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ON THE EXIT TIME FROM A CONE FOR BROWNIAN MOTION

WITH DRIFT

RODOLPHE GARBIT AND KILIAN RASCHEL

Abstract. We investigate the tail distribution of the first exit time of Brownian motion

with drift from a cone and find its exact asymptotics for a large class of cones. Our

results show in particular that its exponential decreasing rate is a function of the distance

between the drift and the cone, whereas the polynomial part in the asymptotics depends

on the position of the drift with respect to the cone and its polar cone, and reflects the

local geometry of the cone at the points that minimize the distance to the drift.

1. Introduction

Let Bt be a d-dimensional Brownian motion with drift a ∈ R
d. For any cone C ⊂ R

d,
define the first exit time

τC = inf{t > 0 : Bt /∈ C}.
In this article we study the probability for the Brownian motion started at x not to exit
C before time t, namely,

(1) Px[τC > t],

and its asymptotics

(2) κh(x)t−αe−γt(1 + o(1)), t → ∞.

In the literature, these problems have first been considered for Brownian motion with

no drift (a = 0). In [24], Spitzer considered the case d = 2 and obtained an explicit
expression for the probability (1) for any two-dimensional cone. He also introduced the
winding number process θt = argBt (in dimension d = 2, the Brownian motion does not

exit a given cone before time t if and only if θt stays in some interval). He proved a weak
limit theorem for θt as t → ∞. Later on, this result has been extended by many authors
in several directions (e.g., strong limit theorems, winding numbers not only around points

but also around certain curves, winding numbers for other processes), see for instance [21].
In [11], motivated by studying the eigenvalues of matrices from the Gaussian Unitary

Ensemble, Dyson analyzed the Brownian motion in the cone formed by the Weyl chamber

of type A, namely,

{x = (x1, . . . , xd) ∈ R
d : x1 < · · · < xd}.

He also defined the Brownian motion conditioned never to exit the chamber. These
results have been extended by Biane [3] and Grabiner [15]. In [2], Biane studied some
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2 R. GARBIT AND K. RASCHEL

further properties of the Brownian motion conditioned to stay in cones, and in particular
generalized the famous Pitman’s theorem to that context. In [20] König and Schmid

analyzed the non-exit probability (1) of Brownian motion from a growing truncated Weyl
chamber.

In [5], Burkholder considered open right circular cones in any dimension and computed

the values of p > 0 such that

Ex[τpC ] < ∞.

In [8, 9], for a fairly general class of cones, DeBlassie obtained an explicit expression for

the probability (1) in terms of the eigenfunctions of the Dirichlet problem for the Laplace-
Beltrami operator on

Θ = S
d−1 ∩ C,

see [8, Theorem 1.2]. DeBlassie also derived the asymptotics (2), see [8, Corollary 1.3]: he
found γ = 0 (indeed, the drift is zero), while α is related to the first eigenvalue and h(x)
to the first eigenfunction. The basic strategy in [8, 9] was to show that the probability (1)

is solution to the heat equation and to solve the latter. In [1], Bañuelos and Smits refined
the results of DeBlassie [8, 9]: they considered more general cones, and obtained a quite
tractable expression for the heat kernel (the transition densities for the Brownian motion

in C killed on the boundary), and thus for (1).
We conclude this part by mentioning the work [10], in which Doumerc and O’Connell

found a formula for the distribution of the first exit time of Brownian motion from a

fundamental region associated with a finite reflection group.
For Brownian motion with non-zero drift, much less is known. Only the case of Weyl

chambers (of type A) has been investigated. In [4], Biane, Bougerol and O’Connell
obtained an expression for the probability Px[τC = ∞] = limt→∞ Px[τC > t] in the

case where the drift is inside of the Weyl chamber (and hence the latter probability is
positive). In [23], Pucha la and Rolski gave, for any drift a, the exact asymptotics (2) of
the tail distribution of the exit time, in the context of Weyl chambers too. The different

quantities in (2) were determined explicitly in terms of the drift a and of a vector obtained
by a procedure involving the construction of a stable partition of the drift vector.

In this article, we compute the asymptotics (2) for a very general class of cones C, and

we identify κ, h(x), α and γ in terms of the cone C and the drift a. We find that there
are six different regimes depending on the position of the drift with respect to (w.r.t.) the
cone.

To be more specific, we will consider general cones as defined by Bañuelos and Smits
in [1]. Namely, given a proper, open and connected subset Θ of the unit sphere S

d−1 ⊂ R
d,

we consider the cone C generated by Θ, that is, the set of all rays emanating from the

origin and passing through Θ:

C = {λθ : λ > 0, θ ∈ Θ}.

We associate with the cone the polar cone (which is a closed set)

C♯ = {x ∈ R
d : 〈x, y〉 6 0,∀y ∈ C}.
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See Figure 1 for an example. Below and throughout, we shall denote by Do (resp. D) the
interior (resp. the closure) of a set D ⊂ R

d. The six cases leading to different regimes are

then:

A. polar interior drift: a ∈ (C♯)o;
B. zero drift: a = 0;
C. interior drift: a ∈ C;

D. boundary drift: a ∈ ∂C \ {0};
E. non-polar exterior drift: a ∈ R

d \ (C ∪ C♯);
F. polar boundary drift: a ∈ ∂C♯ \ {0}.

These cases will be analyzed in Theorems A, B, C, D, E and F, respectively. Our results
show in particular that the exponential decreasing rate e−γ in (2) is related to the distance
between the drift and the cone by the formula

(3) γ =
1

2
d(a,C)2 =

1

2
min
y∈C

|a− y|2.

As for the polynomial part t−α in (2), it depends on the case under consideration and
reflects the local geometry of the cone at the point(s) that minimize the distance to

the drift, plus the local geometry at the contact points between ∂Θ and the hyperplane
orthogonal to the drift in case F.

We would like to point out that the formula for γ obtained in [23] in the case of the

Weyl chamber of type A is the same as ours. Indeed, though it is not mentioned there,
the vector f obtained in [23] via the construction of a stable partition of the drift is the
projection of the drift on the Weyl chamber, and their formula (4.10) reads γ = |a−f |2/2,

as the reader can check.

2. Assumptions on the cone and statements of results

Though our results are stated precisely in Theorems A, B, C, D, E and F, we would
like to give now a brief overview as well as precise statements.

2.1. Assumptions on the cone. Our main assumption on the cones studied here is the
following:

(C1) The set Θ = S
d−1 ∩ C is normal, that is, piecewise infinitely differentiable.

With this assumption (see [6, page 169]), there exists a complete set of eigenfunctions

(mj)j>1 orthonormal w.r.t. the surface measure on Θ with corresponding eigenvalues
0 < λ1 < λ2 6 λ3 6 · · · , satisfying for any j > 1

(4)

{

LSd−1mj = −λjmj on Θ,

mj = 0 on ∂Θ.

where LSd−1 denotes the Laplace-Beltrami operator on S
d−1. We shall say that the cone

is normal if Θ is normal. For any j > 1, we set

(5) αj =
√

λj + (d/2 − 1)2
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✲

❄

✕

❨ C

C♯

β

Figure 1. Cones C with opening angle β and polar cones C♯ in dimension
2. The set Θ (the arc of circle) and its boundary are particularly important

in our analysis.

and

(6) pj = αj − (d/2 − 1).

Example 1. In dimension 2, any (connected and proper) open cone is a rotation of

{ρeiθ : ρ > 0, 0 < θ < β}
for some β ∈ (0, 2π], see Figure 1. A direct computation starting from Equation (4) yields
λj = (jπ/β)2, and thus

pj = αj = jπ/β,

for any j > 1. Further, the eigenfunctions (4) are given in polar coordinates by

(7) mj(θ) =
2

β
sin

(

jπθ

β

)

, ∀j > 1,

where the term 2/β comes from the normalization
∫ β
0 mj(θ)2dθ = 1.

The functions mj and constants αj are particularly important in this study because
they allow to write a series expansion for the heat kernel of the cone (Lemma 2) to which
the non-exit probability is explicitly related (Lemma 1).

Cases A, B and C are treated with full generality under the sole assumption (C1). Thus
we extend the corresponding results of Pucha la and Rolski in [23] about Weyl chambers
of type A in these cases. (Note that case A is new since the polar cone of a Weyl chamber

of type A has an empty interior, whereas case B has already been settled in [1], but is
presented here for the sake of completeness.)

Cases D, E and F will be considered under an additional smoothness assumption on

the cone that excludes Weyl chambers from our analysis. The reason is that we will need
estimates for the heat kernel of the cone at boundary points, and those are only available
(to our knowledge) in the case of smooth cones or, on the other hand, in the case of Weyl

chambers. More precisely, we shall assume in these cases that:
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(C2) The set Θ = S
d−1 ∩ C is real-analytic.1

Notice that under this assumption Θ is normal (in other words, (C1) implies (C2)).

We have already mentioned the formula for the exponential decreasing rate:

γ =
1

2
d(a,C)2,

and the reader can already imagine the importance of the set

Π(a) = {y ∈ C : |a− y| = d(a,C)}.

Indeed, the formula for the non-exit probability involves an integral of Laplace’s type, and

only neighborhoods of the points of Π(a) will contribute to the asymptotics. It follows by
elementary topological arguments that Π(a) is a non-empty compact set. In cases A, B,
C, D and F, this set is a singleton ({0} or {a} according to the case), but in case E it may

have infinitely many points. Since we are not able to handle the case where Π(a) has an
accumulation point, we shall assume (in case E only) that

(C3) The set Π(a) is finite.

This holds if the cone is convex for example.
Our final comment concerns the case F. Surprisingly, it is the most difficult: it is a

mixture between cases A and B, and its analysis reveals an unexpected (at first sight)

contribution of the contact points (see section 5.6 for a precise definition) between ∂Θ and
the hyperplane orthogonal to the drift. Here again, we shall add a technical assumption,
namely:

(C4) The set of contact points Θc is finite.

Moreover, we will consider case F only in dimension 2 (where (C4) always holds) and 3.
The reason is that we are technically not able to handle more general cases.

2.2. Main results. The following theorem summarizes our results. Some important

comments may be found below.

Theorem. Let C be a normal cone in R
d (hypothesis (C1)). For Brownian motion with

drift a, in each of the six cases A, B, C, D, E and F, the asymptotic behavior of the

non-exit probability is given by

Px[τC > t] = κh(x)t−αe−γt(1 + o(1)), t → ∞,

where

γ =
1

2
d(a,C)2,

1A domain Ω ⊂ R
d is real-analytic if at each point x ∈ ∂Ω there is a ball B(x, r) with r > 0 and a

one-to-one mapping ψ of B(x, r) onto a certain domain D ⊂ R
d such that (i) φ(B(x, r)∩Ω) ⊂ [0,∞)d, (ii)

φ(B(x, r) ∩ ∂Ω) ⊂ ∂([0,∞)d), (iii) ψ and ψ−1 are real-analytic functions on B(x, r) and D, respectively.

This is equivalent to the fact that each point of ∂Ω has a neighborhood in which ∂Ω is the graph of a

real-analytic function of n− 1 coordinates. We refer to [14, section 6.2] for more details.
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and

α =











































α1 + 1 if a is a polar interior drift (case A),

p1/2 if a = 0 (case B),

0 if a is an interior drift (case C),

1/2 if a is a boundary drift (case D) and Θ is real-analytic (C2),

3/2 if a is a non-polar exterior drift (case E), (C2) and (C3),

p1/2 + 1 if a is a polar boundary drift (case F) and C is two-dimensional.

The constants κ and the functions h(x) are also explicit, but their expression is rather

complicated in some cases. For this reason they are given in the corresponding sections.
As a matter of example, let us give them in case A:

κA =
1

2α1Γ(α1 + 1)

∫

C
e〈a,y〉|y|p1m1(~y)dy, hA(x) = e〈−a,x〉|x|p1m1(~x),

where m1 is defined in (4) and α1 in (5), and where for any y 6= 0, we denote by ~y = y/|y|
its projection on the unit sphere S

d−1. Above, case F is presented in dimension 2 only,
because the value of α in dimension 3 is quite complicated (we refer to Theorem F for the
full statement).

3. The example of two-dimensional Brownian motion in cones

For the one-dimensional Brownian motion and the cone C = (0,∞), there are three

regimes for the asymptotics of the non-exit probability, according to the sign of the drift
a ∈ R. Precisely, for any x > 0, as t → ∞ one has, with obvious notations (see [17, section
2.8]),

(8) Px[τ(0,∞) > t] = (1 + o(1))



























xe−axe−ta2/2

√
2πa2t3/2

if a < 0,

√
2x√
πt

if a = 0,

1 − e−2ax if a > 0.

For some specific two-dimensional cones, the asymptotics of the non-exit probability
is easy to determine. This is for example the case of the upper half-plane since this is
essentially a one-dimensional case. It is also an easy task to deal with the quarter plane

Q. Indeed, by independence of the coordinates (B
(1)
t , B

(2)
t ) of the Brownian motion Bt,

the non-exit probability can be written as the product

Px[τQ > t] = Px1
[τ(0,∞)(B

(1)) > t] · Px2
[τ(0,∞)(B

(2)) > t],

where x = (x1, x2). Denoting by a = (a1, a2) the coordinates of the drift and making

use of (8), one readily deduces the asymptotics Px[τQ > t] = κh(x)t−αe−γt(1 + o(1)), as
summarized in Figure 2, where the value of α is given, according to the position of the
drift (a1, a2) in the quarter plane. We focus on α and not on γ, since the value of γ is

always obtained in the same way.
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✲

✻

1

0

23

1/2

3/2

a1

a2

Figure 2. Value of α in terms of the position of the drift (a1, a2) in the

plane (case of the quarter plane)

More generally, our results show that the value of α for any two-dimensional cone is

given as in Figure 3. This can be understood as follows: when the drift is negative (i.e.,

✲

✕

α1/2

0

α1/2+1α1 + 1

1/2

3/2

❄

❨

Figure 3. Value of α in terms of the position of the drift (a1, a2) in the
plane (case of a general cone of opening angle β, for which α1 = π/β, see
Figure 1)

when it belongs to the polar cone C♯), one sees the influence of the vertex of the cone (α

is expressed with the opening angle β) since the trajectories that do not leave the cone
will typically stay close to the origin. In all other cases, the Brownian motion will move
away from the vertex, and will see the cone as a half-space (boundary drift and non-polar

exterior drift) or as a whole-space (interior drift).
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4. Preliminary results

In this section we introduce all necessary tools for our study. We first give the expression

of the non-exit probability (1) in terms of the heat kernel of the cone C (see Lemmas 1
and 3). Then we guess the value of the exponential decreasing rate of this probability, by
simple considerations on its integral expression. Finally we present our general strategy

to compute the asymptotics of the non-exit probability.

4.1. Expression of the non-exit probability. In what follows we consider (Bt)t>0 a
d-dimensional Brownian motion with drift a and identity covariance matrix. Under Px,
the Brownian motion starts at x ∈ R

d.

The lemma hereafter gives an expression of the non-exit probability for Brownian motion
with drift a in terms of an integral involving the transition probabilities of the Brownian
motion with zero drift killed at the boundary of the cone. This is a quite standard result

(see [23, Proposition 2.2] for example) and an easy consequence of Girsanov theorem.
Notice that this result is not at all specific to cones and is valid for any domain in R

d.

Lemma 1. Let pC(t, x, y) denote the transition probabilities of the Brownian motion with

zero drift killed at the boundary of the cone C. We have

(9) Px[τC > t] = e〈−a,x〉−t|a|2/2
∫

C
e〈a,y〉pC(t, x, y)dy, ∀t > 0.

We shall now write a series expansion for the transition probabilities of the Brownian

motion killed at the boundary of C (or equivalently, see [16, section 4], for the heat kernel
pC(t, x, y) of the cone C), as given in [1]. We denote by Iν the modified Bessel function
of order ν:

(10) Iν(x) =
2(x/2)ν√

πΓ(ν + 1/2)

∫ π
2

0
(sin t)2ν cosh(x cos t)dt =

∞
∑

m=0

(x/2)ν+2m

m!Γ(ν + m + 1)
.

It satisfies the second order differential equation

I ′′ν (x) +
1

x
I ′ν(x) =

(

1 +
ν2

x2

)

Iν(x).

Its leading asymptotic behavior near 0 is given by:

(11) Iν(x) =
xν

2νΓ(ν + 1)
(1 + o(1)), x → 0.

We refer to [25] for proofs of the facts above and for any further result.

Lemma 2 ([1]). Under (C1), the heat kernel of the cone C has the series expansion

(12) pC(t, x, y) =
e−

|x|2+|y|2

2t

t(|x||y|)d/2−1

∞
∑

j=1

Iαj

( |x||y|
t

)

mj(~x)mj(~y),

where the convergence is uniform for (t, x, y) ∈ [T,∞) × {x ∈ C : |x| 6 R} × C, for any

positive constants T and R.
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Making the change of variables y 7→ ty in (9) and using (12), we easily obtain the
following lemma, where the expression of the non-exit probability now involves an integral

of Laplace’s type.

Lemma 3. Let C be a normal cone. For Brownian motion with drift a, the non-exit
probability is given by

(13) Px[τC > t] = e〈−a,x〉−|x|2/(2t)+|x|2/2td/2
∫

C
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy, ∀t > 0.

4.2. General strategy. The aim now is to understand the asymptotic behavior as t → ∞
of the integral in the right-hand side of (13). First, we notice that it suffices to analyze

the asymptotic behavior of

(14) I(t) = td/2
∫

C
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.

To do this, we shall use Laplace’s method [7, Chapter 5]. The basic question when applying

this method is to locate the points y ∈ C where the function

|a− y|2/2

in the exponential reaches its minimum value, for it is expected that only a neighborhood

of these points will contribute to the asymptotics. And indeed, we shall prove that the
exponential decreasing rate e−γ of the non-exit probability in (2) is given, for the six cases
A–F, by (3), namely

γ =
1

2
min
y∈C

|a− y|2 =
1

2
d(a,C)2.

Specifically, let Π(a) be the set of minimum points, that is,

Π(a) = {y ∈ C : |a− y| = d(a,C)}.

It follows by elementary topological arguments that Π(a) is a non-empty compact set. The
lemma below shows that if the domain of integration is restricted to the complement of
any neighborhood of Π(a), then the integral in (14) becomes negligible w.r.t. the expected

exponential rate e−tγ . To be precise, consider the open δ-neighborhood of Π(a):

Πδ(a) = {y ∈ R
d : d(y,Π(a)) < δ}.

Lemma 4. For any δ > 0, there exists η > 0 such that
∫

C\Πδ(a)
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy = O(e−t(γ+η)), t → ∞,

where γ is the quantity defined in (3).

Proof. Let δ > 0 and define

Jδ(t) =

∫

C\Πδ(a)
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.
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From the inequality |y|2 6 (|y − a| + |a|)2 6 2|y − a|2 + 2|a|2, we obtain the upper bound

e|y|
2/2 6 ce2|y−a|2 , from which we deduce that

0 6 Jδ(t) 6 c

∫

C\Πδ(a)
pC(1, x, y)e−s|a−y|2/2dy,

where s = t−2. Since y 7→ |a−y|2/2 is coercive and continuous, its infimum on the closed
set C \ Πδ(a) is a minimum. Thus, by definition of Π(a), we have

inf
C\Πδ(a)

|a− y|2/2 > γ.

In other words, there exists η > 0 such that |a − y|2/2 > γ + η on C \ Πδ(a). Hence, for
all s > 0, we have

0 6 Jδ(t) 6 ce−s(γ+η)

∫

C\Πδ(a)
pC(1, x, y)dy 6 ce−s(γ+η).

This concludes the proof of the lemma. �

It is now clear that the strategy to analyze the non-exit probability is to determine the
asymptotic behavior of the integral Iδ(t), which is defined by

(15) Iδ(t) = td/2
∫

C∩Πδ(a)
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy,

and to check that it has the right exponential decreasing rate e−γ , as expected. Indeed,
in this case, the asymptotic behavior of I(t), and consequently that of the non-exit
probability, can be derived from the asymptotics of Iδ(t), as explained in the next lemma,

which will constitute our general proof strategy.

Lemma 5. Suppose that g(t) is a function satisfying conditions (i) and (ii) below:

(i) g(t) = κt−αe−tγ for some κ > 0 and α ∈ R;

(ii) For all ǫ > 0, there exists δ > 0 such that

1 − ǫ 6 lim inf
t→∞

Iδ(t)

g(t)
6 lim sup

t→∞

Iδ(t)

g(t)
6 1 + ǫ.

Then I(t) = g(t)(1 + o(1)) as t → ∞.

Proof. It follows from Lemma 4 as an easy exercise. �

In our study of Iδ(t), it will be important that the elements of Π(a) be isolated from

each other. By compactness, this condition is equivalent to the fact that Π(a) be finite.
In that case, for δ > 0 small enough, Iδ(t) decomposes into the finite sum

Iδ(t) = td/2
∑

p∈Π(a)

∫

C∩B(p,δ)
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy,

where B(p, δ) does not contain any other minimum point than p. The contribution of

each minimum point p can then be analyzed separately. The reason to do that is that we
simply don’t know how to handle the general case.

In most cases, it is not much of a restriction. Indeed, for a convex cone (or any convex

set), the set Π(a) reduces to a single point, namely the projection pC(a) of a on C. Though
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the projection may not be unique in general (that is, when the cone is not convex), it is
still true in cases A, B, C, D and F that Π(a) has only one element, namely p = 0

(cases A, B, F) or p = a (cases C and D), and that this point satisfies the usual property
〈a − p, y − p〉 6 0 for all y ∈ C. Therefore, we call this point the projection and write it
pC(a). The condition that Π(a) be finite is a restriction only in case E: according to the

cone, the minimum could be reached at infinitely many different points, but we leave this
general setting as an open problem.

5. Precise statements and proofs of the theorems A–F

5.1. Case A (polar interior drift). In this section, we study the case where the drift
a belongs to the interior of the polar cone C♯. It might be thought of as the natural
generalization of the one-dimensional negative drift case. Define (with p1 as in (6))

(16) u(x) = |x|p1m1(~x).

The function u is the unique (up to multiplicative constants) positive harmonic function

of Brownian motion killed at the boundary of C. We also define (with α1 as in (5))

κA =
1

2α1Γ(α1 + 1)

∫

C
e〈a,y〉u(y)dy,

as well as

hA(x) = e〈−a,x〉u(x).

Notice that κA is finite because a ∈ (C♯)o (see Lemma 8). Our main result in this section
is the following:

Theorem A. Let C be a normal cone. If the drift a belongs to the interior of the polar
cone C♯, then

Px[τC > t] = κAhA(x)t−(α1+1)e−t|a|2/2(1 + o(1)), t → ∞.

Proof. Since a ∈ (C♯)o, the projection pC(a) is 0 and γ = |a|2/2. According to our general
strategy, we focus our attention on

Iδ(t) = td/2
∫

{y∈C:|y|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.

Let ǫ > 0 be given. It follows from Lemma 6 below that there exists δ > 0 such that

pC(1, x, y) is bounded from above and below on {y ∈ C : |y| 6 δ} by

(1 ± ǫ)bu(x)u(y)e−(|x|2+|y|2)/2,

where b = (2α1Γ(α1 + 1))−1. Therefore, Iδ(t) is bounded from above and below by

(17) (1 ± ǫ)bu(x)e−|x|2/2td/2
∫

{y∈C:|y|6δ}
u(y)e−t|a−y|2/2dy.

By making the change of variables v = ty and using the homogeneity of u, this expression

becomes

(1 ± ǫ)bu(x)e−|x|2/2t−(α1+1)e−t|a|2/2
∫

{v∈C:|v|6tδ}
u(v)e〈a,v〉−|v|2/(2t)dv.
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Now, since a ∈ (C♯)o implies that 〈a, v〉 6 −c|v| for all v ∈ C, for some c > 0 (see Lemma 8

below), the function u(v)e〈a,v〉 is integrable on C. Therefore, we can apply the dominated
convergence theorem to obtain

∫

{v∈C:|v|6tδ}
u(v)e〈a,v〉−|v|2/(2t)dv = (1 + oδ(1))

∫

C
u(v)e〈a,v〉dv, t → ∞.

Hence, the bound for Iδ(t) can finally be written as

(1 ± ǫ)κAu(x)e−|x|2/2t−(α1+1)e−t|a|2/2(1 + oδ(1)), t → ∞,

and a direct application of Lemma 5 gives

I(t) = κAu(x)e−|x|2/2t−(α1+1)e−t|a|2/2(1 + o(1)), t → ∞.

The theorem then follows thanks to the expression (13) of the non-exit probability. �

We now state and prove a lemma that was used in the proof of Theorem A. Similar
estimates can be found in [13, section 5].

Lemma 6. We have

lim
|y|→0

pC(1, x, y)e(|x|
2+|y|2)/2

u(x)u(y)
= (2α1Γ(α1 + 1))−1

uniformly on {x ∈ C : |x| 6 R}, for any positive constant R.

Proof. For brevity, let us write x = ρθ and y = rη, with ρ, r > 0 and θ, η ∈ Θ, and set
M = ρr. It follows from the expression of the heat kernel (12) that

pC(1, ρθ, rη)e(ρ
2+r2)/2

u(ρθ)u(rη)
=

∞
∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
.

Using then equation (20) from Lemma 7 below, we find the upper bound (below and
throughout, c will denote a positive constant, possibly depending on the dimension d,
which can take different values from line to line)

(18)

∣

∣

∣

∣

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

∣

∣

∣

∣

6
c

Mα1

Iαj
(M)

Iαj
(1)

.

Now, using the integral expression (10) for Iαj
, we obtain

Iαj
(M) 6

2
(

M
2

)αj

√
πΓ(αj + 1/2)

cosh(M)

∫ π
2

0
(sin t)2αj dt,

Iαj
(1) >

2
(

1
2

)αj

√
πΓ(αj + 1/2)

∫ π
2

0
(sin t)2αj dt.

We conclude that
Iαj

(M)

Iαj
(1)

6 Mαj cosh(M).

Using the latter estimation in (18), we deduce that
∣

∣

∣

∣

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

∣

∣

∣

∣

6 cMαj−α1 cosh(M).
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It is easily seen from equation (19) in Lemma 7 below that
∑∞

j=1M
αj−α1 cosh(M) is a

uniformly convergent series for M ∈ [0, 1 − ǫ], for any ǫ ∈ (0, 1]. This implies that the

series ∞
∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)

is uniformly convergent for (M,θ, η) ∈ [0, 1 − ǫ] × Θ × Θ, for any ǫ ∈ (0, 1]. Therefore we

can take the limit term by term. Since

lim
M→0

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
=







1

2α1Γ(α1 + 1)
if j = 1,

0 if j > 2,

uniformly in (θ, η) ∈ Θ × Θ (see (11) and Lemma 7 below), we reach the conclusion that

lim
M→0

∞
∑

j=1

Iαj
(M)

Mα1

mj(θ)

m1(θ)

mj(η)

m1(η)
=

1

2α1Γ(α1 + 1)
,

where the convergence is uniform for (θ, η) ∈ Θ×Θ. The proof of Lemma 6 is complete. �

The following facts in the lemma below, concerning the eigenfunctions (4), are proved

in [1].

Lemma 7 ([1]). If C is normal, then there exist two constants 0 < c1 < c2 such that

(19) c1j
1/(d−1)

6 αj 6 c2j
1/(d−1), ∀j > 1.

In addition, there exists a constant c such that

(20) m2
j(η) 6

cm2
1(η)

Iαj
(1)

, ∀j > 1, ∀η ∈ Θ.

We conclude this section with a useful characterization of the interior of the polar cone,
which was used in the proof of Theorem A:

Lemma 8. The drift vector a belongs to (C♯)o if and only if there exists δ > 0 such that
〈a, y〉 6 −δ|y| for all y ∈ C.

Proof. Assume first that a satisfies the above condition. For all x such that |a − x| < δ
and all y ∈ C, we have by Cauchy-Schwarz inequality

〈x, y〉 = 〈a, y〉 + 〈x− a, y〉 < −δ|y| + δ|y| = 0,

hence C♯ contains the open ball B(a, δ), and a is an interior point. Conversely, suppose

that there exists r > 0 such that the closed ball B(a, r) is included in C♯. It is easily seen
that

C♯ = {x ∈ R
d : 〈x, u〉 6 0,∀x ∈ C ∩ S

d−1}.
Since C ∩ S

d−1 is a compact set, there exists a vector u0 in this set such that

γ = 〈a, u0〉 = max
u∈C∩Sd−1

〈a, u〉.

Hence it remains to prove that γ < 0. To that aim, we select a family {x1, . . . , xd} of vectors

of ∂B(a, r) which forms a basis of R
d. One of them, say x1, must satisfy 〈x1, u0〉 < 0,
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since else we would have 〈xi, u0〉 = 0 for all i ∈ {1, . . . , d}, and therefore u0 = 0. Let
x1 = 2a − x1 be the opposite of x1 on ∂B(a, r). Since 〈x1, u0〉 < 0 and 〈x1, u0〉 6 0, it

follows that γ = 〈a, u0〉 = (〈x1, u0〉 + 〈x1, u0〉)/2 < 0. �

5.2. Case B (zero drift). The case of a driftless Brownian motion, that we consider

in the present section, has already been investigated by many authors, see [24, 8, 9, 1].
Define (with α1 as in (5) and u(y) as in (16))

κB =
1

2α1Γ(α1 + 1)

∫

C
u(y)e−|y|2/2dy.

Theorem B. Let C be a normal cone. If the drift a is zero, then

Px[τC > t] = κBu(x)t−p1/2(1 + o(1)), t → ∞.

Although a proof of Theorem B can be found in [8, 1], for the sake of completeness we
wish to write down some of the details below. As we shall see, the arguments are very

similar to those used for proving Theorem A.

Proof of Theorem B. We have a = 0 and γ = 0. Thus, the lower and upper bounds (17)
for Iδ(t) write

(1 ± ǫ)bu(x)e−|x|2/2td/2
∫

{y∈C:|y|6δ}
u(y)e−t|y|2/2dy.

This time, we make the change of variables v =
√
ty and use the homogeneity of u in order

to transform this expression into

(1 ± ǫ)bu(x)e−|x|2/2e−t|a|2/2t−p1/2

∫

{v∈C:|v|6
√
tδ}

u(v)e−|v|2/2dv.

Since the function u(v)e−|v|2/2 is integrable on C, it comes from the dominated convergence
theorem that

∫

{v∈C:|v|6
√
tδ}

u(v)e−|v|2/2dv = (1 + oδ(1))

∫

C
u(v)e−|v|2/2dv, t → ∞.

Hence, the bounds for Iδ(t) can finally be written as

(1 ± ǫ)κBu(x)e−|x|2/2t−p1/2(1 + oδ(1)), t → ∞.

The theorem then follows by an application of Lemma 5 and formula (13). �

5.3. Case C (interior drift). Now we turn to the case when the drift a is inside the
cone C.

Theorem C. Let C be a normal cone. If a belongs to C, then

Px[τC = ∞] = lim
t→∞

P[τC > t] = (2π)d/2e|x−a|2pC(1, x, a).

Proof. Since a ∈ C, one has pC(a) = a and γ = 0. As in the previous cases, we focus our
attention on

Iδ(t) = td/2
∫

{y∈C:|y−a|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.
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Given ǫ > 0, we choose δ > 0 so small that B(a, δ) ⊂ C and

f(y) = e|y|
2/2pC(1, x, y)

be bounded from above and below by f(a) ± ǫ for all y ∈ B(a, δ). With this choice, Iδ(t)

is then bounded from above and below by

(f(a) ± ǫ)td/2
∫

{y∈Rd:|y−a|6δ}
e−t|y−a|2/2dy.

By the change of variables v =
√
t(y − a), this expression becomes

(f(a) ± ǫ)

∫

{v∈Rd:|v|6
√
tδ}

e−|v|2/2dv = (f(a) ± ǫ)(2π)d/2(1 + oδ(1)), t → ∞.

Hence, the theorem follows from Lemma 5 and formula (13). �

Example 2. In the case where C is the Weyl chamber of type A, the heat kernel is given

by the Karlin-McGregor formula (see [18, Theorem 1]):

pC(t, x, y) = det(p(t, xi, yj))16i,j6d,

with p(t, xi, yj) = (2πt)−1/2e−(xi−yj)
2/2t. An easy computation then shows that pC(1, x, a)

is equal to

pC(1, x, a) = (2π)−d/2e−(|x|2+|a|2)/2 det(exiaj )16i,j6d.

Hence

Px[τC = ∞] = lim
t→∞

Px[τC > t] = e〈−a,x〉 det(exiaj )16i,j6d.

This result was derived earlier by Biane, Bougerol and O’Connell in [4, section 5].
Indeed, in [4] the authors first find the probability Px[τC = ∞] in the case of a drift a ∈ C

via the reflection principle and a change of measure. As an application of this, they show
that the Doob h-transform of the Brownian motion with the harmonic function given by
the non-exit probability Px[τC = ∞] has the same law that a certain path transformation

of the Brownian motion (defined thanks to the Pitman operator, which is one of the main
topics studied in [4]).

5.4. Case D (boundary drift). In this section and the following ones, we make the

additional hypothesis that the cone is real-analytic, that is, hypothesis (C2). Notice that
under this assumption Θ is normal. This assumption ensures that the heat kernel can be
locally and analytically continued across the boundary, and thus admits a Taylor expansion

at any boundary point different from the origin. To our knowledge, for more general cones
like those which are intersections of smooth deformations of half-spaces, the boundary
behavior of the heat kernel at a corner point (i.e., a point located at the intersection of

two or more half-spaces) is not known, except in the particular case of Weyl chambers
[18, 4]. This behavior will determine the polynomial part t−α in the asymptotics of the
non-exit probability. The case of Weyl chambers is treated in [23]. Here, we deal with the

opposite (i.e., smooth) setting.
Define the function

hD(x) = e|x−a|2/2∂np
C(1, x, a),
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where n stands for the inner-pointing unit vector normal to C at a, and ∂np
C(1, x, a)

denotes the normal derivative of the function y 7→ pC(1, x, y) at y = a. Function hD(x) is

non-zero thanks to Lemma 10 below. Define also the constant

κD = (2π)(d−1)/2.

Theorem D. Let C be a real-analytic cone. If a 6= 0 belongs to ∂C, then

Px[τC > t] = κDhD(x)t−1/2(1 + o(1)), t → ∞.

Proof. As in case C, we have pC(a) = a and γ = 0, and the formula (15) for Iδ(t) writes

Iδ(t) = td/2
∫

{y∈C:|y−a|6δ}
f(y)e−t|a−y|2/2dy,

where f(y) = e|y|
2/2pC(1, x, y). In the present case, f(y) vanishes at y = a, contrary to

case C. Since the function y 7→ pC(1, x, y) is infinitely differentiable in a neighborhood of

a (see Lemma 9), it follows from Taylor’s formula that, for any (sufficiently small) δ > 0,
there exists M > 0 such that

|f(y) − 〈y − a,∇f(a)〉| 6 M |y − a|2, ∀|y − a| 6 δ.

Therefore, for any fixed δ > 0, one has

Iδ(t) = td/2
∫

{y∈C:|y−a|6δ}
(〈y − a,∇f(a)〉 + O(|y − a|2))e−t|y−a|2/2dy.

Making the change of variables v =
√
t(y− a) implies that the above equation is the same

as

t−1/2

∫

(C−
√
ta)∩{v∈Rd :|v|6

√
tδ}

〈v,∇f(a)〉e−|v|2/2dv + O(t−1).

Now, due to the regularity of ∂C at a, the set

(C −
√
ta) ∩ {v ∈ R

d : |v| 6
√
tδ}

goes to {v ∈ R
d : 〈v, n〉 > 0} as t → ∞. Furthermore, an easy computation shows that

∫

{v∈Rd:〈v,n〉>0}
ve−|v|2/2dv = (2π)(d−1)/2n.

Hence, we deduce that

Iδ(t) = t−1/2(2π)(d−1)/2∂nf(a) + oδ(t
−1/2), t → ∞.

Since ∂nf(a) = e|a|
2/2∂np

C(1, x, a) 6= 0 by Lemma 10, Theorem D follows from Lemma 5
and formula (13). �

The two following lemmas have been used in the proof of Theorem D. The first of the
two lemmas follows from [19, Theorem 1], which proves analyticity of solutions to general
parabolic problems, both in the interior and on the boundary. As for the second one, it is

a consequence of [12, Theorem 2].

Lemma 9. Under (C2), the function y 7→ pC(1, x, y) can be analytically continued in
some open neighborhood of any point y = a ∈ C \ {0}.
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Lemma 10. Under (C2), the normal derivative of the function y 7→ pC(1, x, y) at y = a
is non-zero (for any a ∈ ∂C \ {0}).

Example 1 (continued). In the particular case of the dimension 2, with a cone of opening
angle β (see Figure 1), one has the following expression for the normal derivative at a:

∂nf(a) =
2π

|a|β2
e−|x|2/2

∞
∑

j=1

Iαj
(|x||a|)mj(x)j,

which gives a simplified expression for function hD(x). The above identity is elementary:

it follows from the expression (7) of the eigenfunctions together with the definition of
function f and some uniform estimates (to be able to exchange the summation and the
derivation in the series defining the heat kernel).

5.5. Case E (non-polar exterior drift). In addition to the real-analyticity (C2) of the
cone, we shall assume in this section that (C3) holds, i.e., that the set Π(a) = {y ∈ C :
|y − a| = d(a,C)} of minimum points is finite. Define the function

hE(x) = e|x−a|2/2 ∑

p∈Π(a)

κE(p)∂np
C(1, x, p),

where κE(p) denotes the positive constant defined in equation (24). We shall prove the
following:

Theorem E. Let C be a real-analytic cone. If a belongs to R
d \ (C ∪ C♯) and Π(a) is

finite, then

Px[τC > t] = hE(x)t−3/2e−td(a,C)2/2(1 + o(1)), t → ∞.

Proof. Since a belongs to R
d \ (C ∪ C♯), every p ∈ Π(a) belongs to ∂C and is different

from 0 and a. Here γ = |p − a|2/2.
Because Π(a) is finite, we can choose δ > 0 so that the balls B(p, δ) for p ∈ Π(a) are

pairwise disjoint. Then Iδ(t) can be written as

Iδ(t) =
∑

p∈Π(a)

Iδ,p(t),

where

Iδ,p(t) = td/2
∫

C∩B(p,δ)
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy,

and B(p, δ) does not contain any other element of Π(a) than p.

The beginning of the analysis of Iδ,p(t) is similar to the proof of Theorem D, except
that we have to make a Taylor expansion with three (and not two) terms, for reasons that
will be clear later. For the same reasons as in case D, for any δ > 0 small enough, we have

(21) Iδ,p(t) = td/2
∫ (

〈y − p,∇f(p)〉 +
1

2
(y − p)⊤∇2f(p)(y − p) + O(|y − p|3)

)

× e−t|y−a|2/2dy,

where f(y) = e|y|
2/2pC(1, x, y), (y−p)⊤ is the transpose of the vector y−p, ∇2f(p) denotes

the Hessian matrix of f at p, and the domain of integration is {y ∈ C : |y − p| < δ}. To
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compute the asymptotics of the integral Iδ,p(t) as t → ∞, we shall make a series of two
changes of variables. First, the change of variables u = y − p and the use of the identity

e−t|y−a|2/2 = e−tγe−t|y−p|2/2−t〈y−p,p−a〉

give the following alternative expression

(22) Iδ,p(t) = td/2e−tγ

∫

D

(

〈u,∇f(p)〉 +
1

2
u⊤∇2f(p)u + O(|u|3)

)

e−t|u|2/2e−t〈u,p−a〉du,

where the domain of integration D equals (C − p) ∩ {u ∈ R
d : |u| < δ}.

In what follows, we will assume (without loss of generality) that the inner-pointing
unit normal to ∂C at p is equal to e1, the first vector of the standard basis. With this

convention p − a = |p − a|e1, and the only non-zero component of ∇f(p) is in the e1-
direction. Indeed, since f(y) = 0 for y ∈ ∂C, the boundary of the cone is a level set for
the function f , and it is well known that the gradient is orthogonal to the level curves.

Therefore, the quantity 〈u,∇f(p)〉 is equal to u1∂1f(p).
Our last change is v = φt(u); it sends (u1, u2, . . . , ud) onto (tu1,

√
tu2, . . . ,

√
tud). Note

that the scalings in the normal and tangential directions are not the same; this entails that
in (21) the second term in the integrand is not negligible w.r.t. the first one, and this is

the reason why we have to make a Taylor expansion with three terms and not two. Note
also that the Jacobian of this transformation is t(d+1)/2. From this and (22) we deduce
that, as t → ∞,

(23) t3/2etγIδ,p(t) =

∫

φt(D)

(

v1∂1f(p) +
1

2
(0, v2, . . . , vd)⊤∇2f(p)(0, v2, . . . , vd)

)

× e−v1|p−a|e−(v22+···+v2
d
)/2e−v21/(2t)dv + O(t−1/2).

The aim is now to understand the behavior of the domain φt(D) as t → ∞. Since the cone
C is tangent to the hyperplane {u ∈ R

d : u1 = 0} at p and its boundary is real-analytic,
there exists a real-analytic function g with g(0) = 0 and ∇g(0) = 0, such that, for δ small

enough, the domain D coincides with

{u ∈ R
d : u1 > g(u2, . . . , ud), |u| < δ}.

An application of Taylor formula then gives that (up to a set of Lebesgue measure zero)

lim
t→∞

φt(D) = φ∞(D) = {v ∈ R
d : v1 >

1

2
(v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd)}.

Let us compare the limit domain φ∞(D) and the integrand in equation (23). Since f
vanishes on the boundary of the cone, we have

f(p1 + g(u2, . . . , ud), p2 + u2, . . . , pd + ud) = 0,

for any u in some neighborhood of 0. Differentiating twice this identity, we obtain

(0, v2, . . . , vd)⊤∇2f(p)(0, v2, . . . , vd) = −∂1f(p)(v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd).
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Therefore, equation (23) can be rewritten as

t3/2etγIδ,p(t) = ∂1f(p)

∫

φt(D)

(

v1 −
1

2
(v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd)

)

× e−v1|p−a|e−(v2
2
+···+v2

d
)/2e−v2

1
/(2t)dv + O(t−1/2)

as t → ∞. Notice that the limit domain φ∞(D) is exactly the subset of R
d where the

integrand is positive. Thus, the constant

(24) κE(p) = e(|p|
2−|a|2)/2

×
∫

φ∞(D)

(

v1 − (v2, . . . , vd)⊤∇2g(0)(v2, . . . , vd)
)

e−v1|p−a|e−(v22+···+v2
d
)/2dv

is positive. Since ∂1f(p) = e|p|
2/2∂1p

C(1, x, p) 6= 0 by Lemma 10, we obtain that

Iδ,p(t) = κE(p)e|a|
2/2∂1p

C(1, x, p)t−3/2e−tγ(1 + o(1)), t → ∞.

To conclude the proof of Theorem E, it suffices to sum the estimates for Iδ,p(t) over
p ∈ Π(a), and then to apply Lemma 5 and to use equation (13). �

Example 1 (continued). In the particular case of two-dimensional cones, ∇2g(0) = 0 and
the limit domain of integration φ∞(D) is the half-space {v ∈ R

2 : v1 > 0}. The constant
κE(p) can then be computed:

κE(p) =
e(|p|

2−|a|2)/2

|p− a|2
√

2π.

5.6. Case F (polar boundary drift). We finally consider the case where the drift a 6= 0
belongs to ∂C♯. Let us first notice that the existence of such a vector a implies that the

cone C is included in some half-space. More precisely, by definition of the polar cone,
the inner product of a with any y ∈ C is non-positive, so that C is included in the half-
space {y ∈ R

d : 〈a, y〉 6 0}. Moreover, there must exist some θc ∈ ∂Θ = ∂(C ∩ S
d−1)

such that 〈a, θc〉 = 0, for else a would belong to the interior of C♯, as seen in Lemma
8. We call Θc the set of all these contact points θc between ∂Θ and the hyperplane
a⊥ = {y ∈ R

d : 〈a, y〉 = 0}. As we shall see, the asymptotics of Px[τC > t] is determined

by the local geometry of the cone C near these points.
We first present some general aspects of our approach, and then we will treat the case

d = 2 for cones with opening angle β ∈ (0, π), and the case d = 3 for cones with a real-

analytic boundary and a finite number of contact points. Other cases are left as open
problems. In the sequel, we will assume (without loss of generality) that a = −|a|ed,
where ed stands for the last vector of the standard basis.

As in case A, we have pC(a) = 0 and γ = |a|2/2, so that the formula (15) for Iδ(t) can
be written as

Iδ(t) = td/2
∫

{y∈C:|y|6δ}
e|y|

2/2pC(1, x, y)e−t|a−y|2/2dy.
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Let ǫ > 0 be given. Arguing as in case A, we can pick δ > 0 small enough so that Iδ(t) be
bounded from above and below by

(25) (1 ± ǫ)bu(x)e−|x|2/2td/2
∫

{y∈C:|y|6δ}
u(y)e−t|a−y|2/2dy,

where b = (2α1Γ(α1 + 1))−1. Thus, we are led to study the asymptotic behavior of

Jδ(t) = td/2
∫

{y∈C:|y|6δ}
u(y)e−t|a−y|2/2dy,

= e−tγtd/2
∫

{y∈C:|y|6δ}
u(y)e−t|y|2/2e−t|a|yddy.

Making the change of variables z =
√
ty and using the homogeneity property of u (see

(16)), we obtain

(26) Jδ(t) = e−tγt−p1/2

∫

{z∈C:|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|zddz.

Now, Laplace’s method suggests that only some neighborhood of the hyperplane {z ∈ R
d :

zd = 0} will contribute to the asymptotics. More precisely, we have the following result:

Lemma 11. For any η > 0, we have
∫

{z∈C:zd>η|z|}
u(z)e−|z|2/2e−

√
t|a|zddz = o(t−d/2), t → ∞.

Proof. Since |u(z)| 6 M |z|p1 , the integral above is bounded from above by

M

∫

Rd

|z|p1e−η
√
t|a||z|dz = Mt−(p1+d)/2

∫

Rd

|w|p1e−η|a||w|dw,

which is equal to O(t−(p1+d)/2). Lemma 11 follows since p1 > 0. �

From now on, we shall assume that (C4) holds, i.e., that the set of contact points Θc is
finite.

Let η > 0 be so small that the d-dimensional balls B(θc, η) for θc ∈ Θc are disjoints.
Since the set of all θ ∈ Θ that do not belong to any of these open balls is compact and
does not contain any contact point, there exists some η′ > 0 such that θd > η′ for all such

θ. For θc ∈ Θc, we define the cone

(27) C(θc, η) = {z ∈ C : z/|z| ∈ B(θc, η)}.
Then C can be written as the disjoint union of these (thin) cones and of a (big) remaining
cone whose points z all satisfy the inequality zd/|z| > η′. Thus, according to formula (26)

and Lemma 11, we have

(28) Jδ(t) = e−tγt−p1/2





∑

θc∈Θc

Kδ,η,θc(t) + o(t−d/2)



 ,

where

(29) Kδ,η,θc(t) =

∫

{z∈C(θc,η):|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|zddz
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represents the contribution of the contact point θc.

Two-dimensional cones. Here the cone is C = {ρeiθ : ρ > 0, θ ∈ (0, β)} with β ∈ (0, π).

Define
hF (x) = e〈−a,x〉u(x)

and the constant

κF =
π2p1/2Γ(p1/2)

2α1Γ(α1 + 1)β2|a|2 .

Theorem F (Case of the dimension 2). Let C be any two-dimensional cone with β ∈ (0, π).

If a 6= 0 belongs to ∂C♯, then

Px[τC > t] = κFhF (x)e−t|a|2/2t−(p1/2+1)(1 + o(1)), t → ∞.

Proof. Since β < π, there is only one contact point, namely θc = (1, 0). Let us analyze its

contribution. According to (29), we have

Kδ,η,θc(t) =

∫

{z∈R2:0<z2<ηz1,|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|z2dz,

as soon as η is small enough. (In fact, the condition is arcsin η < β, and η in the integral

should be tan(arcsin η).)
We now proceed to the change of variables v = φt(z) = (z1,

√
tz2), which leads to

Kδ,η,θc(t) = t−1/2

∫

Dt

u

(

v1,
v2√
t

)

e−|v1|2/2e−|v2|/2te−|a|v2dv,

where Dt = φt({z ∈ R
2 : 0 < z2 < ηz1, |z| 6

√
tδ}). Notice that (v1, v2) ∈ Dt implies that

|v2/(v1
√
t)| < η. It follows from the Taylor-Lagrange inequality that (if η is small enough)

there exists M such that
u(1, h) = ∂2u(1, 0)h + h2R(h),

with |R(h)| 6 M for all |h| 6 η. Therefore, using the homogeneity of u, we obtain

√
tu

(

v1,
v2√
t

)

=
√
tvp11 u

(

1,
v2

v1
√
t

)

= vp1−1
1 v2(∂2u(1, 0) + hR(h)),

with h = v2/(v1
√
t) and |hR(h)| 6 ηM for all (v1, v2) ∈ Dt. As t → ∞, the domain Dt

converges to the quarter plane R
2
+, and it follows from the dominated convergence theorem

that, as t → ∞,

Kδ,η,θc(t) = t−1∂2u(1, 0)

∫

R2
+

vp1−1
1 v2e

−v2
1
/2e−|a|v2dv + o(t−1)(30)

= t−1π2p1/2Γ(p1/2)

β2|a|2 (1 + o(1)),

where we have used the fact that ∂2u(1, 0) = 2π/β2 (see (7) for j = 1). For β < π, there is
no other contribution and, therefore, combining equations (30), (28) and (25) shows that
upper and lower bounds for Iδ(t) are given by

(1 ± ǫ)κFu(x)e−|x|2/2e−tγt−(p1/2+1)(1 + o(1)), t → ∞.

Hence, as in the other cases, the result follows from Lemma 5 and formula (13). �
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Remark 12. When β = π, the point (−1, 0) is a second contact point. By symmetry, its
contribution is exactly the same as that of (1, 0). Hence the result of Theorem F is still

valid if κF is replaced by 2κF .

Three-dimensional cones with real-analytic boundary. Recall that (by convention)
a = −|a|e3 and the cone C is contained in the half space {z3 > 0}, see Figure 4. Thanks to

(28), the asymptotic behavior of Px[τC > t] will follow from the study of the contributions

Kδ,η,θc(t) =

∫

{z∈C(θc,η):|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|z3dz

of the contact points θc ∈ Θc between ∂Θ and the hyperplane a⊥ = {z ∈ R
3 : z3 = 0}. As

we shall see, the behavior of the integral above will depend on the geometry of Θ at the

point θc.

✻

❄
✠

✯

✲ e1

e3

e2
a

Figure 4. Three-dimensional cones in the proof of Theorem F

Contribution of one fixed contact point. Without loss of generality, let us assume that
θc = e1. Since the cone is tangent to the plane {z ∈ R

3 : z3 = 0} at the point θc and since

its boundary is assumed to be real-analytic, there exists a real-analytic function g(z2) with
g(0) = 0 and g′(0) = 0, such that the intersection of C with {z ∈ R

3 : z1 = 1} coincides
(in a neighborhood of θc) with the set

g+ = {z ∈ R
3 : z1 = 1, z3 > g(z2)}.

Define

q = q(θc) = inf{n > 2 : g(n)(0) 6= 0},
and

c = c(θc) =
g(q)(0)

q!
.

Since θc is isolated from the other contact points (recall that Θc is assumed to be finite),

the function g(z2) must be positive for all z2 6= 0 in a neighborhood of 0. Thus, by
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real-analyticity, q must be finite, even, and such that g(q)(0) > 0. Set

κ(q) =
2(p1+1−1/q)/2(1 − 1

q+1)

|a|2+1/q
Γ

(

p1 + 1 − 1/q

2

)

Γ

(

2 +
1

q

)

.

Then we have:

Lemma 13. For any δ > 0 and η > 0 small enough, the contribution of each contact
point θc to the asymptotics of the non-exit probability is given by

Kδ,η,θc(t) =
κ(q)∂nu(θc)

c(θc)1+1/q
t−(1+1/(2q))(1 + o(1)), t → ∞,

where ∂nu(θc) stands for the (inner-pointing) normal derivative of the function u at θc.

We postpone the proof of Lemma 13 after the statement and the proof of Theorem F.

Statement of Theorem F. Let q1 be the maximum value of q(θc) for θc ∈ Θc. We define

hF (x) = u(x)e−〈a,x〉

as well as

κF = bκ(q1)
∑

q(θc)=q1

∂nu(θc)

c(θc)1+1/q
,

where b = (2α1Γ(α1 + 1))−1. Then we have:

Theorem F (Case of the dimension 3). Let C be a real-analytic three-dimensional cone.
If a 6= 0 belongs to ∂C♯ and the set of contact points Θc between ∂Θ and the hyperplane
a⊥ is finite, then

Px[τC > t] = κFhF (x)t−(p1/2+1+1/(2q1))e−t|a|2/2(1 + o(1)), t → ∞.

Proof. Since Kδ,η,θc(t) is of order t−(1+1/(2q)) by Lemma 13, only those θc with q(θc) = q1
will contribute in (28) to the asymptotics of Jδ(t). Thus, we obtain that

Jδ(t) = e−tγt−(p1/2+1+1/(2q1))κ(q1)
∑

q(θc)=q1

∂nu(θc)

c(θc)1+1/q1
(1 + o(1)), t → ∞.

Now, equation (25) shows that bounds for Iδ(t) are given by

(1 ± ǫ)κFu(x)e−|x|2/2e−tγt−(p1/2+1+1/(2q1))(1 + o(1)), t → ∞.

Hence, the result follows from Lemma 5 and formula (13). �

Proof of Lemma 13. With the conventions made just above, we analyze the contribution
of θc = (1, 0, 0), namely,

Kδ,η,θc(t) =

∫

{z∈C(θc,η):|z|6
√
tδ}

u(z)e−|z|2/2e−
√
t|a|z3dz.

By making the linear change of variables v = φt(z), with

φt(z1, z2, z3) = (z1, t
1/(2q)z2,

√
tz3),
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we obtain

(31) Kδ,η,θc(t) = t−1/2−1/(2q)

∫

Dt

u

(

v1,
v2

t1/(2q)
,
v3√
t

)

e−v21/2e−|a|v3(1 + o(1))dv,

where Dt = φt({z ∈ C(θc, η) : |z| 6
√
tδ}), and 1 + o(1) increases to 1 as t → ∞.

In order to understand the behavior of Dt as t → ∞, we first notice that

lim
t→∞

Dt = lim
t→∞

φt(C(θc, η)).

Then, since the first coordinate is left invariant by φt, we shall look at what happens in

the plane {z1 = 1}. It follows from the definition of q that

g+ = {z ∈ R
3 : z1 = 1, z3 > czq2 + o(zq2)},

with c = g(q)(0)/q! > 0. From this and the definition of φt, it is easily seen that

lim
t→∞

φt(C(θc, η) ∩ {z ∈ R
3 : z1 = 1}) = {v ∈ R

3 : v1 = 1, v3 > cvq2}.

Further, the homogeneity of the cone and the linearity of φt immediately imply that

lim
t→∞

φt(C(θc, η) ∩ {z ∈ R
3 : z1 = λ}) = {v ∈ R

3 : v1 = λ, λq−1v3 > cvq2},

for all λ > 0. Now, if η > 0 is small enough, the cone C(θc, η) does not contain any z with

z1 6 0. Therefore,

(32) lim
t→∞

φt(C(θc, η)) = {v ∈ R
3 : v1 > 0, v3 > 0, vq−1

1 v3 > cvq2}.

We call D the limit domain in (32).

It remains to analyze the behavior of the integrand in (31), i.e., to find the asymptotics
of

u

(

v1,
v2

t1/(2q)
,
v3√
t

)

= vp11 u

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

for v1 > 0, as t → ∞. To this end, we shall use a Taylor expansion of u(1, x, y) in a

neighborhood of (0, 0). This can be done since it is known that the real-analyticity of
Θ ensures that u can be extended to a strictly bigger cone, inside of which u is (still)
harmonic, see [22, Theorem A]. Since u is equal to zero on the boundary of C, the relation

u(1, z2, g(z2)) = 0

holds for all z2 in a neighborhood of 0, and a direct application of Lemma 16 below for
n = 1 and k ∈ {0, . . . , q − 1} shows that

(33) ∂
(j)
2,2,...,2u(1, 0, 0) =

{

0 if 1 6 j 6 q − 1,

−∂3u(1, 0, 0)g(q)(0) if j = q.

Hence, the Taylor expansion of u(1, z2, z3) leads to

lim
t→∞

√
tu

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

= ∂3u(1, 0, 0)

(

v3
v1

− g(q)(0)

q!

vq2
vq1

)

.
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The proof that this convergence is dominated is deferred to Lemma 14 below, where the
crucial role of C(θc, η) will appear clearly. Therefore, as t → ∞,

(34) Kδ,η,θc(t) = t−1−1/(2q)∂3u(1, 0, 0)

×
∫

D
vp1−q
1 (vq−1

1 v3 − cvq2)e−v2
1
/2e−|a|v3dv + o(t−1−1/(2q)).

Notice that the last integral is positive since D has positive (infinite) Lebesgue measure

and is exactly the domain where the integrand is positive. We now compute its value.
Since q is even, for any fixed v1 > 0 and v3 > 0, we have

∫

{v2∈R:vq−1

1
v3>cvq

2
}
(vq−1

1 v3 − cvq2)dv2 = 2

(

1 − 1

q + 1

)

(c−1vq−1
1 v3)1+1/q.

Thus, by an application of Fubini’s theorem, the integral in (34) becomes

2

(

1 − 1

q + 1

)

c−1−1/q

∫ ∞

0
v
p1−1/q
1 e−v2

1
/2dv1

∫ ∞

0
v
1+1/q
3 e−|a|v3dv3,

and can be expressed in terms of the Gamma function as

2(p1+1−1/q)/2(1 − 1
q+1 )

|a|2+1/qc1+1/q
Γ

(

p1 + 1 − 1/q

2

)

Γ

(

2 +
1

q

)

= κ(q)c−(1+1/q).

This concludes the proof of Lemma 13. �

Lemma 14. Let ai,j denote the coefficient of zi2z
j
3 in the Taylor expansion of u(1, z2, z3)

at (0, 0). If η > 0 in the definition (27) of C(θc, η) is small enough, then
∫

Dt

vp11

∣

∣

∣

∣

√
tu

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

−
(

a0,1
v3
v1

+ aq,0
vq2
vq1

)∣

∣

∣

∣

e−v2
1
/2e−|a|v3dv = o(1), t → ∞.

Proof. Since the function u(1, z2, z3) can be extended to a function infinitely differentiable
in a neighborhood of (0, 0), see [22, Theorem A], there exists M > 0 such that, for η0 > 0
small enough,

u(1, z2, z3) =
∑

i+j6q

ai,jz
i
2z

j
3 + |(z2, z3)|q+1R(z2, z3),

where |R(z2, z3)| 6 M for all (z2, z3) ∈ B(0, η0). We already know (see (33) in the proof
of Theorem F) that ai,0 = 0 for all i ∈ {0, . . . , q − 1}, hence

|u(1, z2, z3) − (a0,1z3 + aq,0z
q
2)| 6

∑

26j6q

|a0,jzj3| +
∑

i,j>1
i+j6q

|ai,jzi2zj3| + |(z2, z3)|q+1M.

Let ǫ ∈ (0, 1) be fixed. For (z2, z3) ∈ B(0, η0), we use the upper bound

|a0,j ||z3|1+ǫη
j−(1+ǫ)
0 , ∀j > 2,

for the terms inside of the first sum, and the upper bound

|ai,j||z2||z3|ηi+j−2
0 , ∀i + j > 2,

for the terms inside of the second sum. For the last term, we write

|(z2, z3)|q+1
6 C(|z2|q+1 + |z3|q+1) 6 C(|z2|q+1 + |z3|1+ǫηq−ǫ

0 ),
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and we finally obtain the upper bound

(35) |u(1, z2, z3) − (a0,1z3 + aq,0z
q
2)| 6 C1|z3|1+ǫ + C2|z2||z3| + C3|z2|q+1,

where C1, C2, C3 > 0 are positive constants (depending on η0 and ǫ only).
On the other hand, the definition of C(θc, η) ensures that

∣

∣

∣

∣

(

v2

v1t1/(2q)
,

v3

v1
√
t

)∣

∣

∣

∣

6 η + o(η), η → 0,

for all (v1, v2, v3) ∈ Dt. Therefore, if η > 0 is small enough so that η + o(η) 6 η0, then
according to (35) we have

∣

∣

∣

∣

√
tu

(

1,
v2

v1t1/(2q)
,

v3

v1
√
t

)

−
(

a0,1
v3
v1

+ aq,0
vq2
vq1

)∣

∣

∣

∣

6 o(1)

(

C1

∣

∣

∣

∣

v3
v1

∣

∣

∣

∣

1+ǫ

+ C2

∣

∣

∣

∣

v2
v1

∣

∣

∣

∣

∣

∣

∣

∣

v3
v1

∣

∣

∣

∣

+ C3

∣

∣

∣

∣

v2
v1

∣

∣

∣

∣

q+1
)

,

(where o(1) is a function of t alone) for all (v1, v2, v3) ∈ Dt, and the result follows from
Lemma 15 below, provided that ǫ has been chosen so small that 1 + ǫ + 1/q 6 2. �

Lemma 15. The integral

∫

D
vp11

∣

∣

∣

∣

v2
v1

∣

∣

∣

∣

α ∣
∣

∣

∣

v3
v1

∣

∣

∣

∣

β

e−v2
1
/2e−|a|v3dv

is finite for all α, β > 0 such that β + (α + 1)/q 6 2.

Proof. Using Fubini’s theorem, this integral can be shown to be equal to
∫ ∞

0
v
p1+1−β−(α+1)/q
1 e−v2

1
/2dv1

∫ ∞

0
v
β+(α+1)/q
3 e−|a|v3dv3,

up to some positive multiplicative constant. The result follows since p1 > 0. �

Lemma 16. Let n > 1 and k > 0, and assume that f : Rn+1 → R and g : R → R, with
g(0) = 0, are two functions infinitely differentiable such that for some constant c,

(36) f(x, g(x), g′(x), . . . , g(n−1)(x)) = c,

for all x in some neighborhood of x = 0, and

(37) g′(0) = g(2)(0) = · · · = g(n−1+k)(0) = 0.

Then

∂
(k+1)
1,1,...,1f(0) = −∂n+1f(0)g(n+k)(0).

Proof. Let H(n, k) denote the statement that the conclusion of the lemma is true for the

pair (n, k). We shall prove that

• H(n, 0) holds for all n > 1;

• For all n > 1 and k > 1, H(n + 1, k − 1) implies H(n, k).
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The lemma will clearly follow by induction.
Let f and g be two functions satisfying the hypotheses of Lemma 16 for some n > 1

and k > 0, and set γ(x) = (x, g(x), g′(x), . . . , g(n−1)(x)). First, differentiating relation (36)
w.r.t. the variable x shows that

(38) ∂1f(γ(x)) +

n
∑

j=2

∂jf(γ(x))gj−1(x) + ∂n+1f(γ(x))g(n)(x) = 0,

for all x in some neighborhood of 0. Hence, according to (37), we get that

∂1f(0) + ∂n+1f(0)g(n)(0) = 0,

thereby proving H(n, 0). Furthermore, equation (38) can be rewritten as

h(x, g(x), g′(x), . . . , g(n)(x)) = 0,

in some neighborhood of x = 0, where h : Rn+2 → R is defined by

(39) h(x1, x2, x3, . . . , xn+2) = ∂1f(γ(x)) +

n
∑

j=2

∂jf(γ(x))xj+1 + ∂n+1f(γ(x))xn+2.

Since equation (37) is left invariant when replacing n by n + 1 and k by k − 1, functions

h and g fulfill the hypotheses of the lemma for the pair (n + 1, k − 1). Therefore, if
H(n + 1, k − 1) holds, then

∂
(k)
1,1,...,1h(0) = −∂n+2h(0)g(n+k)(0).

But it is clear from the definition (39) of h that

∂
(k)
1,1,...,1h(0) = ∂

(k+1)
1,1,...,1f(0),

and

∂n+2h(0) = ∂n+1f(0).

Hence H(n, k) holds, and the proof is completed. �
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