublaplacian ∆b ≡ (∇H)∗ ◦ ∇H : D(∆b) = {u ∈ D(∇H) : ∇Hu ∈
D((∇Hu)∗)} ⊂ L2(Ω) → L2(Ω) of (M, θ). Unlike previous sections we work with complex valued
functions u : Ω→ C. In this section we consider the problem of the existence of solutions to

∆bu = f , f ∈ L2(Ω), (1.45)

by making use of the Freidrichs extension of ∆b,0 where

∆b,0 = ∆b
∣∣∣
C∞0 (Ω)

i.e. ∆b,0 is the Lagrange sublaplacian. Precisely we prove

Theorem 1.11. Let Ω ⊂ M be a smoothly bounded domain satisfying the Poincaré inequality∫
Ω

|u|2 Ψθ ≤ C
∫

Ω

‖∇Hu‖2 Ψθ , u ∈ C∞0 (Ω).

Then for any f ∈ L2(Ω) the Poisson equation for the sublaplacian (1.45) admits a weak solution
u f ∈ L2(Ω). The weak solution u f is weakly differentiable along the Levi distribution H(Ω) and
u f = 0 on ∂Ω in the variational sense i.e. u f ∈ W̊1,2

H (Ω). In particular u f is a solution to the
generalized Dirichlet problem (1.39). If f ∈ C∞(Ω) then u f ∈ C∞(Ω).

We start by noticing that for every u ∈ C∞0 (Ω)(
∆b,0 u , u

)
L2 = ‖∇Hu‖2L2 ≥ C‖u‖2L2 (1.46)

by ∆b,0 u = (∇Hu)∗ ∇Hu and the Poincaré inequality. Hence the Lagrange sublaplacian is positive
definite as an operator ∆b,0 : D(∆b,0) = C∞0 (Ω) ⊂ L2(Ω) → L2(Ω). Therefore we may apply
Friedrichs’ extension theorem for positive definite linear operators, which we proceed to recall.
Let H be a Hilbert space and A : D(A) ⊂ H → H a linear operator A : D(A) ⊂ H → H ,
assumed to be positive definite i.e.

(Au, u)H ≥ γ
2‖u‖2

H
, u ∈ D(A),
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with γ2 = const. > 0. Friedrichs’ theorem (cf. e.g. Theorem 1.32 in [15], p. 97) is that, under
these assumptions, there is a linear operator Ã : D(Ã) ⊂ H → H such that 1) Ã is an extension of
A i.e.

D(A) ⊂ D(Ã), Ã
∣∣∣
D(A) = A,

2) Ã is selfadjoint5 and surjective i.e. R(Ã) = H . Here R(Ã) is the range of Ã. Finally 3) Ã is
positive definite with the same constant as A i.e.(

Ãu , u
)
H
≥ γ2 ‖u‖2

H
, u ∈ D(Ã).

By Friedrichs’ theorem (with A = ∆b,0) there is a linear operator

∆̃b,0 : D(∆̃b,0) ⊂ L2(Ω)→ L2(Ω)

such that 1) ∆b,0 ⊂ ∆̃b,0 i.e.

D(∆b,0) ⊂ D(∆̃b,0), ∆̃b,0
∣∣∣
D(∆b,0) = ∆b,0 ,

and 2) ∆̃∗b,0 = ∆̃b,0 and R(∆̃b,0) = L2(Ω), and 3) ∆̃b,0 is positive definite i.e.(
∆̃b,0u , u

)
L2 ≥ C ‖u‖2L2 , u ∈ D(∆̃b,0).

A crucial point in the so called energy space approach is to consider onD(∆b,0), besides from the
inner product ( , )L2 induced from L2(Ω), a new inner product given by

(u, v)H(∆b,0) =
(
∆b,0u , v

)
L2 , u, v ∈ D(∆b,0).

The properties of the operator ∆b,0 and of the L2 inner product ( , )L2 allow one to show that
( , )H(∆b,0) is indeed an inner product onD(∆b,0). For instance let us check that

(u, v)H(∆b,0) = (v, u)H(∆b,0) , u, v ∈ D(∆b,0),

(u, u)H(∆b,0) ≥ 0, (u, u)H(∆b,0) = 0 =⇒ u = 0.

The operator ∆b,0 is symmetric6 (as a consequence of (1.46) and Proposition7 1.12 in [15], p. 54).
Hence

(u, v)H(∆b,0) = (∆b,0u , v)L2 = (u,∆b,0v)L2 = (∆b,0v, u)L2 = (v, u)H(∆b,0)

for any u, v ∈ D(∆b,0). Next for any u ∈ D(∆b,0)

(u, u)H(∆b,0) = (∆b,0u, u)L2 ≥ C ‖u‖2L2 ≥ 0, (1.47)

(u, u)H(∆b,0) = 0 =⇒ ‖u‖L2 = 0 =⇒ u = 0.

5That is Ã coincides with its adjoint (Ã∗ = Ã).
6Let H be a Hilbert space and A : D(A) ⊂ H → H a linear operator. A is symmetric if D(A) is a dense subspace

ofH and A ⊂ A∗. As well known (cf. e.g. [15], p. 54) this is equivalent to D(A) being a dense subspace together with
(Au, v)H = (u, Av)H for any u, v ∈ D(A).

7IfH is a complex Hilbert space and A : D(A) ⊂ H → H is a densely defined linear operator then A is symmetric
if and only if (Au, u)H ∈ R for any u ∈ H .
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Let us consider the norm associated to the inner product ( , )H(∆b,0) i.e.

‖u‖H(∆b,0) =
√

(u, u)H(∆b,0) , u ∈ D(∆b,0).

As a consequence of (1.47)

‖u‖L2 ≤
1
√

C
‖u‖H(∆b,0) , u ∈ D(∆b,0). (1.48)

In generalD(∆b,0) is not complete with respect to the norm ‖ · ‖H(∆b,0). The energy spaceH(∆b,0)
of ∆b,0 is by definition the completion ofD(∆b,0) with respect to ‖ · ‖H(∆b,0). Then

Lemma 1.12. The energy space H(∆b,0) admits a continuous linear injection into L2(Ω). Pre-
cisely there is a continuous, injective, linear map ϕ : H(∆b,0)→ L2(Ω) such that

ϕ(u) = u, u ∈ D(∆b,0), (1.49)

‖ϕ(u)‖L2 ≤
1
√

C
‖u‖H(∆b,0) , u ∈ H(∆b,0). (1.50)

This is again a general result (holding for any positive definite linear operator A : D(A) ⊂
H → H , cf. e.g. Theorem 1.33 in [15], p. 98) and we only indicate the construction of ϕ. Let
u ∈ H(∆b,0). As H(∆b,0) is the completion of D(∆b,0) in the norm ‖ · ‖H(∆b,0), there is a Cauchy
sequence {uν}ν≥1 ⊂ D(∆b,0) representing u i.e. for any ε > 0 there is νε ≥ 1 such that

‖uν − uµ‖H(∆b,0) < ε, ∀ ν, µ ≥ νε .

Then (by (1.48))
‖uν − uµ‖L2 <

ε
√

C
, ∀ ν, µ ≥ νε ,

i.e. {uν}ν≥1 is a Cauchy sequence in L2(Ω) as well. Yet L2(Ω) is complete hence there is u0 ∈ L2(Ω)
such that uν → u0 in L2(Ω) as ν → ∞. One then sets by definition ϕ(u) = u0. It may be easily
checked (cf. e.g. [15], p. 99) that ϕ(u) is well defined (i.e. the definition doesn’t depend upon the
choice of the representative {uν}ν≥1 of u), linear, injective and continuous. Moreover, an inspection
of the proof of Friedrichs’ theorem (cf. e.g. [15], p. 102) shows that the domain of the yielded
selfadjoint extension ∆̃b,0 is

D(∆̃b,0) = D(∆∗b,0) ∩ ϕ(H(∆b,0)) ⊂ L2(Ω) (1.51)

while ∆̃b,0 itself is given by
∆̃b,0 = ∆∗b,0

∣∣∣
D(∆∗b,0)∩ϕ(H(∆b,0))

. (1.52)

Since R(∆̃b,0) = L2(Ω) there is u f ∈ D(∆̃b,0) such that ∆̃b,0u f = f . As a positive definite operator
∆̃b,0 is already injective, so such u f ∈ D(∆̃b,0) is unique. Finally (by (1.51)-(1.52))

f = ∆̃b,0u f = ∆∗b,0u f

so that for any ψ ∈ C∞0 (Ω) (
∆b,0ψ , u f

)
L2 =

(
ψ , ∆∗b,0u f

)
L2 = (ψ, f )L2
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i.e. u f is a weak solution to ∆bu = f . Let us look at the boundary conditions satisfied by u f . Since
u f ∈ D(∆̃b,0) it follows that u f ∈ H(∆b,0), the energy space of the Lagrange sublaplacian ∆b,0.
Hence for any u, v ∈ C∞0 (Ω)

(u, v)H(∆b,0) =
(
∆b,0u , v

)
L2 =

∫
Ω

(∆bu)v Ψθ =

= −

∫
Ω

div(∇Hu) v Ψθ =

∫
Ω

Gθ(∇hu , ∇Hv) Ψθ

by Green’s lemma. So

(u, v)H(∆b,0) =

∫
Ω

Gθ(∇Hu , ∇Hv) Ψθ , u, v ∈ C∞0 (Ω), (1.53)

and the norm associated to the inner product (1.53) on C∞0 (Ω) is

‖u‖2
H(∆b,0) =

∫
Ω

‖∇Hu‖2 Ψθ = 2Eb(u). (1.54)

The norm ‖ · ‖H(∆b,0) and the norm induced by ‖ · ‖W1,2
H

on C∞0 (Ω) are equivalent. This is actually a
consequence of the Poincaré inequality∫

Ω

|u|2 Ψθ ≤ C
∫

Ω

‖∇Hu‖2 Ψθ , u ∈ C∞0 (Ω), (1.55)

as follows. First for every u ∈ C∞0 (Ω)

‖u‖2
W1,2

H
= ‖u‖2L2 + ‖∇Hu‖2L2 ≥ ‖∇

Hu‖2L2 = ‖u‖2
H(∆b,0) ,

‖u‖2
W1,2

H
= ‖u‖2L2 + ‖∇Hu‖2L2 ≤ (C + 1)‖∇Hu‖2L2 = (C + 1)‖u‖2

H(∆b,0) ,

so that
‖u‖H(∆b,0) ≤ ‖u‖W1,2

H
≤ (1 + C)1/2 ‖u‖H(∆b,0) , u ∈ C∞0 (Ω). (1.56)

Since the norms ‖ · ‖H(∆b,0) and ‖ · ‖W1,2
H

are equivalent on C∞0 (Ω), the spacesH(∆b,0) and W̊1,2
H (Ω)

may be identified, algebraically and topologically. Under this identification ϕ is the natural imbed-
ding of W̊1,2

H (Ω) so that
u f ∈ D(∆∗b,0) ∩ W̊1,2

H (Ω).

Consequently u f is weakly differentiable along H(Ω) and u f = 0 on ∂Ω in the sense of variational
calculus.

1.10 Bochner-Lichnerowicz formula after A. Greenleaf

Let M be a compact strictly pseudoconvex CR manifold, of CR dimension n. Let θ ∈ P+ and let
∇ be the Tanaka-Webster connection of (M, θ). Let x0 ∈ M be an arbitrary point. As H(M) and
gθ are parallel with respect to ∇ we may build a local gθ-orthonormal frame {Ea : 1 ≤ a ≤ 2n} of
H(M), defined on an open neighborhood U ⊂ M of x0, such that(

∇Ea Eb
)

(x0) = 0, 1 ≤ a, b ≤ 2n. (1.57)
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Indeed Ea is got by parallel displacement (with respect to ∇) of a given gθ,x0- orthonormal frame
{v1, · · · , v2n} ⊂ H(M)x0 , along the geodesics of ∇ issuing at x0. As ∇J = 0 we may also assume
that En+α = JEα for any 1 ≤ α ≤ n. Then (by ∆bu = −

∑2n
a=1

{
E2

a(u) − (∇Ea Ea)(u)
}

and ∇gθ = 0)

∆b
(
‖∇Hu‖2

)
(x0) = −

∑
a

E2
a

(
‖∇Hu‖2

)
(x0) =

= −2
∑

a

Ea
(
gθ(∇Ea∇

Hu , ∇Hu)
)

x0
=

= −2
∑

a

{
gθ

(
∇Ea∇Ea∇

Hu , ∇Hu
)

+ gθ
(
∇Ea∇

Hu , ∇Ea∇
Hu

)}
x0
.

As {Ea : 1 ≤ a ≤ 2n} is gθ-orthonormal, the first term in the above sum is∑
a,b

gθ
(
∇Ea∇Ea∇

Hu , Eb
)

Eb(u).

Moreover (by (1.57))

gθ
(
∇Ea∇Ea∇

Hu , Xb
)

x0
=

{
Ea

(
gθ(∇Ea∇

Hu , Eb)
)
− gθ

(
∇Ea∇

Hu , ∇Ea Eb
)}

x0
=

= Ea
(
Ea

(
gθ(∇Hu , Eb)

)
− gθ(∇Hu , ∇Ea Eb)

)
x0

=

= Ea
(
EaEbu − (∇Ea Eb)(u)

)
x0

= Ea
(
(∇2u)(Ea , Eb)

)
x0

where ∇2u is the Hessian of u with respect to the Tanaka-Webster connection i.e.

(∇2u)(X,Y) = (∇Xdu)Y = X(Y(u)) − (∇XY)(u), X,Y ∈ X(M).

We emphasize that, unlike the Hessian in Riemannian geometry, ∇2u is never symmetric

(∇2u)(X,Y) = (∇2u)(Y, x) − T∇(X,Y)(u). (1.58)

On the other hand T∇ is pure hence

T∇(X,Y) = −2 Ω(X,Y)T, X,Y ∈ H(M). (1.59)

Here Ω = −dθ. Then (by (1.58)-(1.59))

gθ(∇Ea∇Ea∇
Hu , Xb)x0 = Xa

(
(∇2u)(Ea, Eb)

)
x0

=

= Ea
(
(∇2u)(Eb, Ea) + 2Ω(Ea, Eb)Tu

)
x0

=

= gθ(∇Ea∇Eb∇
Hu , Ea)x0 + 2Ω(Ea, Eb)x0 Ea(Tu)x0

so that
−

1
2

∆b
(
‖∇Hu‖2

)
(x0) =

∑
a

‖∇Ea∇
Hu‖2x0

+
∑
a,b

{
gθ(∇Ea∇Eb∇

Hu , Ea)+ (1.60)

+ 2Ω(Ea, Eb)Ea(Tu)}x0 Eb(u)x0 .
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For each bilinear form B on T (M) we indicate as customary with ΠH B the restriction of B to
H(M) ⊗ H(M). The norm of ΠH B is given by ‖ΠH B‖2 =

∑
a,b B(Ea, Eb)2. Then

‖ΠH∇
2u‖2 =

∑
a,b

(∇2u)(Ea, Eb)2 =
∑
a,b

[
Ea(Eb(u)) − (∇Ea Eb)(u)

]2
=

=
∑
a,b

gθ(∇Ea∇
Hu , Eb)2 =

∑
a

gθ(∇Ea∇
Hu , ∇Ea∇

Hu)

so that
‖ΠH∇

2u‖2 =
∑

a

‖∇Ea∇
Hu‖2. (1.61)

Next
[Ea, Eb] = ∇Ea Eb − ∇Eb Ea − T∇(Ea, Eb)

hence (by (1.57) and (1.59))
[Ea, Eb]x0 = 2Ω(Ea, Eb)x0Tx0

and taking into account

∇X∇Y = ∇Y∇X + R∇(X,Y) + ∇[X,Y] , X,Y ∈ X(M),

where R∇ is the curvature tensor field of ∇) one obtains

∇Ea∇Eb∇
Hu = ∇Eb∇Ea∇

Hu + R∇(Ea, Eb)∇Hu + 2Ω(Ea, Eb)∇T∇
Hu (1.62)

at x0. Moreover

gθ(∇Eb∇Ea∇
Hu, Xa)x0 =

{
Eb

(
gθ(∇Ea∇

Hu , Ea)
)
− gθ(∇Ea∇

Hu,∇Eb Ea)
}

x0
=

= Eb
(
E2

a(u) − (∇Ea Ea)(u)
)

x0

that is ∑
a

gθ(∇Eb∇Ea∇
Hu , Ea)x0 = −Eb (∆bu)x0 . (1.63)

Therefore (by (1.62)-(1.63)) ∑
a,b

gθ(∇Ea∇Eb∇
Hu , Ea)x0 Eb( f )x0 =

= −
∑

c

{Ec(∆bu) Ec(u)}x0 +
∑
a,c

{
gθ(R∇(Ea, Ec)∇Hu , Ea)Ec(u)+

+2Ω(Ea, Ec) gθ(∇T∇
Hu , Ea)Ec(u)

}
x0

=

= −(∇Hu)(∆bu)x0 +
∑

a

{
gθ(R∇(Ea,∇

Hu)∇Hu , Ea)+

+ 2gθ(Ea, J∇Hu)gθ(∇T∇
Hu, Ea)

}
x0

=

= −(∇Hu)(∆bu)x0 + Ric∇(∇Hu , ∇Hu)x0 + 2gθ(∇T∇
Hu , J∇Hu)x0
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where Ric∇(X,Y) = trace{Z 7→ R∇(Z,Y)X} as customary. Then (by (1.61)) the identity (1.60)
becomes

−
1
2

∆b
(
‖∇Hu‖2

)
= ‖ΠH∇

Hu‖2 − (∇Hu)(∆bu) + Ric∇(∇Hu,∇Hu)+

+2gθ(∇T∇
Hu, J∇Hu) + 2gθ(∇HTu, J∇Hu)

yielding the following pseudohermitian version of Bochner-Lichnerowicz formula

−
1
2

∆b

(∥∥∥∇Hu
∥∥∥2

)
=

∥∥∥ΠH∇
2u

∥∥∥2
− (∇Hu) (∆bu) + (1.64)

+Ric∇
(
∇hu , ∇Hu

)
+ 2 Lu,

for any u ∈ C∞(M,R). Here the differential operator L is given by

Lu ≡
(
J∇Hu

)
(Tu) − (J∇T∇

Hu)(u) (1.65)

and its presence in (1.64) is of course the main bias from the Riemannian case. Formula (1.64)
was derived by E. Barletta (cf. equations (6)-(7) in [32], p. 79). However only the formalism
is new (the local calculation in [9] is replaced by a local frame free ∇XY calculation) and (1.64)
is qualitatively that obtained by A. Greenleaf, [9]. Indeed let {Tα : 1 ≤ α ≤ n} be a local Gθ-
orthonormal (i.e. Gθ(Tα,Tβ) = δαβ) frame of the CR structure T1,0(M). Then

∇Hu =

n∑
α=1

(uαTα + uαTα) , uα ≡ Tα(u), u ∈ C1(M,R).

Let us compute the terms in (1.64) with respect to the local frame {Tα : 1 ≤ α ≤ n}. Using
(4.32)-(4.33) in Chapter 4 of this thesis one obtains

Ric∇
(
∇Hu , ∇Hu

)
=

n∑
α,β=1

{
2Rαβuαuβ+ (1.66)

+ i(n − 1)
(
Aαβuαuβ − Aαβuαuβ

)}
,

∥∥∥∇Hu
∥∥∥2

= 2
∥∥∥∇1,0u

∥∥∥2
= 2

n∑
α=1

uαuα , (1.67)

(
∇Hu

)
(∆bu) =

n∑
α=1

{uα (∆bu)α + uα (∆bu)α} , (1.68)

for any u ∈ C3(M,R). The calculation of
∥∥∥ΠH∇

2u
∥∥∥2 is more involved. We start by setting

Eα =
1
√

2
(Tα + Tα) , En+α = JEα =

i
√

2
(Tα − Tα) ,

so that Gθ(Ea , Eb) = δab for any 1 ≤ a, b ≤ 2n. Then

∥∥∥ΠH∇
2u

∥∥∥2
=

2n∑
a,b=1

(
∇2u

)
(Ea , Eb)2 = (1.69)

49



1.10. BOCHNER-LICHNEROWICZ FORMULA AFTER A. GREENLEAF

= 2
n∑

α,β=1

{(
∇αuβ

) (
∇αuβ

)
+

(
∇αuβ

) (
∇αuβ

)}
.

Finally

J∇Hu = i
n∑
α=1

(uαTα − uαTα) ,

(
J∇Hu

)
(u0) = i

n∑
α=1

{uαTα(u0) − uαTα(u0)} , u0 ≡ T (u),

TA(u0) = TA(T (u)) − (∇TAT )(u) = (∇TAdu)T = ∇Au0 , A ∈ {1, · · · , n, 1, · · · , n},

J∇T∇
Hu = i

n∑
α=1

{T (uα)Tα + uα∇T Tα − T (uα)Tα − uα∇T Tα} ,

(
J∇T∇

Hu
)

(u) = i
n∑
α=1

{
T (uα)uα + uαΓ

β
0αuβ − T (uα)uα − uαΓ

β

0αuβ

}
=

= −i
∑
α

{
uα

[
T (uα) − Γ

β
0αuβ

]
− uα

[
T (uα) − Γ

β

0α

]}
=

= −i
∑
α

{uα∇0uα − uα∇0uα} ,

hence (by (1.65) and the commutation formula ∇0uβ = ∇βu0 − uαAαβ )

Lu = 2i
n∑
α=1

(uα ∇0uα − uα ∇0uα) + (1.70)

+i
n∑

α,β=1

(
Aαβuαuβ − Aαβuαuβ

)
.

Substitution from (1.66)-(1.70) into (1.64) leads to

−∆b

(∥∥∥∇Hu
∥∥∥2

)
= 2

n∑
α,β=1

{
(∇αuβ)(∇αuβ) + (∇αuβ)(∇αuβ)

}
+ (1.71)

+4i
n∑
α=1

{uα ∇0uα − uα ∇0uα}+

+2
n∑

α,β=1

Rαβuαuβ −
n∑
α=1

{uα (∆bu)α + uα (∆bu)α}+

+i(n + 1)
n∑

α,β=1

{
Aαβuαuβ − Aαβuαuβ

}
which is the pseudohermitian analog to Bochner-Lichnerowicz formula as got by A. Greenleaf (cf.
[9]) except for the coefficient8 n + 1 in the last row of (1.71).

8Said coefficient is 2n in [9] and the difference is perhaps due to distinct exterior calculus conventions.
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Our next purpose, in this section, is to derive an alternative version of Greenleaf’s formula
(1.64) or (1.71) written in terms of the so called CR Paneitz operator as introduced by S-C. Chang
& H-L. Chiu, [92] (and used by us in Chapter 4 of this thesis). S-C. Chang & H-L. Chiu’s operator
P is locally9 given by

Pα f ≡ fαββ + 2niAαβ f β ,

f α = gαβ fβ , fα = Tα( f ), f ∈ C1(M,C).

Through the reminder of this section we work with a local Gθ-orthonormal frame {Tα : 1 ≤ α ≤
n} ⊂ C∞(U,T1,0(M)). Hence the operator Pα, as well as the two commutation formulae we shall
use, may be written

Pαu =

n∑
β=1

{
uαββ + 2niAαβuβ

}
, (1.72)

∇0uβ = ∇βu0 −

n∑
α=1

Aαβuα , (1.73)

∇αuβ = ∇βuα − 2iδαβu0 , (1.74)

for any u ∈ C1(M,R). We shall also need a commutation formulae for third order covariant
derivatives, that we proceed to derive. One has

uαβγ = (∇3u)
(
Tα , Tβ , Tγ

)
=

(
∇Tα∇

2u
) (

Tβ , Tγ
)

=

= Tα
(
(∇2u)(Tβ , Tγ)

)
− (∇2u)

(
∇TαTβ , Tγ

)
− (∇2u)

(
Tβ , ∇TαTγ

)
=

= Tα
(
∇βuγ

)
− Γ

µ

αβ
∇µuγ − Γ

µ
αγ∇βuµ =

(by using (1.74) three times)

= Tα
(
∇γuβ + 2iδβγu0

)
− Γ

µ

αβ

(
∇γuµ + 2iδµγu0

)
− Γ

µ
αγ

(
∇µuβ + 2iδβµu0

)
=

= Tα
(
(∇2u)(Tγ , Tβ

)
− (∇2u)

(
∇TαTγ , Tβ

)
− (∇2u)

(
Tγ , ∇TαTβ

)
+

+2i
{
δβγTα(u0) − Γ

β
αγu0 − Γ

γ

αβ
u0

}
=

=
(
∇Tα∇

2u
)

(Tγ , Tβ) + 2iδβγTα(u0)

because of
Γ
γ

αβ
= −Γ

β
αγ (1.75)

as a peculiarity of the fact that we make use of orthonormal frames of T1,0(M). Indeed ∇gθ = 0
may be written locally

Tα
(
gβγ

)
= Γ

µ
αβgµγ + gβµΓ

µ

αγ

an identity which for gαβ = δαβ is easily seen to yield (1.75). Summing up we have proved

uαβγ = uαγβ + 2iδβγ∇αu0 (1.76)

9The global expression of the operator P is given in Chapter 4.
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because of ∇T = 0 (implying that Tα(u0) = ∇αu0). Let us contract β and γ in (1.76) so that to
derive

n∑
β=1

(
uαββ − uαββ

)
= 2ni∇αu0 . (1.77)

The next step is to compute 4i
∑n
α=1 {uα ∇0uα − uα ∇0uα} in terms of third order covariant deriva-

tives (by making use of (1.77)). This brings into picture the operator P, as claimed. Indeed (by
(1.73) and (1.77))

2i
∑
α

uα∇0uα = 2i
∑
α

uα

∇αu0 −
∑
β

Aαβuβ

 =

=
1
n

∑
α,β

uα
(
uαββ − uαββ

)
− 2i

∑
α,β

Aαβuαuβ =

(by (1.72))

=
1
n

∑
α

uα

∑
β

uαββ − Pαu + 2ni
∑
β

Aαβuβ

 − 2i
∑
α,β

Aαβuαuβ =

= −
1
n

∑
α

uα Pαu +
1
n

∑
α,β

uαuαββ .

At this point we may add the complex conjugate so that to obtain

4i
n∑
α=1

{uα ∇0uα − uα ∇0uα} = (1.78)

= −
2
n

n∑
α=1

{uα Pαu + uα Pαu} +
2
n

n∑
α,β=1

{
uαuαββ + uαuαββ

}
.

To deal with the third order covariant derivatives in (1.78) we shall compute Gθ

(
∇Hu , ∇H(∆bu)

)
.

To this end we need the following local formula for the sublaplacian

∆bu = −

n∑
α=1

(∇αuα + ∇αuα) . (1.79)

Formula (1.79) is an easy consequence of definitions. Indeed

∆bu = −trace
(
∇Hu

)
= −trace

{
Z 7−→ ∇Z∇

Hu
}

=

= −trace

∑
α,β

[
Z(uα) + uβω

α
β (Z)

]
Tα +

∑
α,β

[
Z(uα) + uβωαβ (Z)

]
Tα

 =

= −trace


Tγ(uα) +

∑
β uβΓ

α
γβ Tγ(uα) +

∑
β uβΓα

γβ

Tγ(uα) +
∑
β uβΓ

α
γβ

Tγ(uα) +
∑
β uβΓα

γβ


1≤γ,α≤n

=
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(by contracting the indices α and γ)

= −
∑
α,β

{
Tα(uα) + Γααβuβ + Tα(uα) + Γα

αβ
uβ

}
as the trace of an endomorphism of a real vector space V coincides with the trace of the C-linear
extension to V ⊗R C of that endomorphism. On the other hand

∇αuβ = (∇Tαdu)Tβ = Tα(uβ) − Γ
γ

αβ
uγ =

(by (1.75))
= Tα(uβ) +

∑
γ

Γ
β
αγuγ

and (1.79) is proved. We may then perform the calculation (by (1.79))

Gθ(∇Hu , ∇H∆bu) =
∑
α

{uα(∆bu)α + uα(∆bu)α} = (1.80)

= −
∑
α,β

{
uαTα

(
∇βuβ + ∇βuβ

)
+ uαTα

(
∇βuβ + ∇βuβ

)}
.

We shall replace the ordinary derivatives in (1.80) by covariant derivatives. To this end note that

uAβγ = (∇3u)(TA , Tβ , Tγ) = (∇TA∇
2u)(Tβ , Tγ) =

= TA
(
∇βuγ

)
− ΓσAβ∇σuγ − ΓσAγ∇βuσ

i.e.
TA

(
∇βuγ

)
= uAβγ + ΓσAβ∇σuγ + ΓσAγ∇βuσ . (1.81)

Let us substitute from (1.81) and its complex conjugate into (1.80) and observe the cancellation
(by (1.75)) of Christoffel symbols. We obtain (by (1.72))

Gθ

(
∇Hu , ∇H∆bu

)
= −

∑
α,β

{
uα

(
uαββ + uαββ

)
+ uα

(
uαββ + uαββ

)}
=

= −
∑
α,β

uαuαββ −
∑
α

uα

Pαu − 2ni
∑
β

Aαβuβ

−
−

∑
α,β

uαuαββ −
∑
α

uα

Pαu + 2ni
∑
β

Aαβuβ


hence ∑

α,β

(
uαuαββ + uαuαββ

)
= −Gθ

(
∇Hu , ∇H∆bu

)
− (1.82)

−
∑
α

(uαPαu + uαPαu) + 2ni
∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
.
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Substitution from (1.82) into (1.78) now gives

4i
∑
α

(uα∇0uα − uα∇0uα) = −
4
n

∑
α

(uαPαu + uαPαu) + (1.83)

+4i
∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
−

2
n

Gθ

(
∇Hu , ∇H∆bu

)
.

Finally substitution from (1.83) into Greenleaf’s formula (1.71) gives

−
1
2

∆b

(∥∥∥∇Hu
∥∥∥2

)
=

∥∥∥ΠH∇
2u

∥∥∥2
−

(
1 +

2
n

)
Gθ

(
∇H , ∇H∆bu

)
+ (1.84)

+2
n∑

α,β=1

Rαβuαuβ + i(n − 3)
n∑

α,β=1

(
Aαβuαuβ − Aαβuαuβ

)
−

−
4
n

n∑
α=1

(uαPαu + uαPαu) .

This is formula (2.1) in S-C. Chang & H-L. Chiu work (cf. [92]), except for the n − 3 factor10.
Greenleaf’s formula in Chang-Chiu version replaces the "non-Riemannian" term Lu (cf. (1.70)
above) in terms of the operator Pα. In view of the non-nengativity of the CR Paneitz operator
P0 (cf. [92], p. 269-271, and exploited by us in Chapter 4 of this thesis) re-writing Greenleaf’s
formula as in (1.84) proves to be a crucial ingredient.

Identity (4.121) in Chapter 4, re-written in terms of a local Gθ-orthonormal frame {Tα : 1 ≤
α ≤ n} ⊂ C∞(U,T1,0(M)) (rather than an arbitrary local frame of T1,0(M)), reads

i
n∑
β=1

(
uβ∇0uβ − uβ∇0uβ

)
= 2nu2

0+ (1.85)

+i
n∑

α,β=1

(
Aαβuαuβ − Aαβuαuβ

)
− div

(
u0J∇Hu

)
.

Of course functions appearing in the left and right hand side of (1.85) are local expressions on U
of globally defined functions on M. By a common language abuse we shall use the same symbols
to denote both the given global function and its local expression with respect to {Tα : 1 ≤ α ≤ n}.
For instance i

∑n
β=1

(
uβ∇0uβ − uβ∇0uβ

)
will denote both the underlying element of C∞(M,R) and

its restriction to U. Then we may integrate over M in (1.85) and use Green’s lemma to obtain

i
∫

M

n∑
β=1

(
uβ∇0uβ − uβ∇0uβ

)
Ψθ = 2n

∫
M

u2
0 Ψθ+ (1.86)

+i
∫

M

n∑
α,β=1

(
Aαβuαuβ − Aαβuαuβ

)
Ψθ .

10Which is 2n in (2.1) of [92], p. 265, again due to different exterior calculus conventions.

54



1.10. BOCHNER-LICHNEROWICZ FORMULA AFTER A. GREENLEAF

This is essentially11 formula (2.4) in Lemma 2.2 of [92], p. 268. We close this section by proving
the identity

i
∫

M

n∑
α=1

(uα ∇0uα − uα ∇0uα) = (1.87)

=
1
n

∫
M

n∑
α,β=1

{
(∇βuα) (∇βuα) − (∇βuα) (∇βuα) + Rαβuαuβ

}
.

This12 is (2.5) in Lemma 2.3 of [92], p. 268. The rather involved proof of (1.87) makes use of a
commutation formula for third order covariant derivatives

−uβγ α + uγβα = 2igβγ ∇0uα − Rαµγβ uµ . (1.88)

that we proceed to derive. We first compute

Tβ
(
∇γuα

)
= Tβ

(
(∇2u)(Tγ , Tα)

)
= Tβ

(
(∇Tγdu)Tα

)
=

= Tβ
(
Tγ(uα) − Γ

µ

γ α
uµ

)
=

= TβTγuα − Tβ
(
Γ
µ

γ α

)
uµ − Γ

µ

γ α
Tβ

(
uµ

)
or (by introducing the Lie bracket of Tβ and Tγ and replacing ordinary derivatives Tβ

(
uµ

)
by

covariant derivatives)
Tβ

(
∇γuα

)
=

[
Tβ , Tγ

]
(uα) + (1.89)

+TγTβuα − Tβ
(
Γ
µ

γ α

)
uµ − Γ

µ

γ α

(
∇βuµ + Γσβµuσ

)
.

The point is that one may express the Lie bracket
[
Tβ , Tγ

]
in terms of the Tanaka-Webster con-

nection ∇ of (M, θ), as a consequence of the purity of its torsion T∇

2igβγ T = T∇(Tβ , Tγ) = Γ
µ

βγ
Tµ − Γ

µ

γβ
Tµ −

[
Tβ , Tγ

]
i.e. [

Tβ , Tγ
]

= Γ
µ

βγ
Tµ − Γ

µ

γβ
Tµ − 2iδβγT. (1.90)

Let us substitute from (1.90) into (1.89). We obtain (by also replacing ordinary derivatives Tβ(uα)
in terms of covariant derivatives)

Tβ
(
∇γuα

)
= Γ

µ

βγ
Tµ(uα) − Γ

µ

γβ
Tµ(uα) − 2iδβγT (uα)+

+Tγ
(
∇βuα + Γ

µ

βα
uµ

)
− Tβ

(
Γ
µ

γ α

)
uµ − Γ

µ

γα
∇βuµ − Γ

µ

γ α
Γσβµuσ =

= Γ
µ

βγ

(
∇µuα + Γσµαuσ

)
− Γ

µ

γβ

(
∇µuα + Γσµαuσ

)
+

+Tγ
(
∇βuα

)
+ Tγ

(
Γ
µ

βα

)
uµ − Tβ

(
Γ
µ

γ α

)
uµ − Γ

µ

γ α
∇βuµ − Γ

µ

γα
Γσβµuσ+

11Second integral in (2.4) of [92], p. 268, bears a n factor (rather than a 2n factor as in our (1.86)).
12Once again, as compared to our formula (1.87), identity (2.5) in Lemma 2.3 of [92], p. 268, has an extra 2 factor in

its right hand member.

55



1.10. BOCHNER-LICHNEROWICZ FORMULA AFTER A. GREENLEAF

+Γ
µ

βα
Γσγ µuσ + Γ

µ

βα
∇γuµ − 2iδβγ∇0uα − 2iδβγΓ

µ

0αuµ

or
Tβ

(
∇γuα

)
= Tγ

(
∇βuα

)
+ (1.91)

+Tγ
(
Γ
µ

βα

)
uµ − Tβ

(
Γ
µ

γ α

)
uµ + Γ

µ

βγ
Γσµαuσ − Γ

µ

γβ
Γσµαuσ+

−Γ
µ

γα
Γσβµuσ + Γ

µ

βα
Γσγ µuσ − 2iδβγΓ

µ

0αuµ−

−Γ
µ

γ α
∇βuµ + Γ

µ

βα
∇γuµ − 2iδβγ∇0uα + Γ

µ

βγ
∇µuα − Γ

µ

γβ
∇µuα .

To understand the meaning of identity (1.91) let us observe that Tγ
(
∇βuα

)
is the term looked

for (switching the derivatives in the directions Tβ and Tγ). The next two rows in (1.91) will be
recognized as a curvature term (of the Tanaka-Webster connection). The remaining terms will be
shortly seen to be a third order covariant derivative of the function u. To recognize curvature we
need to conduct the following calculation

RαµγβTµ = R∇(Tγ,Tβ)Tα = ∇Tγ∇TβTα − ∇Tβ∇TγTα − ∇[Tγ,Tβ]Tα

leading to (by (1.90))
Rαµγβ = Tγ

(
Γ
µ

βα

)
− Tβ

(
Γ
µ

γ α

)
− 2igβγΓ

µ

0α+ (1.92)

+ΓσβαΓ
µ

γσ
− Γσγ αΓ

µ

βσ
+ ΓσβγΓ

µ

σα
− Γσγβγ

µ

σα
.

Let us substitute from (1.92) into (1.91). We obtain

Tβ
(
∇γuα

)
= Tγ

(
∇βuα

)
+ Rαµγβuµ− (1.93)

−Γ
µ

γ α
∇βuµ + Γ

µ

βα
∇γuµ − 2iδβγ∇0uα + Γ

µ

βγ
∇µuα − Γ

µ

γβ
∇µuα .

Finally we may compute −uβγ α + uγβα (by making use of (1.93)) and observe the cancellation of
Christoffel symbols. This leads to the commutation formula (1.88). Identity (1.88) actually holds
for an arbitrary local frame {Tα : 1 ≤ α ≤ n} of T1,0(M) (as emphasized by the presence of the
metric components gβγ there) yet it will be only used for orthonormal frames (gβγ = δβγ). If this
is the case let us contract β and γ in (1.88) so that to derive

n∑
β=1

(
−uββ α + uββα

)
= 2in∇0uα −

n∑
β,µ=1

Rαµ ββuµ . (1.94)

Let us go back to the proof of (1.87). Using (1.94) we may replace terms of the form ∇0uA in
terms of third order covariant derivatives plus curvature. Precisely

2i
∑
α

(uα∇0uα − uα∇0uα) = (1.95)

=
1
n

∑
α,β

uα

−uββ α + uββα +
∑
µ

Rαµββuµ

 +

+
1
n

∑
α,β

uα

−uββα + uββα +
∑
µ

Rαµββuµ


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ad let us integrate over M to get a candidate to (1.87). Here we shall integrate by parts so that to
replace the third order covariant derivatives by second order covariant derivatives. For instance

uαuββ α = uα
(
∇2

Tβ∇
2u

)
(Tβ , Tα) =

= uα
{
Tβ

(
∇βuα

)
− Γ

µ

ββ
∇µuα − Γ

µ

βα
∇βuµ

}
=

(by exploiting the derivative of the product uα∇βuα)

= Tβ
(
uα∇βuα

)
− Tβ(uα)∇βuα − uαΓ

µ

ββ
∇µuα − uαΓ

µ

βα
∇βuµ =

(by replacing the ordinary derivative Tβ in terms of covariant derivative ∇β)

= ∇β
(
uα∇βuα

)
+ Γ

µ

ββ
uα∇µuα −

(
∇βuα + Γ

µ
βαuµ

)
∇βuα−

−uαΓ
µ

ββ
∇µuα − uαΓ

µ

βα
∇βuµ =

(by observing the cancellation of Γ
µ

ββ
and by using identity (1.75))

= div
(
uα (∇βuα)Tβ

)
−

−(∇βuα)(∇βuα) +
∑
µ

Γαβµuµ∇βuα − uαΓ
µ

βα
∇βuµ

so that (by observing the cancellation of Γ
µ

βα
)

uαuββ α = −(∇βuα)(∇βuα) + div
(
uα (∇βuα)Tβ

)
. (1.96)

Similarly

uαuββα = −(∇βuα)(∇βuα) + div
(
uα(∇βuα)Tβ

)
. (1.97)

Identities (1.96)-(1.97) then lead to∑
α,β

uα
(
−uββ α + uββα

)
≡

∑
α,β

[
(∇βuα)(∇βuα) − (∇βuα)(∇βuα)

]
, mod div

hence (by integrating (1.95) and using Green’s lemma)

2ni
∫

M

∑
α

(uα∇0uα − uα∇0uα) Ψθ = (1.98)

=

∫
M

∑
α,β

[
(∇βuα)(∇βuα) − (∇βuα)(∇βuα)

]
Ψθ+

+

∫
M

∑
α,β,γ

(
Rαγββuαuγ + Rαγββuαuγ

)
Ψθ.

The last step (in the proof of (1.87)) is to recognize pseudohermitian Ricci curvature Rαβ in the
contracted curvature terms appearing in (1.98). This is a rather involved calculation, based on
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curvature theory (for the Tanaka-Webster connection) as built in [94]. We start with Theorem 1.6
in [94] according to which

R∇
θ

(X,Y)Z = R∇(X,Y)Z+ (1.99)

+(LX ∧ LY)Z − 2Ω(X,Y)JZ − gθ(S (X,Y),Z)T

for any X,Y,Z ∈ H(M). Here

L = τ + J, S (X,Y) = (∇Xτ)Y − (∇Yτ)X.

Also R∇
θ

is the curvature tensor field of the Levi-Civita connection ∇θ of the Riemannian manifold
(M, gθ). Taking the inner product of (1.99) with W ∈ H(M) gives (by gθ(W,T ) = 0)

K∇
θ

(W,Z, X,Y) = K∇(W,Z, X,Y)+ (1.100)

+gθ((LX ∧ LY)Z,W) − 2Ω(X,Y)gθ(JZ,W).

Here K∇
θ

and K∇ are respectively the Riemann-Christoffel tensor of (M, gθ) and its pseudohermi-
tian analog. For instance

K∇(W,Z, X,Y) = gθ(R∇(X,Y)Z,W).

Moreover (by recalling the meaning of wedge product of two vector fields (X ∧Y)Z = gθ(X,Z)Y −
gθ(Y,Z)X)

gθ((LX ∧ LY)Z,W) = gθ(LX,Z)gθ(LY,W) − gθ(LY,Z)gθ(LX,W)

so that (1.100) becomes

K∇
θ

(W,Z, X,Y) = K∇(W,Z, X,Y) + 2Ω(X,Y)Ω(Z,W)+ (1.101)

+gθ(LX,Z)gθ(LY,W) − gθ(LY,Z)gθ(LX,W).

using (1.101) and the known symmetry

K∇
θ

(W,Z, X,Y) = K∇
θ

(X,Y,W,Z)

of the Riemann-Christoffel tensor (a symmetry which K∇ fails to enjoy, as one of the known
obstacles in pseudohermitian geometry) one obtains

K∇(W,Z, X,Y) = K∇(X,Y,W,Z)+ (1.102)

+gθ(LW,Y)gθ(LZ, X) − gθ(LZ,Y)gθ(LW, X)+

+gθ(LY,Z)gθ(LX,W) − gθ(LX,Z)gθ(LY,W).

Finally the terms of the form gθ(LX,Y) may be explicitly calculated (by L = τ + J) so that (1.102)
may be written

K∇(W,Z, X,Y) = K∇(X,Y,W,Z)+ (1.103)

+2 {A(X,Z)Ω(Y,W) − A(Y,Z)Ω(X,W)+

+ A(Y,W)Ω(X,Z) − A(X,W)Ω(Y,Z)}

for any X,Y,Z,W ∈ H(M). Next

Rαγββ = gθ
(
R∇(Tβ , Tβ)Tα , Tγ

)
=
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= K∇
(
Tγ , Tα , Tβ , Tβ

)
=

(by the symmetry property (1.103))

= K∇(Tβ , Tβ , Tγ , Tα)+

+2
{
A(Tβ , Tα)Ω(Tβ,Tγ) − A(Tβ , Tα)Ω(Tβ,Tγ) +

+A(Tβ , Tα)Ω(Tβ,Tα) − A(Tβ,Tγ)Ω(Tβ , Tα)
}

=

(as A vanishes on complex vector fields of distinct types, while Ω vanishes on complex vector
fields of the same type)

= K∇(Tβ , Tβ , Tγ , Tα) = Rββγα =

(by the symmetry property in Theorem 1.8 of [94])

= Rγββα .

Yet
Rαβ = Ric∇(Tα,Tβ) = trace

{
Z 7→ R∇(Z,Tβ)Tα

}
=

(as R∇(X,Y) maps T1,0(M) into T1,0(M))

= trace
{
Tγ 7→ R∇(Tγ,Tβ)Tα = RαµγβTµ

}
=

= Rαγγβ =
∑
γ

Rαγγβ

and we may conclude that ∑
β

Rαγββ =
∑
β

Rγββα = Rγα . (1.104)

Finally substitution from (1.104) into (1.98) leads to (1.87). Q.e.d.

As an immediate consequence of the above∫
M

u2
0Ψθ =

1
4n2

∫
M

(∆bu)2 Ψθ+ (1.105)

+
i
n

∫
M

n∑
α,β=1

(
Aαβuαuβ − Aαβuαuβ

)
Ψθ −

1
2n2

∫
M

u P0u Ψθ .

This is essentially13 (2.6) in Corollary 2.4 of [92], p. 269. To check (1.105) we start by integrating
(1.83) over M

2i
∫

M

∑
α

(uα∇0uα − uα∇0uα) Ψθ =

= −
2
n

∑
α

(uαPαu + uαPαu) Ψθ+

13With respect to our identity (1.105), the relation (2.6) in [92], p. 269, bears an extra 2 factor in its right hand side.
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+2i
∫

M

∑
α,β

(
Aαβuαuβ − Aα βuαuβ

)
Ψθ −

1
n

∫
M

(
∇Hu

)
(∆bu) Ψθ ,

substitute
∫

M

∑
α (uα∇0uα − uα∇0uα) Ψθ from (1.83)

−4n
∫

M
u2

0Ψθ − 2i
∫

M

∑
α,β

(
Aαβuαuβ − Aα βuαuβ

)
Ψθ =

= −
2
n

∫
M

g∗θ
(
(Pαu)θα + (Pαu)θα , uβθβ + uβθ

β
)

Ψθ+

+2i
∫

M

∑
α,β

(
Aαβuαuβ − Aα βuαuβ

)
Ψθ,

simplify torsion terms and use the identities∫
M

g∗θ
(
(P + P)u , dbu

)
Ψθ = −

∫
M

u P0u Ψθ

(a consequence of our calculations in Chapter 4) and∫
M

(∇Hu)(∆bu) Ψθ =

=

∫
M

{
div

(
(∆bu)∇Hu

)
− (∆bu) div(∇Hu)

}
Ψθ =

∫
M

(∆bu)2 Ψθ

(by Green’s lemma). The proof of (1.105) is complete.

1.11 Non-negativity of CR Paneitz operator

We close Chapter 1 by giving a proof of∫
M

u P0u Ψθ ≥ 0, u ∈ C∞(M,R), (1.106)

i.e. the CR Paneitz operator P0 is non-negative. This has been shown in [92], p. 269-270. Our
proof follows the ideas in [92], transposed under the conventions adopted in this thesis. The
result is used in Chapter 4 and leads to a new lower bound on the first nonzero eigenvalue of the
sublaplacian ∆b. To prove (1.106) we start from the observation that i

∫
M

∑
α (uα∇0uα − uα∇0uα)

has been previously calculated in two different manners, the outcome being that in formulae (1.86)-
(1.87). Hence, for any c ∈ R, we may write

i
∫

M

∑
α

(uα∇0uα − uα∇0uα) =

= c × (RHS of (1.86)) + (1 − c) (RHS of (1.87)) =

= c

2n
∫

M
u2

0 Ψθ + i
∫

M

∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
Ψθ

 +
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+
1 − c

n

∑
α,β

[
(∇βuα)(∇βuα) − (∇βuα)(∇βuα) + Rαβuαuαuβ

]
Ψθ

and substitution into Greenleaf’s formula (1.71) integrated over M leads to

1
2

∫
M

(∆bu)2 Ψθ + 4cn
∫

M
u2

0 Ψθ = (1.107)

=

(
1 +

2(1 − c)
n

) ∫
M

∑
α,β

(∇αuβ)(∇αuβ) Ψθ+

+

(
1 −

2(1 − c)
n

) ∫
M

∑
α,β

{
(∇αuβ)(∇αuβ) + Rαβuαuβ

}
Ψθ+

+i
(
2c +

n + 1
2

) ∫
M

∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
.

Let c ∈ R such that n − 2(1 − c) , 0 so that (by (1.107))

−

∫
M

∑
α,β

{
(∇αuβ)(∇αuβ) + Rαβ

}
Ψθ = (1.108)

=
n + 2(1 − c)
n − 2(1 − c)

∫
M

∑
α,β

(∇αuβ)(∇αuβ) Ψθ+

+
n(4c + n + 1)

2[n − 2(1 − c)]

∫
M

i
∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
Ψθ−

−
n

n − 2(1 − c)

{
1
2

∫
M

(∆bu)2 Ψθ + 4cn
∫

M
u2

0 Ψθ

}
.

On the other hand (by (1.105))∫
M

uP0u Ψθ =
1
2

∫
M

{
(∆bu)2 − 4n2u2

0

}
Ψθ+ (1.109)

+2n
∫

M
i
∑
α,β

(
Aαβuαuβ − Aαβuαβ

)
Ψθ .

Equation (1.107) for c = −n/2 becomes

1
2

∫
M

{
(∆bu)2 − 4n2u2

0

}
Ψθ =

2(n + 1)
n

∫
M

∑
α,β

(∇αuβ)(∇αuβ) Ψθ− (1.110)

−
2
n

∫
M

∑
α,β

{
(∇αuβ)(∇αuβ) + Rαβuαuβ

}
Ψθ+

+
n − 1

2

∫
M

i
∑
α,β

(
Aαβuαuβ − Aαβuαuβ

)
.
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Let us substitute 1
2

∫
M

{
(∆bu)2 − 4n2u2

0

}
Ψθ from (1.110) into (1.109). We obtain∫

M
uP0u Ψθ =

2(n + 1)
n

∫
M

∑
α,β

(∇αuβ)(∇αuβ) Ψθ− (1.111)

−
2
n

∫
M

∑
α,β

{
(∇αuβ)(∇αuβ) + Rαβuαuβ

}
Ψθ+

+

(
2n −

n − 1
2

) ∫
M

i
∑
α,β

(
Aαβuαuβ − Aαβuαβ

)
Ψθ .

Let us substitute −
∫

M

∑
α,β

{
(∇αuβ)(∇αuβ) + Rαβ

}
Ψθ from (1.108) into (1.111). We obtain∫

M
uP0u Ψθ =

2
n

[
n + 1 +

n + 2(1 − c)
n − 2(1 − c)

] ∫
M

∑
α,β

(∇αuβ)(∇αuβ) Ψθ+ (1.112)

+

[
2n −

n − 1
2

+
4c + n + 1

n[n − 2(1 − c)]

] ∫
M

i
∑
α,β

(
Aαβuαuβ − Aαβuαβ

)
Ψθ−

−
2

n − 2(1 − c)

{
1
2

∫
M

(∆bu)2 Ψθ + 4cn
∫

M
u2

0 Ψθ

}
.

Let c0 ∈ R be the solution to

2n −
n − 1

2
+

4c0 + n + 1
n[n − 2(1 − c0)]

= 0. (1.113)

In particular for c = c0 equation (1.112) becomes∫
M

uP0u Ψθ = (1.114)

=
2
n

[
n + 1 +

n + 2(1 − c0)
n − 2(1 − c0)

] ∫
M

∑
α,β

(∇αuβ)(∇αuβ) Ψθ−

−
2

n − 2(1 − c0)

{
1
2

∫
M

(∆bu)2 Ψθ + 4c0n
∫

M
u2

0 Ψθ

}
.

We shall need the identity

4

∣∣∣∣∣∣∣
n∑
α=1

∇αuα

∣∣∣∣∣∣∣
2

= (∆bu)2 + 4n2u2
0 . (1.115)

This follows easily from 2inu0 =
∑
α (∇αuα − ∇αuα). Indeed

−4n2u2
0 =

∑
α

∇αuα − ∇αuα

2

=

=

∑
α

∇αuα

2

− 2

∣∣∣∣∣∣∣∑α ∇αuα

∣∣∣∣∣∣∣
2

+

∑
α

∇αuα

2

=
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=

∑
α

∇αuα +
∑
α

∇αuα

2

− 4

∣∣∣∣∣∣∣∑α ∇αuα

∣∣∣∣∣∣∣
2

=

= (∆bu)2 − 4

∣∣∣∣∣∣∣∑α ∇αuα

∣∣∣∣∣∣∣
2

.

Q.e.d. Next (by (1.115))

∑
α,β

∣∣∣∣∇αuβ
∣∣∣∣2 ≥ 1

n

∣∣∣∣∣∣∣∑α ∇αuα

∣∣∣∣∣∣∣
2

=
1
4n

(∆bu)2 + nu2
0

hence (by (1.114)) ∫
M

u P0u Ψθ ≥

≥

{
1

2n2

[
n + 1 +

n + 2(1 − c0)
n − 2(1 − c0)

]
−

1
n − 2(1 − c0)

}∫
M

(∆bu)2 Ψθ+

+

{
2
[
n + 1 +

n + 2(1 − c0)
n − 2(1 − c0)

]
−

8nc0

n − 2(1 − c0)

}∫
M

u2
0 Ψθ ≥ 0

as both coefficients are non-negative (as a consequence of (1.113)).
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Chapter 2

Eigenvalues as functions of the contact
structure

2.1 1-Parameter variations of the contact form

We start by recalling the needed notions of functional analysis, cf. e.g. A. Kriegl & P.W. Michor,
[10]. LetH be a Hilbert space and {A(t)}t∈R a family of linear operators A(t) : D(A(t)) ⊂ H → H .
We say A(t) is real analytic (respectively C∞, or Ck,α) with respect to the parameter t if there is a
dense subspace V ⊂ H such that i) D(A(t)) = V and A(t) is selfadjoint for any t ∈ R and ii) the
function t ∈ R 7−→ (A(t)u , v)H ∈ C is real analytic (respectively C∞, or Ck,α) for every u ∈ V and
v ∈ H . If this is the case then (by a result in [11]) the (vector valued) function

R→ H , t ∈ R 7−→ A(t)u ∈ H ,

is of the same class for every u ∈ V . Also it is customary to call t ∈ R 7→ A(t) an analytic curve
(respectively a curve of class C∞, or Ck,α). A function f : R → H is of class Ck,α if the set
{|t − s|−α[ f (k)(t) − f (k)(s)] : t , s} is locally bounded.

A sequence {λν}ν≥1 of scalar functions λν : R → C is said to parametrize the eigenvalues of
{A(t)}t∈R if for any t ∈ R and any λ ∈ σ(A(t)) the cardinality of the set {ν ≥ 1 : λν(t) = λ} equals
the multiplicity of λ.

We shall make use of the following result, which is referred hereafter as the Rellich-Alekseevsky-
Kriegl-Losik-Michor theorem (cf. F. Rellich, [41], for statement (i), D. Alekseevski & A. Kriegl &
M. Losik & P.W. Michor, [20], for statement (ii), and A. Kriegl & P.W. Michor, [10], for statements
(iii)-(iv))

Theorem 2.1. Let t ∈ R 7→ A(t) be a curve of unbounded selfadjoint operators in a Hilbert space
H , with common domain of definition and compact resolvent. Then

i) If A(t) is real analytic in t ∈ R then the eigenvalues and the eigenvectors of A(t) may be
parameterized real analytically in t.

ii) If A(t) is C∞ in t ∈ R and if no two unequal continuously parameterized eigenvalues meet
of infinite order at any t ∈ R, then the eigenvalues and eigenvectors can be parameterized C∞ in t
on the whole parameter domain.
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iii) If A is C∞ then the eigenvalues of A(t) may be parameterized C2 in t.

iv) If A(t) is Ck,α in t ∈ R for some α > 0 then the eigenvalues of A(t) may be parameterized
C1 in t.

More is actually proved in [10] and statements (iii)-(iv) in Theorem 2.1 follow from the
stronger result (cf. [10], p. 2)

Theorem 2.2. Under the assumptions of Theorem 2.1

iii.1) If A(t) is C3n,α in t and if the multiplicity of an eigenvalue never exceeds n, then the
eigenvalues of A may be parameterized C2.

iii.2) If the multiplicity of any eigenvalue never exceeds n, and if the resolvent (A(t) − λI)−1 is
C3n into L(H ,H) in t and λ jointly , then the eigenvalues of A(t) may be parameterized C2 in t.

iv.1) If the resolvent (A(t) − λI)−1 is C1 into L(H ,H) jointly in t and λ then the eigenvalues of
A(t) may be parameterized C1 in t.

iv.2) Under the hypothesis of statements (iv) or (iv.1), for any continuous parametrization λν(t)
of σ(A(t)), every function λν has a right sided derivative λ(+)

ν (t) and a left sided derivative λ(−)
ν (t)

at each t, and {λ(+)
ν (t) : λν(t) = λ} equals {λ(−)

ν (t) : λν(t) = λ} with correct multiplicities.

Among the applications to statement (iii) in Theorem 2.1 as proposed in [10] one may consider
a compact manifold M and a smooth curve t 7→ gt of smooth Riemannian metrics on M. If
moreover t 7→ ∆gt is the corresponding smooth curve of Laplace-Beltrami operators on L2(M)
then (by (iii) in Theorem 2.1) the eigenvalues may be parameterized C2 in t. This was exploited
by A. El Soufi & S. Ilias, [5]-[7], who discussed an array of related questions such as critical
points of the functional g ∈ M 7→ λk(g), or suitable deformations of g ∈ M producing quantitative
variations of λk. HereM is the set of all Riemannian metrics on M.

Let (M, θ) be a compact strictly pseudoconvex pseudohermitian manifold, of CR dimension n.
Let

θ(t) = eut θ, t ∈ R,

be an analytic deformation of θ i.e. {ut}t∈R is a family of real valued C∞ functions which is analytic
with respect to t and u0 = 0. Here C∞(M,R) is thought of as organized as a real Fréchet space and
the vector valued function

u : R→ C∞(M,R), u(t) = ut , t ∈ R,

is assumed to be of class Cω. For a theory of power series in Fréchet spaces we shall use Appendix
B in [27]. Let ∆b,t be the sublaplacian of (M, θ(t)).

Theorem 2.3. If θ(t) = eut θ is an analytic deformation of θ then there is ε > 0 and a family of
real analytic functions {λν}ν≥1 ⊂ Cω((−ε, ε),R) such that for any |t| < ε and for any eigenvalue
λ ∈ σ

(
∆b,t

)
of multiplicity m there exist m families of C∞ functions

{ui(t)}|t|<ε ∈ C∞(M,R), 1 ≤ i ≤ m,

such that each ui : (−ε, ε)→ C∞(M,R) is real analytic in t and

1) λi(t) = λ, 1 ≤ i ≤ m,

2) ∆b,tui(t) = λ ui(t), 1 ≤ i ≤ m,

3) {ui(t) : 1 ≤ i ≤ m} is orthonormal in L2(M,Ψθ(t)).
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Proof. The proof relies on the Rellich-Alekseevici-Kriegl-Losik-Michor theorem (cf. Theorem
2.1 above). To this end we introduce the family of operators

Ut : L2(M,Ψθ)→ L2(M,Ψθ(t)), Utu = e−(n+1)ut/2 u, u ∈ L2(M,Ψθ).

{Ut}t∈R is a real analytic family of unitary i.e.

‖Ut u‖L2(M,Ψθ(t)) = ‖u‖L2(M,Ψθ)

operators among the Hilbert spaces L2(M,Ψθ) and L2(M,Ψθ(t)) and U−1
t u = e(n+1)ut/2 u. Moreover

let A(t) be the family of operators

A(t) = U−1
t ◦ ∆b,t ◦ Ut : L2(M,Ψθ)→ L2(M,Ψθ).

Then
∆b,tui(t) = λ ui(t)⇐⇒ A(t)

(
U−1

t ui(t)
)

= λU−1
t ui(t).

Let us show that the family {A(t)}t∈R is analytic in t. Indeed the dense subspaceD(∆b) = C∞(M) ⊂
L2(M,Ψθ) is the domain of A(t) and, as we shall check in a moment, A(t) ⊂ A(t)∗. By a result of
E. Barletta & S. Dragomir (cf. Proposition 5 in [28], p. 11) if θ(t) = eut θ then the sublaplacians
∆b,θ and ∆b,t = ∆b,θ(t) are related by

∆b,tv = e−ut
(
∆bv − n(∇Hv)(ut)

)
, v ∈ C2(M). (2.1)

Then for each v ∈ D(∆b)

A(t)v = (U−1
t ◦ ∆b,t ◦ Ut)v

= e
n+1

2 ut ∆b,t

(
e−

n+1
2 ut v

)
= e

n+1
2 ut e−ut

(
∆b(e−

n+1
2 ut v) − n(∇He−

n+1
2 ut v)(ut)

)
= e

n+1
2 ut e−ut

(
∆b(e−

n+1
2 ut v)

)
− n e

n+1
2 ut e−ut (∇He−

n+1
2 ut v)(ut)

= e−ut
(
∆bv + v e

n+1
2 ut ∆b e−

n+1
2 ut − 2 e

n+1
2 ut Gθ(∇Hv , ∇He−

n+1
2 ut )

)
− n e

n+1
2 ut e−ut (−v

n + 1
2

e−
n+1

2 ut ∇H ut + e−
n+1

2 ut ∇H v)(ut)

= e−ut
[
∆bv − v

n + 1
2

(
∆but +

n + 1
2

∣∣∣∇Hut
∣∣∣2 )

+ (n + 1) Gθ(∇Hv , ∇Hut)
]

− n e−ut (−v
n + 1

2
∇H ut + ∇H v)(ut)

= e−ut ∆bv − v e−ut
(n + 1)

2

[
∆but +

(n + 1)
2

∣∣∣∇Hut
∣∣∣2 − n(∇Hut)(ut)

]
+ e−ut Gθ(∇Hv , ∇Hut)

= e−ut

[
∆bv + Gθ(∇Hut,∇

Hv) −
n + 1

2

(
∆but −

(n − 1)
2
|∇Hut|

2
)

v
]
.
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Therefore for any v ∈ D(∆b) and w ∈ L2(M,Ψθ)

〈A(t)v , w〉L2(M,Ψθ) =

= 〈e−ut
(
∆bv + Gθ(∇Hut,∇

Hv)
)
,w〉L2(M,Ψθ)

−〈e−ut
(n + 1)

2

(
∆but −

(n − 1)
2
|∇Hut|

2
)

v , w〉L2(M,Ψθ)

Finally the family {A(t)}t∈R satisfies the Krigel-Michor theorem, [10]: be a self-adjoint operator
in L2(M,Ψθ) with common domain of definition and with compact resolvent (see Lemma 1.4),
then we have the eigenvalues and the eigenvectors of A(t) are analytically in t i.e there exists m
analytic families of vectors ui(t) and m real analytic valued functions Λi(t) in t satisfying 1, 2 et 3
of Theorem 2.3. �

2.2 Critical contact forms

We adopt the notations and conventions in [4]. We start by discussing derivatives of eigenvalues
with respect to deformations of contact forms. Let M be a compact strictly pseudoconvex CR
manifold. For any positively oriented contact form θ ∈ P+ let 0 < λ1(θ) ≤ λ2(θ) ≤ · · · ≤ λk(θ) ≤
· · · be the spectrum of the sublaplacian ∆b = ∆b,θ of (M, θ). For every k ∈ N let

Ek(θ) = Ker (∆b − λk(θ)I)

be the eigenspace ∆b corresponding to the eigenvalue to λk(θ). Also let πk : L2(M,Ψθ) → Ek(θ)
be the orthogonal projection on Ek(θ). Let us fix k ∈ N and consider the functional θ ∈ P+ 7−→

λk(θ) ∈ R. This functional is continuous (with respect to an appropriate metric topology on P+,
as shown in § 2.7) but not differentiable in general. However, by perturbation theory λk is left and
right differentiable along any analytic curve in P+. The main purpose of this section is to express
the derivatives of λk (with respect to analytic deformations of contact structures) in terms of the
eigenvalues of an explicit quadratic form on Ek(θ).

Theorem 2.4. Let M be a compact strictly pseudoconvex CR manifold. For every θ ∈ P+ on M let
{θ(t)}|t|<ε ⊂ P+ be a complex analytic family of contact forms such that θ(0) = θ. Then

1) The function t ∈ (−ε, ε) 7−→ λk(θ(t)) admits left and right derivatives at t = 0.

2) The derivatives
d
dt
{λk(θ(t))}t=0− ,

d
dt
{λk(θ(t))}t=0+ ∈ R

are eigenvalues of the operator

πk ◦ ∆′b : Ek(θ) −→ Ek(θ), ∆′b ≡
d
dt

{
∆b,t

}
t=0 .

3) If λk(θ) > λk−1(θ), then d
dtλk(θ(t))

∣∣∣
t=0− and d

dtλk(θ(t))
∣∣∣
t=0+ are the greatest and the least

eigenvalues of πk ◦ ∆′b on Ek(θ), respectively.

4) If λk(θ) < λk+1(θ) then

d
dt
{λk(θ(t))}t=0− ,

d
dt
{λk(θ(t))}t=0+ ∈ R

are the smallest and the greatest eigenvalue of πk ◦ ∆′b on Ek(θ) respectively.

68
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Proof. 1. By Theorem 3.1, for |t| < ε , there exist Λi(t) ∈ R and ui(t) ∈ C∞(M), i = 1, ...,m de-
pending real analytically on t where m is the dimension of Ek(θ) and Λ1(0) = ... = Λm(0) =

λk(θ). Since t 7→ λk(θ(t)) is continuous and, ∀i ≤ m, t 7→ Λi(t) is analytic with Λi(0) = λk(θ),
there exist δ > 0 and two integers p, q ≤ m such that

λk(θ(t)) =

{
Λp(t) for t ∈ (−δ, 0)
Λq(t) for t ∈ (0, δ).

Then the function t 7−→ λk(θ(t)) admits left and right derivatives at t = 0. Moreover, one has

d
dt
λk(θ(t))

∣∣∣
t=0− = Λ′p(0) and

d
dt
λk(θ(t))

∣∣∣
t=0+ = Λ′q(0).

2. For i ≤ m, let ∆b,tui(t) = Λi(t)ui(t) by deriving at t = 0, we get

∆′bui(0) + ∆bui(0) = Λ′i(0)ui(0) + λk(θ)u′i(0) (2.2)

where u′i(0) = d
dt ui(t)

∣∣∣
t=0, we obtain after multiplying (4.1) by u j and integrating by parts∫

M
u j∆

′
buiΨθ =

{
Λ′i(0) if j = i

0 otherwise.

Since {u1, · · · , um} is an orthonormal basis of Ek(θ) with respect to the L2(M, θ), we deduce
that

(πk ◦ ∆′b)ui = Λ′i(0)ui.

In particular, Λ′p(0) and Λ′q(0) are eigenvalues of πk ◦ ∆′b.

3. Assume now λk(θ) > λk−1(θ) and for any i ≤ m, one has Λi(0) = λk(θ) > λk−1(θ).
Then by continuity, we have Λi(t) > λk−1(θ(t)) for sufficiently small t. Hence, there ex-
ists η > 0 such that, ∀ |t| < η and ∀i ≤ m, Λi(t) ≥ λk(θ(t)), which means that λk(θ(t)) =

min {Λ1(t), · · · ,Λm(t)} . This implies that

d
dt
λk(θ(t))

∣∣∣
t=0− = max

{
Λ′1(0), · · · ,Λ′m(0)

}
.

and
d
dt
λk(θ(t))

∣∣∣
t=0+ = min

{
Λ′1(0), · · · ,Λ′m(0)

}
.

4. The proof is similar to the previous one. If λk(θ) < λk+1(θ), one has, for sufficiently small t,
Λi(t) ≤ λk(θ(t)) which means that λk(θ(t)) = max {Λ1(t), · · · ,Λm(t)} and, then,

d
dt
λk(θ(t))

∣∣∣
t=0+ = max

{
Λ′1(0), · · · ,Λ′m(0)

}
and

d
dt
λk(θ(t))

∣∣∣
t=0− = min

{
Λ′1(0), · · · ,Λ′m(0)

}
.

�
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Let M be a compact strictly pseudoconvex CR manifold. For each θ ∈ P+ we set

C(θ) =
{
e f θ ; f ∈ C∞(M) and vol(e f θ) = vol(θ)

}
where Vol(θ) =

∫
M Ψθ is the volume of (M, θ). In the following, we study critical pseudohermitian

structure of the functional λk restricted to a conformal class C(θ) for any positive integer k.

Definition 2.5. A pseudohermitian structure θ is said to be critical for the functional λk restricted
to C(θ) if for any analytic deformation {θ(t) = eutθ} ⊂ C(θ) with θ(0) = θ, we have

d
dt
λk(θ(t))

∣∣∣
t=0− ×

d
dt
λk(θ(t))

∣∣∣
t=0+ ≤ 0.

We denote byA0(M, θ) the set of regular functions f with zero mean on M, that is,
∫

M f Ψθ =

0.

Theorem 2.6. Let θ be a pseudohermitian structure on a compact strictly pseudoconvex CR man-
ifolds M.

1. If θ is a critical pseudohermitian structure of the functional λk restricted to C(θ), then,
∀ f ∈ A0(M, θ), the quadratic form

Q f (u) = (n + 1)
∫

M

(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

f Ψθ (2.3)

is indefinite on Ek(θ).

2. Assume that λk(θ) > λk−1(θ) or λk(θ) < λk+1(θ). The pseudohermitian structure θ is critical
for the functional λk restricted to C(θ) if and only if, ∀ f ∈ A0(M, θ), the quadratic form Q f

is indefinite on Ek(θ).

Proof. 1. ∀ f ∈ A0(M, θ), the conformal deformation of θ given by

θ(t) =

[
vol(θ)

vol(et f θ)

] 1
n+1

et f θ

belongs to C(θ) and depends analytically on t with d
dtθ(t)

∣∣∣
t=0 = f θ, for f ∈ A0(M, θ). The

sub-Laplacian ∆b,t associated with θ(t) is given by

∆b,tu =

[
vol(et f θ)

vol(θ)

] 1
n+1

e−t f
(
∆bu − nt〈∇Hu,∇ f 〉Gθ

)
.

Therefore, since
∫

M f Ψθ = 0, we have

d
dt

vol(et f θ(t))
∣∣∣
t=0 =

d
dt

∫
M

e(n+1) f tΨθ

∣∣∣∣
t=0

= (n + 1)
∫

M
f Ψθ = 0,

70
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and, then,

∆′bu =
d
dt

∆b,t
∣∣∣
t=0

= − f ∆bu − n〈∇Hu,∇ f 〉Gθ .

Consequently, ∀u ∈ Ek(θ),∫
M

u(πk ◦ ∆′b)uΨθ =

∫
M

u∆′buΨθ

=

∫
M

(
− f u∆bu − nu〈∇Hu,∇ f 〉

)
Ψθ

=

∫
M

(
− f u∆bu −

n
2
〈∇Hu2,∇ f 〉

)
Ψθ

=

∫
M

(
fλk(θ)u2 −

n
2

f ∆bu2)Ψθ

=

∫
M

(
λk(θ)u2 − nu∆bu − n

∥∥∥∇Hu
∥∥∥2 )

f Ψθ

=

∫
M

(
(n + 1)λk(θ)u2 − n

∥∥∥∇Hu
∥∥∥2 )

f Ψθ.

Thus, ∫
M

u(πk ◦ ∆′b)uΨθ = Q f (u) (2.4)

Since θ is critical, we apply (2) of Theorem 2.4 to deduce that the eigenvalues of the operator
πk ◦ ∆′b restricted to Ek(θ) are not all positive or all negative. From (2.4), it follows that the
quadratic form Q f is indefinite on Ek(θ).

2. Let θ(t) = eutθ ∈ C(θ) be an analytic deformation of θ. Since vol(θ(t)) is constant with
respect to t, the function f = d

dt ut
∣∣∣
t=0 ∈ A0(M, θ). Indeed,

d
dt

vol(θ(t))
∣∣∣
t=0 =

d
dt

∫
M

e(n+1)utΨθ

∣∣∣
t=0 = (n + 1)

∫
M

f Ψθ.

Using (2.4) and (3), (4) of Theorem 4.1, we get the result.

�

Proposition 2.7. Let θ be a pseudohermitian structure on a compact strictly pseudoconvex CR
manifold M. The two following conditions are equivalent:

1. For all f ∈ A0(M, θ), the quadratic form Q f is indefinite on Ek(θ).

2. There exists a finite family {u1, · · · , ud} ⊂ Ek(θ) of eigenfunctions associated with λk(θ) such
that

∑d
i u2

i = 1.

Proof. 1. Let K be the convex hull :

K =

∑
i∈J

(n + 1)
[
λk(θ)u2

i −
n

n + 1

∥∥∥∇Hui
∥∥∥2

]
; ui ∈ Ek(θ), J ⊂ N, J finite

 ⊂ L2(M, θ).
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We show that the constant function 1 belongs to K. Indeed, if 1 < K, then, applying classical
separation theorem in the finite dimensional subspace of L2(M, θ) generated by K and θ, we
deduce the existence of v ∈ L2(M, θ) such that

∫
M vΨθ > 0 and, ∀ w ∈ K,

∫
M vwΨθ ≤ 0. Let

f0 = v − 1
vol(θ(t))

∫
M vΨθ ∈ A0(M, θ). Then , ∀u ∈ Ek(θ)

Q f0(u) =

∫
M

(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

f0Ψθ

=

∫
M

(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

vΨθ

−

∫
M vΨθ

vol(θ(t))

∫
M

(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

Ψθ

=

∫
M

(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

vΨθ

−
λk(θ)

∫
M vΨθ

(n + 1)vol(θ(t))

∫
M

u2Ψθ.

Since
∫

M

(
λk(θ)u2 − n

n+1

∥∥∥∇Hu
∥∥∥2 )

vΨθ ≤ 0, the quadratic form Q f0 is negative definite, which
contradicts the assumtion (1). Hence, there exist u1, · · · , ud ∈ Ek(θ) such that

d∑
i

(
λk(θ)u2

i −
n

n + 1

∥∥∥∇Hui
∥∥∥2 )

=
1

(n + 1)
λk(θ). (2.5)

We set g =
∑

i≤d u2
i − 1 . From (2.5) we get

n
2

∆bg = n
(
λk(θ)

d∑
i

u2
i +

d∑
i

∥∥∥∇Hui
∥∥∥2 )

= λk(θ)g.

This implies that g = 0, since the sub-Laplacian admits no negative eigenvalues. Therefore∑d
i u2

i = 1.

2. Let u1, · · · , ud ∈ Ek(θ) such that
∑d

i u2
i = 1. One has

d∑
i

∥∥∥∇Hui
∥∥∥2

=
1
2

∆b

d∑
i

u2
i + λk(θ)

d∑
i

u2
i

= λk(θ).

Therefore, ∫
M

d∑
i

[
λk(θ)u2

i −
n

n + 1

∥∥∥∇Hui
∥∥∥2

]
f Ψθ =

λk(θ)
n + 1

∫
M

f Ψθ = 0

∀ f ∈ A0(M, θ). This implies that Q f is indefinite on Ek(θ).

�

Theorem 2.6 and Proposition 2.7 lead to the following
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Theorem 2.8. Let θ be a pseudohermitian structure on a compact strictly pseudoconvex CR man-
ifolds M.

1. If θ is a critical pseudohermitian structure of the functional λk restricted to C(θ), then there
exists a finite family {u1, · · · , ud} ⊂ Ek(θ) of eigenfunctions associated with λk such that∑d

i u2
i = 1.

2. Assume that λk(θ) > λk−1(θ) or λk(θ) < λk+1(θ). Then, θ is critical for the functional λk

restricted to C(θ) if and only if, there exists a finite family {u1, · · · , ud} ⊂ Ek(θ) of eigenfunc-
tions associated with λk(θ) such that

∑d
i u2

i = 1.

An immediate consequence is the following:

Corollary 2.9. If θ is a critical metric of the functional λk restricted to C(θ), then λk(θ) is a
degenerate eigenvalue, that is

dim Ek(θ) ≥ 2.

This last condition means that at least one of the following holds: λk(θ) = λk−1(θ) or λk(θ) =

λk+1(θ). In the case when θ is a local maximizer or a local minimizer, we have the following more
precise result

Proposition 2.10. 1. If θ is a local minimizer of the functional λk restricted to C(g), then
λk(θ) = λk−1(θ).

2. If θ is a local maximizer of the functional λk restricted to C(g), then λk(θ) = λk+1(θ).

Proof. Assume that θ is a local minimizer and that λk(θ) > λk−1(θ). Let f ∈ A0(M, θ) and let
θ(t) = eαtθ ∈ C(θ) be a volume-preserving analytic deformation of θ such that d

dtθ(t)
∣∣∣
t=0 = f θ.

Denote by Λ1(t), · · · ,Λm(t), the associated family of eigenvalues of ∆b,t, depending analytically
on t and such that Λ1(0) = · · · = Λm(0) = λk(θ) with m = dim Ek(θ) (see the proof of Theorem
2.4). For continuity reasons, we have, for sufficiently small t and all i ≤ m,

Λi(t) > λk−1(θ(t)).

Hence, ∀i ≤ m and ∀t sufficiently small,

Λi(t) ≥ λk(θ(t)) ≥ λk(θ) = Λi(0).

Consequently for all i ≤ m, Λ′i(0) = 0 . Since Λ′1(0), · · · ,Λ′m(0) are eigenvalues of the operator
πk ◦ ∆′b (by Theorem 2.4) and (πk ◦ ∆′b)u = 0, ∀u ∈ Ek(θ). Applying (2.4), we deduce that,
∀ f ∈ A0(M, θ),

Q f (u) = 0.

∀u ∈ Ek(θ). Thus, there exists a constant β so that

(n + 1)
(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

= β

Integrating, we get

β =
λk(θ)
vol(θ)

∫
M

u2Ψθ.
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Then, we obtain

(n + 1)u2 −
n

λk(θ)

∥∥∥∇Hu
∥∥∥2

=
1

vol(θ)

∫
M

u2Ψθ.

Let x ∈ M be a point where u2 achieves its minimum. At x, we have∥∥∥∇Hu(x)
∥∥∥2

= 0

and
(n + 1)u2(x) =

1
vol(θ)

∫
M

u2Ψθ

which leads to a contradiction (since u is not constant ).
A similar proof works for (2). �

2.3 Eigenvalues ratio functionals

Let (M, θ) be a compact strictly pseudoconvex CR manifold of CR dimension n. This section deals

with the functional θ 7−→
λk+1(θ)
λk(θ)

. This functional is invariant under scaling, so it is not necessary

to fix the volume of pseudohermitian structure form under consideration. If θ(t) is any analytic

deformation of a pseudohermitian structure form θ, then t 7−→
λk+1(θ(t))
λk(θ(t))

admits left and right

derivatives at t = 0 (Theorem 2.4).

Definition 2.11. 1. A pseudohermitian structure form θ is said to be critical for the ratio
λk+1

λk

if for any analytic deformation θ(t) of θ, the left and right derivatives of
λk+1(θ(t))
λk(θ(t))

at t = 0

have opposite signs.

2. The pseudohermitian structure form θ is said to be critical for the ratio functional
λk+1

λk
restricted to the conformal class C(θ) if the condition above holds for any conformal analytic
deformation θ(t) = eαtθ of θ.

Let θ be a pseudohermitian structure form on M. We introduce the following operator

Pk : Ek(θ) ⊗ Ek+1(θ) −→ Ek(θ) ⊗ Ek+1(θ)

defined by
Pk = λk+1(θ)(πk ◦ ∆′b) ⊗ IdEk+1(θ) − λk(θ)IdEk(θ) ⊗ (πk+1 ◦ ∆′b)

where πk : L2(M,Ψθ) → Ek(θ). The quadratic form naturally associated with Pk is denoted by Q̃ f

and is given by, ∀u ∈ Ek(θ) and∀v ∈ Ek+1(θ),

Q̃ f (u ⊗ v) = λk+1(θ) ‖v‖2L2(θ) Q f (u) − λk(θ) ‖u‖2L2(θ) Q f (v),

where
Q f (u) = (n + 1)

∫
M

(
λk(θ)u2 −

n
n + 1

∥∥∥∇Hu
∥∥∥2 )

f Ψθ.
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Theorem 2.12. A pseudohermitian structure θ on M is critical for the functional λk+1
λk

if and only
if the quadratic form Q̃ f is indefinite on Ek(θ) ⊗ Ek+1(θ).

Proof. The case where λk+1(g) = λk(g) is obvious Q̃ f (u⊗ u) = 0. Assume that λk+1(θ) > λk(θ) and
let θ(t) be an analytic deformation of θ. From Theorem (2.4)

d
dt
λk(θ(t))

∣∣∣
t=0− and

d
dt
λk(θ(t))

∣∣∣
t=0+

are the least and the greatest eigenvalues of (πk ◦ ∆′b) on Ek(θ) respectively.
Similarly, d

dtλk(gt)
∣∣∣
t=0− and d

dtλk(gt)
∣∣∣
t=0+ are the greatest and the least eigenvalues of (πk+1 ◦∆′b) on

Ek(θ). Therefore,

λk(θ)2 d
dt
λk+1(θ(t))
λk(θ(t))

∣∣∣∣
t=0−

=

[
λk(θ)

d
dt
λk+1(θ(t))

∣∣∣
t=0− − λk+1(θ)

d
dt
λk(θ(t))

∣∣∣∣
t=0−

]
is the greatest eigenvalue of Pk on Ek(θ) ⊗ Ek+1(θ), and

λk(θ)2 d
dt
λk+1(θ(t))
λk(θ(t))

∣∣∣∣
t=0+

=

[
λk(θ)

d
dt
λk+1(θ(t))

∣∣∣∣
t=0+
− λk+1(θ(t))

d
dt
λk(θ(t))

∣∣∣∣
t=0+

]
is the least eigenvalue of Pk on Ek(θ) ⊗ Ek+1(θ). Hence, the criticality of θ for λk+1

λk
is equivalent

to the fact that Pk admits eigenvalues of both signs, which is equivalent to the indefiniteness of
Q̃ f . �

Proposition 2.13. Let M be a compact strictly pseudoconvex CR manifold. For any pseudohermi-
tian structure θ on M, the two following conditions are equivalent:

1. ∀ f ∈ A0(M, θ), the quadratic form Q̃ f is indefinite on Ek(θ) ⊗ Ek+1(θ).

2. There exist two finite families
{
u1, · · · , up

}
⊂ Ek(θ) and

{
v1, · · · , vq

}
⊂ Ek+1(θ) of eigenfunc-

tions associated with λk(θ) and λk+1(θ) respectively, such that

p∑
i

(
λk(θ)u2

i −
n

n + 1

∥∥∥∇Hui
∥∥∥2

)
=

q∑
j

(
λk+1(θ)v2

i −
n

n + 1

∥∥∥∇Hvi
∥∥∥2

)
(2.6)

Proof. 1. ⇒ (2) : Let us introduce the two following convex cones

K1 =

∑
i∈I

(
λk(θ)u2

i −
n

n + 1

∥∥∥∇Hui
∥∥∥2

)
; ui ∈ Ek(θ), I ⊂ N, I finite

 ⊂ L2(M, θ)

and

K2 =

∑
i∈I

(
λk+1(θ)v2

i −
n

n + 1

∥∥∥∇Hvi
∥∥∥2

)
; vi ∈ Ek+1(θ), I ⊂ N, I finite

 ⊂ L2(M, θ)

It suffices to prove that K1 and K2 have a nontrivial intersection. Indeed, otherwise, applying
classical separation theorems, we show the existence of h ∈ L2(M,Ψθ) such that, ∀w1 ∈

K1,w1 , 0, ∫
M

w1h > 0
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and ∀w2 ∈ K2, ∫
M

w1h ≤ 0

Therefore, ∀u ∈ Ek(θ) and ∀v ∈ Ek+1(θ), with u , 0 and v , 0, one has Q f (u) < 0, Q f (v) ≥ 0
and

Q̃ f (u ⊗ v) = λk+1(θ) ‖v‖2L2(θ) Q f (u) − λk(θ) ‖u‖2L2(θ) Q f (v)

≤ λk+1(θ) ‖v‖2L2(θ) Q f (u) < 0,

which implies that Q̃ f is negative definite on Ek(θ) ⊗ Ek+1(θ).

2. ⇒ (1) : Let
{
u1, · · · , up

}
⊂ Ek(θ) and

{
v1, · · · , vq

}
⊂ Ek+1(θ). From the identity (2.6), we get,

after taking the trace and integrating

p∑
i

∫
M

∥∥∥∇Hui
∥∥∥2

Ψθ =

q∑
j

∫
M

∥∥∥∇Hvi
∥∥∥2

Ψθ,

which gives,

λk(θ)
p∑
i

‖ui‖
2
L2(θ) = λk+1(θ)

q∑
j

∥∥∥v j
∥∥∥2

L2(θ) .

Therefore, ∑
i, j

Q̃ f (ui ⊗ v j) =
∑
i, j

λk+1(θ)
∥∥∥v j

∥∥∥2
L2(θ) Q f (ui) − λk(θ) ‖ui‖

2
L2(θ) Q f (v j).

Then (2.6) implies that
p∑
i

Q f (ui) =

q∑
j

Q f (v j).

Therefore,

∑
i, j

Q̃ f (ui ⊗ v j) =

 q∑
j

λk+1(θ)
∥∥∥v j

∥∥∥2
L2(θ) −

p∑
i

λk(θ) ‖ui‖
2
L2(θ)

 p∑
i

Q f (ui) = 0.

Consequently, Q̃ f is indefinite on Ek(θ) ⊗ Ek+1(θ). �

Theorem 2.14. Let M be a compact strictly pseudoconvex CR manifold. A pseudohermitian struc-
ture θ on M is critical for the functional λk+1

λk
restricted to C(θ) if and only if, there exist two fam-

ilies
{
u1, · · · , up

}
⊂ Ek(θ) and

{
v1, · · · , vq

}
⊂ Ek+1(θ) of eigenfunctions associated with λk(θ) and

λk+1(θ), respectively, such that

λk(θ)
p∑
i

u2
i − λk+1(θ)

q∑
j

v2
j =

n
n + 1

(
p∑
i

∥∥∥∇Hui
∥∥∥2
−

q∑
j

∥∥∥∇Hv j
∥∥∥2

). (2.7)

Proof. A straightforward calculation shows that the equation (2.6) are equivalent to the condition
(2) of Proposition 2.13. �
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2.4 A topology on the space of oriented contact forms

We study the behavior of the eigenvalues of a sublaplacian ∆b on a compact strictly pseudoconvex
CR manifold M, as functions on the set P+ of positively oriented contact forms on M by endowing
P+ with a natural metric topology.

Let M be a compact strictly pseudoconvex CR manifold of CR dimension n, without boundary.
Let P be the set of all C∞ pseudohermitian structures on M. Every θ ∈ P is a contact form on M
i.e. θ ∧ (dθ)n is a volume form. Let P± be the sets of θ ∈ P such that the Levi form Gθ is positive
definite (respectively negative definite). For θ ∈ P+ let ∆b be the sublaplacian

∆bu = −div(∇Hu) (2.8)

of (M, θ) acting on smooth real valued functions u ∈ C∞(M,R). As ∆b is a subelliptic operator (of
order 1/2) it has a discrete spectrum

0 = λ0(θ) < λ1(θ) ≤ λ2(θ) ≤ · · · ↑ +∞ (2.9)

(the eigenvalues of ∆b are counted with their multiplicities). Each eigenvalue λν(θ), ν = 0, 1, 2, · · · ,
is thought of as a function of θ ∈ P+. We shall deal mainly with the following problem: Is there
a natural topology on P+ such that each eigenvalue function λν : P+ → R is continuous? The
analogous problem for the spectrum of the Laplace-Beltrami operator on a compact Riemannian
manifold was solved by S. Bando & H. Urakawa, [90], and our main result is imitative of their
Theorem 2.2 (cf. op. cit., p. 155). We shall establish

Corollary 2.15. For every compact strictly pseudoconvex CR manifold M the space of positively
oriented contact forms P+ admits a natural complete distance function d : P+ × P+ → [0,+∞)
such that each eigenvalue function λk : P+ → R is continuous relative to the d-topology.

By a result of J.M. Lee, [59], for every θ ∈ P+ there is a Lorentzian metric Fθ ∈ Lor(C(M)) (the
Fefferman metric) on the total spaceM of the canonical circle bundle S 1 → C(M)

π
→ M. Also if

� is the Laplace-Beltrami operator of Fθ (the wave operator) then Spec(∆b) ⊂ Spec(�). Therefore
the eigenvalues λk may be thought of as functions λ↑k : C → R on the set C = {Fθ ∈ Lor(C(M)) :
θ ∈ P+} of all Fefferman metrics on M. On the other hand Lor(C(M)) may be endowed with the
distance function d∞g considered by P. Mounoud, [80] (associated to a fixed Riemannian metric
g on M) and hence (C, d∞g ) is itself a metric space. It is then a natural question whether λ↑k are
continuous functions relative to the d∞g -topology.

This section is organized as follows. The distance function d (in Corollary 2.15) is built in the
following. In § 2.5 we establish a Max-Mini principle (cf. Proposition 2.21) for the eigenvalues
of a sublaplacian. Then Corollary 2.15 follows from Theorem 2.22 in § 2.6. In § 2.7 we prove the
continuity of the eigenvalues with respect to the Fefferman metric (cf. Corollary 2.23) though only
as functions on C+ = {eu◦πFθ0 : u ∈ C∞(M,R), u > 0}.

Let {Uλ}λ∈Λ be a finite open covering of M such that the closure of each Uλ is contained in a
larger open set Vλ which is both the domain of a local frame {Xa : 1 ≤ a ≤ 2n} ⊂ C∞(Vλ,H(M))
with Xα+n = JXα for any 1 ≤ α ≤ n, and a coordinate neighborhood with the local coordinates
(x1, · · · , x2n+1). For each point x ∈ M let Px (respectively S x) be the set of all symmetric positive
definite (respectively merely symmetric) bilinear forms on Tx(M). If ϕ, ψ ∈ S x then we consider
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the anti-reflexive partial order relation ϕ < ψ ⇐⇒ ψ − ϕ ∈ Px. Next let ρ′′x : Px × Px → [0,+∞)
be the distance function given by

ρ′′x (ϕ, ψ) = inf
{
δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ

}
for any ϕ, ψ ∈ Px. Then (Px , ρ

′′
x ) is a complete metric space (by (iii) of Lemma 1.1 in [90], p.

158).

LetM be the set of all Riemannian metrics on M, so that gθ ∈ M for every θ ∈ P+. Following
[90] one may endowM with a complete distance function ρ. Indeed as M is compact one may set

ρ′′(g1 , g2) = sup
x∈M

ρ′′x (g1,x , g2,x), g1 , g2 ∈ M.

Also let S (M) be the space of all C∞ symmetric (0, 2)-tensor fields on M, organized as a Fréchet
space by the family of seminorms {| · |k : k ∈ N ∪ {0}} where

|g|k =
∑
λ∈Λ

|g|λ,k , |g|λ,k = sup
x∈Uλ

∑
|α|≤k

∣∣∣Dαgi j(x)
∣∣∣ ,

where Dα = ∂|α|/∂(x1)α1 · · · ∂(x2n+1)α2n+1 and gi j = g(∂/∂xi , ∂/∂x j) ∈ C∞(Vλ,R) for any g ∈
S (M). The topology of S (M) as a locally convex space is compatible to the distance function

ρ′(g1 , g2) =

∞∑
k=0

1
2k

|g1 − g2|k

1 + |g1 − g2|k
, g1 , g2 ∈ S (M).

In particular (S (M), ρ′) is a complete metric space. If ρ(g1 , g2) = ρ′(g1 , g2) + ρ′′(g1 , g2) then
(M, ρ) is a complete metric space (cf. Proposition 2 in [90], p. 158). Each metric g ∈ M deter-
mines a Laplace-Beltrami operator ∆g hence the eigenvalues of ∆g may be though of as functions
of g and as such the eigenvalues are (by Theorem 2.2 in [90], p. 161) continuous functions on
(M, ρ). To deal with the similar problem for the spectrum of a sublaplacian, we start by observ-
ing that the natural counterpart of M in the category of strictly pseudoconvex CR manifolds is
the set MH of all sub-Riemannian metrics on (M,H(M)). Nevertheless only a particular sort of
sub-Riemannian metric gives rise to a sublaplacian i.e. ∆b is associated to Gθ ∈ MH for some
positively oriented contact form θ ∈ P+. Of course P+ ⊂ Ω1(M) and one may endow Ω1(M) with
the C∞ topology. One may then attempt to repeat the arguments in [90] (by replacing S (M) with
Ω1(M)). The situation at hand is however much simpler since, once a contact form θ0 ∈ P+ is fixed,
all others are parameterized by C∞(M,R) i.e. for any θ ∈ P+ there is a unique u ∈ C∞(M,R) such
that θ = euθ0. We may then use the canonical Fréchet space structure (and corresponding complete
distance function) of C∞(M,R). Precisely, for every u ∈ C∞(M,R), λ ∈ Λ and k ∈ N ∪ {0} we set

pλ,k(u) = sup
x∈Uk

∑
|α|≤k

∣∣∣Dαu(x)
∣∣∣ ,

pk(u) =
∑
λ∈Λ

pλ,k(u) , |u|C∞ =

∞∑
k=0

1
2k

pk(u)
1 + pk(u)

.

If θ0 ∈ P+ is a fixed contact form then we set

d′(θ1 , θ2) = |u1 − u2|C∞ , θ1 , θ2 ∈ P+ ,

where ui ∈ C∞(M,R) are given by θi = euiθ0 for any i ∈ {1, 2}. The definition of d′ doesn’t depend
upon the choice of θ0 ∈ P+.
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Lemma 2.16. (P+ , d′) is a complete metric space.

Proof. Let {θν}ν≥1 be a Cauchy sequence in (P+ , d′). If uν ∈ C∞(M,R) is the function deter-
mined by θν = euνθ0 then (by the very definition of d′) {uν}ν≥1 is a Cauchy sequence in C∞(M,R).
Here C∞(M,R) is organized as a Fréchet space by the (countable, separating) family of seminorms
{pk : k ∈ N ∪ {0}}. Hence there is u ∈ C∞(M,R) such that |uν − u|C∞ → 0 as ν → ∞. Finally if
θ = euθ0 ∈ P+ then d′(θν , θ)→ 0 as ν→ ∞. Q.e.d.

Let S (H) ⊂ H(M)∗ ⊗ H(M)∗ be the subbundle of all bilinear symmetric forms on H(M). For
every G ∈ C∞(S (H)), k ∈ Z, k ≥ 0, and λ ∈ Λ we set

|G|λ,k = sup
x∈Uλ

∑
|α|≤k

2n∑
a,b=1

∣∣∣DαGab(x)
∣∣∣ ,

|G|k =
∑
λ∈Λ

|G|λ,k , |G|C∞ =

∞∑
k=0

1
2k

|G|k
1 + |G|k

,

where Gab = G(Xa, Xb) ∈ C∞(Vλ,R). Moreover we set

ρ′H(G1 , G2) = |G1 −G2|C∞ , G1,G2 ∈ C∞(S (H)).

Lemma 2.17. {| · |k : k ∈ N ∪ {0}} is a countable separating family of seminorms organizing
X = C∞ (S (H)) as a Fréchet space. In particular (X, ρ′H) is a complete metric space.

Proof. For each k ∈ N ∪ {0} and N ∈ N we set

V(k,N) =

{
G ∈ X : |G|k <

1
N

}
. (2.10)

Let B be the collection of all finite intersections of sets (2.10). Then B is (cf. e.g. Theorem 1.37
in [104], p. 27) a convex balanced local base for a topology τ on X which makes X into a locally
convex space such that every seminorm | · |k is continuous and a set E ⊂ X is bounded if and only
if every | · |k is bounded on E. τ is compatible with the distance function ρ′H . Let {Gm}m≥1 ⊂ X

be a Cauchy sequence relative to ρ′H . Thus for every fixed k ∈ N ∪ {0} and N ∈ N one has
Gm −Gp ∈ V(k,N) for m, p sufficiently large. Consequently∣∣∣Dα(Gm)ab(x) − Dα(Gp)ab(x)

∣∣∣ < 1
N
,

x ∈ Uλ , λ ∈ Λ, |α| ≤ k, 1 ≤ a, b ≤ 2n.

It follows that each sequence {Dα(Gm)ab}m≥1 converges uniformly on Uλ to a function Gα
ab. In

particular for α = 0 one has (Gm)ab(x)→ G0
ab(x) as m→ ∞, uniformly in x ∈ Uλ. If λ, λ′ ∈ Λ are

such that Uλ ∩ Uλ′ , ∅ and

X′b = Aa
b Xa , A ≡

[
Aa

b

]
: Uλ ∩ Uλ′ → GL(2n,R),

is a local transformation of the frame in H(M) then

(Gm)′ab = Ac
a Ad

b (Gm)cd on Uλ ∩ Uλ′
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so that (for m → ∞) G′0ab = Ac
aAd

bG0
cd on Uλ ∩ Uλ′ . Thus G0

ab ∈ C∞(Uλ) glue up to a (globally
defined) bilinear symmetric form G0 on H(M) and Gm → G0 in X as m→ ∞. Q.e.d.

For each point x ∈ M let P(H)x be the set of all symmetric positive definite bilinear forms on
H(M)x. If ϕ, ψ ∈ S (H)x then we consider the anti-reflexive partial order relation

ϕ < ψ⇐⇒ ψ − ϕ ∈ P(H)x .

Next let ρ′′x : P(H)x × P(H)x → [0,+∞) be given by

ρ′′x (ϕ, ψ) = inf
{
δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ

}
for any ϕ, ψ ∈ P(H)x.

Lemma 2.18. ρ′′x is a distance function on P(H)x.

Proof. As e−δϕ < ψ < eδϕ is equivalent to e−δψ < ϕ < eδψ, it follows that ρ′′x is symmetric.
To prove the triangle inequality we assume that ρ′′x (ϕ, ψ) > ρ′′x (ϕ, χ) + ρ′′(χ, ψ) for some ϕ, ψ, χ ∈
P(H)x. Then

ρ′′x (ϕ, ψ) − ρ′′x (ϕ, χ) > inf{δ > 0 : exp(−δ)χ < ψ < exp(δ)χ}

hence there is δ2 > 0 such that e−δ2χ < ψ < eδ2χ and ρ′′x (ϕ, ψ) − ρ′′x (ϕ, χ) > δ2. Similarly

ρ′′x (ϕ, ψ) − δ2 > inf{δ > 0 : exp(−δ)ϕ < χ < exp(δ)ϕ}

yields the existence of a number δ1 > 0 such that e−δ1ϕ < χ < eδ1ϕ and ρ′′x (ϕ, ψ) − δ2 > δ1. Let
us set δ ≡ δ1 + δ2. The inequalities written so far show that e−δϕ < ψ < eδϕ and ρ′′x (ϕ, ψ) > δ, a
contradiction. Finally, let us assume that ρ′′x (ϕ, ψ) = 0 so that for any k ∈ N

inf{δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ} <
1
k

i.e. there is δk > 0 such that e−δkϕ < ψ < eδkϕ and δk < 1/k. Thus limk→∞ δk = 0 and ψ − e−δkϕ ∈

P(H)x shows (by passing to the limit with k → ∞ in ψ(v, v) − e−δkϕ(v, v) > 0, v ∈ H(M)x \ {0})
that ϕ < ψ. Similarly eδkϕ−ψ ∈ P(H)x yields in the limit ψ < ϕ, and we may conclude that ϕ = ψ.
Viceversa, if ϕ ∈ P(H)x then

{δ > 0 : (1 − e−δ)ϕ, (eδ − 1)ϕ ∈ P(H)x} = (0,+∞)

hence ρ′′x (ϕ, ϕ) = 0. Q.e.d.

Lemma 2.19. i) (P(H)x , ρ
′′
x ) is a complete metric space.

ii) Let {ϕ j} j∈N ⊂ P(H)x such that lim j→∞ ϕ j = ϕ ∈ P(H)x in the ρ′′x -topology. Then lim j→∞ ϕ j(v,w) =

ϕ(v,w) for any v,w ∈ H(M)x.

Proof. i) Let {ϕ j} j∈N ⊂ P(H)x be a Cauchy sequence in the ρ′′x -topology i.e. for any ε > 0 there
is jε ∈ N such that ρ′′x (ϕ j+p, ϕ j) > ε for any j ≥ jε and any p = 1, 2, · · · . Hence there is δε > 0
such that e−δεϕ j < ϕ j+p < eδεϕ j and δε < ε. Consequently∣∣∣logϕ j+p(v, v) − logϕ j(v, v)

∣∣∣ < δε < ε
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for any v ∈ H(M)x \ {0}. Therefore if

ξ j ≡ (logϕ j(v, v), · · · , logϕ j(v, v)) ∈ R2n

then {ξ j} j∈N is a Cauchy sequence in R2n. Let then ξ = lim j→∞ ξ j and let ϕ : H(M)x ×H(M)x → R

be the bilinear form given by ϕ(v, v) = exp(ξa) for any v ∈ H(M)x \ {0} followed by polarization.
Here ξ = (ξ1, · · · , ξ2n). Then ϕ ∈ P(H)x and lim j→∞ ϕ j = ϕ in the ρ′′x -topology.

ii) If ϕ j → ϕ as j → ∞ then logϕ j(v, v) → logϕ(v, v) as j → ∞, for any v ∈ H(M)x \ {0}.
Then lim j→∞ ϕ j(v, v) = ϕ(v, v) uniformly in v and statement (ii) follows by polarization. Q.e.d.

As M is compact we may set

ρ′′H(G1,G2) = sup
x∈M

ρ′′x (G1,x , G2,x),

ρH(G1,G2) = ρ′H(G1,G2) + ρ′′H(G1,G2), G1,G2 ∈ MH .

Also let d be the distance function on P+ given by

d(θ1 , θ2) = d′(θ1 , θ2) + ρ′′H(Gθ1 , Gθ2), θ1 , θ2 ∈ P+ .

Proposition 2.20. i) (MH , ρH) is a complete metric space.

ii) The map θ ∈ P+ 7→ Gθ ∈ MH of (P+ , d) into (MH , ρH) is continuous.

iii) (P+ , d) is a complete metric space.

iv) Two fixed contact forms θ0 , θ̃0 define equivalent distance functions d, d̃ on P+.

Proof. i) Let {G j} j≥1 be a Cauchy sequence in (MH , ρH). Then {G j} j≥1 is a Cauchy sequence
in both (X , ρ′H) and (MH , ρ

′′
H). Yet (X, ρ′H) is complete (by Lemma 4.2). Thus ρ′H(G j , G)→ 0 as

j→ ∞ for some G ∈ X. In particular

lim
j→∞

G j,x(v,w) = Gx(v,w) (2.11)

for every x ∈ M and v,w ∈ H(M)x. On the other hand, as {G j} j≥1 is Cauchy in (MH , ρ
′′
H), for

every ε > 0 there is Nε ≥ 1 such that

ρ′′x (Gi,x , G j,x) ≤ ρ′′H(Gi , G j) < ε (2.12)

for every i, j ≥ Nε and x ∈ M. Thus {G j,x} j≥1 is Cauchy in the complete (by Lemma 2.19)
metric space (P(H)x , ρ

′′
x ) so that ρ′′x (G j,x , ϕ)→ 0 as j→ ∞ for some ϕ ∈ P(H)x. Then (by (iii) in

Lemma 2.19) lim j→∞G j,x(v,w) = ϕ(v,w) for every v,w ∈ H(M)x hence Gx = ϕ yielding G ∈ MH .

ii) Let {θν}ν≥1 ⊂ P+ such that d(θν, θ) → 0 for ν → ∞ for some θ ∈ P+. If θν = euνθ0
and θ = euθ0 then |uν − u|C∞ → 0 as ν → ∞. Then Gθν = euνGθ0 and Gθ = euGθ0 . Since
Dαuν → Dαu as ν → ∞, uniformly on Uλ, for any λ ∈ Λ, |α| ≤ k and k ∈ N ∪ {0}, it follows that
Dα(Gθν)ab → Dα(Gθ)ab as ν → ∞ uniformly on Uλ for any 1 ≤ a, b ≤ 2n. Hence Gθν → Gθ in X
so that (by the very definition of d and ρH) ρH(Gθν , Gθ)→ 0. Q.e.d.

iii) If {θν}ν≥1 is a Cauchy sequence in (P+ , d) then {uν}ν≥1 is Cauchy in (P+ , d′) as well.
Yet (by Lemma 2.16) (P+ , d′) is complete hence d′(θν , θ) → 0 for some θ ∈ P+. Then, as a
byproduct of the proof of statement (ii), one has Gθν → Gθ in X. Finally, the verbatim repetition
of the arguments in the proof of statement (i) yields ρ′′H(Gθν , Gθ)→ 0 so that d(θν , θ)→ 0. Q.e.d.
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2.5 A max-mini principle

For each k ∈ N ∪ {0} we consider a (k + 1)-dimensional real subspace Lk+1 ⊂ C∞(M,R) and set

Λθ(Lk+1) = sup

‖∇H f ‖2
L2

‖ f ‖2
L2

: f ∈ Lk+1 \ {0}

 .
Here

‖ f ‖L2 =

(∫
M

f 2 Ψθ

) 1
2

, ‖X‖L2 =

(∫
M

gθ(X, X) Ψθ

) 1
2

,

for any f ∈ C∞(M,R) and any X ∈ X(M). Let {uν}ν≥0 ⊂ C∞(M,R) be a complete orthonormal
system relative to the L2 inner product ( f , g)L2 =

∫
M f g Ψθ such that uν ∈ Eigen(∆b ; λν(θ)) for

every ν ≥ 0. If f ∈ C∞(M,R) then f =
∑∞
ν=0 aν( f ) uν (L2 convergence) for some aν( f ) ∈ R. Let

L0
k+1 be the subspace of C∞(M,R) spanned by {uν : 0 ≤ ν ≤ k}. Let (∇H)∗ be the formal adjoint of
∇H i.e.

(∇H f , X)L2 = ( f , (∇H)∗X)L2

for any f ∈ C∞(M,R) and X ∈ C∞(H(M)). Mere integration by parts shows that

(∇H)∗X = −div(X), X ∈ C∞(H(M)),

implying (by (2.8)) the useful identity

‖∇H f ‖2L2 = ( f , ∆b f )L2 , f ∈ C∞(M,R). (2.13)

Let f ∈ L0
k+1 \ {0} so that f =

∑k
ν=0 aνuν for some aν ∈ R. Then (by (2.13))

∥∥∥∇H f
∥∥∥2

L2 =

k∑
ν=0

a2
ν λν(θ) ≤ λk(θ)

k∑
ν=0

a2
ν = λk(θ) ‖ f ‖2L2

hence
Λθ(L0

k+1) ≤ λk(θ). (2.14)

Our purpose in this section is to establish

Proposition 2.21. Let M be a compact strictly pseudoconvex CR manifold and θ ∈ P+ a positively
oriented contact form. Then

λk(θ) = inf
Lk+1

Λθ(Lk+1) (2.15)

where the g.l.b. is taken over all subspaces Lk+1 ⊂ C∞(M,R) with dimR Lk+1 = k + 1.

So far (by (2.14)) λk(θ) ≥ Λθ(L0
k+1) ≥ infLk+1 Λθ(Lk+1). The proof of Proposition 2.21 is by

contradiction. We assume that λk(θ) > infLk+1 Λθ(Lk+1) i.e. there is a (k + 1)-dimensional subspace
Lk+1 ⊂ C∞(M,R) such that Λθ(Lk+1) < λk(θ). Then Λθ(Lk+1) is finite and

‖ f ‖2L2Λθ(Lk+1) ≥ ‖∇H f ‖2L2 , f ∈ Lk+1 .

Then (by (2.13))
∞∑
ν=0

aν( f )2Λθ(Lk+1) ≥
∞∑
ν=0

λν(θ)aν( f )2
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so that ∑
Λθ(Lk+1)≥Λν(θ)

aν( f )2 [Λθ(Lk+1) − λν(θ)] ≥ (2.16)

≥
∑

Λθ(Lk+1)<λν(θ)

aν( f )2 [λν(θ) − Λθ(Lk+1)] .

Let Φ : Lk+1 → C∞(M,R) be the linear map given by

Φ( f ) =

m∑
ν=0

aν( f ) uν , f ∈ Lk+1 ,

where m = max{ν ≥ 0 : λν(θ) ≤ Λθ(Lk+1)}. Note that 0 ≤ m ≤ k − 1 (by the contradiction
assumption). We claim that

Ker(Φ) , (0). (2.17)

Of course (2.17) is only true within the contradiction loop. The statement follows from dimRΦ(Lk+1) ≤
m + 1 ≤ k < k + 1 (hence Φ cannot be injective). Let (by (2.17)) f0 ∈ Lk+1 such that Φ( f0) = 0
and f0 , 0. Then aν( f0) = 0 for any 0 ≤ ν ≤ m i.e. whenever Λθ(Lk+1) ≥ λν(θ). Applying (2.16)
to f = f0 yields aν( f0) = 0 whenever Λθ(Lk+1) < λν(θ). Thus f0 = 0, a contradiction.

2.6 Continuity of eigenvalues

The scope of § 2.6 is to establish

Theorem 2.22. Let M be a compact strictly pseudoconvex CR manifold. If δ > 0 and θ, θ̂ ∈ P+

are two contact forms on M such that d(θ , θ̂) < δ then e−δ λk(θ) ≤ λk(θ̂) ≤ eδ λk(θ) for any k ≥ 0.

Proof. For any x ∈ M

δ > inf
{
ε > 0 : e−εGθ,x < Gθ̂,x < eεGθ,x

}
i.e. there is 0 < ε < δ such that Gθ̂,x − e−εGθ,x ∈ P(H)x and eεGθ,x − Gθ̂,x ∈ P(H)x. There is a
unique u ∈ C∞(M,R) such that θ̂ = euθ. Consequently

θ̂ ∧ (dθ̂)n = e(n+1)u θ ∧ (dθ)n . (2.18)

On the other hand e−δGθ,x(v, v) < Gθ̂,x(v, v) < eδGθ,x(v, v) for any v ∈ H(M)x \ {0} implies |u| < δ.
Then for every f ∈ C∞(M) (by (2.18))

e−(n+1)δ
∫

M
f 2 Ψθ ≤

∫
M

f 2 Ψθ̂ ≤ e(n+1)δ
∫

M
f 2 Ψθ. (2.19)

Moreover
∇̂H f = e−u ∇H f (2.20)

where ∇̂H f is the horizontal gradient of f with respect to θ̂. Thus (by (2.20)) ‖∇̂H f ‖2
θ̂

= e−u‖∇H f ‖2θ <
eδ‖∇H f ‖2θ so that (by (2.18))

e−(n+2)δ
∫

M
‖∇H f ‖2θ Ψθ ≤

∫
M
‖∇̂H f ‖2

θ̂
Ψθ̂ ≤ (2.21)
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≤ e(n+2)δ
∫

M
‖∇H f ‖2θ Ψθ .

Finally (by (2.19)-(2.20))

e−δ
‖∇H f ‖2

L2

‖ f ‖2
L2

≤

∫
M
‖∇̂H f ‖2

θ̂
Ψθ̂∫

M
f 2 Ψθ̂

≤ eδ
‖∇H f ‖2

L2

‖ f ‖2
L2

so that (by the Max-Mini principle)

e−δ λk(θ) ≤ λk(θ̂) ≤ eδ λk(θ). (2.22)

Theorem 2.22 is proved. Corollary 2.15 follows from (2.22).

2.7 Spectra of ∆b and �

Let Fθ be the Fefferman metric of (M, θ) and � the corresponding wave operator (the Laplace-
Beltrami operator of (C(M), Fθ)). We set M = C(M) for simplicity. Let g be a fixed Riemannian
metric on M. The space S (M) of all symmetric tensor fields may be identified with the space of
all fields of endomorphisms of T (M) which are symmetric with respect to g i.e. for each h ∈ S (M)
let h̃ ∈ C∞(End(T (M))) be given by

g(h̃X,Y) = h(X,Y), X,Y ∈ X(M).

From now on we assume that M is compact. ThenM is compact as well (asM is the total space of
a principal bundle with compact base and compact fibres) and we endow S (M) with the distance
function

d∞g (h1 , h2) = sup
z∈M

[
trace

(
ϕ2

z

)]1/2
, h1, h2 ∈ S (M),

where ϕ = h̃1 − h̃2 and ϕ2
z = ϕz ◦ ϕz. The set Lor(M) of all Lorentz metrics onM is an open set of

(S (M), d∞g ) and for any pair g1, g2 of Riemannian metrics onM the distance functions dg1 and dg2

are uniformly equivalent (cf. e.g. [80], p. 49). We shall use the topology induced by d∞g on Lor(M)
(and therefore on C ⊂ Lor(M)). By a result of J.M. Lee, [59], the sublaplacian ∆b of (M, θ) is the
pushforward of the wave operator i.e. π∗� = ∆b. In particular Spec(∆b) ⊂ Spec(�). Thus each
λk : P+ → R may be thought of as a function λ↑k : C → R such that λ↑k ◦ F = λk for every k ≥ 0,
where F : P+ → C is the map given by F(θ) = Fθ for every θ ∈ P+. As another consequence of
Theorem 2.22 we establish

Corollary 2.23. Let M be a compact strictly pseudoconvex CR manifold and let g be an arbitrary
Riemannian metric on M = C(M). Let θ0 ∈ P+ be a fixed contact form and P++ = {euθ0 : u ∈
C∞(M,R), u > 0}. If C+ = {Fθ : θ ∈ P++} then for every k ∈ N ∪ {0} the function λ↑k : C+ → R is
continuous relative to the d∞g -topology.

Proof. Let θi ∈ P+, i ∈ {1, 2}, and let us set ϕ = F̃θ1 − F̃θ2 . Let {Ep : 1 ≤ p ≤ 2n + 2} be a local
g-orthonormal frame on T (M), defined on the open setU ⊂ M. Then

trace
(
ϕ2

)
=

2n+2∑
p=1

g(ϕ2Ep , Ep) =
∑

p

{
Fθ1(ϕEp , Ep) − Fθ2(ϕEp , Ep)

}
84



2.7. SPECTRA OF ∆B AND �

onU. On the other hand if ϕEp = ϕ
q
pEq then ϕq

p = F(θ1)(Ep , Eq) − F(θ2)(Ep , Eq) hence

trace
(
ϕ2

)
=

(
eu1◦π − eu2◦π

)2
‖Fθ0‖

2
g (2.23)

where ui ∈ C∞(M,R) is given by θi = euiθ0 and ‖Fθ0‖g is the norm of Fθ0 as a (0, 2)-tensor field on
M with respect to g. Then (by (2.23))

d∞g
(
Fθ1 , Fθ2

)
= sup
M

∣∣∣eu1◦π − eu2◦π
∣∣∣ ‖Fθ0‖g . (2.24)

AsM is compact a = infz∈M ‖Fθ0‖g,z > 0. Indeed (by compactness) a = ‖Fθ0‖g,z0 for some z0 ∈ M.
If a = 0 then Fθ0 , z0 = 0, a contradiction (as Fθ0 is Lorentzian, and hence nondegenerate). Let ε > 0
such that d∞g (Fθ1 , Fθ2) < ε. Then |eu1 − eu2 | < ε/a everywhere on M. As both u1 > 0 and u2 > 0 it
follows that |u1 − u2| < log(1 + ε/a). Indeed eu1 − eu2 < ε/a is equivalent to eu1−u2 < 1 + (ε/a)e−u2

hence (as u2 > 0)
u1 − u2 < log[1 + (ε/a) e−u2] < log(1 + ε/a).

Therefore (
1 +

ε

a

)−1
Gθ1 , x(v, v) < Gθ2 , x(v, v) <

(
1 +

ε

a

)
Gθ1 , x(v, v)

for any v ∈ H(M)x\{0} and any x ∈ M. Consequently ρ′′H(Gθ1 , Gθ2) < log(1+ε/a). The arguments
in § 5 then yield (

1 +
ε

a

)−1
λ↑k(Fθ1) ≤ λ↑k(Fθ2) ≤

(
1 +

ε

a

)
λ↑k(Fθ1)

and Corollary 2.23 follows. The problem of the behavior of λ↑k : C → R is open. So does the
more general problem of the behavior of the spectrum of the wave operator onM with respect to a
change of F ∈ Lor(M).
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Chapter 3

Subelliptic Harmonic Maps and
Spectrum of CR Manifolds

3.1 Levi tension field

Let (M, θ) be a strictly pseudoconvex CR manifold, of CR dimension n, and let (N, h) be a Rie-
mannian manifold, where h is its Riemannian metric. The concept of energy density of a smooth
map f : M −→ N was adapted to the CR case by E. Barletta & S. Dragomir & H. Urakawa, [30],
as follows. Let f −1T (N) → M be the pullback bundle i.e. ( f −1T (N))x = T f (x)(N) for any x ∈ M.
For every X ∈ X(M) we consider the section f∗X ∈ C∞( f −1T (N)) defined by

( f∗X)(x) = (dx f )Xx , x ∈ M.

The natural lift Y f ∈ C∞( f −1T (N)) of Y ∈ X(N) is given by

Y f (x) = Y f (x) , x ∈ M.

In particular if (V, yi) is a local coordinate system on N and si = (∂/∂yi) f ∈ C∞(U, f −1T (N)) is the
natural lift of the local vector field ∂/∂yi then {si : 1 ≤ i ≤ ν} is a local frame in f −1T (N) → M
defined on the open set U = f −1(V). Here ν = dim(N). Let h f = f −1h be the pullback of h by f
i.e. the Riemannian bundle metric on f −1T (N)→ M locally given by

h f (si , s j) = h
(
∂

∂yi ,
∂

∂y j

)
◦ f , 1 ≤ i, j ≤ ν.

For further use we denote by C( f −1T (N)) and C( f −1T (N), h f ) the affine space of all connections
in the vector bundle f −1T (N) → M, respectively the affine subspace of all D ∈ C( f −1T (N)) such
that Dh f = 0. Let eb( f ) : M → R be defined by

eb( f ) =
1
2

traceGθ(ΠH f ∗h). (3.1)

Here ΠH f ∗h is the restriction of f ∗h to H(M) ⊗ H(M). Let x ∈ M be an arbitrary point and
{Xa : 1 ≤ a ≤ 2n} a local frame of the Levi distribution H(M), defined on an open neighborhood
U ⊂ M of x. Then

eb( f )x =
1
2

2n∑
a=1

h f (x)
(
(dx f )Xa,x , (dx f )Xa,x

)
. (3.2)
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By a result in [30] (cf. Theorem 3.1 there) the first variation of the energy functional

Eb( f ) =

∫
M

eb( f ) Ψθ (3.3)

is
d
dt
{Eb( ft)}t=0 = −

∫
M

h f (Hb( f ) , V) Ψθ

where Hb( f ) ∈ C∞( f −1T (N)) is given by

Hb( f ) = traceGθ

(
ΠHβ f

)
. (3.4)

The section Hb( f ) in f −1T (N) → M is referred to as the Levi tension field of f . Here β f is the
vector valued bilinear form on H(M) given by

β f (X,Y) = ∇
f
X f∗Y − f∗∇XY, X,Y ∈ X(M),

and ΠHβ f denotes the restriction of β f to H(M) ⊗ H(M). Also ∇ f = f −1∇h ∈ C( f −1T (N)) is the
pullback by f of the Levi-Civita connection to ∇h of (N, h). Moreover ∇ is the Tanaka-Webster
connection of (M, θ). Locally

Hb( f ) =

2n∑
a=1

∇
f
Xa

f∗Xa − f∗∇Xa Xa . (3.5)

Mappings with Hb( f ) = 0 are called pseudo-harmonic by E. Barletta & S. Dragomir & H. Urakawa
[30]. In the case where (N, h) is the standard Rm, it is clear that

Hb( f ) = (∆b f1, ...,∆b fm). (3.6)

For the natural inclusion j : S2n+1 ↪→ Cn+1 of S2n+1, the form β j is given by, β j(X,Y) =

− 〈X,Y〉Cn+1 ~x + 1
2 〈JX,Y〉Cn+1 J~x, where ~x is the position vector field. Thus,

Hb( j) = −2n ~x. (3.7)

In the particular case where f is an isometric immersion from (M, gθ) to (N, h), one has (see [30,
p. 740])

Hb( f ) = H( f ) − B f (T,T ),

where B f is the second fundamental form and H( f ) = tracegθB f is the mean curvature vector of
f .

In the sequel we will focus on maps f : (M, θ) −→ (N, h) that preserve lengths in the horizontal
directions as well as the orthogonality between H(M) and T , that is, ∀X ∈ H(M),

|d f (X)|h = |X|Gθ and 〈d f (X), d f (T )〉h = 0,

which also amounts to f ∗h = gθ+(µ−1)θ2 for some nonnegative function µ on M. For convenience,
such a map will be termed semi-isometric. Notice that the dimension of the target manifold N
should be at least 2n. When the dimension of N is 2n, then a semi-isometric map f : (M, θ) −→
(N, h) is noting but a Riemannian submersion satisfying d f (T ) = 0. Important examples are
given by the standard projection from the Heisenberg group Hn to R2n and the Hopf fibration
S2n+1 → CPn.
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Lemma 3.1. Let (M, θ) be a strictly pseudoconvex CR manifold and let (N, h) be a Riemannian
manifold. If f : (M, θ) −→ (N, h) is a C2 semi-isometric map, then the form β f takes its values
in the orthogonal complement of d f (H(M)). In particular, the vector Hb( f ) is orthogonal to
d f (H(M)).

Proof. Let X,Y and Z be three horizontal vector fields. Since the Levi-Civita connection of (N, h)
is torsionless, one has ∇ f

Xd f (Y) − ∇ f
Yd f (X) = d f ([X,Y]). From the properties of the torsion of the

Tanaka-Webster connection ∇, one has ∇XY − ∇Y X = [X,Y]H . Thus,

β f (X,Y) − β f (Y, X) = θ([X,Y])d f (T ).

Since d f (T ) is orthogonal to d f (H(M)), we deduce the following symmetry property:

〈β f (X,Y), d f (Z)〉h = 〈β f (Y, X), d f (Z)〉h. (3.8)

On the other hand, we have,

Z · 〈d f (X), d f (Y)〉h = Z · 〈X,Y〉Gθ . (3.9)

Since Gθ is parallel with respect to the Tanaka-Webster connection ∇ and h is parallel with respect
to the Levi-Civita connection ∇h, one gets

Z · 〈d f (X), d f (Y)〉h = 〈∇
f
Zd f (X), d f (Y)〉h + 〈d f (X),∇ f

Zd f (Y)〉h

and

Z · 〈X,Y〉Gθ = 〈∇ZX,Y〉Gθ + 〈X,∇ZY〉Gθ

= 〈d f (∇ZX), d f (Y)〉h + 〈d f (X), d f (∇ZY)〉h

where the last equality comes from the fact that ∇ZX and ∇ZY are horizontal. Replacing into (3.9)
we obtain

〈∇
f
Zd f (X) − d f (∇ZX), d f (Y)〉h + 〈∇

f
Zd f (Y) − d f (∇ZY), d f (X)〉h = 0.

Therefore, ∀ X,Y,Z ∈ H(M),

〈β f (Z, X), d f (Y)〉h + 〈β f (Z,Y), d f (X)〉h = 0. (3.10)

Taking X = Y in (3.10) we obtain, ∀ X,Z ∈ H(M),

〈β f (Z, X), d f (X)〉h = 0. (3.11)

Now, taking Z = X in (3.10) and using (3.8) and (3.11), we get, ∀ X,Y ∈ H(M),

〈β f (X, X), d f (Y)〉h = 0.

The symmetry property (3.8) enables us to conclude. �

A direct consequence of Lemma 3.1 is the following

Corollary 3.2. If f : (M, θ) −→ (N, h) is a Riemannian submersion from a strictly pseudoconvex
CR manifold (M, θ) to a Riemannian manifold (N, h) with d f (T ) = 0, then β f = 0 and Hb( f ) = 0.
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3.2 Semi-isometric maps into Euclidean space

Let (M, θ) be a strictly pseudoconvex CR manifold and let Ω be a bounded (relatively compact)
domain of M. In the case where M is a closed manifold, we allow Ω to be equal to the whole
of M. We are interested in Schrödinger-type operator −∆b + V where V is a function on Ω. We
assume in all the sequel that the spectrum of −∆b + V in Ω, with Dirichlet boundary conditions
if ∂Ω , ∅, is discrete and bounded from below. We will always denote by {λ j(θ)} j≥1 the non
decreasing sequence of eigenvalues of −∆b + V and by {u j} j≥1 a complete orthonormal family of
eigenfunctions in Ω with (−∆b + V)u j = λ j(θ)u j.

Theorem 3.3. Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 and
let f : (M, θ) −→ Rm be a semi-isometric C2 map. The sequence of eigenvalues {λ j(θ)} j≥1 of
the Schrödinger-type operator −∆b + V in a bounded domain Ω ⊂ M, with Dirichlet boundary
conditions if Ω , M, satisfies for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) +
1
4

Di
)

(3.12)

with

Di =

∫
Ω

(
|Hb( f )|2Rm − 4V

)
u2

i Ψθ.

Moreover, if V is bounded below on Ω, then for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) +
1
2n

D∞ (3.13)

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) +

1
4

(
(1 +

2
n

)k
1
n − 1

)
D∞ (3.14)

with D∞ = supΩ

(
|Hb( f )|2Rm − 4V

)
.

Applying this result to the standard CR sphere whose standard embedding j : S2n+1 → Cn+1

satisfies |Hb( j)|2
Cn+1 = 4n2 (see (3.7)), we get the following

Corollary 3.4. Let Ω be a domain in the standard CR sphere S2n+1 ⊂ Cn+1. The eigenvalues of the
operator −∆b + V in Ω, with Dirichlet boundary conditions if Ω , S2n+1, satisfy, for every k ≥ 1
and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) + n2 − Ti
)

with Ti =
∫
Ω

Vu2
i Ψθ. Moreover, if V is bounded below on Ω, then, for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) + 2n −
2
n

inf
Ω

V
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and
λk+1(θ) ≤ (1 +

2
n

)k
1
nλ1(θ) + C(n, k,V)

with C(n, k,V) =
(
(1 + 2

n )k
1
n − 1

) (
n2 − infΩ V

)
.

Theorem 3.3 also applies to the Heisenberg group Hn endowed with its standard CR structure.
The corresponding sub-Laplacian is nothing but the operator ∆Hn = 1

4
∑

j≤n(X2
j + Y2

j ) (see section
3.4 for details). Since the standard projection Hn → R2n is semi-isometric (up to a dilation)
with zero Levi-tension (see Corollary 3.2), Theorem 3.3 leads to the following corollary which
improves the results by Niu-Zhang [81] and El Soufi-Harrell-Ilias [8].

Corollary 3.5. Let Ω be a domain in the Heisenberg group Hn. The eigenvalues of the operator
−∆b + V in Ω, with Dirichlet boundary conditions, satisfy, for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) − Ti
)

with Ti =
∫
Ω

Vu2
i Ψθ. Moreover, if V is bounded below on Ω, then, for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) −
2
n

inf
Ω

V

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) −

(
(1 +

2
n

)k
1
n − 1

)
inf
Ω

V.

The proof of Theorem 3.3 relies on a general result of algebraic nature using commutators.
The use of this approach in obtaining bounds for eigenvalues is now fairly prevalent. Pioneering
works in this direction are due to Harrell, alone or with collaborators (see [8, 35, 36]). For our
purpose, we will use the following version that can be found in a recent paper by Ashbaugh and
Hermi [74] (see inequality (26) of Corollary 3 and inequality (46) of Corollary 8 in [74]).

Lemma 3.6. Let A : D ⊂ H → H be a self-adjoint operator defined on a dense domain D
which is semibounded below and has a discrete spectrum λ1(θ) ≤ λ2(θ) · · · ≤ λi(θ) ≤ · · · . Let
B : A(D)→ H be a symmetric operator which leavesD invariant. Denoting by {ui}i≥1 a complete
orthonormal family of eigenvectors of A with Aui = λi(θ)ui, we have, for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p〈[A, B]ui, Bui
〉
≤ max{1,

p
2
}

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1
‖[A, B]ui‖

2.

Proof of Theorem 3.3. Let f : (M, θ) → Rm be a semi-isometric map and let f1, ..., fm be its
Euclidean components. For each α = 1, ...,m, we denote by fα the multiplication operator naturally
associated with fα. Let us start by the calculation of

〈
[−∆b+V, fα]ui, fαui

〉
L2 and ‖[−∆b+V, fα]ui‖

2
L2 .

One has,

[−∆b + V, fα]ui = −∆b( fαui) + fα(∆bui)

= −(∆b fα)ui − 2〈∇H fα,∇Hui〉Gθ .
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Thus, 〈
[−∆b + V, fα]ui, fαui

〉
L2 = −

∫
Ω

fα(∆b fα)u2
i −

1
2

∫
Ω

〈∇H f 2
α ,∇

Hu2
i 〉Gθ . (3.15)

Here and in the sequel, all the integrals over M are calculated with respect to the volume form Ψθ

or, equivalently, the Riemannian volume element induced by the Webster metric gθ. The integra-
tion over the eventual boundary is calculated with respect to the Riemannian metric induced on
∂Ω by the Webster metric gθ. Integration by parts leads to (see (1.15))∫

Ω

〈∇H f 2
α ,∇

Hu2
i 〉Gθ = −

∫
Ω

(∆b f 2
α )u2

i +

∫
∂M

u2
i 〈∇

H f 2
α , ν〉gθ

where ν is the unit normal vector to the boundary with respect to the Webster metric gθ. Since ui

vanishes on ∂Ω when ∂Ω , ∅, we get∫
Ω

〈∇H f 2
α ,∇

Hu2
i 〉Gθ = −

∫
Ω

(∆b f 2
α )u2

i

= −2
[∫

Ω

fα(∆b fα)u2
i +

∫
Ω

|∇H fα|2Gθ
u2

i

]
.

Substituting in (3.15) we obtain

〈[−∆b + V, fα]ui, fαui〉L2 =

∫
Ω

|∇H fα|2Gθ
u2

i .

Thus
m∑
α=1

〈[−∆b + V, fα]ui, fαui〉L2 =

m∑
α=1

∫
Ω

|∇H fα|2Gθ
u2

i .

Now, since f preserves the Levi-form, one has with respect to a Gθ-orthonormal frame {ei} of
Hp(M),

m∑
α=1

|∇H fα|2Gθ
=

m∑
α=1

2n∑
i=1

〈∇H fα, ei〉
2
Gθ

=

2n∑
i=1

m∑
α=1

〈∇ fα, ei〉
2
Gθ

=

2n∑
i=1

|d f (ei)|2Rm =

2n∑
i=1

|ei|
2
Gθ

= 2n.

Therefore,

m∑
α=1

〈[−∆b + V, fα]ui, fαui〉L2 = 2n
∫

Ω

u2
i = 2n. (3.16)

On the other hand, we have

‖[−∆b + V, fα]ui‖
2
L2 =

∫
Ω

(
(∆b fα)ui + 2〈∇H fα,∇Hui〉Gθ

)2

=

∫
Ω

(∆b fα)2u2
i + 4

∫
Ω

〈∇H fα,∇Hui〉
2
Gθ

+ 2
∫

Ω

(∆b fα)〈∇H fα,∇Hu2
i 〉Gθ .
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Using (3.6), we get
m∑
α=1

∫
Ω

(∆b fα)2u2
i =

∫
Ω

|Hb( f )|2Rmu2
i .

Using the isometry property of f with respect to horizontal directions, we get

m∑
α=1

〈∇H fα,∇Hui〉
2
Gθ

=

m∑
α=1

〈∇ fα,∇Hui〉
2
Gθ

=

m∑
α=1

|d fα(∇Hui)|2Rm

= |d f (∇Hui)|2Rm = |∇Hui|
2
Gθ
.

Thus,
m∑
α=1

∫
Ω

〈∇H fα,∇Hui〉
2
Gθ

=

∫
Ω

|∇Hui|
2
Gθ

= λi(θ) −
∫

Ω

Vu2
i .

Finally, denoting by {Eα} the standard basis of Rm and using Lemma 3.1, we get,

m∑
α

∫
Ω

∆b fα〈∇H fα,∇Hu2
i 〉Gθ = 〈

m∑
α

∆b fαEα,

m∑
α

〈∇ fα,∇Hu2
i 〉GθEα〉Rm

= 〈Hb( f ), d f (∇Hu2
i )〉Rm = 0.

Using all these facts, we get

m∑
α=1

‖[−∆b + V, fα]ui‖
2
L2 = 4

(
λi(θ) −

∫
Ω

Vu2
i

)
+

∫
Ω

|Hb( f )|2Rmu2
i . (3.17)

Applying Lemma 3.6 with A = −∆b + V and B = fα, summing up with respect to α = 1, ...,m, and
using (3.16) and (3.17), we get the inequality (3.12).

To prove the inequality (3.13), we consider the quadratic relation that we derive from (3.12)
after replacing p by 2 and Di by D∞, that is, ∀ k ≥ 1,

k∑
i=1

(
λk+1(θ) − λi(θ)

)2
≤

2
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)(
λi(θ) +

D∞
4

)
(3.18)

which leads to

λ2
k+1(θ) − λk+1(θ)

(
(2 +

2
n

)Mk +
1

2n
D∞

)
+ (1 +

2
n

)Qk +
1

2n
D∞Mk ≤ 0

with Mk = 1
k
∑k

i=1 λi(θ) and Qk = 1
k
∑k

i=1 λ
2
i (θ). Using Cauchy-Schwarz inequality M2

k ≤ Qk, we
get

λ2
k+1(θ) − λk+1(θ)

(
(2 +

2
n

)Mk +
1

2n
D∞

)
+ (1 +

2
n

)M2
k +

1
2n

D∞Mk ≤ 0

which can also be written as follows:

(λk+1(θ) − Mk)
(
λk+1(θ) − (1 +

2
n

)Mk −
1
2n

D∞

)
≤ 0.

93



3.3. RIEMANNIAN SUBMERSIONS

Since λk+1(θ)−Mk is clearly nonnegative, we get λk+1(θ) ≤ (1+ 2
n )Mk + 1

2n D∞ which proves (3.13).

Now, if we set λi(θ) := λi(θ) + 1
4 D∞, then the inequality (3.18) reads

k∑
1

(λk+1(θ) − λi(θ))2 ≤
2
n

k∑
1

(λk+1(θ) − λi(θ))λi(θ).

Following Cheng and Yang’s argument [83, Theorem 2.1 and Corollary 2.1], we obtain

λk+1(θ) ≤
(
1 +

2
n

)
λ1(θ)k

1
n

which gives immediately the last inequality of the theorem. �

3.3 Riemannian submersions

Let (M, θ) be a strictly pseudoconvex CR manifold and let f : (M, θ) → N be a Riemannian sub-
mersion over a Riemannian manifold N of dimension 2n. The manifold N admits infinitely many
isometric immersions into Euclidean spaces. For every integer m ≥ 2n we denote by I(N,Rm) the
set of all C2 isometric immersions from N to the m-dimensional Euclidean space Rm. Thanks to the
Nash embedding theorem, the set ∪m∈NI(N,Rm) is never empty, which motivates the introduction
of the following invariant :

Heuc(N) = inf
φ∈∪m∈NI(N,Rm)

‖H(φ)‖∞

where H(φ) stands for the mean curvature vector field of φ.

Theorem 3.7. Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 and let
f : (M, θ) → N be a Riemannian submersion over a Riemannian manifold of dimension 2n such
that d f (T ) = 0. The eigenvalues of the operator −∆b + V in a bounded domain Ω ⊂ M, with
Dirichlet boundary conditions if Ω , M, satisfy for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) +
1
4

Heuc(N)2 − Ti
)

(3.19)

with Ti =
∫
Ω

Vu2
i Ψθ. Moreover, if V is bounded below on Ω, then, for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) +
1
2n

Heuc(N)2 −
2
n

inf
Ω

V (3.20)

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) + C (3.21)

with C =
(
(1 + 2

n )k
1
n − 1

) (
1
4 Heuc(N)2 − infΩ V

)
.
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Proof. Let φ : N → Rm be any isometric immersion. It is straightforward to check that the map
f̂ = φ ◦ f : (M, θ)→ Rm is semi-isometric and that, ∀X, Y ∈ H(M),

β f̂ (X,Y) = dφ(β f (X,Y)) + Bφ(d f (X), d f (Y)) = Bφ(d f (X), d f (Y)),

where Bφ stands for the second fundamental form of φ and where the last equality follows from
Corollary 3.2. Now, from the assumptions on f , the differential of f induces, for each x ∈ M, an
isometry between Hx(M) and T f (x)N. Thus, if X1, · · · , X2n is a local orthonormal frame of H(M),
then d f (X1), · · · , d f (X2n) is also an orthonormal frame of T N. This leads to the equality

Hb( f̂ ) = H(φ).

Therefore, it suffices to apply Theorem 3.3 to f̂ and then take the infimum with respect to φ to
finish the proof.

�

For example, when N is an open set of R2n or, more generally, a minimal submanifold in Rm,
then Heuc(N) = 0 and the Theorem above gives a class of pseudoconvex CR manifolds including
domains of the Heisenberg group, for which the following holds :

Corollary 3.8. Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 which
admits a Riemannian submersion f : (M, θ) → N over a minimal submanifold N of dimension 2n
of Rm such that d f (T ) = 0. The eigenvalues of the operator −∆b + V in a bounded domain Ω ⊂ M,
with Dirichlet boundary conditions if Ω , M, satisfy for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) − Ti
)

(3.22)

with Ti =
∫
Ω

Vu2
i Ψθ. Moreover, if V is bounded below on Ω, then for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) −
2
n

inf
Ω

V (3.23)

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) −

(
(1 +

2
n

)k
1
n − 1

)
inf
Ω

V. (3.24)

The natural embedding j : S2n → R2n+1 of the sphere into the Euclidean space satisfies
|H( j)|2

R2n+1 = 4n2. Thus, Theorem 3.7 leads to the following

Corollary 3.9. Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n+1. Assume
that (M, θ) admits a Riemannian submersion f : (M, θ) → D ⊂ S2n over a domain D of the
standard sphere with d f (T ) = 0. The eigenvalues of the operator −∆b + V in a bounded domain
Ω ⊂ M, with Dirichlet boundary conditions if Ω , M, satisfy for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) + n2 − Ti
)
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with Ti =
∫
Ω

Vu2
i Ψθ. Moreover, if V is bounded below on Ω, then for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) + 2n −
2
n

inf
Ω

V

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) + C

with C(n, k,V) =
(
(1 + 2

n )k
1
n − 1

) (
n2 − infΩ V

)
.

In the particular case of a manifold M without boundary that satisfies the assumptions of
Corollary 3.9, one has, with V = 0, λ2(θ) = 0,

λ2(θ) ≤ 2n

and, for every k ≥ 1,
λk+1(θ) ≤ n(n + 2)k

1
n − n2.

We denote by FPm the m-dimensional real projective space if F = R, the complex projective
space of real dimension 2m if F = C, and the quaternionic projective space of real dimension 4m
if F = Q. The manifold FPm carries a natural metric so that the Hopf fibration π : SdF(m+1)−1 ⊂

Fm+1 → FPm is a Riemannian fibration, where dF = dimR F.

Let Hm+1(F) = {A ∈ Mm+1(F) | A∗ := tA = A} be the vector space of (m + 1) × (m + 1)
Hermitian matrices with coefficients in F, that we endow with the inner product

〈A, B〉 =
1
2

trace(A B).

The map ψ : SdF(m+1)−1 ⊂ Fm+1 −→ Hm+1(F) given by

ψ(z) =


|z0|

2 z0z̄1 · · · z0z̄m

z1z̄0 |z1|
2 · · · z1z̄m

· · · · · · · · · · · ·

zmz̄0 zmz̄1 · · · |zm|
2


induces through the Hopf fibration an isometric embedding φ from FPm into Hm+1(F). More-

over, φ(FPm) is a minimal submanifold of the hypersphere S
(

I
m+1 ,

√
m

2(m+1)

)
ofHm+1(F) of radius√

m
2(m+1) centered at I

m+1 . One deduces that the mean curvature H(φ) satisfies

|H(φ)|2 = 2m(m + 1)d2
F.

Therefore, Heuc(FPm)2 ≤ 2m(m + 1)d2
F and Theorem 3.7 leads to the following

Corollary 3.10. Let (M, θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 which
admits a Riemannian submersion f : (M, θ) → D ⊂ FPm over a domain of the projective space
FPm of real dimension 2n (i.e. m = 2n/dF) with d f (T ) = 0. The eigenvalues of the operator
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−∆b + V in a bounded domain Ω ⊂ M, with Dirichlet boundary conditions if Ω , M, satisfy for
every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) + n(2n + dF) − Ti
)

with Ti =
∫
Ω

Vu2
i Ψθ. Moreover, if V is bounded below on Ω, then for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) + 2(2n + dF) −
2
n

inf
Ω

V

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) + C

with C(n, k,V) =
(
(1 + 2

n )k
1
n − 1

)
(n(2n + dF) − infΩ V) .

3.4 Semi-isometric maps into Heisenberg groups

Theorem 3.11. Let (M, θ) be a strictly pseudoconvex CR manifold of dimension 2n + 1 and let
f : M −→ Hm be a C2 semi-isometric map satisfying d f (H(M)) ⊆ H(Hm). Then the eigenvalues
of the operator −∆b + V in any bounded domain Ω ⊂ M, with Dirichlet boundary conditions if
Ω , M, satisfy for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1(θ) − λi(θ)

)p
≤

max{2, p}
n

k∑
i=1

(
λk+1(θ) − λi(θ)

)p−1(λi(θ) +
1
4

Di
)

(3.25)

with

Di =

∫
Ω

(
|Hb( f )|2Hm − 4V

)
u2

i Ψθ.

Moreover, if V is bounded below on M, then for every k ≥ 1,

λk+1(θ) ≤ (1 +
2
n

)
1
k

k∑
i=1

λi(θ) +
1

2n
D∞ (3.26)

and

λk+1(θ) ≤ (1 +
2
n

)k
1
nλ1(θ) +

1
4

(
(1 +

2
n

)k
1
n − 1

)
D∞ (3.27)

with D∞ = supΩ

(
|Hb( f )|2Hm − 4V

)
.

In the particular case where (M, θ) is the Heisenberg group Hn endowed with the standard con-
tact form, this theorem provides an alternative way to derive Corollary 3.5

The following observation will be crucial for the proof of Theorem 3.11.
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Proposition 3.12. Let (M, θ) be a strictly pseudoconvex CR manifold and let

f : (M, θ) −→ Hm ' Cm × R

x −→ f (x) = (F1(x), ..., Fm(x), α(x))

be a C2 map such that d f (H(M)) ⊂ H(Hm). Then

Hb( f ) =

m∑
j=1

(∆bϕ jX j + ∆bψ jY j)

where ϕ j(x) = ReF j(x) and ψ j(x) = ImF j(x).
In particular, Hb( f ) is a horizontal vector field and

|Hb( f )|2Hm = 4
m∑

j=1

[(∆bϕ j)2 + (∆bψ j)2].

Proof. One has, for any vector W ∈ T M,

d f (W) =

m∑
j=1

(
dϕ j(W)

∂

∂x j
+ dψ j(W)

∂

∂y j

)
+ θ(d f (W))T.

For W ∈ H(M), d f (W) ∈ H(Hm) and, then,

d f (W) =

m∑
j=1

(
dϕ j(W)X j + dψ j(W)Y j

)
. (3.28)

Let {ei} be a local orthonormal frame of H(M), then

β f (ei, ei) = ∇
f
eid f (ei) − d f (∇eiei).

Since ei and ∇eiei are horizontal and that d f (H(M)) ⊂ H(Hm), we have

β f (ei, ei) =

m∑
j=1

∇
f
ei(dϕ j(ei)X j + dψ j(ei)Y j) −

m∑
j=1

[dϕ j(∇eiei)X j + dψ j(∇eiei)Y j]

with
∇

f
ei(dϕ j(ei)X j) = ei · dϕ j(ei)X j + dϕ j(ei)∇H

m

d f (ei)X j

and
∇

f
ei(dψ j(ei)Y j) = ei · dψ j(ei)Y j + dψ j(ei)∇H

m

d f (ei)Y j.

Therefore,

β f (ei, ei) =

m∑
j=1

[
ei · dϕ j(ei) − dϕ j(∇eiei)

]
X j +

m∑
j=1

[
ei · dψ j(ei) − dψ j(∇eiei)

]
Y j

+

m∑
j=1

[
dϕ j(ei)∇H

m

d f (ei)X j + dψ j(ei)∇H
m

d f (ei)Y j
]
. (3.29)
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Recall that the Levi-Civita connection of Hm is such that

∇H
m

Xk
X j = ∇H

m

Yk
Y j = ∇H

m

T T = 0,

∇H
m

Xk
Y j = −2δk jT, ∇H

m

Xk
T = 2Yk, ∇H

m

Yk
T = −2Xk,

∇H
m

Yk
X j = 2δk jT, ∇H

m

T Xk = 2Yk, ∇H
m

T Yk = −2Xk.

Thus,

∇H
m

d f (ei)X j =
∑

k

(dϕk(ei)∇Xk X j + dψk(ei)∇Yk X j)

= dψ j(ei)∇Y j X j = 2dψ j(ei)T.

and

∇H
m

d f (ei)Y j = −2dϕ j(ei)T.

Replacing into (3.29) and summing up with respect to i, we get

Hb( f ) =

2n∑
i=1

m∑
j=1

(
[ei · dϕ j(ei) − dϕ j(∇eiei)]X j + [ei · dψ j(ei) − dψ j(∇eiei)]Y j

)
=

m∑
j=1

(
∆bϕ jX j + ∆bψ jY j

)
.

�

Proof of Theorem 3.11. As in the proof of Theorem 3.3, we will use the components of the map
f as multiplication operators. Let us write f (x) = (F1(x), ..., Fm(x), α(x)) ∈ Cm × R and F j(x) =

ϕ j(x) + iψ j(x). The main difference with respect to the Euclidean case is that here, only the Cm

components of f come in. All along this proof we will use the fact that, ∀W ∈ Hx(M), the vector
d f (W) is horizontal and (see (3.28))

|d f (W)|2Hm = 4
m∑

j=1

(
|dϕ j(W)|2 + |dψ j(W)|2

)
. (3.30)

Repeating the same calculations as in the proof of the Theorem 3.3, we get

m∑
j=1

〈[−∆b + V, ϕ j]ui, ϕ jui〉L2 + 〈[−∆b + V, ψ j]ui, ψ jui〉L2

=

m∑
j=1

∫
Ω

{
|∇Hϕ j|

2
Gθ

+ |∇Hψ j|
2
Gθ

}
u2

i .
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Let {ei} be a Gθ-orthonormal basis of Hx(M), then

m∑
j=1

|∇Hϕ j|
2
Gθ

+ |∇Hψ j|
2
Gθ

=

m∑
j=1

2n∑
i=1

〈∇Hϕ j, ei〉
2
Gθ

+ 〈∇Hψ j, ei〉
2
Gθ

=

2n∑
i=1

m∑
j=1

〈∇ϕ j, ei〉
2
Gθ

+ 〈∇ψ j, ei〉
2
Gθ

=

2n∑
i=1

2m∑
j=1

(dϕ j(ei)2 + dψ j(ei)2)

=
1
4

2n∑
i=1

|d f (ei)|2Hm =
n
2
.

Thus,
m∑

j=1

〈[−∆b + V, ϕ j]ui, ϕ jui〉L2 + 〈[−∆b + V, ψ j]ui, ψ jui〉L2 =
n
2
. (3.31)

On the other hand,

‖[−∆b + V, ϕ j]ui‖
2
L2 =

∫
Ω

(
(∆bϕ j)ui + 2〈∇Hϕ j,∇

Hui〉Gθ

)2

=

∫
Ω

(∆bϕ j)2u2
i + 4

∫
Ω

〈∇Hϕ j,∇
Hui〉

2
Gθ

+ 2
∫

Ω

(∆bϕ j)〈∇Hϕ j,∇
Hu2

i 〉Gθ .

We have a similar formula for ‖[−∆b + V, ψ j]ui‖
2
L2 . Since ∇Hui ∈ H(M), one has

m∑
j=1

〈∇Hϕ j,∇
Hui〉

2
Gθ

+ 〈∇Hψ j,∇
Hui〉

2
Gθ

=

m∑
j=1

{dϕ j(∇Hui)2 + dψ j(∇Hui)2}

=
1
4
|d f (∇Hui)2|Hm =

1
4
|∇Hui|

2
Gθ
.

Therefore,
m∑

j=1

∫
Ω

(
〈∇Hϕ j,∇

Hui〉
2
Gθ

+ 〈∇Hψ j,∇
Hui〉

2
Gθ

)
=

1
4

∫
Ω

|∇Hui|
2
Gθ

=
1
4

(
λi(θ) −

∫
Ω

Vu2
i

)
.

For the two remaining terms, we have thanks to Proposition 3.12,

m∑
j=1

∫
Ω

(
(∆bϕ j)2 + (∆bψ j)2

)
u2

i =
1
4

∫
Ω

|Hb( f )|2Hmu2
i
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and

m∑
j=1

∫
Ω

(
∆bϕ j〈∇

Hϕ j,∇
Hu2

i 〉Gθ + ∆bψ j〈∇
Hψ j,∇

Hu2
i 〉Gθ

)
=

1
4

∫
Ω

〈Hb( f ),
m∑

j=1

dϕ j(∇Hu2
i )X j +

m∑
j=1

dψ j(∇Hu2
i )Y j〉Hm

=
1
4

∫
Ω

〈Hb( f ), d f (∇Hu2
i )〉Hm = 0,

where the last equality follows from the fact that Hb( f ) is orthogonal to d f (H(M)) (Lemma 3.1).
Finally,

‖[−∆b + V, ϕ j]ui‖
2
L2 + ‖[−∆b + V, ψ j]ui‖

2
L2 = λi(θ) +

1
4

∫
Ω

(
|Hb( f )|2Hm − V

)
u2

i . (3.32)

Applying Lemma 3.6 with A = −∆b + V and B = ϕ j then B = ψ j, summing up with respect to j
and using (3.31) and (3.32), we obtain the inequality (3.25).

As in the proof of Theorem 3.3, we derive the inequalities (3.26) and (3.27) from (3.25) with
p = 2. �

3.5 Reilly type inequalities on CR manifolds

Let (M, θ) be a compact strictly pseudo-convex CR manifold. If f : (M, θ) −→ Rm is a semi-
isometric C2 map, then Theorem 3.3 (i.e. inequality (3.12) with k = 1 and p = 1) gives,

λ2(θ) ≤ (1 +
2
n

)λ1(θ) +
1
2n

∫
M

(
|Hb( f )|2Rm − 4V

)
u2

1.

When M is a compact manifold without boundary and V = 0, one has λ1(θ) = 0 and u2
1 =

1
V(M,θ) . Therefore, the following Reilly type result holds (see[4] for details about Reilly inequali-
ties)

λ2(θ) ≤
1

2nV(M, θ)

∫
M
|Hb( f )|2Rm .

This result can be obtained in an independent and simpler way, in the spirit of Reilly’s proof,
under weaker assumptions on f . Moreover, the equality case can be characterized. Indeed, we
first have the following

Theorem 3.13. Let (M, θ) be a compact strictly pseudoconvex CR manifold of dimension 2n + 1
without boundary. For every C2 map f : (M, θ) −→ Rm one has

λ2(θ)Eb( f ) ≤
1
2

∫
M
|Hb( f )|2Rm (3.33)

where the equality holds if and only if the Euclidean components f1, . . . , fm of f satisfy −∆b fα =

λ2(θ)
(

fα −
>

fα
)

for every α ≤ m.
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Proof. Replacing if necessary fα by fα −
>

fα we can assume without loss of generality that the
Euclidean components f1, . . . , fm of f satisfy

∫
M fα Ψθ = 0 so that, we have

λ2(θ)
∫

M
f 2
α ≤

∫
M
|∇H fα|2Gθ

. (3.34)

Summing up with respect to α, we get

λ2(θ)
∫

M
| f |2Rm ≤

∫
M

m∑
α=1

|∇H fα|2Gθ
.

Denoting by {εα} the standard basis of Rm and by {Xi} a local orthonormal frame of H(M), we
observe that

2eb( f ) =

2n∑
i=1

|d f (Xi)|2Rm =

2n∑
i=1

m∑
α=1

〈d f (Xi), εα〉2Rm

=

m∑
α=1

2n∑
i=1

|d fα(Xi)|2Rm =

m∑
α=1

|∇H fα|2Gθ
.

Therefore,

λ2(θ)
∫

M
| f |2Rm ≤

∫
M

m∑
α=1

|∇H fα|2Gθ
= 2Eb( f ). (3.35)

On the other hand, we have

4Eb( f )2 =

 m∑
α=1

∫
M
|∇H fα|2Gθ

2

=

 m∑
α=1

∫
M

fα∆b fα

2

=

∫
M
〈 f (x),

m∑
α

(∆b fα)εα〉Rm

2

=

(∫
M
〈 f (x),Hb( f )〉Rm

)2

≤

∫
M
| f |2Rm

∫
M
|Hb( f )|2Rm .

Combining with (3.35), we get

4Eb( f )2 ≤
2Eb( f )
λ2(θ)

∫
M
|Hb( f )|2Rm

which gives the desired inequality.

Now, if we have, for every α ≤ m, −∆b fα = λ2(θ) fα, then Hb( f ) = (∆b f1, . . . ,∆b fm) = −λ2(θ) f
and

∫
M |Hb( f )|2Rm = λ2(θ)2

∫
M | f |

2
Rm . On the other hand, Eb( f ) =

∫
M

∑m
α=1 |∇

H fα|2Gθ
= λ2(θ)

∫
M | f |

2
Rm

which implies that the equality holds in (3.33). Reciprocally, if the equality holds in (3.33) for a
nonconstant map f , then it also holds in (3.34) for each α. Thus, the functions f1, . . . , fm belong
to the λ2(θ)-eigenspace of −∆b. �

If a map f : (M, θ) −→ Rm preserves the metric with respect to horizontal directions (i.e.,
|d f (X)|Rm = |X|Gθ for any X ∈ H(M)), then its energy density eb( f ) is constant equal to n and

Eb( f ) = nV(M, θ).
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Inequality (3.33) becomes in this case

λ2(θ) ≤
1

2nV(M, θ)

∫
M
|Hb( f )|2Rm . (3.36)

The characterization of the equality case is the last inequality requires the following Takahashi’s
type result.

Lemma 3.14. Let (M, θ) be a strictly pseudoconvex CR manifold of dimension 2n + 1 and let
f : (M, θ) −→ Rm be C2 map.
i) Assume that f (M) is contained in a sphere Sm−1(r) of radius r centered at the origin. Then f is
pseudo-harmonic from (M, θ) to S m−1(r) if and only if its Euclidean components f1, . . . , fm satisfy,
∀α ≤ m,

−∆b fα = µ fα

with µ = 2
r2 eb( f ) ∈ C∞(M).

ii) Assume that f is semi-isometric. If the Euclidean components f1, . . . , fm of f satisfy, ∀α ≤ m,
−∆b fα = λ(θ) fα for some λ(θ) ∈ R, then f (M) is contained in the sphere Sm−1(r) of radius r =√

2n
λ(θ) and f is a pseudo-harmonic map from (M, θ) to S m−1(r). Conversely, if f (M) is contained in

a sphere S m−1(r) and if f is a pseudo-harmonic map from (M, θ) to S m−1(r), then ∀α ≤ m,−∆b fα =
2n
r2 fα.

Proof of Lemma 3.14. i) For convenience, let us write f = j ◦ f̄ where j : Sm−1(r) → Rm is the
standard embedding and f̄ : M → Sm−1(r) is defined by f̄ (x) = f (x). It is straightforward to
observe that, ∀X, Y ∈ H(M),

β f (X,Y) = B j(d f̄ (X), d f̄ (Y)) + d j(β f̄ (X,Y))

where B j(W,W) = − 1
r2 |W |2Rm~x is the second fundamental form of the sphere Sm−1(r). Taking the

trace, we obtain

Hb( f ) = −
2eb( f̄ )

r2 f̄ + d j(Hb( f̄ )) = −
2eb( f )

r2 f + d j(Hb( f̄ )).

Hence, if f is pseudo-harmonic from (M, θ) to S m−1(r), then Hb( f̄ ) = 0 and, consequently, Hb( f ) =

−
2eb( f )

r2 f with Hb( f ) = (∆b f1, . . . ,∆b fm). Thus, ∀α ≤ m,−∆b fα = 2
r2 eb( f ) fα.

Reciprocally, if there exists a function µ ∈ C∞ such that −∆b fα = µ fα for every α ≤ m, then

0 = ∆b

 m∑
α=1

f 2
α

 = 2µ
m∑
α=1

f 2
α + 2

m∑
α=1

|∇H fα|2Gθ
= 2µr2 + 4eb( f ).

Hence, µ =
2eb( f )

r2 , Hb( f ) = −
2eb( f )

r2 f and, then, Hb( f̄ ) = 0, which means that f is pseudo-harmonic
from (M, θ) to Sm−1(r).

ii) From the assumptions, one has Hb( f ) = −λ(θ) f . Since f is semi-isometric, we know that
Hb( f ) is orthogonal to d f (H(M)) (Lemma 3.1). Therefore, ∀x ∈ M and ∀X ∈ Hx(M), one has
〈 f (x), d fx(X)〉Rm = 0 which implies that the function x 7→ | f (x)|2Rm has zero derivative with respect
to all horizontal directions. Since the distribution H(M) is not integrable, this implies that | f (x)|2Rm
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is constant on M, that is f (M) is contained in a sphere Sm−1(r) of radius r centered at the origin.
The pseudo-harmonicity of f from M into Sm−1(r) then follows from (i). Moreover, one necessar-
ily has λ(θ) =

2eb( f )
r2 with eb( f ) = n since f is semi-isometric. Thus, the radius of the sphere is such

that r2 = 2n
λ(θ)

�

Theorem 3.13 and Lemma 3.14 lead to the following

Corollary 3.15. Let (M, θ) be a compact strictly pseudoconvex CR manifold of dimension 2n + 1
without boundary and let f : (M, θ) −→ Rm be C2 semi-isometric map. Then

λ2(θ) ≤
1

2nV(M, θ)

∫
M
|Hb( f )|2Rm . (3.37)

Moreover, the equality holds in this inequality if and only if f (M) is contained in a sphere Sm−1(r)

of radius r =
√

2n
λ2(θ) and f is a pseudo-harmonic map from (M, θ) to the sphere S m−1(r).

Similarly, for CR manifolds mapped into the Heisenberg group, one has the following

Theorem 3.16. Let (M, θ) be a compact strictly pseudoconvex CR manifold of dimension 2n + 1
without boundary.
i) Let f : M −→ Hm = R2m × R be any C2 map satisfying d f (H(M)) ⊆ H(Hm). Then

λ2(θ)Eb( f ) ≤
1
2

∫
M
|Hb( f )|2Hm

where the equality holds if and only if the first 2m components f1, . . . , f2m of f satisfy −∆b fα =

λ2(θ)
(

fα −
>

fα
)

for every α ≤ 2m.
ii) Let f : M −→ Hm be any C2 semi-isometric map satisfying d f (H(M)) ⊆ H(Hm). Then

λ2(θ) ≤
1

2nV(M, θ)

∫
M
|Hb( f )|2Hm .

Moreover, the equality holds in this last inequality if and only if f (M) is contained in the product

S2m−1(r)×R ⊂ Hm with r =
√

2n
λ2(θ) , and π ◦ f is a pseudo-harmonic map from (M, θ) to the sphere

S 2m−1(r), where π : Hm → R2m is the standard projection.

Proof. i) Let f : M −→ Hm = R2m × R be a C2 map satisfying d f (H(M)) ⊆ H(Hm) and set
f̃ := π ◦ f : M −→ R2m where π : Hm → R2m is the standard projection. One has, for every pair
(X,Y) of horizontal vectors,

β f̃ (X,Y) = Bπ(d f (X), d f (Y)) + dπ(β f (X,Y))

Since for any X ∈ H(Hm), |dπ(X)|2
R2m = 1

4 |X|
2
Hm and dπ(T ) = 0, one can easily check that

βπ = 0 (Corollary 3.2) and β f̃ (X,Y) = dπ(β f (X,Y)). Thus, Hb( f̃ ) = dπ(Hb( f )) and, since Hb( f )
is horizontal (Proposition 3.12), |H( f̃ )|2

R2m = 1
4 |H( f )|2Hm . On the other hand, it is clear that eb( f̃ ) =

1
4 eb( f ) and, then, Eb( f̃ ) = 1

4 Eb( f ). Therefore, it suffices to apply Theorem 3.33 to complete the
proof of the first part of the theorem.
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ii) Assume now that the map f is semi-isometric. Using the assumption that f preserves horizon-
tality, i.e., d f (H(M)) ⊆ H(Hm), one checks that the map 2π ◦ f is also semi-isometric. Applying
Corollary 3.37 to the latter we easily deduce what is stated in part (ii) of the theorem.

�

3.6 Horizontal Laplacians on Carnot groups

A Carnot group of step r is a connected, simply connected, nilpotent Lie group G whose Lie
algebra g admits a stratification

g = V1 ⊕ ... ⊕ Vr

so that [V1,V j] = V j+1, j = 1, ..., r − 1 and [Vi,V j] ⊂ Vi+ j, j = 1, ..., r, with Vk = {0} for
k > r. We also assume that g carries a scalar product 〈, 〉g for which the subspaces V j are mutually
orthogonal. The layer V1 generates the whole g and induces a sub-bundle HG of TG of rank
d1 = dim V1 that we call the horizontal bundle of the Carnot group. The Heisenberg group Hd is
the simplest example of a Carnot group of step 2.

For each i ≤ r, let {ei
1, · · · , e

i
di
} be an orthonormal basis of Vi and denote by {Xi

1, · · · , X
i
di
} the

system of left invariant vector fields that coincides with {ei
1, · · · , e

i
di
} at the identity element of G.

We consider the Riemannian metric gG on G with respect to which the family {X1
1 , · · · , X

1
d1
, · · · , Xr

1, · · · , X
r
dr
}

constitute an orthonormal frame for TG. The corresponding Levi-Civita connection ∇ induces a
connection on ∇H on HG that we call “horizontal connection" : If X and Y are a smooth sections
of HG, then ∇H

X Y = πH∇XY , where πH : TG → HG is the orthogonal projection. The horizontal
Laplacian ∆H is then defined for every C2 function on G by

∆Hu := traceH∇
Hdu =

∑
i≤d1

X1
i ·

(
X1

i · u
)
,

where the last equality follows from the fact that ∇H
Xi

1
X j

1 = 0 for any i, j = 1 . . . d1. The operator

∆H is a hypoelliptic operator of Hörmander type.

Theorem 3.17. Let G be a Carnot group and let Ω be a bounded domain in G. Let V be a function
on Ω so that the operator −∆H + V, with Dirichlet boundary conditions if Ω , G, admits a purely
discrete spectrum {λ j} j≥1 which is bounded from below. Then, for every k ≥ 1 and p ∈ R,

k∑
i=1

(
λk+1 − λi

)p
≤

max{4, 2p}
d

k∑
i=1

(
λk+1 − λi

)p−1(λi − Ti
)
,

where d is the rank of the horizontal distribution HG, Ti =
∫
Ω

Vu2
i vG and vG is the Riemannian

volume element associated with gG. Moreover, if V is bounded below on Ω, then for every k ≥ 1,

λk+1 ≤

(
1 +

4
d

)
1
k

k∑
i=1

λi −
4
d

inf
Ω

V

and

λk+1 ≤

(
1 +

4
d

)
k

2
d λ1 −C(d, k) inf

Ω
V

with C(d, k) = (1 + 4
d )k

2
d − 1.
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Proof. Let {e1, . . . , ed} be an orthonormal basis of the subspace V1 and denote by {X1, · · · , Xd} the
system of left invariant vector fields that coincides with {e1, . . . , ed} at the identity element of G.
Since the group G is nilpotent, the exponential map exp : g −→ G is a global diffeomorphism. We
can define, for each i ≤ d, a smooth map xi : G → R by

xi(g) :=
〈
exp−1(g), ei

〉
g
.

These functions satisfy (see [21, Proposition 5.7]), ∀i, j = 1, ...,m,

X j · xi = δi j and ∆H xi = 0.

Again, we apply Lemma 3.6 with A = −∆H + V and B = xα, 1 ≤ α ≤ m. We need to deal
with the calculation of 〈[−∆H + V, xα]ui, xαui〉L2 and ‖[−∆H + V, xα]ui‖

2
L2 , where {ui}i≥1 a complete

orthonormal family of eigenfunctions with (−∆b + V)ui = λiui. We have after a straightforward
calculation :

[−∆H + V, xα]ui = −2Xα · ui.

Integrating by parts we get∫
Ω

(Xα · ui) xαui =
1
2

∫
Ω

(
Xα · u2

i

)
xα = −

1
2

∫
Ω

u2
i (Xα · xα) = −

1
2

∫
Ω

u2
i = −

1
2
.

Thus,

d∑
α=1

〈[−∆H + V, xα]ui, xαui〉L2 = −2
d∑
α=1

∫
Ω

(Xα · ui) xαui = d.

On the other hand, we have

d∑
α=1

‖[−∆H + V, xα]ui‖
2
L2 = 4

d∑
α=1

∫
Ω

|Xα · ui|
2 = 4 (λi − Ti)

Putting these identities in Lemma 3.1, we obtain the first inequality of the theorem.

The rest of the proof is identical to that of Theorem 3.3.

�
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Chapter 4

Pseudohermitian Bochner-Lichnerowicz
formula

4.1 CR Paneitz operator and Chang-Chiu’s formula

Let (M,T1,0(M)) be a strictly pseudoconvex CR manifold, of CR dimension n. For all local calcu-
lations in this chapter we consider a local frame {Tα : 1 ≤ α ≤ n} of T1,0(M), defined on the open
set U, and set

gαβ = Gθ(Tα , Tβ), Tα = Tα ,

∇TB = ωB
ATA , ωB

A = ΓA
CBθ

C ,

τ(Tα) = AβαTβ , Aαβ = gαγAγβ ,

α, β, γ, · · · ∈ {1, · · · , n}, A, B,C, · · · ∈ {0, 1, · · · , n, 1, · · · , n}.

Here {θα : 1 ≤ α ≤ n} is the adpated coframe determined by

θα(Tβ) = δαβ , θα(Tβ) = 0, θα(T ) = 0.

Then (cf. e.g. (1.62) and (1.64) in [94], p. 39-40)

dθ = 2igαβ θ
α ∧ θβ , (4.1)

dθα = θβ ∧ ωβ
α + θ ∧ τα , τα ≡ Aα

β
θβ , Aα

β
= Aαβ , (4.2)

Aαβ = Aβα . (4.3)

Therefore, if we set A(X,Y) = gθ(τX,Y) for any X,Y ∈ X(M) then A is symmetric. Let R∇ be the
curvature tensor field of the Tanaka-Webster connection ∇. As to the local components of R∇ we
adopt the convention R∇(TB,TC)TA = RA

D
BCTD (cf. [94], p. 50). The Ricci tensor of ∇ is

Ric∇(Y,Z) = trace
{
X ∈ T (M) 7−→ R∇(X,Z)Y

}
, Y,Z ∈ T (M).
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Locally we set RAB = Ric∇(TA,TB). The pseudohermitian Ricci tensor is then Rλµ. By a result of
S. Webster, [100] (to whom the notion is due) Rλµ = Rλααµ. The pseudohermitian scalar curvature

is ρ = gλµRλµ where
[
gαβ

]
=

[
gαβ

]−1
. Let us set

Πα
β = dωαβ − ωαγ ∧ ωγβ ,

Ωα
β = Πα

β − 2iθα ∧ τβ + 2iτα ∧ θβ ,

where
θα = gαβθ

β , θα = θα , τα = gαβτ
β , τβ = Aβαθ

α .

By a result of S.M. Webster, [100] (cf. also Theorem 1.7 in [94], p. 55)

Ωα
β = Rαβλµ θ

λ ∧ θµ + Wβ
αλθ

λ ∧ θ −Wβ

αλ
θλ ∧ θ (4.4)

where
Wβ

αµ
= gβσ ∇αAµσ , Wβ

αλ = gβσ∇σAαλ . (4.5)

Given u ∈ C∞(M,R) the pseudohermitian Hessian is

(∇2u)(X,Y) = (∇Xdu)Y, X,Y ∈ X(M).

Locally we set ∇AuB = (∇2u)(TA,TB). The pseudohermitian Hessian is not symmetric. Rather one
has the commutation formulae

∇αuβ = ∇βuα , (4.6)

∇αuβ = ∇βuα − 2igαβu0 , u0 ≡ T (u), (4.7)

∇0uβ = ∇βu0 − uαAαβ . (4.8)

The third order covariant derivative of u is given by

(∇3u)(X,Y,Z) = (∇XHu)(Y,Z) =

= X(Hu(Y,Z)) − Hu(∇XY,Z) − Hu(Y,∇XZ), Hu ≡ ∇
2u ,

for any X,Y,Z ∈ X(M). Locally we set uABC = (∇3u)(TA,TB,TC). Commutation formulae for
uABC have been established by J.M. Lee, [60] (cf. also [94], p. 426) and are not needed through
this chapter.

Let ∆bu = −div
(
∇Hu

)
be the sublaplacian of (M, θ). Another useful expression of ∆b is

∆bu = −traceGθΠH ∇
2u (4.9)

or (locally)

∆bu = −

2n∑
a=1

{
Ea(Ea(u)) − (∇Ea Ea)(u)

}
for any local Gθ-orthonormal frame {Ea : 1 ≤ a ≤ 2n} of H(M) on U ⊂ M. If {Tα : 1 ≤ α ≤ n} is a
local frame of T1,0(M) on U ⊂ M and Ea = Eλ

aTλ + Eλ
aTλ for some Eλ

a ∈ C∞(U,C) with Eλ
a = Eλ

a
then Gθ(Ea , Eb) = δab yields

2n∑
a=1

Eα
a Eβ

a = 0,
2n∑

a=1

Eα
a Eβ

a = gαβ ,
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so that (4.9) may be written locally as

∆bu = −∇αuα − ∇αuα . (4.10)

A complex valued differential p-form ω ∈ Ωp(M) ⊗ C is a (p, 0)-form (respectively a (0, p)-
form) if T0,1(M) cω = 0 (respectively T0,1(M) cω = 0 and T cω = 0). Let Λp,0(M) → M
and Λ0,p(M) → M be the relevant bundles and Ωp,0(M) and Ω0,p(M) the corresponding spaces
of sections. Let F be the flow on M tangent to the Reeb vector T (i.e. T (F ) = RT ). Let
Ω

1,0
B (F ) = {ω ∈ Ω1,0(M) : T cω = 0} be the space of all basic (1, 0)-forms (on the foliated

manifold (M,F ), cf. also [29]). If ω ∈ Ω
1,0
B (F ) one may use the Levi form to define a unique

complex vector field ω] ∈ C∞(T0,1(M)). Here ω] is determined by

ω(Z) = Gθ(Z, ω]), Z ∈ T1,0(M),

hence locally ω] = ωβTβ where ωβ = gαβωα and ω = ωαθ
α. Let δb : Ω

1,0
B (F ) → C∞(M,C) be the

differential operator (due to [60]) defined by

δbω = div
(
ω]

)
, δbθ = 0, ω ∈ Ω

0,1
B (F ).

Similarly, again by following [60], if η ∈ Ω0,1(M) then let η] ∈ C∞(T1,0(M)) be determined by

η(Z) = Gθ(η] , Z), Z ∈ T1,0(M),

and let us consider

δb : Ω0,1(M)→ C∞(M,C), δbη = div
(
η]

)
, η ∈ Ω0,1(M),

so that (locally) η] = ηαTα where η = ηβθ
β and ηα = gαβηβ. Also (again locally) δbω = ∇βω

β and
δbη = ∇αη

α. For each f ∈ C∞(M,C) we set

(P f )Z = gαβ
(
∇3 f

)
(Z, Tα , Tβ) + 2 n i A

(
Z, (∇H f )1,0

)
, (4.11)

(P f )Z = 0, (P f )T = 0, Z ∈ T1,0(M).

Here X1,0 = Π1,0X for any X ∈ H(M) and Π1,0 : H(M) ⊗ C → T1,0(M) is the natural projection
associated to H(M) ⊗ C = T1,0(M) ⊕ T0,1(M). Note that gαβ

(
∇Tβ(∇

2 f )
)

(Tα,Z) is invariant under
a transformation

T ′α = Uβ
αTβ , det

[
Uβ
α

]
, 0 on U ∩ U′,

hence (P f )Z is globally defined. Locally one has

P f =
(
Pβ f

)
θβ , Pβ f = fβαα + 2ni Aβγ f γ ,

(compare to Definition 1.1 and (1.2) in [92], p. 263). Similar to P : C∞(M,C) → Ω
1,0
B (F ) we

build P : C∞(M,C)→ Ω0,1(M) given by(
P f

)
Z = gαβ

(
∇3 f

)
(Z, Tβ , Tα) − 2 n i A

(
Z , (∇H f )0,1

)
, (4.12)

(P f )Z = 0, (P f )T = 0, Z ∈ T1,0(M),
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where X0,1 = X1,0 for any X ∈ H(M). Also let1

P0 f = δb(P f ) + δb(P f ), f ∈ C∞(M,C). (4.13)

From now on we assume that M is a compact strictly pseudoconvex CR manifold and θ ∈ P+.
Then gθ is a Riemannian metric on M. It should be observed that the operators above are com-
plexifications of real operators familiar in Riemannian geometry, as follows. For instance let ] be
"raising of indices" with respect to gθ i.e. gθ

(
α], X

)
= α(X) for any (real) 1-form η ∈ Ω1(M) and

any (real) vector field X ∈ X(M). Then the musical isomorphisms ] : Ω
1,0
B (F ) → C∞(T0,1(M))

and ] : Ω0,1(M) → C∞(T1,0(M)) (as built above) are restrictions of the C-linear extension (to
Ω1(M) ⊗ C = C∞ (T ∗(M) ⊗ C)) of ] : Ω1(M)→ X(M) to Ω

1,0
B (F ) and Ω0,1(M) respectively.

Also let Ω1
B(F ) be the space of all basic 1-forms on (M,F ) and db : C∞(M)→ Ω1

B(F ) the first
order differential operator given by

dbu = du − u0 θ, u ∈ C∞(M,R), u0 ≡ T (u).

Let d∗b : Ω1
B(F )→ C∞(M,R) be the formal adjoint of db i.e.(

d∗bω , u
)

L2 = (ω , dbu)L2 , ω ∈ Ω1
B(F ), u ∈ C∞(M),

with respect to the L2 inner products

(u, v)L2 =

∫
M

uv Ψθ , (α, β)L2 =

∫
M

g∗θ(α , β) Ψθ ,

u, v ∈ C∞(M,R), α, β ∈ Ω1(M).

Let db : C∞(M,C) → Ω1
B(F ) ⊗ C and d∗b : Ω1

B(F ) ⊗ C → C∞(M,C) be the C-linear extensions of
db and d∗b. Then

Lemma 4.1. i) Ω1
B(F ) ⊗ C = Ω

1,0
B (F ) ⊕Ω0,1(M),

ii) db f = ∂b f + ∂b f for any f ∈ C∞(M,C),

iii) d∗b
∣∣∣
Ω

1,0
B (F ) = ∂∗b = −δb,

iv) d∗b
∣∣∣
Ω0,1(M) = ∂

∗

b = −δb.

Here the tangential C-R operator ∂b is thought of as Ω0,1(M)-valued (i.e. one requests that
Z c ∂b f = and T c ∂b f = 0 to start with). Also ∂b f is the unique element of Ω

1,0
B (F ) coinciding

with d f on T1,0(M). Locally

∂b f = fαθα , ∂b f = fαθα , fα ≡ Tα( f ), fα ≡ Tα( f ).

Also
∂∗b : Ω

0,1
B (F )→ C∞(M,C), ∂

∗

b : Ω0,1(M)→ C∞(M,C),

are the formal adjoints of

∂b : C∞(M,C)→ Ω
1,0
B (F ), ∂b : C∞(M,C)→ Ω0,1(M),

1The operator P0 in this thesis and [92] differ by a multiplicative factor 1
4 .
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with respect to the L2 inner products

( f , g)L2 =

∫
M

f g Ψθ , (ω1 , ω2)L2 =

∫
M

G∗θ(ω1 , ω2) Ψθ ,

for any f , g ∈ C∞(M,C) and any complex 1-forms ω1 , ω2 either in Ω
1,0
B (F ) or in Ω0,1(M). State-

ments (i)-(ii) in Lemma 4.1 are immediate. The last equality in (iii) (respectively in (iv)) is due to
[60] (cf. also [94], p. 280). To prove (iii) let ω ∈ Ω

1,0
B (F ) and f ∈ C∞(M,C). Then

G∗θ(ω , db f ) = div( fω]) − f div(ω]) (4.14)

hence (by Green’s lemma)(
d∗bω , f

)
L2 =

∫
M

G∗θ(ω , db f ) Ψθ = −

∫
M

f div(ω]) Ψθ = − (δbω f )L2

so that d∗bω = δbω. As to the proof of (4.14) one may locally compute

G∗θ(ω , db f ) = ωαTβ( f )gαβ = Tβ( fωβ) − f Tβ(ω
β) =

= div
(

f ωβTβ

)
− f

{
ωβdiv(Tβ) + Tβ(ω

β)
}

=

= div
(

fω]
)
− f

{
Tβ(ω

β) + Γα
αβ
ωβ

}
= div

(
fω]

)
− f ∇βω

β

and
∇βω

β = trace
{
Tα 7−→ ∇Tαω

]
}

= div(ω]).

Finally one may complete the proof of (iii) by observing that G∗θ(ω , ∂b f ) = G∗θ(ω , db f ) so that
d∗bω = ∂∗bω. The proof of (iv) is similar (hence omitted). Lemma 4.1 is proved.

For every f ∈ C∞(M,R)∫
M

g∗θ
(
(P + P) f , db f

)
Ψθ =

(
P f + P f , db f

)
L2 =

=
(
d∗b(P f + P f ) , f

)
L2 = − (P0 f , f )L2

(compare to (1.3) in [92], p. 263). By a result of S-C. Chang & H-L. Chiu, [92], the operator P0
is nonnegative i.e.

∫
M(P0u)u Ψθ ≥ 0 for any u ∈ C∞(M,R). We end the preparation of CR and

pseudohermitian geometry by establishing

uα uαββ + uα uαββ = −uα Pαu − uα Pαu+ (4.15)

+2ni
(
Aαβuαuβ − Aαβu

αuβ
)
−

(
∇Hu

)
(∆bu)

(compare to (2.3) in [92], p. 267). Indeed (by (4.10))

gθ
(
∇Hu , ∇H∆bu

)
= uα (∆bu)β gαβ + uα (∆bu)β gαβ =

= −uα
(
∇γuγ + ∇γuγ

)
α
− uα

(
∇γuγ + ∇γuγ

)
α

=
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= −uα
(
∇α∇γuγ + ∇α∇γuγ

)
− uα

(
∇α∇γuγ + ∇α∇γuγ

)
=

= −uα
(
gγβ uαγβ + gβγ uαγβ

)
− uα

(
gγβ uαγβ + gβγ uαγβ

)
=

= −uα
(
uαββ + uαββ

)
− uα

(
uαββ + uαββ

)
=

= −uα
(
Pαu − 2ni Aαβuβ + uαββ

)
− uα

(
uαββ + Pαu + 2ni Aαβu

β
)
.

Q.e.d.

4.2 Bochner-Lichnerowicz formulae on Fefferman spaces

Let S 1 → C(M)
π
→ M be the canonical circle bundle over a strictly pseudoconvex CR manifold

M, of CR dimension n (cf. e.g. Definition 2.9 in [94], p. 119). We set M = C(M) for simplicity.
Let θ ∈ P+ be a positively oriented contact form on M and let Fθ be the corresponding Fefferman
metric onM i.e.

Fθ = π∗G̃θ + 2
(
π∗θ

)
� σ, (4.16)

σ =
1

n + 2

{
dγ + π∗

(
iωαα −

i
2

gµν dgµν −
ρ

4(n + 1)
θ

)}
. (4.17)

Cf. Definition 2.15 and Theorem 2.4 in [94], p. 128-129. As to the notations in (4.16)-(4.17)
we set G̃θ = Gθ on H(M) ⊗ H(M) and G̃θ(T,W) = 0 for every W ∈ X(M). Moreover γ is a
local fibre coordinate on M. We recall that Fθ ∈ Lor(M) i.e. Fθ is a Lorentzian metric on M (a
semi-Riemannian metric of signature (− + · · ·+)) and its restricted conformal class {e2 u◦πFθ : u ∈
C∞(M,R)} is a CR invariant (cf. [59]).

Let D be the Levi-Civita connection of (M, Fθ). Given a point z0 ∈ M let {Ep : 1 ≤ p ≤ 2n+2}
be a local orthonormal (i.e. Fθ(Ep , Eq) = εp δpq with εp ∈ {±1}) frame of T (M), defined on an
open neighborhood π−1(U) ⊂ M of z0, such that

(DEp Eq)(z0) = 0, 1 ≤ p, q ≤ 2n + 2.

Such a local frame may always be built by parallel translating a given orthonormal basis {ep : 1 ≤
p ≤ 2n + 2} ⊂ Tz0(M) along the geodesics of (M, Fθ) issuing at z0.

Let � be the wave operator (the Laplace-Beltrami operator of (M, Fθ)). If f ∈ C∞(M,R) and
g = Fθ(D f ,D f ) then

(�g)(z0) = −

2n+2∑
p=1

εp
{
Ep

(
Ep(g)

)
−

(
DEp Ep

)
(g)

}
z0

=

= −2
∑

p

εp Ep
(
Fθ(DEp D f , D f )

)
z0

=

= −2
∑

p

εp
{
Fθ(DEp DEp D f , D f ) + Fθ(DEp D f , DEp D f )

}
z0
.
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As {Ep : 1 ≤ p ≤ 2n + 2} is orthonormal, the first term may be written

Fθ(DEp DEp D f , D f )z0 =
∑

q

εq Fθ(DEp DEp D f , Eq)z0 Eq( f )z0 .

On the other hand
Fθ(DEp DEp D f , Eq)z0 =

= Ep
(
Fθ(DEp D f , Eq)

)
z0
− Fθ

(
DEp D f , DEp Eq

)
z0

=

(by (DEp Eq)z0 = 0 and DFθ = 0)

= Ep,z0

{
Ep

(
Fθ(D f , Eq)

)
− Fθ

(
D f , DEp Eq

)}
=

= Ep,z0

{
Ep(Eq( f )) − (DEp Eq)( f )

}
= Ep,z0

{
(D2 f )(Ep , Eq)

}
where

(D2 f )(X,Y) = X(Y( f )) − (DXY)( f ), X,Y ∈ X(M),

(the Hessian of f ). As Fθ is a Lorentzian metric, D2 f is symmetric. Thus

Ep,z0

{
(D2 f )(Ep , Eq)

}
= Ep,z0

{
(D2 f )(Eq , Ep)

}
=

(by reversing the calculation above)

= Fθ

(
DEp DEq D f , Ep

)
z0
.

So far we obtained

−(1/2)� (Fθ(D f ,D f ))z0
=

∑
p

εp Fθ

(
DEp D f , DEp D f

)
z0

+ (4.18)

+
∑
p,q

εpεq Fθ

(
DEp DEq D f , Ep

)
z0

Eq( f )z0 .

Let (U, x j) be a local coordinate system on M and let (π−1(U),Zp) be the induced local coordinates
onM i.e. Z j = x j ◦ π and Z2n+2 = γ. If B is a C∞(M)-bilinear form on X(M) then

F∗θ (B,B) = F pr Fqs
BpqBrs

on π−1(U) where

Fpq = Fθ

(
∂p , ∂q

)
, Bpq = B

(
∂p , ∂q

)
, ∂p =

∂

∂Zp , FpqFqr = δr
p .

If Ep = Eq
p∂q then

∑
p εpEq

pEr
p = Fqr. Hence

F∗θ (D
2 f , D2 f )z0 =

∑
p,q

εpεq(D2 f )(Ep , Eq)2
z0

=

=
∑
p,q

εpεq
{
Ep(Eq( f )) − (DEp Eq)( f )

}2

z0
=
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=
∑
p,q

εpεqFθ

(
DEp D f , Eq

)2

z0

that is
F∗θ (D

2 f , D2 f )z0 =
∑

p

εp Fθ

(
DEp D f , DEp D f

)
. (4.19)

Let RD be the curvature tensor field of RD. Then

DEp DEq = DEq DEp + RD(Ep , Eq) +
[
Ep , Eq

]
,[

Ep , Eq
]
z0

= 0,∑
p

εpFθ

(
DEq DEp D f , Ep

)
z0

=
∑

p

εpEq
(
Fθ(DEp D f , Ep)

)
z0

=

= Eq (div(D f )) = −Eq (� f ) ,

so that ∑
p,q

εpεqFθ

(
DEp DEq D f , Ep

)
z0

Eq( f )z0 = (4.20)

=
∑

q

εq

−Eq(� f )z0 +
∑

p

εpFθ

(
RD(Ep , Eq)D f , Ep

)
z0

 Eq( f )z0 .

Let RicD and KD be respectively the Ricci curvature and the Christoffel 4-tensor of (M, Fθ)i.e.

RicD(X,Y) = trace
{
Z ∈ T (M) 7→ RD(Z,Y)X

}
,

KD(X,Y,Z,W) = Fθ

(
RD(Z,W)Y , X

)
,

for any X,Y,Z,W ∈ T (M). Then (by taking into account the symmetries of the Christoffel tensor)∑
p

εpFθ

(
RD(Ep , Eq)D f , Ep

)
z0

=

=
∑

p

εpKD
(
Ep , D f , Ep , Eq

)
z0

=
∑

p

εpKD
(
Ep , Eq , Ep , D f

)
z0

=

=
∑

p

εpFθ

(
RD(Ep , D f )Eq , Ep

)
z0

=

= trace
{
Z ∈ T (M) 7→ RD(Z , D f )Eq

}
z0

= RicD(Eq , D f )

so that (by (4.20)) ∑
p,q

εpεqFθ

(
DEp DEq D f , Ep

)
z0

Eq( f )z0 =

=
∑

q

εq
{
−Eq(� f )z0 + RicD(Eq , D f )

}
Eq( f )z0 =

= −(D f )(� f )z0 + RicD(D f ,D f )z0
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and (by taking into account (4.19)) one may write (4.18) as

−(1/2)� (Fθ(D f ,D f )) = F∗θ
(
D2 f , D2 f

)
− (4.21)

−(D f )(� f ) + RicD(D f , D f ).

Let us assume that M is a closed manifold (i.e. M is compact and ∂M = ∅). Then M is a closed
manifold, as well (as the total space of a locally trivial bundle over a compact manifold, with
compact fibres). Integration of (4.21) overM leads (by Green’s lemma) to the (Lorentzian analog
to the) L2 Bochner-Lichnerowicz formula∫

M

{
F∗θ

(
D2 f , D2 f

)
+ RicD(D f , D f )

}
dvol(Fθ) = (4.22)

=

∫
M

(D f )(� f ) d vol(Fθ).

Compare to (G.IV.5) in [71], p. 131.

4.3 Curvature theory

By a result in [18] the 1-form σ ∈ Ω1(M) is a connection form in the canonical circle bundle
S 1 → M → M. Let X↑ ∈ X(M) denote the horizontal lift of X ∈ X(M) i.e. X↑z ∈ Ker(dzπ) and
(dzπ)X↑z = Xπ(z) for any z ∈ M. Let S ∈ X(M) be the tangent to the S 1-action i.e. locally

S =
n + 2

2
∂

∂γ
.

The Levi-Civita connection D of (M, Fθ) is given by (cf. Lemma 2 in [31], p. 03504-26)

DX↑Y
↑ = (∇XY)↑ + (4.23)

+ {Ω(X,Y) ◦ π} T ↑ +
{
σ

([
X↑,Y↑

])
− 2 A(X,Y) ◦ π

}
S ,

DX↑T
↑ = {τ(X) + φ(X)}↑ , (4.24)

DT ↑X
↑ = (∇T X + φX)↑ + 4 (dσ)(X↑,T ↑) S , (4.25)

DX↑S = DS X↑ =
1
2

(JX)↑ , (4.26)

DT ↑T
↑ = 2 V↑ , DS S = DS T ↑ = DT ↑S = 0, (4.27)

where Ω = −dθ while φ : H(M)→ H(M) and V ∈ H(M) are the bundle endomorphism and vector
field determined by

Gθ(φX,Y) ◦ π = (dσ)(X↑ , Y↑), (4.28)

Gθ(V, X) = (dσ)(T ↑ , X↑), (4.29)

for any X,Y ∈ H(M). The differential form Ω ∈ Ω2(M) bears a certain similarity to the canonical
2-form associated to a Kählerian metric, in that it may be written as Ω(X,Y) = gθ(X, JY) for any
X,Y ∈ X(M), yet similarity doesn’t go any further e.g. the de Rham cohomology class [Ω] = 0
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(while statements on the Betti numbers of a Kählerian manifold may be got by a mere inspection
of the powers [Ω]k, cf. [96]). Locally φ and V are given by

φα
β =

i
2(n + 2)

{
Rαβ −

ρ

2(n + 1)
δ
β
α

}
, φα

β = 0, φα
0 = 0, (4.30)

Vα = gαβVβ , Vβ =
1

2(n + 2)

{
1

4(n + 1)
ρβ + i Wα

αβ

}
. (4.31)

In particular [J, φ] = 0 (as a consequence of (4.30)). We recall (cf. (1.100) in [94], p. 58)

Ricgθ(Tµ , Tν) = −
1
2

Rµν + gµν , (4.32)

Rµν = i(n − 1) Aµν , (4.33)

R0ν = S µ

µν
, Rµ0 = 0, R00 = 0. (4.34)

Here Ricgθ is the Ricci curvature of the Riemannian manifold (M, gθ). Also

S (X,Y) = (∇Xτ)Y − (∇Yτ)X, X,Y ∈ X(M),

so that S µ

µν
are among S j

k`T j = S (Tk , T`). As a consequence of (4.32) one has Rµν = Rνµ. Let us
take the exterior derivative of (4.17)

(n + 2) dσ = π∗
{

idωαα −
i
2

dgµν ∧ dgµν −
1

4(n + 1)
d(ρθ)

}
and observe that dgµν ∧ dgµν = 0. Also (by Theorem 1.7 in [94], p. 55)

dωαα = Rµν θµ ∧ θν +
(
Wα
αλ θ

λ −Wα
αµ θ

µ
)
∧ θ

where {θα : 1 ≤ α ≤ n} is an admissible local frame of T1,0(M)∗ i.e.

θα(Tβ) = δαβ , θα(Tβ) = 0, θα(T ) = 0.

Throughout θα = θα. By taking into account (4.32)-(4.34)

Ric∇(X, JY) = −2i
(
Rµνθµ ∧ θν

)
(X,Y) − (n − 1)A(X,Y) (4.35)

for any X,Y ∈ H(M). Also d(ρθ) = −ρΩ on H(M) ⊗ H(M). Consequently

2(dσ)(X↑,Y↑) =
1

n + 2

{
ρ

2(n + 1)
Ω(X,Y)− (4.36)

− (n − 1) A(X,Y) − Ric∇(X, JY)} .

By a result in [98], Vol. I, p. 65, [X,Y]↑ is the horizontal component of
[
X↑,Y↑

]
for any X,Y ∈

X(M). When X,Y ∈ H(M) the vertical component may be easily derived from (4.36). One obtains
the decomposition [

X↑ , Y↑
]

= [X,Y]↑ +
2

n + 2
{Ric∇(X, JY)+ (4.37)
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+(n − 1) A(X,Y) −
ρ

2(n + 1)
Ω(X,Y)

}
S .

Similarly let us compute f ∈ C∞(M) in [X↑ , T ↑] = [X,T ]↑ + f S . If ϕ = i
(
Wα
αλθ

λ −Wα
αµ
θµ

)
then

i (dωαα)(X,T ) = (ϕ ∧ θ)(X,T ) =
1
2
ϕ(X),

2(n + 2)(dσ)(X↑ , T ↑) = ϕ(X) −
1

2(n + 1)
d(ρθ)(X,T )

or

2(dσ)(X↑,T ↑) =
1

n + 2

{
ϕ(X) −

1
4(n + 1)

X(ρ)
}

(4.38)

as T c dθ = 0. We conclude (as σ(S ) = 1
2 )

[X↑ , T ↑] = [X,T ]↑ +
2

n + 2

{
1

4(n + 1)
X(ρ) − ϕ(X)

}
S . (4.39)

We need to establish

Lemma 4.2. Let M be a strictly pseudoconvex CR manifold, of CR dimension n, and θ ∈ P+ a
positively oriented contact form. The curvature RD of the Lorentzian manifold (M, Fθ) is given by

RD(X↑,Y↑)Z↑ =
(
R∇(X,Y)Z

)↑
− (4.40)

−
1

2(n + 1)(n + 2)
{X(ρ) Ω(Y,Z) − Y(ρ) Ω(X,Z)} S−

−
n + 5
n + 2

{(∇XA)(Y,Z) − (∇Y A)(X,Z)} S +

+
1

n + 2
{(∇XRic∇)(Y, JZ) − (∇YRic∇)(Y, JZ)} S +

+Ω(Y,Z)
{

(τX)↑ + (φX)↑ −
ρ

4(n + 1)(n + 2)
(JX)↑

}
−

−Ω(X,Z)
{

(τY)↑ + (φY)↑ −
ρ

4(n + 1)(n + 2)
(JY)↑

}
+

+
1

2(n + 2)
{Ric∇(Y, JZ) − (n + 5) A(Y,Z)} (JX)↑−

−
1

2(n + 2)
{Ric∇(X, JZ) − (n + 5) A(X,Z)} (JY)↑−

−
1

n + 2

{
Ric∇(X, JY) (JZ)↑ − 2Ω(X,Y) Ric∇(T, JZ) S

}
−

−
1

n + 2

{
(n − 1)A(X,Y) −

ρ

2(n + 1)
Ω(X,Y)

}
(JZ)↑−

−2 Ω(X,Y)
{

(φZ)↑ +
2

n + 2

[
ϕ(Z) −

1
4(n + 1)

Z(ρ)
]

S
}
.
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RD(X↑ , T ↑)Z↑ =
(
R∇(X,T )Z

)↑
+ ((∇Xφ)Z)↑ − (4.41)

−
1

n + 2
{Ric∇(X, JφZ) + Ric∇(τX, JZ)} S +

+
1

n + 2

{
ϕ(Z)(JX)↑ + ϕ(X)(JZ)↑

}
−

−
1

4(n + 1)(n + 2)

{
Z(ρ)(JX)↑ + X(ρ)(JZ)↑

}
+

+
2

n + 2

{
(∇Xϕ)Z −

1
4(n + 1)

(∇Xdρ)Z
}

S−

−
1

n + 2
{(∇T Ric∇)(X, JZ) − (n + 5)(∇T A)(X,Z)} S +

+ {Ω(X, φZ) −Ω(τX,Z)}
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}
−

−2Ω(X,Z)
{

V↑ −
T (ρ)

4(n + 1)(n + 2)
S
}
−

−
3(n + 3)

n + 2
{A(X, φZ) − A(τX,Z)} S ,

RD(X↑ , S )Z↑ = (4.42)

= −
1

2(n + 2)
{Ric∇(X,Z) + (n + 5) A(X, JZ)} S−

−
1
2

Gθ(X,Z)
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}
,

RD(X↑ , Y↑)T ↑ = ((∇Xτ)Y + (∇Xφ)Y)↑ + 4Ω(X,Y)V↑− (4.43)

−
1

n + 2
{Ric∇(JτX,Y) − Ric∇(X, JτY)+

+Ric∇(JφX,Y) − Ric∇(X, JφY)} S−

−
n + 5

2(n + 2)2 {Ric∇(τX, JY) − Ric∇(JX, τY) + 2(n − 1)Ω(τX, τY)} ,

RD(X↑ , Y↑)S = 0, (4.44)

RD(T ↑ , S )Z↑ = (4.45)

=
1

n + 2

{
ϕ(JZ) −

1
4(n + 1)

(JZ)(ρ)
}

S−

−
2

n + 2

{
ϕ(Z) −

1
4(n + 1)

Z(ρ)
}

S ,

RD(T ↑ , S )T ↑ = 0, (4.46)

RD(T ↑ , S )S = 0, (4.47)

for any X,Y,Z ∈ H(M).
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Proof. As H(M) is parallel with respect to ∇ one has ∇YZ ∈ H(M). Then (by (4.23) and (4.36))

DX↑(∇YZ)↑ = (∇X∇YZ)↑+ (4.48)

+Ω(X,∇YZ)
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}

+

+
1

n + 2
{Ric∇(X, J∇YZ) − (n + 5) A(X,∇YZ)} S .

Next (by (4.23)-(4.24), (4.26), (4.36) and (4.48))

DX↑DY↑Z
↑ = (∇X∇YZ)↑ + (4.49)

+ {X(Ω(Y,Z)) + Ω(X,∇YZ)}
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}

+

−
X(ρ)

2(n + 1)(n + 2)
Ω(Y,Z)S−

−
n + 5
n + 2

{X(A(Y,Z)) + A(X,∇YZ)} S +

+
1

n + 2
{X(Ric∇(Y, JZ)) + Ric∇(X, J∇YZ)} S +

+Ω(Y,Z)
{

(τX)↑ + (φX)↑ −
ρ

4(n + 1)(n + 2)
(JX)↑

}
+

+
1

2(n + 2)
{Ric∇(Y, JZ) − (n + 5) A(Y,Z)} (JX)↑ .

The calculation of D[X↑,Y↑]Z↑ is a bit trickier as [X,Y] < H(M) in general. To start with one uses
the decomposition (4.37) followed by [X,Y] = ΠH[X,Y] + θ([X,Y])T . This yields (by (4.26))

D[X↑,Y↑]Z
↑ = D[X,Y]↑Z

↑ +
2

n + 2
B(X,Y) DS Z↑ =

= D(ΠH[X,Y])↑Z
↑ + θ([X,Y]) DT ↑Z

↑ +
1

n + 2
B(X,Y) (JZ)↑

where we have set

B(X,Y) = Ric∇(X, JY) + (n − 1) A(X,Y) −
ρ

2(n + 1)
Ω(X,Y)

for simplicity. At this point we may use (4.23) (as ΠH[X,Y] ∈ H(M)) and (4.25) so that

D[X↑,Y↑]Z
↑ =

(
∇ΠH[X,Y]Z

)↑
+ Ω(ΠH[X,Y],Z) T ↑−

−2
{
(dσ)

(
(ΠH[X,Y])↑ , Z↑

)
+ A (ΠH[X,Y] , Z)

}
S +

+θ([X,Y])
{
(∇T Z)↑ + (φZ)↑ + 4(dσ)(Z↑ , T ↑)S

}
+

+
1

n + 2
B(X,Y) (JZ)↑ .
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Next (by T cΩ = T c A = 0 and the identities (4.36) and (4.38))

D[X↑,Y↑]Z
↑ =

(
∇[X,Y]Z

)↑
+ (4.50)

+Ω([X,Y],Z)
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}
−

n + 5
n + 2

A([X,Y],Z)S +

+
1

n + 2

{
Ric∇(X, JY) (JZ)↑ + Ric∇ (ΠH[X,Y] , JZ) S

}
+

+
1

n + 2

{
(n − 1)A(X,Y) −

ρ

2(n + 1)
Ω(X,Y)

}
(JZ)↑+

+θ([X,Y])
{

(φZ)↑ +
2

n + 2

[
ϕ(Z) −

1
4(n + 1)

Z(ρ)
]

S
}
.

Moreover (by (4.49)-(4.50))

RD(X↑ , Y↑)Z↑ =
([

DX↑ , DY↑
]
− D[X↑ ,Y↑]

)
Z↑ = (4.51)

= (∇X∇YZ)↑ +

+ {X(Ω(Y,Z)) + Ω(X,∇YZ)}
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}
−

−
X(ρ)

2(n + 1)(n + 2)
Ω(Y,Z)S−

−
n + 5
n + 2

{X(A(Y,Z)) + A(X,∇YZ)} S +

+
1

n + 2
{X(Ric∇(Y, JZ)) + Ric∇(X, J∇YZ)} S +

+Ω(Y,Z)
{

(τX)↑ + (φX)↑ −
ρ

4(n + 1)(n + 2)
(JX)↑

}
+

+
1

2(n + 2)
{Ric∇(Y, JZ) − (n + 5) A(Y,Z)} (JX)↑−

− (∇Y∇XZ)↑ −

− {Y(Ω(X,Z)) + Ω(Y,∇XZ)}
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}

+

+
Y(ρ)

2(n + 1)(n + 2)
Ω(X,Z)S +

+
n + 5
n + 2

{Y(A(X,Z)) + A(Y,∇XZ)} S−

−
1

n + 2
{Y(Ric∇(X, JZ)) + Ric∇(Y, J∇XZ)} S−

−Ω(X,Z)
{

(τY)↑ + (φY)↑ −
ρ

4(n + 1)(n + 2)
(JY)↑

}
−
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−
1

2(n + 2)
{Ric∇(X, JZ) − (n + 5) A(X,Z)} (JY)↑−

−
(
∇[X,Y]Z

)↑
−

−Ω([X,Y],Z)
{

T ↑ −
ρ

2(n + 1)(n + 2)
S
}

+
n + 5
n + 2

A([X,Y],Z)S−

−
1

n + 2

{
Ric∇(X, JY) (JZ)↑ + Ric∇ (ΠH[X,Y] , JZ) S

}
−

−
1

n + 2

{
(n − 1)A(X,Y) −

ρ

2(n + 1)
Ω(X,Y)

}
(JZ)↑−

−θ([X,Y])
{

(φZ)↑ +
2

n + 2

[
ϕ(Z) −

1
4(n + 1)

Z(ρ)
]

S
}
.

Using the identity
[X,Y] = ∇XY − ∇Y X + 2Ω(X,Y)T, X,Y ∈ H(M), (4.52)

one has
X(Ω(Y,Z)) + Ω(X,∇Y X)−

−Y(Ω(X,Z)) −Ω(Y,∇XZ) −Ω([X,Y],Z) =

= (∇XΩ)(Y,Z) − (∇YΩ)(X,Z) − 2Ω(X,Y)Ω(T,Z) = 0

as ∇Ω = 0 and T cΩ = 0. Similarly (again by (4.51) and T c A = 0)

−X(A(Y,Z)) − A(X,∇YZ)+

+Y(A(X,Z)) + A(Y,∇XZ) + A([X,Y],Z) =

= −(∇XA)(Y,Z) + (∇Y A)(X,Z).

Next (by ∇J = 0)
X(Ric∇(Y, JZ)) + Ric∇(X, J∇YZ)−

−Y(Ric∇(X, JZ)) − Ric∇(Y, J∇XZ) − Ric∇(ΠH[X,Y], JZ) =

= (∇XRic∇)(Y, JZ) − (∇YRic∇)(Y, JZ) + 2Ω(X,Y) Ric∇(T, JZ).

Consequently (4.51) yields (4.40). The proof of the remaining identities (4.41)-(4.47) is relegated
to § 4.6.

Using Lemma 4.2 one may compute the Ricci curvature of (M, Fθ). Let {Ea : 1 ≤ a ≤ 2n} be
an orthonormal frame of H(M) i.e. Gθ(Ea, Eb) = δab. Then{

Ẽp : 1 ≤ p ≤ 2n + 2
}
≡ {E↑a , T ↑ ± S : 1 ≤ a ≤ 2n},

Ẽa = E↑a, Ẽ2n+1 = T ↑ − S , Ẽ2n+2 = T ↑ + S ,

is a local Fθ-orthonormal frame of T (M), so that for any U,W ∈ X(M)

RicD(U,W) =

2n+2∑
p=1

εpFθ

(
RD(Ẽp , W)U , Ẽp

)
=
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=

2n∑
a=1

Fθ

(
RD(E↑a , W)U , E↑a

)
−

−Fθ

(
RD(T ↑ − S , W)U , T ↑ − S

)
+ Fθ

(
RD(T ↑ + S , W)U , T ↑ + S

)
i.e.

RicD(U,W) =

2n∑
a=1

Fθ

(
RD(E↑a , W)U , E↑a

)
+ (4.53)

+2
{
Fθ

(
RD(T ↑,W)U , S

)
+ Fθ

(
RD(S ,W)U , T ↑

)}
.

We may state the following

Lemma 4.3. For any X,Y ∈ H(M)

RicD(X↑,Y↑) =
n + 1
n + 2

{Ric∇(X,Y) + 3 A(X, JY)}+ (4.54)

+
ρ

2(n + 1)(n + 2)
Gθ(X,Y),

RicD(X↑,T ↑) = Ric∇(X,T ) + trace {ΠH(∇φ)X}+ (4.55)

+
1

n + 2
ϕ(JX) − 2 Ω(V, X) +

1
4(n + 1)(n + 2)

Ω(X , ∇Hρ),

RicD(X↑, S ) = 0, (4.56)

RicD(T ↑,T ↑) =
1

n + 2
trace

{
ρ

4(n + 1)
Jφ − 3(n + 3) τ2

}
+ (4.57)

+
1

n + 2
traceGθΠH {Ric∇(· , Jφ ·) + Ric∇(τ · , J ·)−

−∇ϕ +
1

4(n + 1)
∇dρ+

+
n + 5

2
∇T A −

1
2

(∇T Ric∇)(· , J ·)
}
,

RicD(T ↑, S ) =
ρ

4(n + 1)
, (4.58)

RicD(S , S ) =
n
2
. (4.59)

Proof. Let X,Y, E ∈ H(M) and let us replace (X,Y,Z) in (4.40) by (E,Y, X) and take the inner
product of the resulting identity with E↑. As

Fθ(X↑ , Y↑) = Gθ(X,Y) ◦ π,

Fθ(X↑ , T ↑) = 0, Fθ(X↑ , S ) = 0,

Gθ(JX, JY) = Gθ(X,Y),
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we obtain
Fθ

(
RD(E↑,Y↑)X↑, E↑

)
= Gθ

(
R∇(E,Y)X, E

)
+

+Ω(Y, X) {Gθ(τE, E) + Gθ(φE, E)} −

−Ω(E, X)
{

Gθ(τY, E) + Gθ(φY, E) −
ρ

4(n + 1)(n + 2)
Gθ(JY, E)

}
−

−
1

2(n + 2)
{Ric∇(E, JX) − (n + 5) A(E, X)}Gθ(JY, E)−

−
1

n + 2
Ric∇(E, JY) Gθ(JX, E)−

−
1

n + 2

{
(n − 1)A(E,Y) −

ρ

2(n + 1)
Ω(E,Y)

}
Gθ(JX, E).

Let us replace E by Ea and sum over 1 ≤ a ≤ 2n. Since

trace(τ) = 0, X =
∑

a

Gθ(X, Ea)Ea , X ∈ H(M),

one obtains ∑
a

Fθ

(
RD(E↑a , Y↑)X↑ , E↑a

)
= Ric∇(X,Y)+ (4.60)

+Ω(Y, X) trace(φ) −Ω(τY, X) −Ω(φY, X)+

+
ρ

4(n + 1)(n + 2)
Ω(JY, X)−

−
1

2(n + 2)
{Ric∇(JY, JX) − (n + 5) A(JY, X)} −

−
1

n + 2
Ric∇(JX, JY)−

−
1

n + 2

{
(n − 1)A(JX,Y) −

ρ

2(n + 1)
Ω(JX,Y)

}
.

Note that (by the symmetry of A together with τ ◦ J + J ◦ τ = 0)

A(JX,Y) = A(X, JY), Gθ(JX, JY) = Gθ(X,Y),

Ω(τY, X) = A(X, JY).

To further simplify (4.60) we need some preparation. Let us replace X by JX in (4.35). One has

Ric∇(JX, JY) = −2i
(
Rµνθµ ∧ θν

)
(JX,Y) − (n − 1) A(JX,Y) =

= 2i
(
Rµνθµ ∧ θν

)
(Y, JX) − (n − 1) A(X, JY) =

(by applying (4.35) once again)

= −Ric∇(Y, J2X) − (n − 1) A(Y, JX) − (n − 1) A(X, JY)
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or (as J2 = −I on H(M))

Ric∇(JX, JY) = Ric∇(X,Y) − 2(n − 1) A(X, JY) (4.61)

for any X,Y ∈ H(M). Here we have also used the symmetry of Ric∇ on H(M) ⊗ H(M)

Ric∇(X,Y) = Ric∇(Y, X)

which is an immediate consequence of (4.32)-(4.33). Moreover

trace(φ) = 0 (4.62)

as a corollary of (4.30) and the fact that the trace of the endomorphism φ : H(M) → H(M)
coincides with the trace of its extension by C-linearity to H(M)⊗C (and φαβ is purely imaginary).

Next one needs to compute Ω(φY, X). If {Tα : 1 ≤ α ≤ n} is a local frame of T1,0(M) and
X = XαTα + XαTα for some Xα ∈ C∞(U,C) (with Xα = Xα) then

Ω(φY, X) = Gθ(φY, JX) =

= −iYαXσgβσφαβ + iYαXσgβσφα
β =

(by identity (4.30))

=
1

2(n + 2)

{
YαXσ

[
Rασ −

ρ

2(n + 1)
gασ

]
+

+YαXσ

[
Rασ −

ρ

2(n + 1)
gασ

]}
or

Ω(φY , X) = (4.63)

=
1

2(n + 2)

{
Ric∇

(
Y1,0 , X0,1

)
+ Ric∇

(
Y0,1 , X1,0

)}
−

−
ρ

4(n + 1)(n + 2)

{
Gθ

(
Y1,0 , X0,1

)
+ Gθ

(
Y0,1 , X1,0

)}
where we have set X1,0 = XαTα and X0,1 = X1,0 (so that X = X1,0 + X0,1). To further compute
(4.63) let us observe that (by (4.33))

Ric∇
(
Y1,0 , X0,1

)
+ Ric∇

(
Y0,1 , X1,0

)
=

= Ric∇
(
Y1,0 , X

)
− Ric∇

(
Y1,0 , X1,0

)
+

+Ric∇
(
Y0,1 , X

)
− Ric∇

(
Y0,1 , X0,1

)
=

= Ric∇(Y, X) − i(n − 1)YαXσAασ + i(n − 1)YαXσAασ =

= Ric∇(X,Y) − i(n − 1)
{
A

(
Y1,0 , X1,0

)
− A

(
Y0,1 , X0,1

)}
=

(as A vanishes on T1,0(M) ⊗ T0,1(M), as a consequence of τT1,0(M) ⊂ T0,1(M))

= Ric∇(X,Y) − i(n − 1)
{
A

(
Y1,0 , X

)
− A

(
Y0,1 , X

)}
124



4.3. CURVATURE THEORY

or (as JY = i(Y1,0 − Y0,1))

Ric∇
(
Y1,0 , X0,1

)
+ Ric∇

(
Y0,1 , X1,0

)
= (4.64)

= Ric∇(X,Y) − (n − 1) A(X, JY).

Substitution from (4.64) into (4.63) leads to

Ω(φY, X) =
1

2(n + 2)
{Ric∇(X,Y) − (n − 1)A(X, JY)} − (4.65)

−
ρ

4(n + 1)(n + 2)
Gθ(X,Y)

for any X,Y ∈ H(M). Substitution from (4.61)-(4.62) and (4.65) into (4.60) leads to (after simpli-
fications)

2n∑
a=1

Fθ

(
RD(E↑a , Y↑)X↑ , E↑a

)
= (4.66)

=
n

n + 2
Ric∇(X,Y) +

2(n − 1)
n + 2

A(X, JY) +
ρ

(n + 1)(n + 2)
Gθ(X,Y).

Let us take the inner product of (4.41) with S and use

Fθ(S , S ) = 0, Fθ(T ↑, S ) =
1
2
, Fθ(X↑, S ) = 0, X ∈ H(M).

Since (by (4.41))

RD
(
X↑,T ↑

)
Z↑ ≡ {Ω(X, φZ) −Ω(τX,Z)}T ↑, mod H(M)⊥, S ,

we obtain

Fθ(RD(X↑,T ↑)Z↑ , S ) =
1
2
{Ω(X, φZ) −Ω(τX,Z)}. (4.67)

Therefore the last two terms in (4.53) (with U = X↑ and W = Y↑) may be computed (by (4.67) and
(4.65)) as

Fθ

(
RD(T ↑,Y↑)X↑, S

)
+ Fθ

(
RD(S ,Y↑)X↑,T ↑

)
= (4.68)

=
1

2(n + 2)
{Ric∇(X,Y) + (n + 5) A(X, JY)} −

−
ρ

4(n + 1)(n + 2)
Gθ(X,Y).

Finally formulae (4.53) and (4.68) lead to (4.54). The proof of the remaining identities (4.55)-
(4.59) is given in § 4.6.
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4.4 Pseudohermitian Bochner-Lichnerowicz formula

Let f ∈ C∞(M). Then

D f =

2n+2∑
j=1

ε jẼ j( f )Ẽ j =
∑

a

E↑a( f )E↑a + 2
{
T ↑( f )S + S ( f )T ↑

}
hence

D(u ◦ π) =
∑

a

Ea(u)E↑a + 2T (u)S =
(
∇Hu

)↑
+ 2u0 S (4.69)

for any u ∈ C∞(M), where we have set u0 = T (u). Next (by (4.54), (4.56) and (4.59) in Lemma
4.3)

RicD(D(u ◦ π) , D(u ◦ π)) =

=

2n∑
a,b=1

Ea(u)Eb(u)RicD(E↑a , E↑b) + 4u2
0 RicD(S , S ) =

= 2nu2
0 +

∑
a,b

Ea(u)Eb(u)
{

n + 1
n + 2

[Ric∇(Ea, Eb) + 3A(Ea, Eb)] +

+
ρ

2(n + 1)(n + 2)
Gθ(Ea , Eb)

}
or

RicD(D(u ◦ π) , D(u ◦ π)) = 2nu2
0+ (4.70)

+
n + 1
n + 2

{
Ric∇

(
∇Hu,∇Hu

)
+ 3A(∇Hu , J∇Hu)

}
+

+
ρ

2(n + 1)(n + 2)

∥∥∥∇Hu
∥∥∥2
.

Lemma 4.4. Let u ∈ C∞(M) and f = u ◦ π ∈ C∞(M). Then

(D2 f )(X↑,Y↑) = (∇2u)(X,Y) −Ω(X,Y)u0 , (4.71)

(D2 f )(X↑,T ↑) = (∇2u)(T, X) − (φX)(u), (4.72)

(D2 f )(X↑, S ) = −
1
2

(JX)(u), (4.73)

(D2 f )(T ↑,T ↑) = T (u0) − 2V(u), (4.74)

(D2 f )(T ↑, S ) = 0, (4.75)

(D2 f )(S , S ) = 0, (4.76)

for every X,Y ∈ H(M). Consequently

F∗θ (D
2 f , D2 f ) =

∥∥∥ΠH∇
2u

∥∥∥2
+ 2nu2

0 − 2 div
(
J∇Hu

)
(u0)+ (4.77)

+4
{
(J∇Hu)(u0) −

(
τJ∇Hu + φJ∇Hu

)
(u)

}
.
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Proof. By (4.23) and S ( f ) = 0

(D2 f )(X↑,Y↑) = X↑(Y↑( f )) − (DX↑Y
↑)( f ) =

= X(Y(u)) − (∇XY)(u) −Ω(X,Y)u0

yielding (4.71). Similarly (4.72) follows from (4.24)

(D2 f )(X↑,T ↑) = X(u0) − (τX)(u) − (φX)(u)

and τ(X) = ∇T X − [T, X]. Next (4.73) is an immediate consequence of (4.26). Also the first
identity in (4.27) yields (4.74). Finally the last identity in (4.27) implies (4.75)-(4.76). The proof
of (4.77) is more involved. One has (by (4.75)-(4.76))

F∗θ
(
D2 f ,D2 f

)
=

2n+2∑
p,q=1

εpεq(D2 f )
(
Ẽp , Ẽq

)2
=

=
∑
a,b

(D2 f )(E↑a, E
↑

b)2 − 2(D2 f )(T ↑ − S ,T ↑ + S )2+

+2
∑

a

{
(D2 f )(E↑a,T

↑ + S )2 − (D2 f )(E↑a,T
↑ − S )2

}
+

+(D2 f )(T ↑ − S ,T ↑ − S )2 + (D2 f )(T ↑ + S ,T ↑ + S )2 =

=
∑
a,b

(D2 f )(E↑a, E
↑

b)2 + 8
∑

a

(D2 f )(E↑a,T
↑) (D2 f )(E↑a, S )

hence (by (4.71)-(4.73))

F∗θ (D
2 f ,D2 f ) =

∑
a,b

[
(∇2u)(Ea, Eb) −Ω(Ea, Eb)u0

]2
− (4.78)

−4
∑

a

{
(∇2u)(T, Ea) − (φEa)(u)

}
(JEa)(u).

On the other hand
∑

a(JEa)(u) Ea = −J∇Hu so that (4.78) becomes

F∗θ (D
2 f ,D2 f ) =

∥∥∥ΠH∇
2u

∥∥∥2
+ 2nu2

0 + 2 u0 traceGθ

{
ΠH(∇2u)J

}
+ (4.79)

+4
{
(∇2u)J(T,∇Hu) − (φJ∇Hu)(u)

}
where we have set ∥∥∥ΠH∇

2u
∥∥∥2

=

2n∑
a,b=1

(∇2u)(Ea, Eb),

(∇2u)J(X,Y) = (∇2u)(X, JY), X,Y ∈ H(M).

Moreover (by ∇gθ = 0)

traceGθ

{
ΠH(∇2u)J

}
=

∑
a

{
Ea ((JEa)(u)) − (∇Ea JEa)(u)

}
=
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= −
∑

a

{
Ea

(
gθ(J∇Hu, Ea)

)
− gθ(J∇Hu , ∇Ea Ea)

}
=

= −
∑

a

gθ(∇Ea J∇Hu , Ea)

i.e.
traceGθ

{
ΠH(∇2u)J

}
= −div

(
J∇Hu

)
. (4.80)

Also
(∇2u)(T, X) = X(u0) − (τX)(u), X ∈ H(M),

and substitution from (4.80) into (4.79) leads to (4.77). By a result of J.M. Lee, [59], if f = u ◦ π
then � f = (∆bu) ◦ π hence (by (4.69))

(D f )(� f ) = (∇Hu)(∆bu), (4.81)

Fθ(D f ,D f ) = ‖∇Hu‖2 . (4.82)

Finally (by taking into account the identities (4.70), (4.77) and (4.81)-(4.82)) the Bochner-Lichnerowicz
formula (4.21) becomes

−
1
2

∆b
(
‖∇Hu‖2

)
=

∥∥∥ΠH∇
2u

∥∥∥2
+ 4nu2

0 − 2 div
(
J∇Hu

)
u0+ (4.83)

+4
{
(J∇Hu)(u0) −

(
τJ∇Hu + φJ∇Hu

)
(u)

}
− (∇Hu)(∆bu)+

+
n + 1
n + 2

{
Ric∇(∇Hu,∇Hu) + 3 A(∇Hu, J∇Hu)

}
+

+
ρ

2(n + 1)(n + 2)
‖∇Hu‖2 .

The term (φJ∇Hu)(u) may be expressed in terms of pseudohermitian Ricci curvature and torsion.
As

J∇Hu = i
(
uαTα − uαTα

)
, uα = gαβuβ , uβ = Tβ(u),

one has (by (4.30))

φJ∇Hu = i
(
uαφαβTβ − uαφαβTβ

)
=

= −
1

2(n + 2)
uα

(
Rαβ −

ρ

2(n + 1)
δ
β
α

)
Tβ + complex conjugate =

= −
1

2(n + 2)
gβνRic∇

((
∇Hu

)1,0
, Tν

)
Tβ+

+
ρ

4(n + 1)(n + 2)

(
∇Hu

)1,0
+ complex conjugate =

= −
1

2(n + 2)

{
gβνRic∇

((
∇Hu

)1,0
, Tν

)
Tβ+

+gβνRic∇
((
∇Hu

)0,1
, Tν

)
Tβ

}
+

ρ

4(n + 1)(n + 2)
∇Hu
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hence (as Ric∇ is symmetric on H(M) ⊗ H(M))

(φJ∇Hu)(u) =
ρ

4(n + 1)(n + 2)
‖∇Hu‖2− (4.84)

−
1

n + 2
Ric∇

((
∇Hu

)1,0
,
(
∇Hu

)0,1
)
.

Formula (4.33) implies

Ric∇
(
X1,0 , X0,1

)
=

1
2
{Ric∇(X, X) − (n − 1) A(X, JX)} (4.85)

for any X ∈ H(M). Hence (by (4.85) with X = ∇Hu) formula (4.84) becomes

(φJ∇Hu)(u) =
ρ

4(n + 1)(n + 2)
‖∇Hu‖2− (4.86)

−
1

2(n + 2)

{
Ric∇

(
∇Hu , ∇Hu

)
− (n − 1) A

(
∇Hu , J∇Hu

)}
.

Let us substitute from (4.86) and (τJ∇Hu)(u) = A(∇Hu , J∇Hu) into (4.83). We obtain

−
1
2

∆b
(
‖∇Hu‖2

)
=

∥∥∥ΠH∇
2u

∥∥∥2
− (∇Hu)(∆bu) + 4nu2

0+ (4.87)

+4(J∇Hu)(u0) − 2 div(J∇Hu) u0+

+
n + 3
n + 2

Ric∇
(
∇Hu , ∇Hu

)
−

ρ

2(n + 1)(n + 2)
‖∇Hu‖2−

−
3(n + 1)

n + 2
A(∇Hu , J∇Hu).

Lemma 4.5. For any u ∈ C∞(M)
div

(
J∇Hu

)
= 2nu0 . (4.88)

Proof. One has
∇Tβ J∇Hu = i

{(
∇βuα

)
Tα −

(
∇βuα

)
Tα

}
,

∇Tβ J∇Hu = i
{(
∇βu

α
)

Tα −
(
∇βu

α
)

Tα
}
,

hence (by div(X) = trace {Y 7→ ∇Y X})

div
(
J∇Hu

)
= i

{
∇αuα − ∇αuα

}
. (4.89)

On the other hand

(∇2u)(X,Y) = (∇2u)(Y, X) + 2 Ω(X,Y)u0 , X,Y ∈ H(M),

yields (for X = Tα and Y = Tβ)
∇αuβ = ∇βuα − 2igαβ u0
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or (by contraction with gαβ)
∇αuα = ∇αuα − 2inu0 . (4.90)

Finally substitution from (4.90) into (4.89) leads to (4.89). Q.e.d.

As a consequence of Lemma 4.5 the identity (4.87) simplifies to

−
1
2

∆b
(
‖∇Hu‖2

)
=

∥∥∥ΠH∇
2u

∥∥∥2
− (∇Hu)(∆bu)+ (4.91)

+4(J∇Hu)(u0)+

+
n + 3
n + 2

Ric∇
(
∇Hu , ∇Hu

)
−

ρ

2(n + 1)(n + 2)
‖∇Hu‖2−

−
3(n + 1)

n + 2
A(∇Hu , J∇Hu).

(the pseudohermitian Bochner-Lichnerowicz formula). Let us integrate over M and observe that
(by Green’s lemma and (4.88))∫

M
(J∇Hu)(u0) Ψθ = −

∫
M

u0 div(J∇Hu) Ψθ = −2n ‖u0‖
2
L2 .

We obtain ∥∥∥ΠH∇
2u

∥∥∥2
L2 − 8n ‖u0‖

2
L2 + (4.92)

+

∫
M

{
n + 3
n + 2

Ric∇
(
∇Hu , ∇Hu

)
−

3(n + 1)
n + 2

A
(
∇Hu , J∇Hu

)}
Ψθ =

=

∫
M

(
∇Hu

)
(∆bu) Ψθ +

1
2(n + 1)(n + 2)

∫
M
ρ

∥∥∥∇Hu
∥∥∥2

Ψθ

(the integral pseudohermitian Bochner-Lichnerowicz formula).

4.5 A lower bound on λ1(θ)

Let λ ∈ σ(∆b) be an eigenvalue of ∆b and u ∈ Eigen(∆b , λ) an eigenfunction corresponding to λ.
With these data ∫

M

(
∇Hu

)
(∆bu) Ψθ = λ

∥∥∥∇Hu
∥∥∥2

L2 . (4.93)

On the other hand (cf. (27) in [32], p. 88)∥∥∥ΠH∇
2u

∥∥∥2
≥

1
2n

(∆bu)2 (4.94)

everywhere on M. Moreover (by Green’s lemma)

‖∆bu‖2L2 = λ

∫
M

u ∆bu Ψθ = λ ‖∇Hu‖2L2 . (4.95)

By our assumption (29) ∫
M

Ric∇
(
∇Hu , ∇Hu

)
Ψθ ≥ k

∥∥∥∇Hu
∥∥∥2

L2 . (4.96)
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Moreover (by (29) with X = Ea and (4.117))

ρ ≥ nk. (4.97)

In particular ρ0 ≡ supx∈M ρ(x) > 0 and∫
M
ρ‖∇Hu‖2 Ψθ ≤ ρ0

∥∥∥∇Hu
∥∥∥2

L2 . (4.98)

For any X,Y ∈ H(M) (by Cauchy-Schwartz inequality)

|A(X,Y)| = |Gθ(X, τY)| ≤ ‖X‖ ‖τY‖ ≤ ‖τ‖ ‖X‖ ‖Y‖,

‖τ‖x = sup
{
Gθ,x (τxv , τxv) : v ∈ H(M)x , Gθ,x(v, v) = 1

}
, x ∈ M.

Consequently (by Gθ(JX, JY) = Gθ(X,Y))∫
M

A
(
∇Hu , J∇Hu

)
≤ τ0

∥∥∥∇Hu
∥∥∥2

L2 (4.99)

where τ0 = supx∈M ‖τ‖x. The integral Bochner-Lichnerowicz formula (4.92) reads (by (4.93))

0 =
∥∥∥ΠH∇

2u
∥∥∥2

L2 − 8n ‖u0‖
2
L2 +

+

∫
M

{
n + 3
n + 2

Ric∇
(
∇Hu , ∇Hu

)
−

3(n + 1)
n + 2

A
(
∇Hu , J∇Hu

)}
Ψθ−

−λ
∥∥∥∇Hu

∥∥∥2
L2 −

1
2(n + 1)(n + 2)

∫
M
ρ

∥∥∥∇Hu
∥∥∥2

Ψθ ≥

(by (4.94) and (4.96)-(4.99))

≥
1
2n
‖∆bu‖2L2 − 8n ‖u0‖

2
L2 +

[
(n + 3)k

n + 2
−

3(n + 1)τ0

n + 2

] ∥∥∥∇Hu
∥∥∥2

L2 −

−λ
∥∥∥∇Hu

∥∥∥2
L2 −

ρ0

2(n + 1)(n + 2)

∥∥∥∇Hu
∥∥∥2

L2

so that (by (4.95)) {
1

2n
− 1 +

1
λ

[
(n + 3)k

n + 2
−

3(n + 1)τ0

n + 2
−

−
ρ0

2(n + 1)(n + 2)

]}
‖∆bu‖2L2 ≤ 8n ‖u0‖

2
L2 .

Finally (by (4.95) and Chang-Chiu inequality (4.118) in § 4.7)

−
2n + 3
n + 2

+
1
λ

{
(n + 3)k
2(n + 1)

−
(11n + 19)τ0

n + 2
−

ρ0

2(n + 1)(n + 2)

}
≤ 0

or

λ ≥
2n

(n + 2)(n + 3)

{
(n + 3)k − (11n + 19)τ0 −

ρ0

2(n + 1)

}
(4.100)

which the announced lower bound on λ1(θ) (cf. (30) above). Of course this is useful only when

k >
(11n + 19)τ0

n + 3
+

ρ0

2(n + 1)(n + 3)
. (4.101)

In particular (by (4.97)) it must be k > 2(n + 1)(11n + 19)τ0/[(n + 2)(2n + 3)].
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4.6 Curvature of the Fefferman metric

The main purpose of § 4.6 is to complete the proof of Lemmas 4.2 and 4.3. We start with the
calculation of

RD
(
X↑ , T ↑

)
Z↑ =

[
DX↑ , DT ↑

]
Z↑ − D[X↑ ,T ↑]Z↑

for any X,Z ∈ H(M). By (4.25) (followed by (4.23) and (4.26))

DX↑DT ↑Z
↑ = (∇X∇T Z)↑ + (∇XφZ)↑ + (4.102)

+ {Ω (X,∇T Z) + Ω(X, φZ)}T ↑−

−2
{
(dσ)

(
X↑ , (∇T Z)↑

)
+ (dσ)

(
X↑ , (φZ)↑

)
+

+A (X,∇T Z) + A(X, φZ)} S +

+4X↑
(
(dσ)(Z↑ , T ↑)

)
S + 2(dσ)(Z↑,T ↑)(JX)↑.

Similarly
DT ↑DX↑Z

↑ = (∇T∇XZ)↑ + (φ∇XZ)↑+ (4.103)

+T (Ω(X,Z)) T ↑ + 2 Ω(X,Z)V↑+

+4(dσ)
(
(∇XZ)↑ , T ↑

)
S−

−2 T ↑
(
(dσ)

(
X↑,Z↑

))
S − 2T (A(X,Z))S ,

D[X↑,T ↑]Z
↑ =

(
∇[X,T ]Z

)↑
+ Ω([X,T ],Z)T ↑− (4.104)

−2
{
(dσ)

(
[X,T ]↑ , Z↑

)
+ A([X,T ],Z)

}
S +

+
1

n + 2

{
1

4(n + 1)
X(ρ) − ϕ(X)

}
(JZ)↑.

The identities
[X,T ] = −∇T X + τ(X), ∇Ω = 0,

together with (4.102)-(4.104) lead to

RD(X↑ , T ↑)Z↑ =
(
R∇(X,T )Z

)↑
+ ((∇Xφ)Z)↑ +

+ {Ω(X, φZ) −Ω(τX,Z)}T ↑ − 2Ω(X,Z) V↑+

+4
{

A(τX,Z) − A(X, φZ) +
1
2

(∇T A)(X,Z)
}

S−

−2
{
(dσ)

(
X↑ , (∇T Z)↑

)
+ (dσ)

(
X↑ , (φZ)↑

)}
S +

+4 X↑
(
(dσ)

(
Z↑,T ↑

))
S +

+2(dσ)
(
Z↑,T ↑

)
(JX)↑ − 4(dσ)

(
(∇XZ)↑,T ↑

)
S +

+2T ↑
(
(dσ)

(
X↑,Z↑

))
S−

−2
{
(dσ)

(
(∇T X)↑ , Z↑

)
− (dσ)

(
(τX)↑ , Z↑

)}
S−
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−
1

n + 2

{
1

4(n + 1)
X(ρ) − ϕ(X)

}
(JZ)↑,

and then (by (4.36) and (4.38)) to (4.41). Next one needs to compute RD(X↑, S )Z↑. One has (by
(4.23)-(4.27))

DX↑DS Z↑ =
1
2

{
(∇X JZ)↑ −Gθ(X,Z)T ↑

}
− (4.105)

−
{
(dσ)(X↑, (JZ)↑) + A(X, JZ)

}
S ,

DS DX↑Z
↑ =

1
2

(J∇XZ)↑ − 2 S
(
(dσ)(X↑ , Z↑)

)
S . (4.106)

Finally
D[X↑,S ]Z

↑ = 0 (4.107)

because of (by (4.26)) [
X↑, S

]
= DX↑S − DS X↑ = 0.

Then (4.105)-(4.107) lead to

RD(X↑, S )Z↑ = −
1
2

Gθ(X,Z)T ↑ − A(X, JZ)S +

+
{
2 S

(
(dσ)(X↑,Z↑)

)
− (dσ)(X↑, (JZ)↑)

}
S

and then (by (4.36) i.e. S
(
(dσ)(X↑,Z↑)

)
= 0) to (4.42). Next one computes RD(X↑,Y↑)T ↑. To this

end (by (4.24))
DX↑DY↑T

↑ = DX↑ (τY + φY)↑ =

or (by (4.23))
DX↑DY↑T

↑ = (∇XτY + ∇XφY)↑ (4.108)

+{Ω(X, τY) + Ω(X, φY)}T ↑−

−2
{
(dσ)

(
X↑, (τY)↑

)
+ (dσ)

(
X↑, (φY)↑

)}
S−

−2{A(X, τY) + A(X, φY)}S .

The identities
Ω(X, τY) = −A(X, JY), A(X, τY) = Gθ(τX, τY),

and (4.65) show that Ω(X, τY), A(X, τY) and Ω(X, φY) are symmetric in (X,Y). Let us interchange
X and Y and subtract the resulting identity from (4.108). We obtain

DX↑DY↑T
↑ − DY↑DX↑T

↑ = (4.109)

= (∇XτY − ∇YτX + ∇XφY − ∇YφX)↑ −

−2{A(X, φY) − A(Y, φX)}S−

−2
{
(dσ)

(
X↑, (τY)↑

)
− (dσ)

(
Y↑, (τX)↑

)}
S−

−2
{
(dσ)

(
X↑, (φY)↑

)
− (dσ)

(
Y↑, (φX)↑

)}
S .
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On the other hand (by (4.65))

A(X, φY) = Gθ(τX, φY) = Gθ(JτX, JφY) = Ω(φJY, τX) =

=
1

2(n + 2)
{Ric∇(τX, JY) − (n − 1)A(τX, JY)} −

−
ρ

4(n + 1)(n + 2)
A(X, JY)

where
A(τX, JY) = Gθ(τ2X, JY) = −Gθ(τX, JτY) = −Ω(τX, τY)

is skew-symmetric in (X,Y). Thus

A(X, φY) − A(Y, φX) = (4.110)

=
1

2(n + 2)
{Ric∇(τX, JY) − Ric∇(τY, JX)} +

n − 1
n + 2

Ω(τX, τY).

Moreover (by (4.37), (4.24) and (4.27))

D[X↑,Y↑]T
↑ = (τ[X,Y])↑ + (φ[X,Y])↑ − 4Ω(X,Y)V↑ . (4.111)

Then (4.109)-(4.111) and (4.52) (together with τT = φT = 0) lead to

RD(X↑,Y↑)T ↑ = ((∇Xτ)Y + (∇Xφ)Y)↑ − (4.112)

−
1

n + 2
{Ric∇(τX, τY) − Ric∇(τY, JX)} S−

−
2(n − 1)

n + 2
Ω(τX, τY)S + 4 Ω(X,Y) V↑−

−2
{
(dσ)(X↑, (τY)↑) − (dσ)(Y↑, (τX)↑)

}
S−

−2
{
(dσ)(X↑, (φY)↑) − (dσ)(Y↑, (φX)↑)

}
S

hence (by (4.36))
RD(X↑ , Y↑)T ↑ = ((∇Xτ)Y + (∇Xφ)Y)↑ − (4.113)

−
1

n + 2
{Ric∇(τX, JY) − Ric∇(τY, JX)+

+Ric∇(Y, JτX) − Ric∇(X, JτY)+

+Ric∇(Y, JφX) − Ric∇(X, JφY)} S−

−
2(n − 1)

n + 2
Ω(τX, τY)S + 4 Ω(X,Y)V↑−

−
ρ

2(n + 1)(n + 2)
{Ω(X, τY) −Ω(Y, τX) + Ω(X, φY) −Ω(Y, φX)} S +

+
n − 1
n + 2

{A(X, τY) − A(Y, τX) + A(X, φY) − A(Y, φX)} S .
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Yet the quantities Ω(X, τY) = −A(X, JY) and (by (4.65)) Ω(X, φY) and A(X, τY) = Gθ(τX, τY) are
symmetric in (X,Y) hence (4.113) simplifies (again by (4.110)) to (4.43). Next we compute

RD(X↑,Y↑)S = DX↑DY↑S − DY↑DX↑S − D[X↑,Y↑]S =

(by (4.26), (4.37) and (4.27))

= DX↑

(
1
2

(JY)↑
)
− DY↑

(
1
2

(JX)↑
)
− D[X,Y]↑S−

−
2

n + 2

{
Ric∇(X, JY) − (n − 1)A(X,Y) −

ρ

2(n + 1)
Ω(X,Y)

}
DS S =

(by (4.23) and (4.26)-(4.27))

=
1
2

{
(∇X JY)↑ + Ω(X, JY)T ↑ − 2

[
(dσ)(X↑, (JY)↑) + A(X, JY)

]
S−

−(∇Y JX)↑ −Ω(Y, JX)T ↑ + 2
[
(dσ)(Y↑, (JX)↑) + A(Y, JX)

]
S
}
−

−
1
2

(JΠH[X,Y])↑ − θ([X,Y])DT ↑S =

(by (4.52))

=
1
2

((∇X J)Y − (∇Y J)X)↑ −

−
{
(dσ)(X↑(JY)↑) + (dσ)((JX)↑,Y↑)

}
S =

(by ∇J = 0 and (4.36))

= −
1

2(n + 2)

{
ρ

2(n + 1)
Ω(X, JY) − (n − 1)A(X, JY)−

−Ric∇(X, J2Y)
}
−

−
1

2(n + 2)

{
ρ

2(n + 1)
Ω(JX,Y) − (n − 1)A(JX,Y)−

−Ric∇(JX, JY)} =

=
1

2(n + 2)
{2(n − 1) A(X, JY)+

+Ric∇(JX, JY) − Ric∇(X,Y)} = 0

(by applying (4.61)) thus leading to (4.44). Next we compute

RD(T ↑, S )Z↑ = DT ↑DS Z↑ − DS DT ↑Z
↑ − D[T ↑,S ]Z

↑ =

(by (4.25)-(4.26) and [T ↑, S ] = 0)

= DT ↑

(
1
2

(JZ)↑
)
− DS

(
(∇T Z + φZ)↑ + 4(dσ)(Z↑,T ↑)S

)
=
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(by (4.25))

=
1
2

{
(∇T JZ + φJZ)↑ + 4(dσ)((JZ)↑,T ↑)S

}
−

−
1
2

(J(∇T Z + φZ))↑ − 4 S ((dσ)(Z↑,T ↑))S − 4(dσ)(Z↑,T ↑)DS S =

(by (4.27))

=
1
2

((∇T J)Z + [φ, J]Z)↑ +

+2(dσ)((JZ)↑,T ↑)S − 4(dσ)(Z↑,T ↑)S .

Finally ∇J = 0, [φ, J] = 0 and (4.38) yield (4.45). The proof of (4.46)-(4.47) follows (by (4.27))
from

RD(T ↑, S )T ↑ = DT ↑DS T ↑ − DS DT ↑T
↑ − D[T ↑,S ]T

↑ =

= −DS
(
2V↑

)
= −(JV)↑,

RD(T ↑, S )S = DT ↑DS S − DS DT ↑S − D[T ↑,S ]S = 0.

The proof of Lemma 4.2 is complete.

To prove (4.55) let X ∈ H(M). Then (by (4.53))

RicD(X↑,T ↑) =
∑

a

Fθ(RD(E↑a,T
↑)X↑, E↑a)+

+2 Fθ(RD(S ,T ↑)X↑,T ↑)

and (by (4.41))

RD(E↑a,T
↑)X↑ ≡

(
R∇(Ea,T )X

)↑
+

(
(∇Eaφ)X

)↑
+

+
1

n + 2

{
ϕ(X)(JEa)↑ + ϕ(Ea)(JX)↑

}
−

−
1

4(n + 1)(n + 2)

{
X(ρ)(JEa)↑ + Ea(ρ)(JX)↑

}
−

−2Ω(Ea, X)V↑ , mod T ↑, S .

Let us take the inner product with E↑a and sum over 1 ≤ a ≤ 2n. One obtains∑
a

Fθ(RD(E↑a,T
↑)X↑, E↑a) = Ric∇(X,T )+ (4.114)

+trace {ΠH(∇φ)X} +
1

n + 2
ϕ(JX)+

+
1

4(n + 1)(n + 2)
Ω(X,∇Hρ) − 2Ω(V, X).

Also (by the symmetries of the Riemann-Christoffel tensor and (4.46))

Fθ(RD(S ,T ↑)X↑,T ↑) = Fθ(T ↑S )T ↑, X↑) = 0
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so that (4.114) yields (4.55). Next (again by (4.53))

RD(X↑, S ) =
∑

a

Fθ(RD(E↑a, S )X↑, E↑a)+

+2 Fθ(RD(T ↑, S )X↑, S ) = 0

by (4.42) and (4.47). Indeed (by (4.42)) RD(E↑a, S )X↑ ≡ 0, mod T ↑ , S and H(M)⊥ is orthogonal
on RT ↑ ⊕ RS . This yields (4.56). Moreover (by (4.46))

RicD(T ↑,T ↑) =
∑

a

Fθ(RD(E↑a,T
↑)T ↑, E↑a) =

= −
∑

a

Fθ(RD(E↑a,T
↑)E↑a,T

↑)

and (by (4.41))

RD(X↑,T ↑)X↑ ≡ −
1

n + 2
{Ric∇(X, JφX) + Ric∇(τX, JX)−

−2
[
(∇Xϕ)X −

1
4(n + 1)

(∇Xdρ)X
]
+

+(∇T Ric∇)(X, JX) + (n + 5)(∇T A)(X, X)+

+
ρ

2(n + 1)
[
Ω(X, φX) −Ω(τX, X)

]
+

+3(n + 3)
[
A(X, φX) − A(τX, X)

]}
, mod H(M)↑, T ↑ ,

hence (for X = Ea)
RicD(T ↑,T ↑) = (4.115)

=
1

n + 2
traceGθ ΠH {Ric∇(· , Jφ ·) + Ric∇(τ · , J ·) +

+
1

4(n + 1)
∇dρ − ∇ϕ −

1
2

(∇T Ric∇)(· , J ·) +
n + 5

2
∇T A

}
+

+
ρ

4(n + 1)(n + 2)
trace(Jφ − τJ) +

3(n + 3)
n + 2

trace(τφ − τ2).

Since trace(τJ) = trace(τφ) = 0 the identity (4.115) implies (4.57). Moreover (by (4.53))

RicD(T ↑, S ) =
∑

a

Fθ(RD(E↑a, S )T ↑, E↑a) =

= −
∑

a

Fθ(RD(E↑a, S )E↑a,T
↑)

or (by (4.42))
RicD(T ↑, S ) = −

n ρ
4(n + 1)(n + 2)

+ (4.116)

+
1

4(n + 2)
traceGθΠH Ric∇
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and
traceGθΠHRic∇ =

∑
a

Ric∇(Ea, Ea) =

=
∑

a

{
Eλ

a Eµ
aRλµ + Eλ

a Eµ
aRλµ + Eλ

a Eµ
aRλµ + Eλ

a Eµ
aRλµ

}
,

Ea = Eλ
aTλ + Eλ

aTλ , Eλ
a = Eλ

a ,
∑

a

Eλ
a Eµ

a = gλµ ,

so that (by (4.32)-(4.33))
traceGθΠHRic∇ = 2gλµRλµ+

+
∑

a

i(n − 1)
{
Eλ

a Eµ
a Aλµ − Eλ

a Eµ
a Aλµ

}
=

= 2ρ + i(n − 1)
∑

a

{
A(E1,0

a , E1,0
a ) − A(E0,1

a , E0,1
a )

}
=

= 2ρ + (n − 1)
∑

a

A(JEa , Ea) = 2ρ + (n − 1) trace(τJ)

i.e.
traceGθ ΠH Ric∇ = 2ρ. (4.117)

Substitution from (4.117) into (4.116) leads to (4.58). Finally (by (4.42))

RicD(S , S ) =
∑

a

Fθ(RD(E↑a, S )S , E↑a) =

= −
∑

a

Fθ(RD(E↑a, S )E↑a, S ) =
1
4

∑
a

Gθ(Ea, Ea) =
n
2

i.e. (4.59) holds. Lemma 4.3 is proved.

4.7 The Chang-Chiu inequality

The purpose of § 4.7 is to give a proof of

4n ‖u0‖
2
L2 ≤

1
n
‖∆bu‖2L2 + 4 τ0

∥∥∥∇Hu
∥∥∥2

L2 (4.118)

for any u ∈ C∞(M,R) (compare2 to (3.5) in [92], p. 270). This is referred to as the Chang-Chiu
inequality. To prove (4.118) let us contract (4.8) by uβ so that to obtain

uβ∇0uβ = uβ∇βu0 − Aαβuαuβ

or
uβ ∇0uβ = ∇β

(
u0uβ

)
− u0 ∇βuβ − Aαβuαuβ . (4.119)

2Discrepancies among (4.118) and (3.5) in [92], p. 270, are due to the different convention as to wedge products of
1-forms producing the additional 2 factor in (4.7). Cf. also (1.62) in [94], p. 39, and (9.7) in [94], p. 424. Through this
thesis conventions as to wedge products and exterior differentiation calculus are those in [98], p. 35-36.
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On the other hand (by (4.7))
∇βuβ = ∇βu

β − 2in u0

so that (by substitution into (4.119))

uβ∇0uβ + u0 ∇βu
β = 2in u2

0 − Aαβuαuβ + ∇β
(
u0uβ

)
. (4.120)

Next (again by (4.8))

u0 ∇βu
β = ∇β

(
u0uβ

)
− uβ ∇βu0 = ∇β

(
u0uβ

)
− uβ

(
∇0uβ + uγAγ

β

)
hence (by substitution of u0 ∇βu

β into (4.120))

i
(
uβ ∇0uβ − uβ ∇0uβ

)
= (4.121)

= 2nu2
0 + i

(
Aαβuαuβ − Aαβu

αuβ
)

+ i
{
∇α

(
u0uα

)
− ∇α

(
u0uα

)}
(compare to (2.4) in Lemma 2.2, [92], p. 268). Calculations are performed with respect to an
arbitrary local frame {Tα : 1 ≤ α ≤ n} in T1,0(M) (rather than a Gθ-orthonormal frame, as in [92]).
The next step is to evaluate the left hand side of (4.121) in terms of the operator P + P. One has

u0 =
i

2n

(
∇βuβ − ∇βu

β
)

hence (by (4.8))

uα ∇0uα = uα
(
∇αu0 − uβAβ

α

)
=

i
2n

uα∇α
(
∇βuβ − ∇βu

β
)
− Aαβu

αuβ =

=
i

2n
uα

(
∇α∇βuβ − ∇α∇βu

β
)
− Aαβu

αuβ =

=
i

2n
uα

(
gβγuαβγ − gβγuαβγ

)
− Aαβu

αuβ

or
uα∇0uα =

i
2n

uα
(
uαγγ − uαγγ

)
− Aαβu

αuβ . (4.122)

Using Pαu ≡ uαγγ − 2ni Aαβu
β the identity (4.122) becomes

i uα ∇0uα =
1
2n

uα
(
Pαu − uαγγ

)
. (4.123)

Let us take the complex conjugate of (4.123) and add the resulting equation to (4.123). We obtain

2ni
(
uα ∇0uα − uβ ∇0uβ

)
= uαPαu + uαPαu −

{
uα uαγγ + uα uαγγ

}
(4.124)

where Pαu ≡ uαγγ + 2niAαβuβ. Let us replace uα uαββ + uα uαββ from (4.15) into (4.124). We
obtain

2ni
(
uα ∇0uα − uα ∇0uα

)
= 2

(
uα Pαu + uαPαu

)
− (4.125)
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−2ni
(
Aαβuαuβ − Aαβu

αuβ
)

+
(
∇Hu

)
(∆bu).

Finally substitution from (4.125) into (4.121) leads to

2
(
uα Pα + uα Pαu

)
+

(
∇Hu

)
(∆bu) = (4.126)

= 4n2u2
0 + 4ni

(
Aαβuαuβ − Aαβu

αβ
)

+ 2ni
{
∇α

(
u0uα

)
− ∇α

(
u0uα

)}
.

Let us observe that
i
(
Aαβuαuβ − Aαβu

αβ
)

= A
(
∇Hu , J∇Hu

)
,

i
{
∇α

(
u0uα

)
− ∇α

(
u0uα

)}
= div

(
u0 J∇Hu

)
,

uα Pα + uα Pαu = g∗θ(Lu , dbu),

where L = P + P. Then (4.126) becomes

2 g∗θ (Lu , dbu) +
(
∇Hu

)
(∆bu) = 4n2 u2

0+ (4.127)

+4n A
(
∇Hu , J∇Hu

)
− 2n div

(
u0 J∇Hu

)
.

Let us integrate over M and use Green’s lemma. Then (by Lemma 4.1)

−2
∫

M
(P0u)u Ψθ +

∫
M

(
∇Hu

)
(∆bu) Ψθ = (4.128)

= 4n2 ‖u0‖
2
L2 + 4n

∫
M

A
(
∇Hu , J∇Hu

)
Ψθ .

Also (again by Green’s lemma)∫
M

(
∇Hu

)
(∆bu) Ψθ =

∫
M

{
div

(
(∆bu)∇Hu

)
− (∆bu) div

(
∇Hu

)}
Ψθ =

=

∫
M

(∆bu)2 Ψθ = ‖∆bu‖2L2 .

Finally as P0 is nonnegative (4.99) and (4.128) lead to (4.118). Q.e.d.
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Chapter 5

A New proof of the CR Pohoz̆aev
Identity and related Topics

5.1 Introduction and Main Results

We are concerned with non existence results for the following semilinear boundary value problems
on a bounded domain Ω of the Heisenberg group Hn

(P)
{
−∆Hu = g(u) in Ω

u = 0 in ∂Ω,

where ∆H is the sublaplacian of Hn, g is a C1 function. Recall that the Heisenberg group Hn is the
homogeneous Lie group whose underlying manifold is R2n+1 and group law given by

τξ′(ξ) = ξ′ · ξ = (x + x′, y + y′ t + t′ + 2(< x, y′ > − < x′, y >))

where < ., . > denotes the inner product in Rn, ξ = (x, y, t) and ξ′ = (x′, y′, t′). The homogeneous
norm of the space

ρ(ξ) =
(
(| x |2 + | y |2)2 + t2) 1

4

and the natural distance is accordingly defined by d(ξ, ξ′) = ρ(ξ−1 · ξ′). The Koranyi ball of center
ξ0 and radius r for this distance is given by Br(ξ) = {ξ ∈ Hn/ d(ξ0, ξ) < r}. There are a remarkable
families of transformations groups on Hn, the group of parabolic dilations and the groups of left
translations. The parabolic Hn-dilatations are the following transformations

δλ : Hn −→ Hn

(x, y, t) −→ (λx, λy, λ2t) , λ > 0.

The Jacobian determinant of δλ is λ2n+2, it yields that the homogeneous dimension of Hn is Q =

2n + 2. For a given ξ
′

∈ Hn, one can define a group of left translations by setting:

τα(ξ) = ταξ′ (ξ) = αξ
′

· ξ, ∀ξ ∈ Hn
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The generators of the group of dilations {δλ, λ > 0} and the group of left translations {ταξ′ , α ∈ R}
are given respectively by the following smooth vector fields

X =
∑
i=1

(
xi∂xi + yi∂yi

)
+ 2t∂t (5.1)

Y(ξ′) = Y(x′, y′, t′) =
∑
i=1

(
x′i∂xi + y′i∂yi

)
+ (t′ + 2(< x, y′ > − < x′, y >))∂t. (5.2)

We say that a function u is homogeneous of degree k with respect to the parabolic dilations {δλ, λ >
0} if and only if u ◦ δλ = λku for λ > 0, which implies that its Lie derivative with respect to X
satisfies LXu = X u = k u. For example, the naturel distance function is homogenous of degree
1. In the other hand a function u is homogeneous of degree k with respect to the group of left
translations {ταξ′ , α ∈ R} if and only if its Lie derivative with respect to Y satisfies

LY(ξ′) u = Y(ξ′) u = k u.

The subelliptic gradient is given by ∇Hn = (X1, ..., Xn,Y1, ...,Yn) where Xi = ∂xi + 2yi∂t, Yi =

∂yi − 2xi∂t, i ∈ {1, 2...n} span the horizontal subspace of the tangent space of Hn accordingly to
the following decomposition THn = H ⊕ RT, where H is the horizontal subspace and T is the
Reeb vector field given by T = ∂t. The Lie Algebra of left invariant vector fields is generated by
{(Xi,Yi)1≤i≤n,T }. Since [Xi, Yi] = −4T, the Heisenberg laplacian ∆H =

∑n
i=1(X2

i + Y2
i ), is a second

order degenerate elliptic operator of Hörmander type and hence it is hypoelliptic. If we denote by
A = (ai j) the (2n+1)×(2n+1) symmetric matrix given by ai j = δi j if i, j = 1, ...2n, a(2n+1) j = −2x j

if j = n + 1, ...., 2n, and a(2n+1)(2n+1) = 4|z|2. We remark that the matrix A is related to ∆H by
the formula ∆H = div(A ∇) where ∇ and div denote respectively the euclidian gradient and the
euclidian divergence operator of R2n+1. The canonical contact and volume forms of Hn are given
by θ0 = dt + 2

∑
1≤i≤n(xi dyi − yidxi) and dΨθ0 = θ0 ∧ dθn

0. A fundamental solution of −∆H with
pole at zero is given by (one can see [43])

Γ(ξ) =
cQ

d(ξ)Q−2

where cQ =
Γ2(n/2)

24−2nπn+1 and Q = 2n + 2. Moreover, a fundamental solution with pole at ξ is

Γ(ξ, ξ
′

) =
cQ

d(ξ, ξ′)Q−2 .

A basic role in the functional analysis on the Heisenberg group is played by the following Sobolev-
type inequality

|ϕ|2Q∗ ≤ c|∇Hnϕ|22, ∀ϕ ∈ C
∞
0 (Hn)

where Q∗ =
2Q

Q−2 . This inequality ensures in particular that for every domain Ω of Hn, the function
|ϕ| = |∇Hnϕ|2 is a norm on C∞0 (Ω). We denote by S 1,2(Ω) the closure of C∞0 (Ω) with respect to this
norm, S 1,2(Ω) becomes a Hilbert space with the inner product

< u, v >S 1,2=

∫
Ω

< ∇Hnu,∇Hnv > dΨθ0 .

Define S 1,2
0 (Ω) as the completion of C∞0 (Ω) with respect to the norm above.
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The Pohoz̆aev Identity is the principle tool used here to investigate the relation between domain
geometry and solvability of equation (P). We seek u a positive solution to equation (P), where g
has critical or supercritical growth, meaning, g(u) ≥ ku1+ 2

n for some positive constant k. We ask
the question " for a prescribed domain and a nonlinearity g, can we find a positive solution u?". For
Euclidean domains Ω ⊂ RN , S.Pohoz̆aev in [97] proved that there is no solution for starlike ones,
on the other hand, A.Bahri and J.M.Coron, W.Y.Ding in [1] and [105], have shown that a solution
exists when g(u) = up∗, and the domain has nontrivial topology, here p∗ = (N + 2)/(N − 2)
is the critical exponent for the compactness of the Sobolev inclusion Wk,p

0 (Ω) ↪→ Lq(Ω), for
1
q

=
1
p
−

k
n
, 1 < p < q < ∞ where Wk,p

0 (Ω) is the completion of C∞0 (Ω) with respect to the

norm ‖u‖Wk,p(Ω) = S up l(α)≤k‖Dαu‖Lp(Ω).

For the Heisenberg group and using arguments related to the topology of the domain, G.Citti
and F.Uguzzoni [44] following the work of A. Bahri and Coron, gave the Kohn Laplacian coun-
terpart of the celebrated theorem in [1], and proved an existence result for Yamabe type problem
on domains which have a nontrivial homology group (with Z2-coefficients), I.Birendili, I.Capuzzo
Dolcetta and A.Cutri in [53] used blow up techniques to prove existence results, while in [39]
F.Uguzzoni gave a non-existence result for equation (P) involving the critical exponent on halfs-
paces of the Heisenberg group. We have also to mention the non existence results of E.Lanconelli
and F.Uguzzoni on unbounded domains of the Heisenberg group in [33] and [34], and the exis-
tence of positives solutions on the Heisenberg group one can see [65] and[91].

For euclidian domains by strict-starlike, we mean that if x ∈ Rn and ν is the boundary normal,
then on the boundary of the domain (x.ν) > 0 for all x. P.Pucci and J.Serrin noted that Pohoz̆aev’s
result did not require strict starlikeness on the domain and what was needed was a domain with a
vector function h that acted like the starlike vector field h = x. Several authors P.Pucci, J.Serrin,
R.Schaaf, J.McGough, J.Mortesen, C.Rickett and G.Stubendieck in [82], [88], [61], [62] and [63]
have examined this new class of h-starlike domains and the resulting extensions of the Pohoz̆aev
like results.

While for the Heisenberg groupHn using the geometry of the domain to give non existence and
existence results for equation (P), N.Garofalo and E.Lanconelli in [78] have used the analogy with
the hstarlike euclidean domains for a given vector field h. They defined for the Heisenberg group a
notion of CR starlike domains for two special smooth vector fields, X and Y which are respectively
the generator of the group of dilations and the generator of the group of left translations ofHn given
by (5.1) and (5.2). Next we will introduce the definition given in [78] of domains starshapeness
which will be used throughout the present work. Given a piecewise C1 bounded domain Ω ⊂ Hn,

we say that it is δ−starshaped with respect to a point ξ0 ∈ Ω, if denoting by N the outer unit normal
to the boundary of τξ−1

0
(Ω), we have

X.N ≥ 0 (5.3)

at every point of ∂(τξ−1
0

(Ω)). For a bounded domain Ω of Hn, we denote by C(Ω) the space of all

continuous functions f : Ω → R such that Xi f , Yi f , X2
i f and Y2

i f for i ∈ {1, 2, ...n} are continuous
functions on Ω and continuous up to the boundary of Ω.
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CR versions of the Pohõzaev identity

1. Let u ∈ C(Ω) be a solution of the equation (P), then we have∫
Ω

‖∇Hnu‖2 X.Ndσ = −(Q − 2)
∫

Ω

ug(u)du + 2Q
∫

Ω

G(u)du.

where G(u) =

∫ u

0
g(s) ds.

2. We replace in equation (P) g(u) by g(ξ, u) = u1+ 2
n + h(ξ) u, with ξ ∈ Hn and h ∈ C∞(Hn), set

(P′) the equation thus obtained. If u ∈ C(Ω) is a solution of (P′), then we have∫
∂Ω

‖∇Hnu‖2 X.Ndσ = −2
∫

Ω

(
h +

1
2

(Xh)
)
u2 dΨθ0 .

Pohoz̆aev’s non existence results

Let Ω ⊂ Hn be a bounded and connected domain such that 0 = (0, 0, 0) ∈ Ω and Ω is
δ−starshaped with respect to this point.

1. Then any positive solution u of equation (P) vanishes identically if

−(Q − 2)ug(u) + 2QG(u) ≤ 0. (5.4)

2. If g(u) = u1+ 2
n +λ u, λ ≤ 0, then (P) has no positive solution u different of the trivial solution

u ≡ 0.

3. Let the function h given in equation (P′) satisfies

h +
1
2

(Xh) ≤ 0. (5.5)

Then there is no positive solution u ∈ S 1,2
0 (Ω) of equation (P′) unless u ≡ 0.

The chapter is organized as follows. In section 5.2, we prove preliminary results and give the CR
Pohoz̆aev Identity. The section 5.3 is devoted to establish some non existence result for equation
(P) based on the theory of unique continuation property proved by N. Garofallo and E. Lanconelli
for solutions of semi linear equations on Heisenberg group domains, one can see [77] and [78]. In
section 5.4, we study a Yamabe like problem on a bounded domain of the Heisenberg group and
deduce a non existence result using a related CR Pohoz̆aev Identity.
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5.2 Description of the Problem

We will be interested on the existence of a positive solution to the following semilinear equation

(P)
{
−∆Hu = g(u) in Ω

u = 0 in ∂Ω,

where ∆H is the sublaplacian of Hn, g is a C1 function on Ω a bounded domain of the Heisenberg
group Hn.

Lemma 5.1. If u is a solution for problem (P), then we have

−

∫
Ω

∆Hu(Xu) =

∫
Ω

g(u)(Xu) =

∫
Ω

X(G(u)) = −(2n + 2)
∫

Ω

G(u)

where G(u) =

∫ u

0
g(s) ds.

Proof. We multiply equation (P) by Xu and integrate by parts, we obtain

−

∫
Ω

∆Hu(Xu) =

∫
Ω

g(u)(Xu).

Since
∂

∂xi
(xiG(u)) = G(u) + xi

∂

∂xi
G(u) for i ∈ {1, ...n}, we have∫

Ω

∂

∂xi
(xiG(u)) =

∫
Ω

G(u) +

∫
Ω

xi
∂

∂xi
G(u)

thus it yields that
∫

Ω

G(u) +

∫
Ω

xi
∂

∂xi
G(u) = 0, since u is equal to zero on the boundary of Ω.

In the same way we obtain ∫
Ω

G(u) +

∫
Ω

yi
∂

∂yi
G(u) = 0,

for i ∈ {1, ...n} and
∫

Ω

G(u) +

∫
Ω

t
∂

∂t
G(u) = 0, hence the proof of the lemma is complete.

�

In what follows, for a bounded domain Ω of Hn, we denote by C(Ω) the space of all continuous
functions f : Ω → R such that Xi f , Yi f , X2

i f and Y2
i f for i ∈ {1, 2, ...n} are continuous functions

up to the boundary of Ω. Next we will consider the following vector field on Hn, P = Xu(∇Hnu) =

(P1, P2, ...., P2n), where u is in C(Ω). If we denote by d̃iv the horizontal divergence operator on Hn,

we remark that

d̃ivP := divHn P =

n∑
i=1

(XiP + YiP) = divP̃. (5.6)

where P̃ = (P̃1, P̃2, ...., P̃2n, P̃2n+1) is the vector field on R2n+1 obtained from P as

P̃ j = P j, for j = 1, ...2n and P̃2n+1 = 2
n∑

j=1

(y jP j − x jPn+ j)
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Let Z be the vector field ‖∇Hnu‖2 X, since divX = 2n + 2, it yields

∫
Ω

divZ = (2n + 2)
∫

Ω

‖∇Hnu‖2 + X < ∇u, A∇u > . (5.7)

Using (8) and (9), we obtain the following result:

Lemma 5.2. Let Ω be a bounded domain of Hn and u ∈ C(Ω). Then∫
Ω

d̃ivP =

∫
Ω

Xu ∆Hu +

∫
Ω

divZ − 2n
∫

Ω

‖∇Hnu‖2 −
∫

Ω

< A∇u,∇(Xu) > .

Proof. We have

d̃ivP = (Xu)d̃iv(∇Hnu) + ∇Hnu∇Hn(Xu) = Xu ∆Hu + ∇Hnu∇Hn(Xu).

A simple computation gives

P̃2n+1 = 2
n∑

j=1

(Xu) (y jX j − x jY j)

therefore, since ∇Hnu∇Hn(Xu) =< ∇u, A∇Xu > and

< ∇u, A∇Xu > = X < ∇u, A∇u > − < A∇u,
n∑

j=1

(
X(
∂u
∂xi

)∂xi + X(
∂u
∂yi

)∂yi

)
+ X(

∂u
∂t

)∂t) >

+ < ∇u, A∇u > −2
∂u
∂t

( n∑
j=1

(y jX j(u) − x jY j(u)
)
,

we obtain∫
Ω

d̃ivP =

∫
Ω

Xu ∆Hu +

∫
Ω

divZ − (2n + 2)
∫

Ω

‖∇Hnu‖2

+

∫
Ω

< A∇u,∇u −
n∑

j=1

(
X(
∂u
∂xi

)∂xi + X(
∂u
∂yi

)∂yi

)
+ X(

∂u
∂t

)∂t) >

− 2
∫

Ω

∂u
∂t

(
n∑

j=1

(y jX j(u) − x jY j(u))

=

∫
Ω

Xu ∆Hu +

∫
Ω

divZ − 2n
∫

Ω

‖∇Hnu‖2 −
∫

Ω

< A∇u,∇(Xu) > .

�

Denoting by N the euclidian unit outer normal to ∂Ω and dσ the 2n-dimensional Hausdorff
measure on R2n+1, if u is in C(Ω) the following holds

Theorem 5.3.

2
∫
∂Ω

X(u)(A∇u.N)dσ −
∫
∂Ω

‖∇Hnu‖2 X.Ndσ = 2
∫

Ω

Xu∆Hu − 2n
∫

Ω

‖∇Hnu‖2 .
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Proof. We have∫
Ω

divZdΨθ0 =

∫
∂Ω

Z.Ndσ =

∫
∂Ω

< Z,N > dσ =

∫
∂Ω

‖∇Hnu‖2 (X.N)dσ, (5.8)

and ∫
Ω

d̃ivPdΨθ0 =

∫
Ω

divP̃dx =

∫
∂Ω

P̃.Ndσ,

where

P̃ = (P, 2
∑

X(u)(y jX j(u) − x jY j(u))) = (Xu.∇Hnu, 2
n∑

i=1

(X(u)y jX j(u) − x jY j(u))

= X(u)(∇Hnu, 2
n∑

i=1

(y jX j(u) − x jY j(u)) = X(u)(A∇u).

Therefore ∫
Ω

divP̃dx =

∫
∂Ω

X(u)(A∇u.N)dσ. (5.9)

On one hand, using Lemma 2.2 and (11), we obtain∫
∂Ω

X(u)(A∇u.N)dσ =

∫
Ω

Xu∆HudΨθ0 +

∫
∂Ω

‖∇Hnu‖2 X.Ndσ

− 2n
∫

Ω

‖∇Hnu‖2 dΨθ0 −

∫
Ω

< A∇u,∇(Xu) > dΨθ0 .

In the other hand, we have∫
Ω

d̃ivP =

∫
Ω

divP̃ =

∫
Ω

div(X(u)A∇u)

=

∫
Ω

(X(u)div(A∇u) + DX(u)(A∇u)

=

∫
Ω

(X(u)div(A∇u) +

∫
Ω

∇X(u).A∇u

=

∫
Ω

Xu.∆Hu +

∫
Ω

< A∇u,∇(Xu) > .

The result follows. �

We are now ready to state a CR version of the "Pohõzaev identity". Let g : R → R be a C1

function with primitive G(u) =

∫ u

0
g(s)ds and let u ∈ C(Ω) be a solution of the equation

(P)
{
−∆Hu = g(u) in Ω

u = 0 in ∂Ω,

in a bounded domain Ω ⊂ Hn. Then there hold∫
Ω

(−∆Hu)Xu =

∫
Ω

g(u)X(u) = −(2n + 2)
∫

Ω

G(u),
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and ∫
Ω

‖∇Hnu‖2 =

∫
Ω

ug(u)du. (5.10)

In the other hand X.u =< X,∇u >, since the unit outer normal N = −
∇u
‖∇u‖

, we obtain

X(u) = − < X,N > ‖∇u‖ .

Therefore ∫
∂Ω

‖∇Hnu‖2 X.Ndσ =

∫
∂Ω

< A∇u,∇u > .X.Ndσ

=

∫
∂Ω

< A ‖∇u‖N, ‖∇u‖N > X.Ndσ

and computing this product, one obtain

< A∇u,∇u >< X,N > = ‖∇u‖2 < AN,N > . < X,N >

= ‖∇u‖2 < AN,N >< X,
−∇u
‖∇u‖

>

= − ‖∇u‖ < AN,N >< X,∇u >

= − ‖∇u‖ < AN,N > X.u

= < A.∇u,N > X(u).

It yields ∫
∂Ω

‖∇Hnu‖2 X.Ndσ =

∫
∂Ω

X(u)A∇u.Ndσ. (5.11)

Therefore using (5.10) and (5.11), Theorem 2.3 reads as

Theorem 5.4. Let u ∈ C(Ω) be a solution of the equation (P), then we have∫
∂Ω

‖∇Hnu‖2 X.Ndσ = −(Q − 2)
∫

Ω

ug(u)du + 2Q
∫

Ω

G(u)du.

Theorem 2.4 is a CR version of the "Pohõzaev identity".

5.3 Pohoz̆aev’s non existence results

We say that a family of functions has the unique continuation property, if no function besides
possibly the zero function vanishes on a set of positive measure. In this section we proceed to
establish some non existence result based on the theory of unique continuation property proved
by N. Garofallo and E. Lanconelli for solutions of semi linear equations on Heisenberg group do-
mains, one can see [77] and [78]. We begin this section by introducing the notion of starshapeness
which will be used throughout this chapter.
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Definition 5.5. [78] Given a piecewise C1 domain Ω ⊂ Hn, we say that is δ−starshaped with
respect to a point ξ0 ∈ Ω, if denoting by N the outer unit normal to the boundary of τξ−1

0
(Ω), we

have

X.N ≥ 0 (5.12)

at every point of ∂(τξ−1
0

(Ω)).

We observe that if we left-translate ξ0 to the origin then v(ξ) = u(τξ−1
0
ξ) is in Cτξ−1

0
(Ω) and

satisfies the same equation as u. Therefore we may assume without loss of generality that the origin
belongs to the domain Ω. By using the definition 3.1, we obtain as a consequence of theorem 2.4
the following non existence result for equation (P).

Theorem 5.6. Let Ω ⊂ Hn be a connected and bounded domain containing 0 = (0, 0, 0), and
assume that Ω is δ−starshaped with respect to this point. Then any positive solution u ∈ C(Ω) of
equation (P) vanishes identically if

−(Q − 2)ug(u) + 2QG(u) ≤ 0. (5.13)

Proof. The proof is similar to the one given by N.Garofallo and E.Lanconelli for solution of such
example of semi linear equations on Heisenberg group domains, one can see [78]. The proof is
based on the theory of the unique continuation property developed in [77]. Since the domain is
δ-starshaped i.e X.N ≥ 0 on the boundary of Ω, hence from theorem 2.4, we deduce that ‖∇Hnu‖2

is identically equal to 0 in ∂Ω ∩ Br(ξ̄) for some ξ̄ ∈ ∂Ω and r > 0. Therefore if we set u ≡ 0 in
(Hn \ Ω̄) ∩ Br(ξ̄), we obtain a positive solution of

−∆Hu = Vu in Br(ξ̄) (5.14)

where ∆H is the sublaplacian of Hn, V ∈ L∞(Br(ξ̄)), V =
g(u)

u
when u , 0 and V = 0 when u = 0

in Br(ξ̄). In the appendix of [78] Corollary A.1, by using the method of the unique continuation
property for the solution u of (16) the authors prove that u ≡ 0 in Br(ξ̄). We can reformulate the
result of Corollary A.1 as follows, if we denote by D the maximal open set of Br(ξ̄) on which
u vanishes then there exist a sphere S such its interior is entirely contained in D and there exist
ξ ∈ ∂N ∩ S . As u vanishes in one side of S , it follows that ξ ∈ D, and hence the maximal open set
D of Br(ξ̄) on which u vanishes is the hole ball i.e D = Br(ξ̄). To complete the proof i.e to show
that u ≡ 0 on Ω, we use the fact that Ω is connected. �

Next we will focus on the special case where g(u) = λu + up∗ , p∗ = 1 +
2
n

is the critical

exponent for the compactness of the Sobolev inclusion S k,p(Ω) ↪→ Ls(Ω), for
1
s

=
1
p
−

k
2n + 2

,

1 < p < s < ∞; here S k,p(Ω) is a Folland Stein space [24], the CR counterpart of The Sobolev
space W1,2(Ω) for euclidean domains. Define S k,p

0 (Ω) as the completion of C∞0 (Ω) with respect to
the norm ‖u‖S k,p(Ω) = S up l(α)≤k‖Zαu‖Lp(Ω), Zα = (Zα1 , ......Zαk ), where α = (α1, ......, αk), each α j

is an integer 1 ≤ α j ≤ 2n, l(α) = α1 + ..... + αk and

Zα j =

{
Xα j for 1 ≤ α j ≤ n
Yα j for n + 1 ≤ α j ≤ 2n.
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More precisely, given λ ∈ R we would like to solve the problem

Ep∗(λ)


−∆Hu = u1+ 2

n + λu in Ω

u > 0 in Ω

u = 0 in ∂Ω

We obtain in this case the following non existence result

Corollary 5.7. Suppose Ω is a bounded domain in Hn, which is δ−starshaped with respect to the
origin 0 = (0, 0, 0) and let λ ≤ 0. Then any solution u ∈ S 1,2

0 (Ω) of the boundary value problem
Ep∗(λ) vanishes identically.

Proof. we will proceed by contradiction and suppose that there exist a nontrivial solution of
Ep∗(λ). A simple computation shows that

−(Q − 2)ug(u) + 2QG(u) = 2λ u2. (5.15)

Therefore using the result of Theorem 3.2, one deduce that λ > 0. The result follows. �

Let us remark that one can obtain the above result for a strict-δ−starshaped domain by a direct
method, in fact two cases occur
-If λ < 0, from equality (17) and theorem 2.4, we deduce that there is no positive solutions of
Ep∗(λ).
-If λ = 0, we use the Green formula for u, v ∈ C(Ω)∫

Ω

−∆Hu v dΨθ0 =

∫
Ω

∇Hnu ∇Hnv dΨθ0 −

∫
∂Ω

v A∇u.Ndσ (5.16)

and set v ≡ 1 in (18), since N =
−∇u
‖∇u‖

, we obtain for a solution u of (P)

∫
Ω

−∆H u dΨθ0 =

∫
∂Ω

‖∇Hnu‖2

‖∇u‖
dσ (5.17)

Since Ω is strict-δ−starshaped with respect to 0 ∈ Hn, we have X.N(ξ) > 0 for all ξ ∈ ∂Ω. Thus
from theorem 2.4, we deduce that ‖∇Hnu‖2 is identically equal to 0 on the boundary of Ω, therefore∫

Ω

−∆Hu = 0. (5.18)

Hence
∫

Ω

u1+ 2
n = 0, which means u = 0, since u ≥ 0.

Remarks

1. The result of corollary 3.3 still hold true for supercritical value of the exponent p, ı.e p > p∗,

for any value of λ < λ∗ =
n(p − 1) − 2

p + 1
.
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2. If the domain Ω is not δ−starshaped then equation (Ep) can have solutions even if (15) holds.
In fact, if we choose a pseudo annulus Ω = {ξ = (x, y, t) ∈ Hn/R1 < x2 + y2 < R2, |t| < T }
for fixed R1,R2,T > 0, then for every fixed p > 1 and λ ≥ 0 the problem (Ep) has a positive
solution u ∈ S 1,2

0 (Ω) ∩ C∞(Ω), which is Hölder continuous up to the boundary one can see
[78].

However we can approch problem Ep∗(λ) by a direct method and attempt to obtain non-trivial
solutions as relative minima of the functional

Jλ(u) =
1
2

∫
Ω

(‖∇Hnu‖2 − λ u2)θ0 ∧ dθn
0, (5.19)

on the unit sphere of L2+ 2
n (Ω)∑

= {u ∈ S 1,2
0 (Ω), ‖u‖

2+ 2
n

L2+ 2
n

= 1}. (5.20)

Equivalently, one may seek to minimize the Sobolev quotient

S λ(u) =

∫
Ω

(‖∇Hnu‖2 − λ u2)θ0 ∧ dθn
0

‖u‖
2+ 2

n

L2+ 2
n

, u , 0. (5.21)

Let us note that for λ = 0

S 0(Ω) = inf
u∈S 1,2

0 (Ω), u,0
S λ(u) = inf

u∈S 1,2
0 (Ω), u,0

∫
Ω
‖∇Hnu‖2 θ0 ∧ dθn

0

‖u‖
2+ 2

n

L2+ 2
n

, u , 0 (5.22)

is related to the best constant for the Sobolev embedding S 1,2
0 (Ω) ↪→ L2+ 2

n (Ω).

5.4 Yamabe like problems

In the sequel we will consider the case where λ is a function. More precisely let h be a smooth
function on Hn, we are looking for solutions of the semilinear equation on a bounded domain Ω

Ep∗(h)


−∆Hu = u1+ 2

n + h u in Ω

u > 0 in Ω

u = 0 in ∂Ω

This problem arises naturally in CR geometry, in fact let (M; θ) be a CR manifold of dimension
2n + 1, n ≥ 1. We ask the question on whether there exist a contact form θ̃ on M conformal to θ i.e
θ̃ = u

2
n θ, u > 0 which has a constant Webster scalar curvature. If we denote by Rθ (respectively Rθ̃)

the Webster scalar curvature of the contact form θ (respectively θ̃), we have the following relation

(2 +
2
n

)∆b u + Rθu = Rθ̃ u1+ 2
n (5.23)

151



5.4. YAMABE LIKE PROBLEMS

where ∆b is the sublaplacian ( the real part of the Kohn Spencer laplacian) of the manifold M. The
existence of such a conformal contact form of constant Webster scalar curvature is equivalent to
the existence of a positive solution of (5.23). This problem is known to be the Yamabe problem,
one can see [24], [25], [75] and [76].

We have the following result.

Lemma 5.8. If u is a solution of problem Ep∗(h), then∫
Ω

−∆Hu (Xu) dΨθ0 = −

∫
Ω

(
(n + 1) h +

1
2

X h
)

u2 dΨθ0 − n
∫

Ω

u2+ 2
n dΨθ0 .

Proof. We multiply equation Ep∗(h) by Xu and integrate by parts, we obtain∫
Ω

−∆Hu (Xu) =

∫
Ω

h u(Xu) +

∫
Ω

u1+ 2
n (Xu).

on one hand, we have

2 (h u)(X u) = X(h u2) − (Xh) u2, (5.24)

and a simple computation as done in Lemma 2.1 gives∫
Ω

X(h u2) = −(2n + 2)
∫

Ω

h u2. (5.25)

On the other hand, we have ∫
Ω

u1+ 2
n (Xu) = −n

∫
Ω

u2+ 2
n . (5.26)

By using (26), (27) and (28), we obtain the desired result. �

Following the method used in section2, we obtain the CR version of the "Pohõzaev identity"
for the present case

Lemma 5.9. Let u ∈ C(Ω) be a solution of the equation Ep∗(h), then we have∫
∂Ω

‖∇Hnu‖2 X.Ndσ = −2
∫

Ω

(
h +

1
2

(Xh)
)
u2 dΨθ0 .

Proof. Using theorem 2.3 and (13), we obtain∫
Ω

−∆Hu (Xu) = −
1
2

∫
∂Ω

‖∇Hnu‖2 X.Ndσ − n
∫

Ω

‖∇Hnu‖2 . (5.27)

By comparing the result of lemma 4.1 and (29), the proof of lemma 4.2 is completed. �

We are now ready to state a non existence result for equation Ep∗(h).
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Corollary 5.10. Suppose Ω is a connected and bounded domain in Hn containing 0. Suppose that
Ω is δ−starshaped with respect to this point and let h ∈ C∞(Hn) satisfying

h +
1
2

(Xh) ≤ 0. (5.28)

Then there is no positive solution u ∈ S 1,2
0 (Ω) of equation Ep∗(h), u , 0.

Proof. The proof is similar to the one given for theorem 3.2 with V = u
2
n + h, when u , 0 and

V = 0 when u = 0 in Br(ξ̄). �
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