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Université Francois Rabelais, Tours, FRANCE

September 10, 2014

Abstract

In this paper, we study the existence and regularity of the quasilinear parabolic

equations:
uy — div(A(z, t, Vu)) = B(u, Vu) + p

in RV*! RY x (0,00) and a bounded domain Q x (0,7) ¢ RN*!. Here N > 2, the
nonlinearity A fulfills standard growth conditions and B term is a continuous function
and p is a radon measure. Our first task is to establish the existence results with
B(u,Vu) = +|u|?" u, for ¢ > 1. We next obtain global weighted-Lorentz, Lorentz-
Morrey and Capacitary estimates on gradient of solutions with B = 0, under minimal
conditions on the boundary of domain and on nonlinearity A. Finally, due to these
estimates, we solve the existence problems with B(u, Vu) = |Vul|? for ¢ > 1.

MSC: primary 35K55, 35K58, 35K59, 31E05; secondary 35K67,42B37
Keywords: quasilinear parabolic equations; renormalized solutions; Wolff parabolic
potential; Riesz parabolic potential; Bessel parabolic potential; maximal potential;
heat kernel; Radon measures; uniformly thick domain; Reifenberg flat domain; decay
estimates; Lorentz spaces; Riccati type equations; capacity
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1 Introduction
In this article, we study a class of quasilinear parabolic equations:
ug — div(A(z, t, Vu)) = B(z,t,u, Vu) + i (1.1)

in RV+1 or RY x (0,00) or a bounded domain Qr := Q x (0,7) C R¥*1. Where N > 2,
A:RY xR xRN — RY is a Carathéodory function which satisfies

|[A(z,t,Q)] < Aq|¢] and
(A(z,t,0) — A(m,1,7),¢ = A) > Ao|¢ — A2, (1.3)

for every (\,¢) € RN x RY and a.e. (x,t) € RN x R, here A; and A, are positive constants,
B : RN+ x R x RN — R is also a Carathéodory function and p is a Radon measure.

The existence and regularity theory, the Wiener criteria and Harnack inequalities, Blow-
up at a finite time associated with above parabolic quasilinear operator was studied and
developed intensely over the past 50 years, one can found in [58, 44, 30, 48, 49, 25, 50,
60, 83, 75, 73]. Moreover, we also refer to [19]-[22] for LP—gradient estimates theory in
non-smooth domains and [63] Wiener criteria for existence of large solutions of nonlinear
parabolic equations with absorption in a non-cylindrical domain.

First, we are specially interested in the existence of solutions to quasilinear parabolic
equations with absorption, source terms and data measure:

up — div(A(z, t, Vu)) + |u|? u = p, (1.4)
uy — div(A(z, t, Vu)) = |u|?  u + pu,

in RV*1 and

up — div(A(z, t, Vu)) + |u|? u = p, u(0)
uy — div(A(z, t, Vu)) = |u|? 'u 4 p, u(0) =

o, (1.6)

in RY x (0, 00) or a bounded domain Q7 € RN+ where ¢ > 1 and 1, o are Radon measures.
The linear case A(z,t, Vu) = Vu was studied in detail by Fujita, Brezis and Friedman,
Baras and Pierre.
In [18], showed that if 4 = 0 and o is a Dirac mass in €, the problem (1.6) in Q7 (with
Dirichlet boundary condition) admits a (unique) solution if and only if ¢ < (N + 2)/N.
Then, optimal results had been considered in [5], for any p € DMp(Qr) and o € M(Q):
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there exists a (unique) solution of (1.6) in Qg if and only if u, o are absolutely continuous
with respect to the capacity Capy; ./, Caprq)q, (in Qr, Q) respectively, for simplicity we
write p << Capy; , and 0 << Capcz/q’q,, with ¢’ is the conjugate exponent of ¢, i.e
qd = q—zl Where these two capacities will be defined in section 2.

For source case, in [6], showed that for any p € M} (Qr) and o € M;"(2), the problem
(1.7) in bounded domain Q7 has a nonnegative solution if

p(E) < CCapy o (F) and o(0) < CCapg, ,(0)

hold for every compact sets £ C RVNT1 O c RN here C = C(N,diam(f2),T) is small
enough. Conversely, the existence holds then for compact subset K CC €, one find Cx > 0
such that

p(EN (K x[0,T)) < CxCapy; o (E) and o(ONK) < CxCapg, (0)

hold for every compact sets £ ¢ RN+, O ¢ RY. In unbounded domain R™ x (0,c0), in
[30] asserted that an inequality

ug — Au > ud u >0 in RY x (0, 00), (1.8)

i. if ¢ < (N +2)/N then the only nonnegative global (in time) solution of above inequality
isu=0,

ii. if ¢ > (N + 2)/N then there exists global positive solution of above inequality.

More general, see [6], for p € MT (RN x (0,00)) and o € M (RY), (1.7) has a nonnegative
solution in RY x (0,00) (with A(z,¢, Vu) = Vu) if and only if

p(E) < CCapy, o(E) and o(O) < CCapy, ,(0) (1.9)

hold for every compact sets £ C RN¥*! O c RN, here C = C(N,q) is small enough,
two capacities Capy, ., Capy, , will be defined in section 2. Note that a necessary and

q
sufficient condition for (1.9) holding with p € 9T (RY x (0,00))\{0} or o € MT(RN)\{0}
is ¢ > (N + 2)/N. In particular, (1.8) has a (global) positive solution if and only if ¢ >
(N +2)/N. It is known that conditions for data p, o in problems with absorption are softer
than source. Recently, in exponential case, i.e |u|?"1u is replaced by P(u) ~ exp(alu|?), for
a > 0 and ¢ > 1 was established in [61].

We consider (1.6) and (1.7) in Q7 with Dirichlet boundary conditions when div(A(z, t, Vu))
is replaced by A,u := div(|Vu[P=2Vu) for p € (2 —1/N,N). In [66], showed that for any
q > p—1, (1.6) admits a (unique renormalized) solution provided o € L'(Q) and u € 9, (1)
is diffuse measure i.e absolutely continuous with respect to C},—parabolic capacity in Qr
defined on a compact set K C Qrp:

Cp(K,Qr) =inf {[|ellx : 0 > XK, 0 € CZ (1)},

where X = {@ : ¢ € LP(0,T; Wy (Q)),0: € L (0,T; W17 (Q))} endowed with norm
llollx = |\<p||Lp(O’T;W01,p(Q)) +|eell Lo 0,7;w -1 (0)) and Xk is the characteristic function of
K. An improving result was presented in [14] for measures that have good behavior in time,
it is based on results of [16] relative to the elliptic case. That is, (1.6) has a (renormalized)
solution for ¢ > p—1if o € L'(Q2) and |u| < f +w® F, where f € L1 (Qr),F € L ((0,T))
and w € M (Q2) is absolutely continuous with respect to CapGP’ﬁ in Q. Also, (1.7) has
a (renormalized) nonnegative solution if o € L°(Q), 0 < 1 < w ® x(o,1) With w € M7 ()
and

w(E) < C1Capg,,__a_(E) V compact E C RY, lo|lpe(a) < Co

q—p+1
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for some C7, Cy small enough. Another improving results are also stated in [15], especially
ifg>p—1,p>2, ue€M(Qr) and o € M(N2) are absolutely continuous with respect to
Cap, 1 o in Qr and Capg, , in Q then (1.6) has a distribution solution.
q
In [15], we also obtain the existence of solutions for porous medium equation with ab-
sorption and data measure: for ¢ > m > %, a sufficient condition for existence solution

to the problem
wg — A(u|™ ) + |u|fu=p in Qpr, u=00n 92 x (0,T), and u(0)=o0c in Q,

is p << Capgy gy 0 << Caup(;2 g ifm > 1and p << Cap92 PE FE—— <<

if N=2 < m < 1. A necessary condition is p << Capy

q
»g—max{m,1}

CapG2fN(17m) vz(q—1)flzzv(1—m)
q
and 0 << Capg, ) TR Moreover, if u = p1 ® xjo,r) With p1 € Mp(Q2) and
max{m,1} > g—max{m, )

q
o = 0 then a condition p; << Capg, _«_ is not only a sufficient but also a necessary for
Yg—m

existence of solutions to above problem.
We would like to make a brief survey of quasilinear elliptic equations with absorption,
source terms and data measure:

— Apu+ |u| = w, (1.10)
— Apu = |u|"  u+ w,u >0, (1.11)
in © with Dirichlet boundary conditions where 1 < p < N, ¢ > p — 1. In [16], we proved

that the existence solution of equation (1.10) holds if w € 9, (€2) is absolutely continuous
with respect to CapGp - Moreover, a necessary condition for existence was also showed
‘q—p

n [10, 11]. For problem with source term, it was solved in [68] (also see [69]). Exactly, if
w € E)JTZF(Q) has compact support in €, then a sufficient and necessary condition for the
existence of solutions of problem (1.11) is

w(E) < C’CapG (E) for all compact set E C €,

+1

where C' is a constant only depending on N, p, ¢ and d(supp(w), 9). Their construction is
based upon sharp estimates of solutions of the problem

—Apu=w in, w=0 on 99,

for nonnegative Radon measures w in € and a deep analysis of the Wolff potential.
Corresponding results in case that u? term is changed by P(u) =~ exp(au’) for a > 0, A > 0,
was given in [16, 62].

In [27], Duzaar and Mingione gave a local pointwise estimate from above of solutions to
equation

—div(A(z, t, Vu)) = p, (1.12)
in Qr involving the Wolff parabolic potential I5[|z|] defined by
Ll = [ QDD o o0y emY,
0 p p
here Q,(x,t) := B,(x) x (t — p?/2,t + p?/2). Specifically if u € L2(0,T; H*(Q)) N C(Qr) is

a weak solution to above equation with data u € L?(Qr), then

2 u)( Qp(ff D) dp.

lu(z,t)] < C |u|dyds + C/
5 pN p’

QR(I,t)

(1.13)
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for any Qar(z,t) := Bag(x) x (t — (2R)?,t) C Qr, where a constant C' only depends on N
and the structure of operator A. Moreover, in this paper we show that if v > 0,u > 0 we
also have local pointwise estimate from below:

i 1(@Qri /sy, s — 5570 2))7 (1.14)

k=0 k

for any Q,(y,s) C Qr, see section 5, where rj, = 4~ *r

From preceding two inequalities, we obtain global pointwise estimates of solution to
(1.12). For example, if u € MRV 1) with Iy [|u|] (w0, to) < oo for some (z9,to) € RN+ then
there exists a distribution solution to (1.12) in RN*+! such that

—KTy[u ](z,t) < u(x,t) < Klp[ut](z,t) for a.e (x,t) € RNFL (1.15)

and we emphasize that if u > 0, x > 0 then

Z w(Qo—2r—s(x,t — 35 x 274k=T))

N+1
92—2Nk R ?

for a.e (z,t) €

k=—o0

and for g > 1,

1wl Lo a1y = [[Tz[w]|| Lar+1)-

Where a constant K only depends on N and the structure of operator A.

Our first aim is to verify that

i. problems (1.4) and (1.6) have solutions if u, o are absolutely continuous with respect to
the capacity Cap, ; ., Capg, . respectively,
q

ii. problems (1.5) in R¥*1 and (1.7) in RY x (0,00) with data signed measure u,o admit
a solution if

lul(E) < CCapyy, o(E) and |o|(O) < CCapy, 4 (O) (1.16)

hold for every compact sets £ C RN¥*1 O c RM. Also, the equation (1.7) in a
bounded domain 27 has a solution if (1.16) holds where capacities Cap, ; ./, Capg,
a

are exploited instead of Capy,, ., Capy,
It is worth mention that solutions obtained of (1.5) in R¥*! and (1.7) in RY x (0, 00) obey
/ lu|*dzdt < CCapyy, ,(E) for all compact E C RN T,
E
and we also have an analogous estimate for a solution of (1.7) in Qp;
/E |u|'dzdt < CCap,; ,(E) for all compact £ C RN+

for some a constant C' > 0.
In case yu = 0, solutions (1.7) in RY x (0,00) and Q7 are accepted the decay estimate

—Ct 7T < inf u(z,t) <supu(z,t) < Ct™ 77 for any t> 0.
& T

The strategy for establishment above results that is, we rely upon the combination some
techniques of quasilinear elliptic equations in two articles [16, 68] with the global pointwise
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estimate (1.15), delicate estimates on Wolff parabolic potential and the stability theorem
see [13], Proposition 3.17 of this paper. They will be demonstrated in section 6.
We next are interested in global regularity of solutions to quasilinear parabolic equations

up — div (A(z, ¢, Vu)) =p in Qp, u=00n 00 x (0,7) and u(0)=0 in Q, (1.17)

where domain Q7 and nonlinearity A are as mentioned at the beginning.
Our aim is to achieve minimal conditions on the boundary of 2 and on nonlinearity A
so that the following statement holds

IVullle < C[IMa[w]]]xc-

Here w = || 4 |o| ® 0g4—0y and M is the first order fractional Maximal parabolic potential
defined by }
w(@p(,1))

pres VY (z,t) € RNFL,

M [w](x,t) = sup

p>0

a constant C' does not depend on w and p € My(Qr), 0 € M() and K is a function

space. The same question is as above for the elliptic framework studied by N. C. Phuc in
[70, 71, 72].

First, we take K = LP*(Qr) for 1 < p < 0 and 0 < s < oo under a capacity density
condition on the domain  where LP*(Qr) is the Lorentz space and a constant 6 > 2
depends on the structure of this condition and of nonlinearity A. It follows the recent
result in [7], see remark 2.18. The capacity density condition is that, the complement of
Q satisfies uniformly 2—thick, see section 2. We remark that under this condition, the
Sobolev embedding H}(Q) C L% (Q) for N > 2 is valid and it is fulfilled by any domain
with Lipschitz boundary, or even of corkscrew type. This condition was used in two papers
[70, 72]. Also, it is essentially sharp for higher integrability results, presented in [41, Remark
3.3]. Furthermore, we also assert that if ﬁ <p<0,2<y<N+2,0<s<ocando =0
then

|||V’U,|||L€,s;(~r71)p(QT) < Cl ‘:u| ‘L@,@;(wflw

@)

si(v—1) Gobe ODei(y—1)p
for some a constant C' where LY*"P(Qr), L, g (Qr) are the Lorentz-

Morrey spaces involving ”calorie” introduced in section 2. We would like to refer to [55] as
the first paper where Lorentz-Morrey estimates for solutions of quasilinear elliptic equations
via fractional operators have been obtained.

Next, in order to obtain shaper results, we take IC = L?°(Qr, dw), the weighted Lorentz
spaces with weight in the Muckenhoupht class Ao, for ¢ > 1, 0 < s < 00, we require some
stricter conditions on the domain 2 and nonlinearity A. A condition on €2 is flat enough in
the sense of Reifenberg, essentially, that at boundary point and every scale the boundary
of domain is between two hyperplanes at both sides (inside and outside) of domain by a
distance which depends on the scale. Conditions on A are that BMO type of A with re-
spect to the z—variable is small enough and the derivative of A(z,t,() with respect to ¢
is uniformly bounded. By choosing an appropriate weight we can establish the following
important estimates:

a. The Lorentz-Morrey estimates involving ”calorie” for 0 < k < N + 2 is obtained

[Vl

Loer ) < COlMy[Jwl]|[ e @)
b. Another Lorentz-Morrey estimates is also obtained for 0 < ¢ < N

[IM([Vaul)]

L9y < Ol
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where L% (Qr) is introduced in section 2. This estimate implies global Holder-estimate in
space variable and L¢—estimate in time, that is for all ball B, C RV

T q
(/ |oschmQu(t)th> < C’pk%HMleHHLw(QT) provided 0 < ¢ < min{q, N}.
0

In particular, there hold

T g 1 9 1 9
oscp ~qu(t)|4dt | <Cp 7 +Cpd
/0 o5, cu(t) = HUHLﬂfzqf«;ﬂ(m P HuHLwﬁ?f%;ﬂm,m((o,ﬂ))
provided

1<Q1§Q<27

2 — 1 2
max{q7<2+q—q>}<19<N.
g—1 qg-—1 7

Where Li’j;—q;ﬂ(Q) is the standard Morrey space and

AN

9-N T a
|\NHL«zaﬂ(Q,Lu((o,T))) = Sup p ¢ / (/ M(y»t)[hdt> dy )
p>0,2€Q B, (z)N2 0

Besides, we also find

: _ Y991
with ¢z = O+2+q)a1—2q°

1
T q
_9
(/ |oschmQu<t>|th> S

L@F2ra)a1—24"" (Q, La1((0,T)))

provided

UEO? q2231<q1SQa

1 2
(2+q—q> <I<N.
q—1 Q1

c. A global capacitary estimate is also given

Vu|ldxdt K ?
sup (M) <C sup <C|W|()K) .
RN+ apgl,q/( ) RN+L apgl,q'( )

compact KC compact KC
Capg, ¢ (K)>0 Capg, o/ (K)>0

To obtain this estimate we employ profound techniques in nonlinear potential theory, see
section 4 and Theorem 2.22.

We utilize some ideas (in the quasilinear elliptic framework) in articles of N.C. Phuc
[70, 72, 71] during we establish above estimates.

We would like to emphasize that above estimates is also true for solutions to equation
(1.17) in R¥*! with data u (of course still true for (1.17) in RY x (0,00)) with data u
provided Iy (||| (20, t0) < oo for some (zq,ts) € RV+! see Theorem 2.25 and 2.27. Moreover,
a global pointwise estimates of gradient of solutions is obtained when A is independent of
space variable x, that is

Vu(z, t)] < CL[|pll(z,t) ae (z,t) € RYFY

see Theorem 2.5.
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Our final aim is to obtain existence results for the quasilinear Riccati type parabolic
problems (1.1) where B(x,t,u, Vu) = |Vul? for ¢ > 1. The strategy we use in order to
prove these existence results is that using Schauder Fixed Point Theorem and all above
estimates and the stability Theorem see [13], Proposition 3.17 in section 3. They will be
carried out in section 9. By our methods in the paper, we can treat general equations (1.1),
where

|B(z,t, u, Vu)| < Crlu|® + C2|Vul®, ¢1,92 > 1,

with constant coefficients Cy, Cy > 0.
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2 Main Results

Throughout the paper, we assume that Q is a bounded open subset of RY, N > 2 and
T > 0. Besides, we always denote Q7 = Q x (0,7), Tp = diam(Q) + 7%/2 and Q,(z,t) =
B,(z) x (t — p*,t) Qy(x,t) = By(x) x (t — p?/2,t + p*/2) for (z,t) € RN+ and p > 0. We
always assume that 4 : RN x R x RV — R¥ is a Caratheodory vector valued function, i.e.
A is measurable in (x,¢) and continuous with respect to Vu for each fixed (z,t) and satisfies
(1.2) and (1.3). This article is divided into three parts. First part, we study the existence
problems for the quasilinear parabolic equations with absorption and source terms

uy — div(A(z, t, Vu)) + |u|? u = p in Qr,

u=0 on 90 x (0,7), (2.1)
u(0) =0 in Q,

and
uy — div(A(z, t, Vu)) = |u|9 u + p in Qr,
u=0 on 90 x (0,7), (2.2)
u(0) =0 in Q,

where ¢ > 1, and u, o are Radon measures.

In order to state our results, let us introduce some definitions and notations. If D is either
a bounded domain or whole R! for I € N, we denote by MM(D) (resp. IM;,(D)) the set of
Radon measure (resp. bounded Radon measures) in D. Their positive cones are M T (D) and
9" (D) respectively. For R € (0,0c], we define the R—truncated Riesz parabolic potential
I, and Fractional Maximal parabolic potential M, o € (0, N + 2), on RN*! of a measure
€ ME(RNF) by

. ~
R R = SN

for all (x,t) in RN*1. If R = 0o, we drop it in expressions of (2.3).
We denote by H, the Heat kernel of order o € (0, N + 2):

t 2
X(0,00) () p(f”|> for (z,t) in RVHY,

Heo(z,t) =C, i

Y H(N+2—a)/2

and G, the parabolic Bessel kernel of order o > 0:

_ X(0,00)(t) 4 @ : N+1
Gal(z,t) = C, TNTa-a)/z P t— 4 for (z,t) in RYTH
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see [4], where C,, = ((47T)N/2F(Oé/2))71. It is known that F(Ha)(z,t) = (|z|? +it)~*/? and
F(Go)(z,t) = (14 |z|? +it)~*/2. We define the parabolic Riesz potential H,, of a measure
€ ME(RNT) by

Halpl(z,t) = (Ha x p)(z,t) = / Halz —y,t — 5)du(y,s) forany (z,t) in RV,

RN+1

the parabolic Bessel potential G, of a measure u € M+ (RN+1) by

Galtl(@,1) = (Go * ) (1) = / Golw —y,t — 5)du(y, s) for any (x, ) in RV 1.

RN+1

We also define I, G,,0 < a < N the Riesz, Bessel potential of a measure u € 9 (RY) by

L. [p](z) = /000 MEDB;VP(?)de and G, [p](z) = - Go(x — y)du(y) for any z in RY,

where G,, is the Bessel kernel of order «, see [2].
Several different capacities will be used over the paper. For 1 < p < oo, the (H4, p)-capacity,
(Ga, p)-capacity of a Borel set E C RV*1! are defined by

CapHmp(E) = inf{/ |f|Pdxdt : f € L{’F(RNH),’H& x f> XE} and
RN+1

Capg,_ ,(E) = inf {/ |f|Pdxdt : f € Li(RN+1)7ga xf> XE} .
RN+1
The Wg’l—capacity of compact set £ C RV is defined by
Capy 1 ,(E) = inf {II@H’;@I(RNH) € S(RVTY) o > 1 in a neighborhood of E} ,

where

Op P
||<P|\W§v1(RN+1) = |l¢l|Lr@y+1y + ||E||LP(RN+1) + IVl Lp@n+1) +ij:§ . HmHLP(RNH)-

We remark that thanks to Richard J. Bagby’s result (see [4]) we obtain the equivalent of
capacities Cap, ; , and Capg, ,, i.e, for any compact set K C RN+ there holds

C’flCapQ’l_’p(K) < Capg, ,(K) < CCapy ; ,(K),

for some C' = C(N, p), see Corollary (4.18) in section 4.
The (I, p)-capacity, (G, p)-capacity of a Borel set O C RY are defined by

Caplmp(O) = inf {/ lg|Pdz < g € Li(RN),Ia xg > Xo} and
]RN

Camep(O) = inf{/ lg|Pdx : g € Li(RN),Ga xg > XO} .
RN

In our first three Theorems, we present global pointwise potential estimates for solutions to
quasilinear parabolic problems

up — div (A(z, t, Vu)) = p in Qp,

u=0 on 09 x (0,7), (2.4)
uw(0) =0 in £,
ug — div (A(x,t,Vu)) = p in RV x (0, 00), (2.5)
u(0) =0 in RY, '
and
uy — div (A(z,t,Vu)) = p in RVHL (2.6)
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Theorem 2.1 There exists a constant K depending on N, A1, Ay such that for any p €
My (), 0 € M(NQ) there is a distribution solution u of (2.4) which satisfies

~KIP ™ 4+ 0~ @0p—0)) <u< KLt + 0" ®dp—gy] in Qr. (2.7)

ot (Q) .
~r— for any t # 0 with
(N+2—a)(2|t]) 2
0<a< N+2. Thus, if u =0, then we obtain the decay estimate:

Remark 2.2 Since sup,cpn IhJot ® dpe=oy](z,t) <

Ko (Q Kot (Q
—Ui(N) < inf u(z,t) < supu(z,t) < 07(1\,) forany 0<t<T.
N(2t)z = =eQ zeQ N(2t)=

Theorem 2.3 There exists a constant C' depending on N, A1, Ay such that for any p €
M (Qr), 0 € M (), there is a distribution solution u of (2.4) satisfying for a.e (y,s) € Qp
and B,(y) C Q

) 35,2 o) _ 35,2
u(y7 S) > C Z M(QTk/S(y7Ji 128Tk)) +C (U @ 5{t:0})(Qrk1</8(y7 S 128T}c)) , (28)
r r
k=0 k k=0 k

where 1, = 47 Fr.

Remark 2.4 The Theorem 2.3 is also true when we replace the assumption (1.3) by a
weaker one

(A, 1,0),¢) > Aof¢?, (A(x,,¢) — Az, 1,0),{ = ) >0,
for every (A, ¢) € RN x RN, X\ # ( and a.e. (z,t) € RN x R.

Theorem 2.5 Let K be the constant in Theorem 2.1. Letw € M(RNFY) such that Iy[|w]](zo,to) <
oo for some (zo,tp) € RN*L. Then, there is a distribution solution u to (2.6) with data i = w
satisfying

~KTp[w™] < u < KI[w*] in RVH (2.9)

such that the following statements hold.
a. If w >0, there exists C1 = C1(N, A1, A2) such that for a.e (z,t) € RVN*!

o0

W(Q272k73(l‘,t —35 X 2_4k_7))

u(z,t) >Cr S aNE : (2.10)
k=—o00
In particular, for any q > %
Cy [ H2[w]l Lo@n+1y < lull Laen+1y < CallHa[w]l| Loy, (2.11)

with CQ = CQ(N,Al,AQ).

b. If A is independent of space variable x and satisfies (2.27), then there exists Cy =
Ca(N, A1, As) such that

|Vu| < Colh[jw|] in RNFL, (2.12)

c. Ifw = p+0® o with p € MRY x (0,00)) and o € MRY), then u = 0 in
RY x (—o0,0) and Ulgn [0,00) 5 @ distribution solution to (2.5).

Remark 2.6 For g > %, we alway have the following claim:
[[Halp +w @ dpi—oy )l Lan+1y = |[Halp]|| La@y+1y + [[T2/qlo ]| La@n+1y,

for every p € MH(RYN x (0,00)) and o € MH(RY).

10
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Remark 2.7 For w € MT(RVTH) 0 < a < N + 2 if I, [w](wo, to) < 0o for some (xo,to) €

RN+ then for any 0 < B < a, Iglw] € L3, (RNt for any 0 < s < Nli‘z"fﬁ. However, for

0<B<a<N+2, one can find w € ME (RN such that 1,[w] = 0o and Iz[w] < oo in
RN*L see Appendiz section.

The next four theorems provide the existence of solutions to quasilinear parabolic equations
with absorption and source terms. For convenience, we always denote by ¢’ the conjugate
q

exponent of ¢ € (1,00) i.e ¢ = -

Theorem 2.8 Let ¢ > 1, pp € My(Qr) and o € My(Q). Suppose that p,o are absolutely
continuous with respect to the capacities Capyy ., Capg, o in Qr,$2 respectively. Then
7

there exists a distribution solution u of (2.1) satisfying
—Klalp™ + 0~ ®@0p—0y] Su< KL[p™ 4+ 0" ®6p-0y] in Qr.
Here the constant K is in Theorem 2.1.

Theorem 2.9 Let K be the constant in Theorem 2.1. Let ¢ > 1, u € Mp(Qr) and o €
M,(2). There exists a constant C; = C1 (N, q, A1, Ao, diam(Q),T) such that if

lul(E) < C1Capy y o (E) and |o](0) < CyCapg, ,(0). (2.13)

hold for every compact sets E C RNTY O c RV, then the problem (2.2) has a distribution
solution u satisfying

Kq

K
L L[y~ + 0~ @ 6—ny] <u < p—

q—1

Lpt + 0t @ 6p—0y] in Q. (2.14)
Besides, for every compact set E C RN+ there holds
/ lu|?dzdt < CyCapy ;v (E), (2.15)
E

where Cy = C2(N, q, A1, Aa, Tp).
Remark 2.10 From (2.15) we get if ¢ > ¥,

/. It < O foramy Q) BV
Qp Y,s

if ¢ = %2,

/~ |ul?dxdt < C’(log(l/p))_qiil for any Qp(y,s) CRYT 0 < p<1/2,
Qp(yvs)

for some C = C(N,q,A1,A2,Ty), see Remark 4.14.

Remark 2.11 In the sub-critical case 1 < q < %, since the capacity Capy 1 o, Capg , o
2

of a single are positive thus the conditions (2.13) hold for some constant C; > 0 provided
1€ My(Qr), 0 € My(Q). Moreover, in the super-critical case ¢ > Y2, we have

Capyq o (E) > cl|E|1_1\Z;L+2 and Capg, ,(0) > 02\O|1_<‘I*21>N,
] N+2 (¢q—1)N
for every Borel sets E C RN+t O C RN, thus if u € L2 "°(Qp) and o € L~ 2 >°(Q)
then (2.13) holds for some constant Cy > 0. In addition, if u = 0, then (2.14) implies for
any 0 <t < T,

703(T0)t_q7i1 < inf u(z,t) < supu(z,t) < c3(T0)t_qul,
e reQ

since |o|(B,(x)) < C4(T0),0N_<12j for allz € RN, 0 < p < 2Ty.

11
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Theorem 2.12 Let K be the constant in Theorem 2.1 and q > 1. If w € MRV is
absolutely continuous with respect to the capacity Capy; o in RN then there ezists a

distribution solution w € L7 (R; WLY(RN)) for any 1 <~ < qi_—ql to problem

loc loc
ug — div (A(z, t, Vu)) + |u|? u = w in RN, (2.16)
which satisfies
~Klp[w™] <u < KI[w*] in RNTL (2.17)

Furthermore, when w = 1+ 0 @ djp—gy with p € MRY x (0,00)), o € MRY) then u =0
in RN x (—00,0) and “|RNx[0,oo) s a distribution solution to problem

o =1, — , i N
{ut div (A(z,t, V) + [ul?™ u = pin RY x (0, 00), (2.18)

uw(0) =0 in RN,

Remark 2.13 The measure w = p+ 0 ® dy4—0y s absolutely continuous with respect to the
capacity Capy 1 4 in RN+ if and only if u,o are absolutely continuous with respect to the

capacities Capy 1 o, Capg, o 0 RN+L RN respectively.
a

Existence result of the problem (2.2) on R¥*1 or on RY x (0,00) is similar to Theorem
2.9 presented in the following Theorem, where the capacities Capy, ., Capy, , are used in
a

place of respectively Cap, ; ., Capg, -
q

Theorem 2.14 Let K be the constant in Theorem 2.1 and g > %, w € MRN*L). There
exists a constant C; = C1(N, q, A1, A2) such that if

(WI(E) < C1 Capy, o (), (2.19)
for every compact set E C RN*1, then the problem
up — div (A(z,t, V) = |u|? u + w in RV (2.20)

has a distribution solution u € L?OC

(R; W2V (RN)Y) for any 1 < < q%r—ql satisfying

loc

K
¢ in RN*L (2.21)

Moreover, when w = p+ 0 ® dy—oy with p € MRY x (0,00)), 0 € MRY) then u =0 in
RY x (—00,0) and Ulgn 0,00y 15 @ distribution solution to problem

ug — div (A(x,t, Vu)) = [ul? " u + p in RY x (0, 00), (2.22)
u(0) =0 in RV, ’
In addition, for any compact set E C RN there holds
/ lu|dzdt < CyCapy, . (E), (2.23)
E

for some Cy = Co(N,q, A1, As).
Remark 2.15 The measure w = i+ 0 ® 04—y satisfies (2.19) if and only if

[ul(E) < CCapy, (E) and |0](0) < CCapy, ,(0),

for every compact sets E C RN+ and O C RY, where C = C3Cy, C3 = C3(N, q).

12
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Remark 2.16 Ifw € L%’W(RN‘H) then (2.19) holds for some constant C; > 0. More-
over, if w =0 ® dyy—gy with o € My, (RY), then from (2.21) we get the decay estimate:

fclt_q%l < inf wu(z,t) < sup u(z,t) < clt_q%l for any t >0,
z€ERN zERN

since |o|(B,(x)) < csz_q%l for any B,(z) C RN.

Second part, we establish global regularity in weighted-Lorentz and Lorentz-Morrey on
gradient of solutions to problem (2.4). For this purpose, we need a capacity density condition
imposed on ). That is, the complement of (2 satisfies uniformly p-thick with constants cg, o,
i.e, for all 0 < 7 < 7 and all x € RV\Q there holds

Capp(Br(x) N (RN\Q), Ba,.(x)) > coCapp(Br(x), Bs,.(2)), (2.24)
where the involved capacity of a compact set K C Ba,(z) is given as follows
Cap,, (K, By, (x)) = inf {/ [Vo|Pdy : ¢ € C°(Bay(x)), ¢ > XK} . (2.25)
BQr(w)

In order to obtain better regularity we need a stricter condition on 2 which is expressed
in the following way. We say that Q is a (d, Ry)—Reifenberg flat domain for § € (0,1) and
Ry > 0if for every o € 99 and every r € (0, Rp], there exists a system of coordinates
{z1, 22, ..., Zn }, which may depend on r and z, so that in this coordinate system xzy = 0 and
that

B.(0)N{z, > 0r} C B.(0)NQ C B.(0) N {z, > —dr}. (2.26)

We remark that this class of flat domains is rather wide since it includes C!, Lipschitz
domains with sufficiently small Lipschitz constants and fractal domains. Besides, it has
many important roles in the theory of minimal surfaces and free boundary problems, this
class was first appeared in a work of Reifenberg (see [74]) in the context of a Plateau problem.
Its properties can be found in [37, 38, 78].

On the other hand, it is well-known that in general, conditions (1.2) and (1.3) on the
nonlinearity A(zx,t,{) are not enough to ensure higher integral of gradient of solutions to
problem (2.4), we need to assume that A satisfies

<AC(‘T7t7<)€7§> Z A2|£‘27 |AC($>taC)| S A17 (227)

for every (£,¢) € RY x R¥\{(0,0)} and a.e (z,t) € RN x R, where Ay, Ay are constants in
(1.2) and (1.3). We also require that the nonlinearity A satisfies a smallness condition of
BMO type in the a-variable. We say that A(z,t,() satisfies a (J, Rg)-BMO condition for
some 9, Ry > 0 with exponent s > 0 if

s

[A]fo .= sup (7{2( )(G(A,Br(y))(x,t))sdxdt> <6,

(y,8)ERN xR,0<r<Rg

where

O Bu(y)(a,t) = sup 1280~ An (Ol
CERN\{0} [q

and ZB,.(y) (t,¢) is denoted the average of A(t, ., () over the cylinder B, (y), i.e,

_ 1
Ant0i=f  AwtOde= s [ At Oda,
B.(y) |1Br()] 5, )
The above condition was appeared in [21]. It is easy to see that the (§, Ro)—BMO
condition on A is satisfied when A is continuous or has small jump discontinuities with
respect to x.

13
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In this paper, M denotes the Hardy-Littlewood maximal function defined for each locally
integrable function f in RN*! by

M) =supf (g )ldyds Viat) € RV

p>0.JQ,(x,t)

We verify that M is bounded operator from L'(RN*!) to L1 >°(RN+1) and L*(RVN*1)
(L (RN*1)) to itself for s > 1, see [76, 77].

We recall that a positive function w € LL _(RV*1) is called an Ao, if there are two
positive constants C' and v such that

wm <o (1) v,

for all cylinder @) = Qp(x,t) and all measurable subsets E of ). The pair (C,v) is called
the Ay constant of w and is denoted by [w]a.,.

For a weight function w € A, the weighted Lorentz spaces L?*(D, dw) with 0 < ¢ < oo,
0 < s < oo and a Borel set D C RV*1 is the set of measurable functions g on D such that

(QIOOO (p?w ({(z,t) € D : |g(z,t)| > p}))g %)1/8 < oo if s < o0,

||gHLq’5(D,dw) = 1/q .
by pw ({(2.6) € D' g(o, )| > ph/* <00 if s = oo,

Here we write w(E) = [, w(x, t)dxdt for a measurable set E C RN+, Obviously, ||g||a.a(p,dw) =
19]| (D, dw), thus we have L9Y(D, dw) = LY(D,dw). As usual, when w = 1 we simply write
L%%(D) instead of L%*(D, dw).

We now state the next results of the paper.

Theorem 2.17 Let p € My(Qr), 0 € Mp(Q), set w = |u| + |o| @ dy4—0y. There ewists
a distribution solution of (2.4) with data p and o such that if RN\Q satisfies uniformly
2—thick with constants co,rg then for any 1 <p <0 and 0 < s < o0,

[IM(IVul)|| s (@) < C1lIM1[w]| 2.5 (0)- (2.28)

Here © = 0(N, A1, Ay, co) > 2 and Cy = C1(N, Ay, Ao, p, 8,c0,To/70) and Q = B giam(a)(To) X
(O,T) which  C Bdiam(ﬂ) (xo)
Especially, when 1 < p < 2, then

MAVul)llzr@r) < Co (G Iallm@rsn + G2 llollr@n)) . (229)

wh@r@ 02 == 02(Na AlaAQap)CO)TO/TO)'

Remark 2.18 If X+2 < p < 2, there hold

N+1
G [l Lo a1y < OlHHHL%(QT) and [|Gz_y[lolllle@y) < Culloll cancr o
for some Cy = C1(N,p). From (2.29) we obtain
. N +2
P < D P .
IIVulllzr@ry < Collnl] povia an T CQHGHLMQP(Q) provided ——— <p <2

We should mention that if o =0, then

. <
Mol zre vy < Collill o, s

and we get [7, Theorem 1.2] from estimate (2.28).

14
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In order to state the next results, we need to introduce Lorentz-Morrey spaces LZ’S;Q(D)
involving ”calorie” with a Borel set D € RN*!, is the set of measurable functions g on D
such that

K=N-=2
q

HgHLZ’S”‘(D) = sup P

1911 o < o0,
0<p<diam(D),(z,t)e D La=(Q,(x,t)ND)

where 0 < Kk < N 42,0 < g < 00, 0< s < oo. Clearly, L*"*2(D) = L%5(D). Moreover,
when ¢ = s the space LL%?(D) will be denoted by L% (D).
The following theorem provides an estimate on gradient in Lorentz-Morrey spaces.

Theorem 2.19 Let u € My(Qr), 0 € Mp(Q), set w = |u| + |o| @ dr4—0y. There exists
a distribution solution of (2.4) with data p and o such that if RN\Q satisfies uniformly
2—thick with constants cg,ro then for any 1 <p <@ and 0 < s <00, 2—7 <7< N +2,
v < M2

[IM([Vul) ) < CHlIM, W] @)

||L£,S;p(771)(QT

p(y—=1)—N-2
+ Cy sup (R Z M [x s s W o6 s ) . 2.30)
0<R<To (y0,50) EQr | [ Qr(yo,50) ] ‘L” (Qr(y0,50)) (

Here 6 is in Theorem 2.17, vo = vo(N, A1, A1,¢0) € (0,1/2] and Cy = C1(N, A1, Aa,p, 8,7,

CO7TO/TO); C2 = CQ(N,Al,AQ,p,S,’Y,CO). Besides, Zf <p< 97 2 — % <7< N + 2,
(=Dp (v=Ds. .,

0<s<ooandp € L, 7 “ 1)p(QT), o = 0, then u is a unique Tenormalized

solution satisfied

y—1

M7 -y < Colltl i ooy (2.31)

(Qr)

where C3 = C3(N, A1, Az, p, 5,7, co,To/70)-

Theorem 2.20 Suppose that A satisfies (2.27). Let p € My(Qr), o € Mp(NQ), set w = ||+
lo|@0¢i—0y. There exists a distribution solution of (2.4) with data ju, o such that the following
holds. For anyw € A, 1 < g < 00,0 < s <00 wefindd=0(N,A1,A2,q,s,[w]a,) € (0,1)
and so = so(N, A1, Ag) > 0 such that if Q is (6, Ro)-Reifenberg flat domain @ and [A]fo <6
for some Ry then

[IM(IVuDllzas (@r,dw) < ClIM1[w]]| 205 (0 dw)- (2.32)

Here C depends on N, A1, As,q,s,[w]a, and To/Ry.

oo

Next results are actually consequences of Theorem 2.20. For our purpose, we introduce
another Lorentz-Morrey spaces LZf;g(Ol x O3), is the set of measurable functions g on
01 x Oy such that
9N

7|

H9||Lgf;ﬂ(olxo2) = sup p |g||Lq’5((Bp(x)mOl)><Oz)) < o9,

0<p<diam(O1),z€0;
where O1, Oy are Borel sets in RV and R respectively, 0 < 9 < N, 0 < ¢ < 00, 0 < 5 < 00.
Obviously, L%5N (D) = L®*(D). For simplicity of notation, we write L%’ (D) instead of
L% (D) when q = s. Moreover,

190l 20 (0, oy = 116l L1001

where G(z) = ||g(,.)||ra(0,) and L%?(Oy) is the usual Morrey space, i.e the spaces of all
measurable functions f on O; with

9—N
[[fllLaw0,) = sup P~ |fllLas,mno,) < oo.
0<p<diam(01),y€01

15
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Theorem 2.21 Suppose that A satisfies (2.27). Let p € My(Qr), 0 € Mp(Q), set w =
|| + |o] ® dgi—0y. Let so be in Theorem 2.20. There exists a distribution solution of (2.4)
with data p, o such that the following holds.

a. Foranyl <g<o00,0<s<ooand0 <k < N+2wefindd =06(N,A1,Az,q,8,k) € (0,1)
such that if Q is (0, Ro)-Reifenberg flat domain Q2 and [A]gf)“ < J for some Ry then

||M(|Vu|)| LY (Qp)- (2.33)

LZ,S:N(QT) S ClHMl [|C}JH‘

Here Cy depends on N, A1, A2, q,s,k and To/Ro.

b. Foranyl1 <g<o00,0<s<o0and 0 <9 <N we find§ =08§N,A1,A2,q,s,9) € (0,1)
such that if Q is (8, Ro)-Reifenberg flat domain Q and [AJfe <& for some Ry then

MVl g0 0y < CollM [l a0 10 (2.34)

for some Cy = Co(N,A1,As,q,58,9,Ty/Ro). FEspecially, when ¢ = s and 0 < 9 <
min{N, g}, there holds for any ball B, C RY

T q
_
(/ |osc3mu<t>|wt> < Cop" H M)l v (2.35)

fOT some C13 = 03(Na Ala A27 q, 197 TO/RO)
The following global capacitary estimates on gradient.

Theorem 2.22 Suppose that A satisfies (2.27). Let p € Mp(Qr), 0 € Mp(Q), set w =
|| +|o| @0 =0y Let s be in Theorem 2.20. There exists a distribution solution of (2.4) with
data p, o such that following holds. For any 1 < q¢ < oo, we find § = §(N, A1, A2, q) € (0,1)
such that if Q is a (8, Ro)- Reifenberg flat domain and [A]f> <& for some Ry then

u|qdzd w q
sup <fKﬁQT [Vul t) <o sup ((I()K’)) , (2.36)

compact KCRN ! Ca’pgl,q’ (K) compact KCRN ! Capg1,q’(
Capg, o (K)>0 Capg, o (K)>0
and if ¢ > %—ﬁ,
|Vu|tdzdt (K q
sup fKﬁQT < 02 sup <()> . (2.37)
compact KCRN*1 Capyy, ¢ (K) compact KRN+ \ Capyy, o (K)
Capyy, o (K)>0 Capyy, o (K)>0

Where Cy = C1(N, A1, A2, q,To/Ro, Tp) and Co = C2(N, A1, A2, q,To/Ry).

Remark 2.23 We have if 1 < q < 2, then

o1 sup ((|0| = 5{t_0})(K)> < sup &
compact KCRN*? Capglyq/(K) B compact OCRY CapGgfl,q’(O)
Capg, o (K)>0 Capg,  .q4(0)>0 a

o wp  (leh)
B compact KCRN 1! Capgl ,q’ (K) 7

Capg, 4 (K)>0

for C' = C(N,q), if N2 < q < 2, then above estimate is true when two capacities Capg, o5

N+1
’Casz,l,q’ are replaced by Capy,, . ,Capy, . respectively, see Remark 4.54.
q q

194
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Remark 2.24 Above results also hold when [A]Fo is replaced by {A}Fo:

S

{AYe = sup (7[ (O(4,Q,(y, 8))(x,1))° d:cdt) <3,
Qr(y;s)

(y,8)ERN XR,0<r<Ro

o |

where

@(Aer(y,S))(x,t) = sup |A(1'7t7<-) _AQr(y,s)(C”’
CeRN\{0} I<]

and Ag, (y.5)(C) is denoted the average of A(.,.,() over the cylinder Q,(y, s), i.e,

1
Agp (g (C) = ][ Al t, Q) dedt = - Al t,C)dadt.
) Qr(y,s) 1Qr(y,5) Qr(y,s)

Next results are corresponding estimates of gradient for domain RY x (0, 00) or whole RV +1.

Theorem 2.25 Let 0 € (2, N +2) be in Theorem 2.17 and w € IM(RNTL). There exists a
distribution solution u of (2.6) with data p = w such that the following statements hold

a. Forany%—ﬁ<p<0and0<s§oo,

[VulllLo.s @nv+1y < Cil[Ma[|w|]]| Lo vy, (2.38)
for some Cy = C1(N, A1, Aa,p, 8).

b. Forany%—ﬁ<p<9and0<s§oo,2—70<7<N+2 and7§¥+1,

IVulll ppewi- gy < Cal My [|w[]l] oo 1)

p(y—1)—N-2
+C su (R# M, [y 5 B >’ 92.39
? R>0,(y0,sop)eRN+1 ] 1[XQR(yOaSO)| i (Qr(y0,50)) ( )

provided Ia[|w|](wo,to) < 0o for some (zq,to) € RVFL
(=Dp (y=1s

Also, ifwe L, 7 7 ;(Vfl)p(RN“) with p > ﬁ then

. , (2.40)
(RN+1)

|||vu|||L£‘S§(’Y*1)P(RN+1) < OSHWHL*("/;UP,(’Y;US;(
fO’f' some o = 70<N7A17A2) € (05 %] and Cl = Cl(Nﬂ A17A2ap7357>7 i=2,3.
c. The statement ¢ in Theorem 2.5 is true.

Remark 2.26 Let s > 1. For w € MT(RYHL), Tw] € L°(RNH) implies I[|w|] < oo
a.e in RVTL 4f and only if s < N + 2.

Theorem 2.27 Suppose that A satisfies (2.27). Let sg be in Theorem 2.20. Let w €
IM(RNTL) with Ty[|w]](zo,t0) < oo for some (zg,to) € RN There exists a distribution
solution of (2.6) with data p = w such that following statements hold,

a. Foranyw € A, 1 < ¢ <00, 0< s <00 we findd =0(N,A1,As,q,8,[wla) € (0,1)
such that if [A]30 < 0 then

IVulllLos @y+1,dw) < CrlIMa[Jw|]|] Las @V+1,duw) - (2.41)

Here Cy depends on N, A1, A2, q, s, [w]a

oo *
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b. For any%—ﬁ <qg<o00,0<s<o0and0< k< N+2wefindd=05N,A1,A2,q,8,K) €

(0,1) such that if [A]gS < d then
[IVull|Lasm @iy < Cof My [|wl]]|pasm @y (2.42)

Here Cy depends on N,A1,As,q, s, k.

c. For any %—ﬁ <g<00,0<s<00and0 <9 <N one findd=0(N,A,As q,89) €
(0,1) such that if [A]gS < d then

|HVU|||L3=;H9(]RN+1) < 03‘|M1[|w|]||Lgfﬂ9(RN+1)- (2.43)

Here C3 depends on N, A1, As,q,s,9. Especially, when ¢ = s and 0 < 9 < min{N, ¢},
there holds for any ball B, C RV

1
([ toscauttvar) " < Cap =Sl o (2.44)
R
for some Cy = C4(N, A1, As, q, ).
d. For any %—ﬁ < q <00, one find 0 = (N, A1, Az, q) € (0,1) such that if [A]3S <& then

sup <W>§C5 sup ('“'(K)K)) (2.45)

compact KCRN ! Cap?'ll,q’ (K) compact KCRN*? Cap'Hlyq'(
Capyy, o (K)>0 Capyy, o (K)>0

for some Cs = C5(N, A1, A2, q).
e. The statement ¢ in Theorem 2.5 is true.
The following some estimates for norms of M [w] in L& (RN*1) and LEY (RN +1)

Proposition 2.28 Let 1 < k < N+2, 0 < 9 < N and q,q1 > 1. Suppose that p €
M (RVYHL). Then My [u] < 2VN*214 (1] and

a. If ¢ > =5 then

T[]l Lo ey < Cl||u||Lfmm(RN+l)- (2.46)
Here Cy depends on N, q, k.
b. If1 < g <2 then
I (] (2, )l Loy < T2y [ma] (), (2.47)

where yy is a nonnegative radon measure in RY defined by 1 (A) = (A xR) for every
Borel set A C RN. In particular,

||H1[N]||Lg;"9(RN+1) < HI%71[N1]||L‘1%0(RN)7 (2~48)
. 2
and if ¢ > q_—‘f there holds

||H1[N]||Lg;’9(RN+1) < C2HM1|| __Yq (2-49)

LoF2=q"" (RNY’

for some Cy = C5(N, q,9).

18
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c. If 24

712 < q < q then

ILlpd (s )l Loqry < Tzya- 2 [u2](2), (2.50)

where dpo(x) = ||u(z,.)|| Lo r)dz. In particular,

Ll o @nveny < X212 (2]l Lo @v), (2.51)
and if 9 > (2 +q— ) there holds

I ; <! =C
lillzz oy = Collall rostagy o ey = S, ettty o son ey

(2.52)
for some C3 = C5(N, q,9).
The proof of Proposition 2.28 will performed at the end of section 8.

Remark 2.29 Let 1 < ¢ < 2,0< 9 < N and o € MRY). From (2.48) and (2.49) in
Proposition 2.28 we assert that

Esflo] © Sge—opll o vy < T2y flollll o .

and

. 2—
9 RN+ S C1llo]] if 9 > ——

[M1[lo] © d¢e=oy] . -

for some Cy = C1(N, gq,9).

Furthermore, from preceding inequality and (2.52) in Proposition 2.28 we can state that

[M1llo] @ dgi=oy + [ul] + G|

N Vaq; 9 )
Lﬂ+2 (]R ) L 0+2+9)a1-2¢" (RN [,91 (R))

9 (RN+1) < CQHUH

provided

1<Q1§Q<27

2 — 1 2
max{q7<2+q—q)}<19<N,
g—1 qg-1 ¢

for some Cy = Co(N,q,9). Where

1
2\
D=N a1
il Loz @y vy = sup  p </ ( Iu(y,t)l‘“dt) dy) :
p>0,z€RN B, (x) R

with g = (W—ﬂ%'
Final part, we prove the existence solutions for the quasilinear Riccati type parabolic
problems
— div(A(z,t,Vu)) = |Vul? + ¢ in Qp,
u=0 on 092 x (0,7, (2.53)
uw(0) =0 in Q,

ug — div (A(x,t,Vu)) = [Vul|? + pin RY x (0, 00), (2.54)
u(0)=0 in RV, ’
and
— div (A(z,t,Vu)) = |[Vu|? + g in RN, (2.55)
where ¢ > 1.
The following result is considered in subcritical case this means 1 < ¢ < ¥+2, to obtain

N+1°
existence solutions in this case we need data p, o to be finite measures and small enough.

19



NGUYEN QUOC HUNG

Theorem 2.30 Let 1 < q < %—ﬁ and € My(Qr), 0 € Mp(QL). There exists g =

eo(N, A1, A2, q) > 0 such that if

Q7| T (|ul(Qr) + wl(©)) < e,
the problem (2.53) has a distribution solution u, satisfied

IVulll a2 < C (@) + [wl())

N¥L(Qp) T

for some C = C(N,A1,As2,q) > 0.
In the next results are concerned in critical and supercritical case.

Theorem 2.31 Suppose that RNV\Q satisfies uniformly 2—thick with constants co,ro. Let 0
be in Theorem 2.17, q € (N+2 N+2+9>, € My(Qr) and o € My(QL). Assume that 0 =0

N+1° N+42

when q > %—fg. There exists g = e9(N, A1, As, q,co, To/r0) > 0 such that if

‘|H1[|:u|]||L(N+2)(q—1)’°°(RN+1) + ]I [|UHHL(N+2><‘1—1)(RN) < €o,

N EE—
(N+2)(¢—1)

then the problem (2.53) has a distribution solution u satisfying

HO'|]||L(N+2)(<171)(]RN),
(2.56)

VUl L2007y < ClI ]l Lov+2)@-1),00 w41y +C| [T

2
=D !

for some C = C(N, A1, A2, q,co,To/r0)-

We remark that a necessary condition for existence o € M, (2)\{0} with M [|o| ® dg4—0y] €
L(N+2)(q—1)7OO(RN+1) is %ﬁ <qg< %1421

Theorem 2.32 Suppose that A satisfies (2.27). Let sq be the constant in Theorem 2.20.
Let g > %—ﬁ and p € Mp(Qr),0 € Mp(Q), set w = |u| + |o] @ dy—0y. There exists
d =0(N,A1,As,q) € (0,1) such that Q is (§, Ro)-Reifenberg flat domain Q and [A]SRL“ <9d
for some Ry and the following holds. The problem (2.53) has a distribution solution u if one
of the following three cases is true:

Case a. A is a linear operator and
w(K) < C1Capg, ,(K) for every compact subset K C RNFL (2.57)
with a constant C1 small enough.
Case b. there holds
w(K) < CyCapg, (g4 (K)  for every compact subset K C RN+L, (2.58)

where € > 0 and Cy is a constant small enough.
q> 52,

> 7%13 if =0,
||H1HM”||L(N+2)(q71)yoo(RN+1), HI

is small enough.

Case c.

e =) CEs i (ol Lv+2)a-1) ()

A solution u corresponds to Case a, b and ¢ satisfying

/ |Vul|ldzdt < C3CY Capg, ,(K)  for every compact subset K C RN+

K

/ |Vau|?tedzdt < C,CITe Capg, (q+ey (K)  for every compact subset K C RN+L
K
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and

I7ulll v @)

< Cs|[L[[pl]llpovera—1 .00 @mn+1y + Cs |1 —llollllzovez e @y,

2
(N+2)(¢—1)

respectively. Where Cs,Cy4,Cs are constants depended on N,Ai,As,q,e,To/Ro, besides
Cs,Cy also depend on Ty.

Since Capg, ((B-(0) x {t =0}) =0 for all 7 > 0 and 0 < s < 2, see Remark 4.13 thus if
there is o € 90, (2)\{0} satisfying (|o|® dy4—0y)(£) < Capg, ;(F) for every compact subsets
E C RN+ then we must have s > 2.

The above results are not sharp in the case A is a nonlinear operator. However, if A is
Holder continuous with respect to  we can prove that problem (2.53) has a distribution
solution with data having compact support in Q.

Theorem 2.33 Let Q be a bounded open subset in RN such that the boundary of Q is in
CYB with B € (0,1). Suppose that A satisfies (2.27) and

A, t,Q) = Ay, t, Q)| < Aslz —y|°I¢, (2.59)

for every x,y € Q andt >0, € RN, Let ' cC Q and set d = dist(Q',Q) > 0. Then, there
exist C = C(N,q,A1,A2,A3,8,d,Q2,T) >0 and A = A(N,q,\1, A2, A3,5,d,Q,T) > 0 such
that for any p € My(Qr), o € M(Q) with supp(p) C Y x [0,T], supp(c) C Y, the problem
(2.53) has a distribution solution wu, satisfying

|Vu(z,t)] < AlL[|p| + |o| @ 0g—oy](z,t) a.e (x,t) € Qr, (2.60)
provided that one of the following two cases is true:

Case a. 1 <¢<2and

lnl(E) < CCapg, ,(E) and |o](0O) < CCapg, o (0), (2.61)

for all compact subsets E C RN and O c RV,

Case b. ¢ >2 and 0 =0,
1l(E) < CCapg, , (E), (2.62)

for all compact subsets E C RN+,

Remark 2.34 If ¢ > %—ﬁ, uw = 0 and Case a is satisfied then (2.60) gives the decay
estimate: )
sup |[Vu(z,t)] < et 2@ VO<t<T,

€N
since |o|(B,(x)) < cz(To)pJ\Fi%g for any B,(z) C RV.

We have an important Proposition.

Proposition 2.35 All the existence results considered the bounded domain Q0 have re-
cently been presented in above Theorems, if o € LY(Q) then the solutions obtained in those
Theorems are renormalized solutions.
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Theorem 2.36 Let § € (2,N + 2) be in Theorem 2.17, q € (%—ﬁ,%) and w €
IM(RNTY) . There exists C; = C1(N, Ay, Aa,q) > 0 such that if

||H1 HWH | IL(N+2)(q—1),oc(RN+1) S C]_’

then the problem (2.55) has a distribution solution v € L} (R; W, (RN)) such that

loc loc
Vulll L@z, @r+ry < Col[if|w|]|| Lov+2)a-1),00 @y 41, (2.63)
for some Cy = Ca(N, A1, Az, q). Furthermore, when w = pi + 0 ® dg—oy with p € M(RY x
0,00)) and ¢ € MRY) then u = 0 in RY x (—00,0) and u|yx s a distribution
( ’ RN x[0,00)
solution to problem (2.54).

Theorem 2.37 Suppose that A satisfies (2.27). Let q¢ > %—ﬁ and w € MRBRN*Y) such that

Iy [|w|](z0,to) < 0o for some (zo,ty) € RN, Let so be the constant in Theorem 2.20, & in
Theorem 2.32. There exists Cy = C1(N, A1, A2, q) > 0 such that if [A]3S < 6 and

[T flwl]l|Lev+2ra—1).00 mv+1y < C1, (2.64)

then the problem (2.55) has a distribution solution u satisfying (2.63). Furthermore, when
w=p+0® =gy with p € MRY x (0,00)) and o € M(RY) then u =0 in RN x (—o0,0)
and ulgy (9 ) 15 @ distribution solution to problem (2.54).

From Remark 2.26, we see that if ¢ < 2 then (2.64) follows the assumption I5[|w]|](xg,t9) < 0o
for some (g, t9) € RVFL

When A is independent of space variable, we can improve the result of Theorem 2.37 as
follows:

Theorem 2.38 Suppose that A is independent of space variable and satisfies (2.27). Let
q > 532 and w € MBRVTY). Assume that Ty[lw|](z0,t0) < oo for some (zo,to) € RVTL.
There exist constants A = A(N, A1, A2, q) and C = C(N, Ay, As, q) such that the problem

uy — div (A(t, Vu)) = |Vaul|? +w in RV (2.65)
has a distribution solution u, satisfying
|Vu| < Alj[w] in RNTL (2.66)
provided that for all compact subset E C RN T!
WI(B) < CCapyy, (E). (2.67)

Furthermore, when w = p+ 0 ® dgy—oy with p € M(RY x (0,00)) and o € M(RY) then
u=0in RY x (—o00,0) and Ul [0,00) 15 @ distribution solution to problem

up — div (A(t, Vu)) = |Vul? + p in RY x (0, 00), (2.68)
w0) =0 in RN. ‘
Remark 2.39 If %—ﬁ <q<2,w=p+0® 0y satisfies (2.67) if and only if
[ul(E) < C'CCapy, o (E) and |0|(0) < C'CCapy,  ,(0), (2.69)

for all compact subsets E C RNt and O C RN, where C' = C'(N, q).

Remark 2.40 If w = 0 ® dy4—g) then (2.66) follows the decay estimate:

sup |Vu(z,t)| < et T V0 <t < T,
xz€RN

since |o|(B,(x)) < @pNﬁ% for any B,(z) C RV
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3 The notion of solutions and some properties

Although the notion of renormalized solutions becomes more and more familiar in the
theory of quasilinear parabolic equations with measure data, it is still necessary to present
below some main aspects concerning this notion. Let € be a bounded domain in RY,
(a,b) CC R. If p € Mp(Q x (a,b)), we denote by u™ and p~ respectively its positive and
negative part. We denote by Mo(Q x (a,b)) the space of measures in Q x (a,b) which are
absolutely continuous with respect to the Ca-capacity defined on a compact set K C Q% (a,b)
by

Co(K, Q2 x (a,b)) = inf {||@llw : ¢ = xk, 0 € CZ(2 x (a,b))}. (3.1)

where W = {z : z € L*(a,b, H3(Q)),2 € L?(a,b, H71(Q2))} endowed with norm ||p||w =
el L2 (a0, 2 () T 1t L2 (06,51 (0)) and Xk is the characteristic function of K.

We also denote (2 X (a,b)) the space of measures in Q X (a,b) with support on a set of
zero Cy-capacity. Classically, any p € 9%,(2 X (a,b)) can be written in a unique way under
the form p = po + ps where g € Mo(Q2 x (a,d)) NM(2 x (a,b)) and ps € M (Q % (a,b)).
We recall that any po € (2 x (a, b)) ND(Q X (a, b)) can be decomposed under the form
po = f —divg + hy where f € L'(Q x (a,b)), g € L*(Q x (a,b),RY) and h € L?(a,b, H}(2))
and (f,g,h) is said to be decomposition of . Set fig = g — hy = f — divg. In the general
case Jig & M(Q x (a,b)), but we write, for convenience,

/ wdfig := / (fw + g.Vw)dzdt, Yw € L*(a,b, H} (Q))NL>®(Q x (a,b)).
Qx(a,b) Qx(a,b)

However, for o € M,(Q) and o € (a,b) then 0 @ o3 € Mo(Q x (a,b)) if and only if
o € L'(Q), see [26]. We also have that for o € MM(Q), 0 @ X0, € Mo( X (a,b)) if and
only if o is absolutely continuous with respect to the Capg, »-capacity, see [26].

For k > 0 and s € R we set Tj(s) = max{min{s, k},—k}. We recall that if u is a
measurable function defined and finite a.e. in % (a, b), such that T (u) € L?(a, b, H}(Q2)) for
any k > 0, there exists a measurable function v : 2% (a,b) — R such that VT}(u) = Xju<kv
a.e. in 2 x (a,b) and for all k& > 0. We define the gradient Vu of u by v = Vu.

We recall the definition of a renormalized solution given in [65].

Definition 3.1 Suppose that B € C(R x RN R). Let u = po + pus € My(Q x (a,b)) and
o € LY(Q). A measurable function u is a renormalized solution of

up — div(A(z, t, Vu)) = B(u, Vu) + p in Q x (a,b),
u=0 on 9 x (a,b), (3.2)
u(a) =0 in Q,

if there exists a decomposition (f,g,h) of po such that

v=u—he L(a,b,W;*(Q)) N L=(a,b, L*()) Vs € {1 N+2)

"N+1
Ti(v) € L*(a,b, HY(Q)) Yk > 0, B(u, Vu) € L'(Q x (a,b)) (3.3)
and:
(i) for any S € W2°°(R) such that S’ has compact support on R, and S(0) = 0,

—/ S(a)gp(a)dm—/ cptS(v)dxdtJr/ S'(v)A(z, t, Vu)Vdzdt

Q Qx(a,b) Qx(a,b)

—|—/ S”(v)goA(x,t,Vu).Vvdxdt:/ S’ (v)pB(u, Vu)da:dt+/ S (v)edjg,
Qx(a,b) Qx(

a,b) Qx(a,b)
(3.4)
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for any ¢ € L*(a,b, H}(Q))NL>® (2 x (a,b)) such that ¢y € L*(a,b, H~*(Q))+ L' (Q x (a,b))
and (., b) = 0;

(ii) for any ¢ € C(Q x [a, b]),

1
lim — / qSA(x,t,Vu)Vvdxdt:/ ¢dut  and (3.5)
m=—00 1M Qx(a,b)
{m<v<2m}
1
lim — / qﬁA(x,LVu)Vudxdtz/ pdu . (3.6)
m—0o0 1M Q% (a,b)

{—m>v>-2m}
Remark 3.2 If u € L' (2 x (a,b)), then we have the following estimates:

lall 582 0y < €1 (1ollace) + 1l(2 % (0,8))  and

V0l 52 gy < € (lollzrce) + (2 % (0,0))).

where C1 = C1(N, A1, A2), see [13, Remark 4.9].
In particular,
|t (@x(a.by) < Ca(diam(Q) + (b= a)*/?)? (|lo]| L1 () + |ul(2 x (a,0)))  and
Vel @x(ap)) < Coldiam(Q) + (b= a)'/?) (|lo]] 1) + [1I(Q x (a,b))),
where Cy = Co(N, Ay, As).

Remark 3.3 It is easy to see that u is a weak solution of problem (3.2) in Q x (a,b) with
pe L2 x (a,b), 0 € Hy(Q) and B =0 then U = X[qju is a unique renormalized solution
of

Up — div (A(x,t, VU)) = X(ap)t + (X[a,p)0)t 10 2 X (¢, D),

U=0 on 9Q x (¢, b),

U(c)=0 in Q,

for any ¢ < a.
Remark 3.4 Let Q' CC Q and a < o’ < b < b. For a nonnegative function n € CZ () x
(a', b)), from (3.4) we have
(nS()), — mS(v) + S (v)A(z,t, Vu)Vn — div (S (v)nA(z,t, Vu))
+ 8" (nA(x,t, Vu)Vo = §'(v)nf + V (S'(v)n) .g — div(S'(v)ng)
in D'(Y x (a/,b)) Thus, (nS(v)), € L*(a',b/, H1(Q)) + L*(D) and we have the following
estimate
@S @), 2 v, 5100421 (D) < ClISI w2y ([[mev]]21 ()

+Vul [Vl Loy + [InVul o)<l 20y + [0Vl [VV|X)0)1<arll22(D)

+nfllzr oy + nIVulxjei<anllzr oy + 0lgPll o) +Hinlglllzz o)) (3.7)
with D = Q' x (a',V) and supp(S’) C [-M, M].
We recall the following important results, see [13].

Proposition 3.5 Let {u,} be a bounded in My(2x (a, b)) and o, be a bounded in L*(Q). Let
Uy, be a renormalized solution of (2.4) with data , = fin,0+ pin,s relative to a decomposition
(fas Gns hn) of pno and initial data o,. If {f.} is bounded in L*(Qr), {gn} bounded in
L2(Q x (a,b),RN) and {hy} convergent in L*(a,b, H}(S2)), then, up to a subsequence, {u,}
converges to a function u in L'(Q x (a,b)). Moreover, if {un,} is a bounded in L*(2 x (a,b))

then {u,} is convergent in L*(a,b, Wy *(Q)) for any s € [1, %—ﬁ)
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We say that a sequence of bounded measures {u,} in Q x (a,b) converges to a bounded
measure g in X (a,b) in the narrow topology of measures if

lim odp, = / odp for all ¢ € C'(2 x (a,b)) N L>®(Q x (a,b))).
Qx(a,b)

o0 JQx (a,b)
We recall the following fundamental stability result of [13].
Theorem 3.6 Suppose that B =0. Let o € L' () and

p=f—divg+he+pf - pg € M(Qx (a,b)),

with f € LY( x (a,b)),g € L?(Q x (a,b),RN), h € L?(a,b, H} () and pf,pu; € ME(Q x
(a,b)). Let o, € L*(Q) and

Hn = fn - dngn + (hn)t + Pn — Tin S E)ﬁb(Q X (a,b))

with  f, € LY(Q x (a,0)),9n € L*(Q x (a,b),RN), h,, € L%(a,b, H}(Q)), and pp,nn €
M (2 x (a,b)), such that

Pn = ph— VP2 + prs, M =0 — AIVDE + D,

with p}wn; € LI(Q X (avb))ap%vnz € LQ(Q X (avb)7RN) and Pn,syNn,s € S)ﬁj(Q X (a’vb))
Assume that {ju,} is a bounded in My(A % (a,d)), {on}, {fn}, {gn}, {hn} converge to o, f,g,h
in LY(Q),weakly in L*(Q x (a,b)),in L2(Q x (a,b),RN),in L?(a,b, H}(Q)) respectively and
{pn},{nn} converge to pt,py in the narrow topology of measures; and {pL},{nL} are
bounded in L*(Q x (a,b)), and {p2},{n2} bounded in L*(Q x (a,b),R").

Let {u,} be a sequence of renormalized solutions of

(up )t — div(A(z,t, Vuy,)) = pin in Q x (a,b),
up, =0 on I x (a,b), (3.8)
up(a) =op, in €,

relative to the decomposition (fn + py — Nty gn + P2 — n2, hn) of pino. Let v, = uy — hy,.
Then up to a subsequence, {u,} converges a.e. in Q X (a,b) to a renormalized solution u
of (3.2), and {v,} converges a.e. in Q x (a,b) to v = u — h. Moreover, {Vuy,},{Vv,}
converge respectively to Vu, Vv a.e in Q x (a,b), and {Tk(v,)} converges to Ty (v) strongly
in L?(a,b, H} () for any k > 0.

In order to apply above Theorem, we need some the following properties concerning approx-
imate measures of u € 9 (2 x (a,b)), see [13].

Proposition 3.7 Let = po + ps € M (2 x (a,b)) with po € Mo(2 x (a,b)) N M (Q x
(a,b)) and ps € ME(Q x (a,b)). Let {p,} be sequence of standard mollifiers in RN+,
Then, there exist a decomposition (f,g,h) of po and fn,gn, hn € C°(Q X (a,b)), pns €
C2(Q x (a,b)) NMF(Q x (a,b)) such that {f,},{gn},{hn} strongly converge to f,g,h in
LY(Q x (a,b)), L2( x (a,b),RN) and L*(a,b, H} (), pin = fn — divgn + (hn)t + fn.ss fhns
converge to p, s in the narrow topology respectively, 0 < p, < @n * 4 and

[fallzr(@x (a,0)) + Hg’ﬂHL?(Qx(a,b),]RN) + ||hn||L2(a,b,H(}(Q)) + Hn,s (€2 % (a, b)) < 20(2 % (a,b)).

Proposition 3.8 Let = g + s, fin = Pno + Hn,s € MG (Q x (a,b)) with po, pno €
Mo(Q2 x (a,b)) NMF(Q x (a,b)) and pin, s, ps € ME(Q x (a,b)) such that {u,} nondecreas-
ingly converges to u in Mp(Q X (a,b)). Then, {{in.s} is nondecreasing and converging to jis
in Mp(Q x (a,b)) and there exist decompositions (f,g,h) of po, (fn,Gnshn) of pno such
that {fu},{gn},{hn} strongly converge to f,g,h in L*(2 x (a,b)), L*(Q x (a,b),RY) and
L?(a,b, HE(2)) respectively satisfying

[fallLr (@x (a,0)) + HgnHL?(Qx(a,b),RN) + ||hn||L2(a,b,H(}(Q)) + s (€2 % (a, b)) < 21(2 % (a,b)).
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Remark 3.9 For 0 < p < 1 min{sup,cq d(z,09), (b — a)'/?}, set

Q) ={zeQ:d(z,09) > jp} x (a+ (jp)%,a+ ((b—a)/? = jp)?) for j=0,...k,,

min{suszQ d(w,OQ),(bfa)lﬂ}
2p .

We can choose fpn, gn, hyn in above two Propositions such that for any j =1,...,k,,

where k, =

fall ey + 190l 2 vy + Al + [Vhalll ooy < 20 ¥ne N (39)

In fact, set p; = Xqfe=i\qle =i+ 1 ifj =1k, —1, pj = XQx (a,0)\ Q1 1 if 5 =k, and

Ki = Xgrelt if j = 0. From the proof of above two Propositions in [13], for any € > 0 we
P ~

can assume supports of fn,Gn,hn containing in supp(p) + Q<(0,0). Thus,lfor any (L= i

we have fl, gl h correspondingly such that their supports contain in Q];f’;j_l/z\Q];f’;j+3/2

if =10 0ky— 1 and Qp\QY7 if j = ky and Q2% if §= 0. By =00y, thus it is

allowed to choose f, = 2520 fosfn = Z?ZO gl and h,, = 2520 hi and (3.9) satisfies since

fnllpr @iy + 9nll 2o mvy + 11Bn] + VARl L2 (0i)
k

S Z (||f7zz||L1(Qfo) + Hg;—LHLZ(Q{”RN) + |||h’:1| + |Vh:l|||L2(Qf)))
1=0
kp—j+1
= > (il + Ngil oy vy + I1RET+ IV RE 2 )
=0
kp—j+1
< Y 2m(Qx () = 2u(@) 7).
i=j—1

Definition 3.10 Let p € My(Q x (a,b)) and o € M(Q). A measurable function u is a
distribution solution to problem (3.2) if u € L*(a,b,Wy*(Q)) for any s € [1,%—1?) and
B(u,Vu) € LY(Q x (a,b)) such that

7/ ugotd:cdtJr/ Az, t, Vu)Vodrdt
Qx(a}b) QX(a,b)

:/ B(u, Vu)(pdde—/ godu+/ o(a)do
Qx(a,b) Qx(a,b) Q

for every ¢ € CH(Q x [a,])).

Remark 3.11 Let o’ € My(Q) and o’ € (a,b), set w = p+0'@0g—ay. If u is a distribution
solution to problem (3.2) with data w and o = 0 such that supp(p) C Q x [d/,b], and
u=0,B(u,Vu) =0 in Q x (a,a’), then @ := ulg, 4, 15 a distribution solution to problem
(3.2) in Q x (a’,b) with data p and o’ . Indeed, for any o € CH(2 x [a’,b)) we defined

- | ez, t) if (z,t) € QA x [d,)),
Pla,t) = { (I4+e0)(t —a)pr(z,a") + p(z, (1 +e9)a’ —eot) if (z,t) € Q X [a,a),

where gg € (O b*“').

’a'—a

Clearly, ¢ € CH(Q x [a, b)), thus we have
- / uprdadt +/ Az, t, Vu)Vodadt
Qx(a,b) Qx(a,b)

:/ B(u, Vu)@dxdtJr/ Pdw,
Qx(a,b) Qx(a,b)
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which implies

—/ ﬂ(ptdxdt+/ A(z,t,Va)Vedrdt
Qx(a’,b) Qx(a’,b)

:/ B(ﬂ,Vﬂ)gpdmdt—l—/ godu—i—/ o(a")do'.
Qx(a’,b) Qx (a’,b) Q

Definition 3.12 Let p € M(RY x [a,+0)), for a € R and 0 € M(RY). A measurable
function u is a distribution solution to problem

{ up — div (A(z,t, Vu)) = B(u, Vu) + p in RN x (a,+00) (3.10)

u(la) =0 in RN

if u € L, (a,00, W55 (RN)) for any s € {1, %—jﬁ) and B(u,Vu) € L} (RN x [a,00)) such
that

—/ ugatdxdt+/ Az, t, Vu)Vodrdt
RN X (a,00)

RN x (a,00)

:/ B(u,Vu)godacdtJr/ godqu/ p(a)do
RN X (a,00) RN X (a,00) RN

for every ¢ € CLRYN x [a, 0)).

Definition 3.13 Let w € M(RNTY). A measurable function u is a distribution solution to
problem

ug — div (A(x,t, Vu)) = B(u, Vu) + w in RN ! (3.11)

ifu € Li (R; WL (RN)) for any s € [1, %—ﬁ) and B(u,Vu) € L}, (RN*1) such that

—/ wprdrdt + / Az, t, Vu)Vodrdt = / B(u, Vu)pdrdt + / pdw,
RN+1 RN+1 RN+1 RN+1
for every ¢ € CHRNT),

Remark 3.14 Let u € M(RY x [a,+0)), fora € R and o € M(RYN). If u is a distribution
solution to problem (3.11) with data w = p + 0 @ dy4—qy such that u = 0, B(u,Vu) = 0
in RN x (—o0,a), then @ := Ulgn [,00) B8 @ distribution solution to problem (3.10) in
RY x (a,00) with data p and o, see Remark 3.11.

To prove the existence distribution solution of problem (3.10) we need the following results.

First, we have local estimates of the renormalized solution which get from [13, Proposition
2.8].

Proposition 3.15 Let u,v be in Definition 3.1. There exists C = C(A1,Az) > 0 such that
fork>1and0<ne C*(Qx(a,b))

/|<k77|Vu|2d:cdt+/|<kn|Vv2d:vdt<CkA (3.12)

where
A = |lonellzr@x (@) + 1V 2 @x (@p)) + MFl L1 @x (ap)) + 111912 21 (% (b))

VAl 2 ey + VARl cxany + / ndjsal-

Qx(a,b)
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For our purpose, we recall the Landes-time approximation of functions w belonging to
L?(a,b, H}(£2)), introduced in [45], used in [24, 17, 8]. For v > 0 we define

min{¢,b}
(), (x,t) = 1// w(z,s)e’"Vds for all (z,t) € Q x (a,b).

a

We have that (w), converges to w strongly in L*(a,b, Hj(Q)) and [[(w)u||raox(ap)) <
[[w|[La(ax (a,b)) for every q € [1,00]. Moreover,

((w),)s = v (w— (w),) in the sense of distributions

if we L*(Q x (a,b)) then

/ ({(w), ) rpdadt = 1// (w— (w),) pdxdt for all p € L*(a,b, H3(Q)).
Qx(a,b) Qx (a,b)

Proposition 3.16 Let o > 1 and 0 < o < 1/2 such that g9 > o+ 1. Let L: R — R be
continuous and nondecreasing such that L(0) = 0. If u is a solution of

ug — div(A(z,t,Vu)) + L(u) = p in Q X (a,b),
u=0 on 0N x (a,b), (3.13)
u(a) =0 in Q,

with p € C°(Q x (a,b)) there exists C1 > 0 depending on A1, A, «, qo such that for 0 <n €
C(D) where D = x (a/,V), ¥ CCQ and a < a' <b <D, then

1
f/ |V T (u) |*ndadt
v o
[ et + NI + B0 < OB, (14
o Tl + 17 :
where q1 = %,

B:wmm+mmww/ﬂm+mwmaf/WMMWMﬁ+/mML
D D D

Furthermore, for Ty(w) € L?(a’,b', H}(Y')), the Landes-time approximation (Ty(w)), of the
truncate function Ti(w) in D then for any € € (0,1) and v >0

V/Dn (Th(w) = (Tie(w))v) T (T (u) = (Ti(w))y ) ddt
+/ nA(z, t, VT3 (u)) VT (Th(u) — (Te(w))y)dzdt < Coe(1 + k)B, (3.15)
D

for some Cy = Co(A1, A2, 0, qo)-

Proposition 3.17 Let qo > 1, pn = fino + fn,s € Mp(Bn(0) x (—n?,n?)). Let u, be a
renormalized solution of

(un)e — div(A(z,t, Vuy,)) = pin in B, (0) x (—n?,n?),
Up, =0 on 0B, (0) x (—n?,n?), (3.16)
un(—n?) =0 in B,(0),

relative to the decomposition (fn, gn,hn) of tno satisfying (3.15) in Proposition 8.16 with
L =0. Assume that for any m € N and o € (0,1/2), Dy, := B, (0) x (—m?,m?)

1 —a—
E|||VTk(U)|2||L1(Dm) + [IVulP(lul + D= 21 p,y + VUl L1 (D, + 1] (D)
| fuller (o) + gnllz2 (o, my) + [Anl + VAl L2(D,) + [[UnllLoD,,) < C(m,a)
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for alln > m and h,, is convergent in L}OC

still denoted by {un} such that u, converges tou a.e in RN+ and in LS

N+a loc
any s € [1, N—L)

(RN*TL). Then, there exists a subsequence of {u,},
(R; Wy (RN)) for

Proofs of above two Propositions are given in the Appendix section. The following result is
as a consequence of Proposition 3.17.

Corollary 3.18 Let ju,, € L'(B,,(0) x (—n?,n?)). Let u,, be a unique renormalized solution
of problem 3.16. Assume that for any m € N,

sup |pn|(Bm(0) x (—m?,m?)) < oo and sup / [t |0 dadt < 0.
By, (0) X (—m?2,m?)

n>m n>m

then there exists a subsequence of {uy}, still denoted by {u,} such that u, converges to u

a.e in RN* and in L3, (R; W25 (RN)) for any s € [1, %—ﬁ)

Finally, we would like to present a technical lemma which will be used several times in the
paper, specially in the proof of Theorem 2.17, 2.19 and 2.20. It is a consequence of Vitali
Covering Lemma, a proof of lemma can be seen in [22, 21, 54].

Lemma 3.19 Let Q be a (R, d)- Reifenberg flat domain with § < 1/4 and let w be an A
weight. Suppose that the sequence of balls {B,.(y;)}£_, with centers y; € Q and a common
radius v < Ro/4 covers Q. Set s; = T —ir?/2 for alli = 0,1,..., [E—Z] Let E C F C Qr
be measurable sets for which there exists 0 < & < 1 such that w(E) < ew(Q,(y;,s;)) for all

i=1,..,L, 7=0,1,.., [27—7;}, and for all (z,t) € Qr, p € (0,2r], we have Q,(x,t) N Qr C F

if w(ENQ,(x,t) > ew(Q,(x,t)). Then w(E) < Bew(F) for a constant B depending only
on N and [w]a_, .

Clearly, the Lemma contains the following two Lemmas

Lemma 3.20 Let 0 < ¢ < 1,R > 0 and cylinder Qg := Qg(xo,to) for some (xq,ty) €
RN+ and w € Ay. let E C F C Qg be two measurable sets in RN+ with w(E) <
sw(QR) and satisfying the following property: for all (z,t) € Qr and r € (0, R], we have
Q. (z,t)NQr C F provided w(ENQ,(x,t)) > ew(Qy(x,t)). Then w(E) < Bew(F) for some
B = B(N, [w]1.).

Lemma 3.21 Let 0 < e <1 and R > R' > 0 and let E C F C Q = Bgr(%o) x (a,b) be
two measurable sets in RN with |E| < ¢|Qgr/| and satisfying the following property: for all
(x,t) € Q and r € (0,R'], we have Q,(z,t) N Q C F if |[ENQy(x,t)| > €|Qr(x,t)]. Then
|E| < Be|F| for a constant B depending only on N.

4 Estimates on Potential

In this section, we will develop nonlinear potential theory corresponding to quasilinear
parabolic equations.

First we introduce the Wolff parabolic potential of y € 9T (RVN+1) by

ng[/‘](xat) = /R ('M(QP(W) " @ for any (z,t) € RN+
0 P

pN+2—ap
where a > 0,1 < p <o '(N +2) and 0 < R < co. For convenience, W, ] := W, [u].

The following result is an extension of [36, Theorem 1.1], [16, Proposition 2.2] to Parabolic
potential.
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Theorem 4.1 Leta >0, 1 <p<a (N +2) and w € Ax, pp € MH(RNTL). There exist
constants C1,Cy > 0 and €9 € (0,1) depending on N, a,p, [w]a.. such that for any X > 0
and € € (0,&0)

oo

w({WE (1] > ad, (ME[u) 77 < eA}) < Crexp(~Coe™ Yuw({WE, [u] > A} (4.1)

ap

N+42—ap

where ¢ = 2+ 3 »-1

Proof of Theorem 4.1. We only consider case R < co. Let {Qr(x;,t;)} be a cover of
RN+ such that > XOn(a, by < Min RN+ for some constant M = M(N) > 0. It is enough
to show that there exist constants c¢1,co > 0 and g9 € (0,1) depending on N, a, p, [w]a
such that for any Q € {Qr(z;,t;)}, A> 0 and ¢ € (0,20)

oo

w(Q N{WE, ) > A, (ME )77 < 2X) < ex exp(—cae™ (@0 {WE,fu] > A}). (4.2
Fix A >0 and 0 < e < 1/10. We set

E=Qn{WE,[u] > aX (M5, [u]) 75 <A} and F = Qn {WE, 1] > A},

ap

Thanks to Lemma 3.20 we will get (4.2) if we verify the following two claims:
w(E) < ez exp(—cie Hw(Q), (4.3)
and for any (z,t) € Q, 0 <r < R,
w(ENQy(x,t)) < csexp(—cee ™ w(Qy(x, 1)), (4.4)

provided that Qr(a:, HNENFC#0and EN Qr(x, t) # 0, where constants cs3, ¢4, c5 and cg
depend on N, a, p and [w]a__.
Claim (4.3): Set

1

2-FH1R e g
= [ (A )

~“*R P

We have for m € N and (z,t) € E

1

R R B u@pla,t) 7 dp
Wa,p[:u’](x7t> - k:%:—i_lgk(xﬂf) + /2me ( ) P

pN+27ap

< 7 gela,t) + m(ME [ul(z, 1) 7
k=m+1

< Z gi(z,t) + me.
k=m+1

We deduce that for 8 >0, m € N

B[ <1@N{ Y gr>(1—me)A}

k=m+1

=len{ i gk > i 27 k=m=D (1 —277) (1 — me)A}|

k=m+1 k=m+1
< YN {ge > 27— 27F) (1 — me) A}
k=m+1
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We can assume that (xg,t) € Q, (pr[u] (xo,to))r’%l < eA. Thus, by computing, see [16,
Proof of Proposition 2.2 | we have for any k € N

CT ok _
Q0 {gh > s}l < L2 FeriQlenp .

Consequently,

oo

C7 —ka —1
E| < E 27PIQ|(eN)P
1Bl = poy (27B=m=1)(1 — 2-8)(1 — ms))\)p_l Q1)

p—1 0o
< ¢,9-(m+Dap ( € ) QL—2%) " 3 gBr-b-anomen),
- 1—me

k=m+1

If we choose e™! —2 <m <e7! —1 and B = B(a, p) so that B(p — 1) — ap < 0, we obtain
|E| < cgexp(—apln(2)e™)|Q.

Thus, we get (4.3). }
Claim (4.4). Take (z,t) € Q and 0 < 7 < R. Now assume that Q,.(x,t) N QN F° # () and
ENQ,(z,t) # 0 ie, there exist (z1,1), (T2,t2) € Qr(z,t) N Q such that Wip[u](xl,tl) <A

and (ME,[u] (z2, tg))ﬁ < eA. We need to prove that

w(ENQy(x,1)) < cgexp(—croe Hw(Qy(x,1)).

To do this, for all (y,s) € ENQ.(x,t). Q,(y,8) C Qsp(1,t1) if p > 7.
If r < R/3,

1

R/3 A ﬁ R ~ p—1
R — W s M@y 9)) \ " dp 1@y 5)) \ " dp
Wa,p[/’d(?/: 8) - W(x,p[ﬂ](ya ) + /T < pN+2,ap ) p + /R/3 ( pNJrQ,ap ) P)

R/3 ): x p%l 1
<o s [ (MGG T ot

N+42—ap
P

< Wil (y,s) 3771 A+ 22N,

which follows Wy, [u](y,s) > A.
Ifr > R/3

1

r f Qp S Pt d
o < + [ (SR

< WG plul(y, s) + 22,

which follows Wy, [u](y,s) > A.
Thus,

w(ENQr(x,t)) < w(Qr(z,t) N WY L] > A}).
Since (z2,t2) € Q. (x,1), (ME, 1] (acg,tg))ﬁ < e, so as above we also obtain

w(Qr(, ) N {W,, [u] > A}) < coexp(—croe™ " )w(Qr(x,1)),

which implies (4.4). This completes the proof of the Theorem. ]
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Theorem 4.2 Leta>0,1<p<a }(N+2),p—1<g<ocand0 < s < oo andw € Ay
There holds

— 1 1
C 1||<MaRp[u])p71 ||L’1’S(]RN+17dw) < ng,p[u]HLq*S(RN‘*'l,dw) < CH(M(IEJJ[M])P71 HL‘J*S(RN‘*'l,(dw)S
4.5

for all p € MH(RN*1) and R € (0,00] where C is a positive constant only depending on
N,a,p,q,5 and [w]a,

Proof. From (4.1) in Theorem (4.1), we have for 0 < s < 0o

o )
(RN FP—— / Nw((WE (1] > aX})i 5

1 e s R El )\ & s R _1 s d)\
< exp(_CZE )q A w({wa,p[u] > A}) 4 T +c3s A w({(Map[/J’D Pl > E)‘}) N 7
0 0
_ s —s s
= crexp(—cae™ )|IWe p [1l|70. e awy + €38 IR D 7T 1700 v ) -
Choose 0 < € < gy such that ¢1 exp(—coe™!) < 1/2 we get

1
|\W§,p[#]||iq,s(RN+l,dw) < C4||(pr[#])”’1 HSquS(RNJrl,dw)'

Similarly, we also get above inequality in case s = oco. So, we proved the right-hand side
inequality of (4.5).

To complete the proof, we prove the left-hand side inequality of (4.5). Since for every
(z,t) € RNHL

(Wé{p[ ](x t))P 1 < cj Wg,p[:u](x,t)—k (M) p—1 -

RN+27ap

(W) e ),

thus it is enough to show that for any A > 0
1
(Qar(z, 1)\ " 1(Qrya(,1))
w (z,t) : <RN2fzap >\ < crw (z,t) : RNJ/r2 v > cgA )
(4.6)

Let {Q;} = {QR/4(xj,tj)} be a cover of RN*! such that for any @Q; € {Q,}, there exist

~ My
Qj1s- @iy € {Q;} with 37, 22/1211 XQ,x < Mz and Q; + Q2r(0,0) C |J @y for some
k=1
integer constants M; = M;(N),i = 1,2. Then,

1 1

w (z,t) : <W) ~ > A SZw (x,t) : (W) " > A NQ;

M,
<> w <{(x,t): % > Apl}mQj>

j k=1
L Q) \77
SZZW({(%’,t) : (;N+2j’kap) >M11/(p1))\}ﬂQj>
i k=1
J "
= Z Z aj,k:w(Q])v
J k=1
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where a;p = 1 if (Rﬂw(?ifﬁp)pj > My V@Y

A and a; ; = 0 if otherwise.
Using the strong doubling property of w, there is cg = co(N, [w]a,. ) such that w(Q;) <
A 1
cow(Qj.%). On the other hand, ifa;, = 1then @, C {(x,t) : (%) s Mll/(pl)/\}.
Therefore,

1

A p—1 My
w (z,t) : (W) > A < Z Z coa kw(Qj k)

j k=1
1
M, A p—1
W Qry2(z,t ~1/(p—
SZZng (x,t) (W) > M, 1/ (p=1) NQjk |,
i k=1

which implies (4.6) since S XQ,x < My in RNFL [

Theorem 4.3 Let 0 < ap < N +2 and w € Ay There exist C’lJ Cy > 0 depending on
N,a,p and [w]a_, such that for any p € MT(RNFY) any cylinder Q, C RNT! there holds

w@ | /@ exp (COWE g, )2 1)) du(z. 1) < Cs (@.7)

provided ||ME plio lea,) <1, where pg = xg p-

Proof. Assume that ||Map[uQ ”|L<x>(c}p) < 1. We apply Theorem (4.1) to fg,- Then,

choose e = A7! for all A > \g := max{e; ', M} we obtain
w({Wg lig,] > aA} N Qa,) < Crexp(=Coe™ Hw({Wy lug,] > A} VA= Ao,

On the other hand, if p > R, clearly we have Wfﬁp [MQF’] =0in RNH\QQ,), if p < R, for any
(.’L’, t) € RN+1\Q2p

R [y~ (O T - i
pg, (Q@r(x,t)) dr _N+2-«a (@Q,)
R Qp p( K
Wa,p[ﬂQp](xat) = /p ( 7~N+2—Oé;l7 7 S D 1 pN—&-Qfap S )\O-

So, we get {W] [ng,] > A C Qo, for all A > \g. This can be written under the form

w({Wglug,] > ad} N Qzp) < (X(0,0) + Crexp(=C2A)) w(Qzp),
for all A > 0. Therefore, we get (4.7). |

In what follows, we need some estimates on Wolff parabolic potential:

Proposition 4.4 Let p > 1,0 < ap < N+ 2 and ¢ > 1,apq < N + 2. There exist C1,Co
such that

1
Wbl csspocn ., < CLBERND)FT ¥ p e M@, (49
Waplklll sgremoen o S < Collullg ey ¥ p € LPRNTY p>0, (4.9)
and
Hwa,p[U”'L%(RP]H) < C2HMH ]RN+1) Ve Lq(RN+1)7M > 0. (4-10)
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In particular, for s > PLDINED e deofine F(u) == (Wa[u])® for all p € M (RN+L),

N+2—ap ~’
Then,
||F(”)||L%(RN+1)<C3HMH W(RNJA) and
||F(u)||L%m(RNH)§03||M|\ w e vty

for some constant C; = C;(N,p, e, s) fori=3,4.
Proof. Let s > 1 such that asp < N + 2. It is known that if 4 € L>°°(RN*!) then

N2
Ls,oo(RN+1)p 7 A p > 0.

16l(@p (@, 1)) < el

s

Thus for § = ||,u||£’;’fo (®N+1) (M(p)(z,t))” 2 we have

5 o2, ﬁd >~ 2p(2,t pljd
Waglillent) = [ (’W) !/ (W) ’

1 _ap ﬁ _ N42-—asp
< 0 (M(n) ()77 67 + callul o e )0
N+2—asp R 1.
= 3 (M(p)(x, 1)) P53 ||| D0
So, for any A >0
(p—1)(N+2)

{Waplpl > A < [{M(n) > C4||M||LSN£2R%S+’1)/\ NFzma b

Hence, since M is bounded from 9t (RV*1) to L1 (RV*1) and L9(RV+1) (L9°°(RN+1) resp.)
to itself, we get the result. ]

Remark 4.5 Assume that ap =N + 2 and R > 0. As above we also have for any € > 0

W e, t) < o (R )7, (000 )7l R +10) 5 ) T

where Cy . = C1(N, o, p, €).
Therefore, for any A > C’E(|M|(]RN+1))ﬁ,

apte(p—1)
=

{WE lu] > A} < Cape (W) RO, (4.11)

where Co e = Co(N, o, p,€). In particular, if p € M (RNTY) then WE [1] € Lj, (RN T
for all s > 0.

Remark 4.6 Assume that p,q > 1,0 < apqg < N +2. As in [59, Theorem 3], it is easy to
prove that if w € Agni2-a, i.e, 0 <w € L (RNFY) and for any Q,(y,s) C RVNF!

N+2—apq

(a=1)(N+2)

N+2—apg
_ _N+42—apgq
sup ][~ wdxdt ][~ w (@=DN+2) da:dt) =(Ch < oo,
Qp(y,s)CRN+1 Qp(ys5) Qp(y,s)

then

N+2—apqg 1

( )a (N+2)q apq
( / (Mapl| f[]) ¥ ara wdxdt) <Oy ( / | f|qw1N+2dacdt> "
RN+1 RN+1
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for some a constant Co = Cao(N, ap, q,C1).
Therefore, from (4.5) in Theorem 4.2 we get a weighted version of (4.10)

(N+2)(p=1)q Roer e 3
([ gl S wtaat) 7 < ([ gt e
RN+1 RN+1
The following another version of (4.10) in the Lorentz-Morrey spaces involving calorie.

Proposition 4.7 Let p,qg > 1, and 0 < apg < 8 < N + 2. There exists a constant C' > 0
such that

| (WapllelD? Ollull paonsny Vp € LTORNT. (4.12)

L9—apg apq (]RN+1)
Proof. As the proof of Proposition 4.4 we have
Tk O—apq
Wapllil] < e1 (Mg lpl]) = (M|ul]) 7&=D .

Since M, [|ul] < c2 (Mg]|12/7))*/4, above inequality becomes

0—apq

Woplu] < e3 (Mp[|u|9]) 7D (M[u]) o@D . (4.13)

Take Q,(y,s) C R¥*1 we have

9q(p 1)

0q(p—1) —apq
(Woplp]) ®-ore dadt < cy (/ (Wa,p[X“ s u]) dxdt
/c§p<y,s> 3 Qulw:9) Q2o(w:2)

6q(p—1)
VW 60—
+/~ ( @vp[x@zp(y,s))cu}) " d:z:dt)
QP(Z/,S)

=A+B.

Using inequality (4.13) and boundless M from LI(RN*1) to itself, yield

q
A<a [ Q) (Mg, g ) decds

q
< callal [y [ ltdade
XQ2p(y,s)

< C7| |/1'| |zq31(7ﬂq{<N+1)p N+2=0,

On the other hand, since |u|(Q,(z,t)) < Cg||,U/HLq:G(RN+1)’I"N+27% for all Q,.(z,t) c RN+,

0a(p—1)

~ 1 —apq
[e’e] - t p—1 d
B< / / ul(@z.1)) |S?+2(f;p)) = dzdt
Qp(y,s) 4 r r
9] 1 d Geqip—l)
< 09/ </ <||:L"||LQ;6(RN+1)T_%+(X) r T> dxdt
Qp(yvs) P r
6q
< ClO||/‘||z;;31€ﬂ§N+1)pN+2_9‘
Therefore,
/ (Wa,p[:uf]) e apq dzdt < cll||ﬂ||Lq 0 RN+1)PN+279,
Qp(y,9)
which follows (4.12). n

In the next result we state a series of equivalent norms concerning potentials I, [12], 12 [u], Ha 1], G [1]-
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Proposition 4.8 Let ¢ > 1, 0 < a« < N 4+ 2 and R > 0. There exist constants C; =
C1(N,«,q) and Cy = C2(N, e, q, R) such that the following statements hold

a. for any p € MH(RV+L)
CrILalplll Loy 1y < [[HalplllLo@n+ry < Cilllalu]||pa@y+ry and (4.14)

v
O7 lallloy+1) < lHalulllLa@y+1y < Culllalplllzo@y+). (4.15)

b. for any p € MH(RVN+1)
Cy I )l La@n+1y < |GalplllLa@y ey < Col[IE ]| Lo@n+1) and (4.16)

v
Cy I ]l La@n+1y < IGaltll| on+1y < Col L [u]]| a1y (4.17)
where 7\-/[a[u] is the backward parabolic Riesz potential, defined by

Halul(2,t) = (Mo s ) (@) = | Halw —y,5 — Odp(y, s),

RN+1

v
and Go[p] is the backward parabolic Bessel potential:

Vv Vv

Galtl(@.t) = G @) = [ Guly 2.5~ )du(y.).
]RN+1
Proof. a. We have:
cl_1
—~rra N <Halz,t) < ;
tN+§ Xt>0X| <2Vt ( ) max{|;v|, 2|t|}N+2*O‘

which implies

o X r2 . (Z',t)d * X6 z,t) d
o 1/ B,-(0)x (I ,r?) 77" < Ha($,t) < 62/ QT(O»O)( )l
0 0

T.N+27o¢ TN+270¢ r
Thus,
2
(Bl <t ))dr<H £) < el ¢ 4.18
Cy 0 rN+2—o 7 [ ](ZL‘7 ) = G2 a[,u](x, ) ( : )

Thanks to Theorem 4.2 we will finish the proof of (4.14) when we show that

/R /OOOM(B(a:,r):N(;a )>C?" q dt > cs //+°°< T?vifi))> ?dt.

Indeed, we have for r;, = (%)_k,

(/OOM(B(QT ) X (t—1? t—r2/4)) )q
0 rN+2-a r
< i U (B(x,rk) x (t—rit— ér%)))q

N+2 o
k=—o00 Tk
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Thus,

< u(B(z,r t—r2t— 1r2)) dr !
/</ n(Blar)x (¢ rhi- ) >)T> "

o) q
w(B(z,ry) x (t —r2,t — 112
>y E /R< ( ( k)rN(Jerak 3 k)) dt
- k

k=—o00
> (B, r) % (t— 3r3,t+ Lrd)) !
s Tk k>
e S /( yos ) at
k=—oc /R Tk

oo )\ d
s | ( ZCECR) )) &y

Similarly, we also can prove (4.15).
b. Obviously

-1 2
cg  exp(—4R?)
e e prE=En Xo<t<aR2X|z|<2vi < Ya(@,1)

Cé

Cé
< max{ 2], V2l V2 XG5 /2(0,0) (z,1) + RNio—a P (‘ max{|z], v/ 2|t|}) :

Thus, we can assert that

2R X g 2 o (2,1) g R xa (z,t) d
»(0)X (- ,r?) T Qr(0,0)\* r

R 2 — < Gulz,t) < e ) 2
er( )/0 rNT2—a r = Ga(2,t) < CS/O FNt2—a

+ ¢co(R) /RN+1 exp (—max{|y|, \/2\8\}) XGry2(0,0) (x —y,t — s)dyds.

Immediately, we get

C7<R>/OQR“<B( Xt =) ar

e " < Galuw,1) < sl ), ) + ea(R)F(2,1),

(4.19)

where F(x,t) = [oni1 exp (— max{|yl, /2 }) (QR/Q T —y,t— s)) dyds.
As above, we can show that

[ e s (e

Thus, thanks to Theorem 4.2 we get the left-hand side inequality of (4.16).
To show the right-hand side of (4.16), we use 4 (QR/2(:E —y,t— s)) < erpR™ VA2 ) (2 —
y,t — s) and Young inequality

Ga il Loen+1y < cs|lIE ]l arn+1y + co(R)||F| a1y
< CS||H§[N]||LQ(RN+1) + Cll(R)||H§[,u]||Lq(RN+1) /N+1 exp (— max{|z|, \/M}) dxdt
R
= cia (RIS (]| a1,

Similarly, we also can prove (4.17). This completes the proof of the Proposition. [
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Remark 4.9 Assume that0 < o < N+2. From (4.8) in Proposition 4.4 and ||Ga[p]|| L1 @n+1) <

c1 (RN we deduce that for 1 < s < N]X-;Ea

Galt| s mv+1y < cou(RNFY) Vg€ 4 (RVH)

Next, we introduce the following kernel:

EE (2,1) = max{|a], v/2[t[} V2 x5 0.0 (@)

where 0 < o < N+ 2 and 0 < R < oco. We denote EX° by E,. It is easy to see that
Eo s = (N+2—a)lyfp] and ||EE  p|| 1« (my+1) is equivalent to [|IF[u]|| 1« rr+1) for every
p € MT(RVHL) where 1 < s < oo.

We obtain equivalences of capacities Capg,_ ,,, CapEg,p, Capy,, , and Capg_ ,,-

Corollary 4.10 Let p > 1, 1 < o« < N+ 2 and R > 0. There exist constants C; =
C1(N,a,p) and Cy = C3(N,a,p, R) such that the following statements hold

a. for any compact E C RN*1

C; ! Capy, ,(B) < Capy, ,(E) < C Capy, ,(E) (4.20)

b. for any compact E C RN*+1

Cy ' Capg, ,(E) < Capgr ,(E) < CyCapg, ,(E) (4.21)

c. for any compact E C RN*1

N+2

C’ap;_[mp(E) < Capgmp(E) < (C; (C’apHMP(E) + (C’apHmp(E)) N““”) (4.22)

provided 1 < ap < N + 2.
Proof. By [2, Chapter 2], we have
CapEa,p(E)l/p = sup{u(E) : p € M (E),||Eq * Lo @y < 1},
Cappr ()" = sup{u(E) : p € M (E), [|EE = pl| o i1y < 13,
Capy, ,(B)"/? = sup{u(E) : pr € M (B, |Halill vy < 1) and
Capg, ,(E)"/? = sup{u(E) : p € M (E), |Galill| vy < 1}

Thanks to (4.15), (4.17) in Proposition 4.8 and Io[u] = Eq * g and [[EF  pl|ps@y+1y) is
equivalent to |[IE[x]||ps@v+1), we get (4.20) and (4.21).

Since Go < Ha, thus Capy ,(F) < Capg ,(F) for any compact E C RN+ Put
Cappg,_ ,(E) =a > 0. We need to prove that

Cappg ,(E) <1 (a + aNivﬁap) . (4.23)
We will follow a proof of Yu.V. Netrusov in [2, Chapter 5]. First, we can find f € Lﬁ (RN+1)
such that ||f]|zs@®~+1) < 2a and E,  f > xg. Set F, = E, — E}, we have o F, < E_, x F,
for some ¢; > 0. Thus, E C {EL * f > 1/2Y U{EL % (Fy * f) > c2/2}.

Since ||Eé”L1(RN+1) < oo, for c3 = 02(4||E51y||L1(IRN+1))_1

EYx (Fpx f) < co/d+ EL % g with g = Xr,ufses Fa * f,
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which follows E C {El x f > 1/2} U{EL x g > co/4}.
Using the subadditivity of capacity, we have

Capps ,(E) < Capp ,({E4 * f > 1/2}) + Capg ,({Eg * g > ¢1/4})
<2p|‘f||Lp RN+1) (4/61) HgHLp (RN+1)

< 2?11}, RN+1)+(4/Cl)pCp “Pl|Eq *f||Lp*(]RN+1)a with px = Ni2—ap
On the other hand, from (4.10) in Proposition 4.4 we have
[[Eo * fllLe=@n+1y < callfllor@y+1y.-
Hence, we get (4.23). |

Remark 4.11 Since G, € L'(RN*1),

/ (ga * f) dzxdt < ||ga||L1 (RN+1) / fpdl‘dt Vf S L{:_(RNJrl)
RN+1 RN+1

Thus, for any Borel set E C RN*!
Capg, »(E) > C|E| with C = ||Qa||2f’(RN+1). (4.24)

Remark 4.12 [t is well-known that Hs is the fundamental solution of the heat operator
% —A. In [31], R. Gariepy and W. P. Ziemer introduced the following capacity:

Oy, (K) = sup{u(K) : pp € MT(K), Ha[u] < 1},
whenever K C RN+ is compact. Thanks to [2, Theorem 2.5.5], we obtain
Cap?-Ll,Q(K) = Oy, (K).
Remark 4.13 For any Borel set E C RY, then we always have Capg, o(E x {t =0}) =0
In fact,
Cappy 5(B1(0) x {t = 0}) = sup{w(B1(0)) : w € M*(B1(0)), || B} * (w & bo) | p2(gn-+1y < 1}

Since || B} x(w®60)|| L2a+1y = 00 ifw # 0, thus Capg, o(B1(0)x{t = 0}) = Capg 5(B1(0) %
{t = 0}) = 0. In particular, Capg, 5 is not absolutely continuous with respect to capacity
Cy2(., 2 x (a,b)). This capacity will be defined in next section.

Remark 4.14 Letp > 1 and o > 0. Case ap > p+1, we always have ||Ha[p]|| o gry = 00
for any p € MT(RN)\{0} which implies Capﬂaﬁp(él(0,0)) =0. If0 < ap < N+2,
Capﬂmp(Qp(0,0)) = cpN*2=2P for some constant c. From (4.22) in Corollary 4.10 we get
Capgmp(Qp(0,0)) ~ pNt2=er for0 < p<1ifap < N+2. Since ||Qa[5(0,0)]||Lp'(RN+1) < 00
thus Capg,_ ,((0,0)) >0 if ap > N + 2.

Ifap=N+2, Capgmp(Qp(O, 0)) =~ (log(1/p))' ™ for any 0 < p < 1/2. In fact, we can prove
that H]I}/Q[M}HLP/(RN) < ¢ for any du(z,t) = (log(l/p))_l/p/ p_N_2XQ~ o, O)dxdt it follows

Capg, ,(Q,(0,0)) > ¢z (log(1/p)) " Moreover, for n € M*(Q,), if |13 [u I, rrey 1

/

3 ~ p
t)) d
= / HOED ) dvar
$1(0,000,(0,0) \J2max{|z|,|2t|1/2} T r

/

3 p
1 dr ~ ’
> —~iaa | dzdtp(Q,(0,0))”
Q1(0 0)\Q,(0,0) </2max{z| 212y TR 7“) ’

> czlog(1/p)p Qp(
So Capg, ,(Q,(0,0)) < C4N(Qp(070))p < ¢5 (log(1/p))' 7"

39



NGUYEN QUOC HUNG

Definition 4.15 The parabolic Bessel potential L2 (RN*Y) a > 0 and p > 1 is defined by
LERYY) ={f: f=Gaxg,g€ LPRVT)} (4.25)

with the norm || f|

cr@v+1) = ||gl| L@y, We denote its dual space by (LB (RN+))™.

Definition 4.16 For k a positive integer, the Sobolev space Wp%’k(RN“) is defined by
Qitetintig

W2k7k RN+1 — . . i
v B = G e an

€ LP(RNTY) for any iy + ... + iy + 2i < 2k}

with the norm

8“*”*”“@

H<P||W2k=k(]RN+1) = Z ||ﬁ||LP(RN+1)~
P i 2i<2h O0z1 .0z Ot

We denote its dual space by (ng’k(RN“))*. We also define a corresponding capacity on
compact set E C RN*+1,

Capag kp(E) = inf{|‘9"||€v2k>k(Rw+1) s € S(RVNTY), o > 1 in a neighborhood of E}.

Let us recall Richard J. Bagby’s result, proved in [4].

Theorem 4.17 Let p > 1 and k be a positive integer. Then, there exists a constant C
depending on N, k,p such that for any u € L5, (RN*1),

C_lHu”ng«k(RNH) < ||u||.c§k(RN+1) < C||u|‘W§kvk(RN+1)-
Above Theorem gives the assertion of equivalence of capacity Capyy, . ,,, Capg,, .-

Corollary 4.18 Letp > 1 and k be a positive integer. There exists a constant C' depending
on N, k,p such that for any compact set E C RVN+1

C™1 Capyy 1, p(E) < Capg,, ,(E) < CCapyy, . ,(E). (4.26)

Next result provides some relations of Riesz, Bessel parabolic potential and Riesz, Bessel
potential.

Proposition 4.19 Let ¢ > 1 and % <a< N+ %. There exists a constant C' depending
on N,q,a such that for any w € MH(RY)

CHI,_ 2 (W] La ()

R
< [[Hales ® Sl a1 Halo ® Syl lzaenn) < O3 llliaey)  (4:27)
and
CHIGa- 2 Wl Lo
< ||Galw ® dgs=0y]||La@n+1), ||éa[w ® dpr=plllLaen+1) < CllGo 2 [W]l| Loy (4.28)

where dyy—qy is the Dirac mass in time at 0.
Proof. We have

) 7%(,53’,?)%, Ialw ® b0yl (z. ) =/ w(Blo,r)) dr

Ha[w®5{t:0}]($7t>:/ w1y Ve T

Ve
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By [16, Theorem 2.3 | and Proposition 4.8, thus it is enough to show that

() s [ ([ s [ (S
(4.29)

and

L (VP w(Blz,r) \*dr
G 0 rN+2—a—-2/q r

SA(ﬁn{l,m}WT>thgclﬁl <M>qf w0

Indeed, by changing of variables

[ ([ sy o [ ([

Using Hardy’s inequality, we have

e * w(B(z,r)) dr\? S w(B(z,r)\?
/0 t (/t —Nti-a dt < 62/0 r e dr
and using the fact that

/°° w(B(x,r)) dr . w(B(x,r))

rN+2—o¢ r - 3 TN+2—a ?

we get

Thus, we get (4.29). Likewise, we also obtain (4.30). |

We have comparisons of Capy,_ ,,,Capg_ ,,,Capr , ,, Capg .
a—g a—=

2

P

Corollary 4.20 Letp > 1 and % <a< N+ %. There exists a constant C' depending on
N, q,« such that for any compact K C RN

C™'Capy , ,(K) < Capy, (K x {0}) < CCap; , ,(K) (4.32)
and
C~'Capqg , p(K) < Capg, (K x {0}) < CCapg , ,(K) (4.33)

Proof. By [2, Chapter 2], we have

V
Capyy,, (K x {0)Y? = sup{u(K x {0}) : € M (K x {0}), [[Halulll Lo @rr) < 1}
Vv
= sup{w(K) : w € M (K), ||Halw @ =0}l v @rver) < 1},
\%
Capg, , (K x {0})? = sup{w(K) : w € MH(K), [|Galw @ 60]l| Lo vy < 13,

Capy__, ,(K)"" = sup{w(K) : w € M7 (K), [Toz[w]ll o rvery < 13,

_2,pP
P

Capg_, ,(K)"P = sup{w(K) : w € M (K), |Gz ] | o vy < 1}.

P P

Therefore, thanks to Proposition (4.19) we get the results. ]
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Corollary 4.21 Letp > 1 and k be a positive integer such that 2k < N +2/p. There exists
a constant C' depending on N, k,p such that for any compact set K C RN

CilC@PG%_g,p(K) < Capyy, (K x {0}) < CCapg_ , ,(K). (4.34)

2.p
D
We also have comparisons of Capg_ ,,, Capg,, -

Proposition 4.22 Let 0 < a < N, p > 1. For a > 0 there exists a constant C' depending
on N,a,p,a such that for any compact K C RV,

CflCamep(K) < C’apgmp(K X [—a,a]) < CCamep(K).
Proof. By [2], we have
Cap »z (K) < c1Capg, ,(K),

1.2 p

va
for some ¢; = ¢1 (N, a,p,a) > 0. So, we can find f € L% (RY) such that I * f > xx and
[ i < 2exCape, ().
RN ’

- va _
Note that (EY® % f)(z,t) > ca(I2 * f)(z,t) for all (z,t) € RY x [—a,a] where f(z,t) =
J(T)X[=24,24)(t) and constant cz = ca(N, a, p). So,

Cap,ve (K X [~a,a]) < c;p/ | f|Pdadt
a P RN+1

= 4c;pa/ | f|Pdzx.
RN

By Corollary 4.10, there is ¢; = ¢1 (N, a, p,a) > 0 such that
Capg, ,(K x [~a,a]) < e1Cap e (K x [~a,d]).

Thus, we get
Capga,p(K X [—G,G,D S 03Camep(K),

for some ¢z = ¢3(N, a, p, a).
Finally, we prove other one. It is easy to see that

1Y * o ® X-alllr oy < calllY Pl ¥ o € MRY),
for some ¢4 = ¢4(N, e, p), which implies

1Galw ® X—a,alllLr @v1y < sl|Galwlllr vy ¥ w € TRV
for some ¢4 = c4(N, o, p, a).

It follows,
Capga’p(K x [—a,a]) > CGCamep(K),

for some ¢ = (N, a, p, a). ]

The following proposition is useful for proving that many operators of classical analysis
are bounded in the space the space of functions f such that

/ | f|Pdzdt < CCap(K)
K

for every compact set K C RNt (1 < p < 00), if they are bounded in L4(RV*1 dw) with
w e Ax.
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Proposition 4.23 Let0 < R<o0o,1<p<a }(N+2),0<d<a and f,g € L}, (RNT1).
Suppose that

1. There exists a positive constant Cy such that

/K |fldzdt < Cy CapEs,sm(K) for any compact sets K ¢ RN, (4.35)

2. For all weights w € Ay,

/R  lslwdsdr < G /R I hedea, (4.36)

where the constant Cy depends only on N and [w] 4, .

Then,
/K |gldzdt < C3Capyrs (K) for any compact set K C RN+ (4.37)

where the constant C3 depends only on N,a,p,§ and Cq,Cs.

R,S
«

The capacity is mentioned in the Proposition (4.23), that is (E."°, p)-capacity defined by
Capprs ,(E) = inf { / |[fIPdudt : f € L (RN, B« f > XE} ,
x RN+1

for all measurable sets £ C RVT! where 0 < R<00,0< 6 <a < N + 2,
vam)
B9 (2, 1) = ma{la], /2]~ min J 1, (ma’({'x}; | ”’)
Remark 4.24 For 0 < ag < N + 2, the inequality (4.10) in Proposition 4.4 implies

q(N+2) 1-5f3
</ (B0 5 f)~NF2mea da:dt) < C’/ fidxdt Vf e LYRNTY) f>0. (4.38)
RN+1 RN+1
Hence, we get the isoperimetric inequality:
|E|'"%%2 < CCapyrs (E), (4.39)

for all measurable sets E C RN+,

Also, we recall that a positive function w € L} (RN*1) is called an A; weight, if the quality

loc

1
[w]a, := sup (f wdyds> ess sup < 00,
Q (@neQ w(@,t)

where the supremum is taken over all cylinder Q = Qg(x,t) € RNV*!. The constant [w]4,
is called the A; constant of w.

To prove the Proposition (4.23), we need to introduce the (R, d)—Wolff parabolic poten-
tial,

1

> Q 7t Pj . =1 d
Wg,’ﬁ[u}(x,t) = /0 (W) min {1, (%) } ?p for any (z,t) € RN,
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where p > 1,0<ap < N +2,0< 6 <ap and R € (0,00] and p € M (RVF1).
It is easy to see that

WS, t) <O sup - Wul(y, ). (4.40)

(y,s)€Esuppp
for some a constant C' = C(N, «a,p,d) > 0.

Remark 4.25 We easily verify that the Theorem 4.1 also holds for Wf’*g’Rl [u] and Mfffﬁl K

wEgR o = [ (W) ™ min L) e,

- ) t) . p\ —d(p=1)
M0/ (p—1), R ) = #Qp(, 1)) 1. (£ t) e RN+
a,p [:U’] (LU, ) O<S;l<pR1 pNJrQ,ap min ) <R) fOT any (J,‘, ) s

where 0 < § < ap’, 1 <p < a Y(N+2) and Ry > R > 0. This means, for w € Ao, p €
M (RN, there exist constants Cy,Cy > 0 and g9 € (0,1) depending on N, «,p,d, [w]a
such that for any A > 0 and € € (0, )

oo

w{WESR ) > ), MESED R )77 < 0}) < Crexp(—Caoe™ Yu({WES ™ ] > A}),

(4.41)

N+42—ap+s(p—1)
where a = 2+ 3 p—1
Therefore, for q >p—1

IIWff;;f’Rl ] Lo (rN+1 qu) < C3||(M§{a§(p71)’Rl ) 7T | La v+t du)
where C3 = C35(N,a,p,0,q). Letting Ry — oo, we get
_ 1
W (1| @t dw) < Csl|(MELE™D [u]) 7T || Lo @vet aw), (4.42)

where M@V (1] .= MES =D
We will need the following three Lemmas to prove the Proposition (4.23).
Lemma 4.26 Let0 <p<a '(N+2) and0 < B < % There exists a constant

" - +2—ap+do(p—1) -
¢ depending on § such that for each Q, = Q,(x,t)

F OV, 9) duds < cCWE S 2. 0)°. (4.43

T

Proof. We set

Uz L1y, 5) _/:O <M)wmin{1,(z>—6}dj and

Lg,p[u](%é’) = /(: (W) ” min{l, (g)é} d—;

Thus,

]4 (Wf;,m,s))édydssclf <U;p[u]<y,s>>5dyds+c1f (L5, 1 (9, ) dyds.
Q

T r T
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Since for each (y,s) € Q, and p > r we have Q,(y, s) C Qa,(x,t), thus for each (y,s) € Qr,

Up pltl(y,5) < /T"O <M> i (max{l, %}) _6%
< W [ul(x, 1),

which implies
f (UL 1)y, 5))*dyds < ex(WES ()2, 1))

r

Since for each (y,s) € Q, and p < r we have Q,(y,s) C Qar(x,t) thus, Ly, o] =

L pliXa,, (20) < Who [1X6,, (1)) I0 Q.(2,t). We now consider two cases.
Case 1: r < R. We have for a > 0,

][Q (L7 1)y, )P dyds < ]{2 (W2, [1X G (o) (v 5)) g

1
Q|
< af f oy N2 / NUWE (X, ] > A

8 / NUWE livg, o) > A0 QyldA

If ap = N + 2, we use (4.11) in Remark 4.5 with e = 2 and take a = (N(Qgr(x,t)))ﬁ

B
~ L\ epfele-D)
@l s) s < a2 [T <<”<Q2r<‘§’ )7 ) rPd)
< ea((Qar (,))) 77
< es(WHS (2, ).

If ap < N 4 2, we use (4.8) in Proposition 4.4 and take a = pu(Qar(x,t))7=1r" -1, we
get

F Wyl ) < e (1@, )75 )

< er(Wi (2, 1))
Case 2: r > R. As above case, we have
_ N+2—ap+8(p—1) )5
p—1

F s 090 s < s (@ ) P

Since Wff,’{f [NXQ%(;E,@} < RéWa—%,p[Mxézr(zyt):L thus

- 1 Nt2—ap+s(p—1) B
F (il 9) dyds < ca (n(Qay o, ) 7102555 )

< (Wil (x, 1))
Therefore, we get (4.43). The proof completes. ]

Remark 4.27 It is easy to see that the inequality (4.43) does not true for WE [6(0,0)] where
8(0,0) 18 the Dirac mass at (z,t) = (0,0).
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Remark 4.28 From Lemma (4.26), we have, if there exists (xo,to) € RN such that

WL (0, to) < oo then WES[p] € Lic(RNH) forany 0 < B < —Nigjj;f&;)_l).

Lemma 4.29 Let R € (0,00], 1 < p < a (N +2) and 0 < § < ap’. Assume that
ap < N +2 if R = co. Then, for any compact set K C RN*1 there evists a p € MT(K),
called a capacitary measure of K such that

Oy Capyrsyy (K) < p(K) < CrCapprsyy (K)

CAN,O@])), i = 13233'

Proof. We consider a measure v on M = RN*1 x 7 as follows

vr=m® i On,

n—=—oo

where m is Lebesgue measure, and ¢,, denotes unit mass at n. Thus, f € LP(M, dv), means

=A%, with

oo

Hf”ip(M,du) = Z ||fn||1£p(RN+1)~

n=—oo

Let ng € Z U {+o0} such that 27"" < R < 27"~*l if R < 400 and ng — ¢ if R = +cc.
We define a kernel P, in RN*! x M = RN+ x RN+ x Z by

Py (z,t,2',t',n) = min{1, 2("_”R)5/p/}2”(N+2_O‘)XQ27" (x — ' t—t).

If f is v—measurable and nonnegative and u € M+ (RNY*1), the corresponding potentials

v
Pof, Pap and VP’:  are everywhere well defined and given by

(Paf)($7t)=/ Po(x, t, 2’ ¢, n)f(2' ¢/, n)dv(z', ', n)

M
- Z min{l’2(n—na)5/p’}Qn(N-i-z—oc)(XQTn * fn)(z, 1),
n=—o00
v
(Pap) (@'t n) z/ Po(z,t, 2’ ', n)du(x,t)
RN+1

_ min{l,2("_"R)5/P/}2"(N+2_0‘)(XQ *LL)(.%/,tl),

—-n

VE (@) = (Pa(Pap)” ") (@,1)

[ee] ’

’ —1
= > minf{1,20n R0 gn (NH270) (x@w *(XQH *u)p )(z,t)~

n—=——oo

for any (z,t,2',t',n) € RN+ x M.
Since for all (z,t) € RN

~ ~ , p'—1
Q127 I HD (4(Qgni (2, 8)))P 7 < <Xé2n * (Xézfn * M) ) (x,t)

Q1127 N+ (1(Qani (w, 1)))P 1,

IN

thus,
'V, <SWES < eV (4.44)
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for some a positive constant c;.
We now define the LP—capacity with 1 < p < oo

Caps, () = i {||fl12srr.ay : £ € L2 (M, dv), Paf = X£}.

for any Borel set E C RV*1. By [2, Theorem 2.5.1], for any compact set K C RN+1

Vv
Capp, ,(K)'/? = sup{u(K) : p € MH(K), |[Papll Lo (rp.an) < 1}-

By [2, Theorem 2.5.6], for any compact set K in RV*! there exists u € 9T (K), called
a capacitary measure for K, such that VPi,p > 1 Capp,_, — q.e. in K, Vlébmp < 1aein
supp(p) and u(K) = Capp_ ,(K). Thanks to (4.44) and (4.40), we have WZ2[u] > et
Capp, , — q.e. in K, WES[u] < ¢z a.e in RN *! and p(K) = Capp, ,(K).

On the other hand,

oo

Vv ’ . _ 5/ _ /
||PC“'“HZ£P'(M,dV) — Z || min{1, 2(n=nm)o/p yon(N+2 a)Xan *M||’£p,(RN+1)

n=—oo

oo

= Z min{l,2(”*"1*)6}2"1’/(]\7*2*“)/ (X6, . s )P dadt,

N+1 2=
n=—o00 RN+

this quantity is equivalent to

~ p
oo -5
/ / 1(@Qp(z, 1)) min{1, (ﬁ) }@dxdt.
rN+1 Jo pN+2-a R p
So, thanks to (4.42) in Remark 4.25, we obtain

_ 5/ ’ \ ’ 5/ ’
Co 1||E<§7 / * /”t||ip/(]RN+1) < HPO‘M||I£P'(M,du) < CQHE(?’ /2 * H||ip’(]RN+1)'

for ¢ = ca(N,p, v, ). It follows that two capacities Capp_ ,and Cap pRa/y , ATe equivalent.
Therefore, we obtain the desired results. [

Lemma 4.30 Let R € (0,00|, 1 < p < a”}Y(N +2) and 0 < § < ap’. Assume that
ap < N+2 if R = co. Then there exists C = C(N, «,p,d) such that for any p € DJT;(]RN“)

Cap .3/ p({wf;;j (1] > A}) < OAPHLLRNFLY) v A > 0. (4.45)

In particular, Wg;g[u] < oo Cap rs/w ,qe in RN+L,

Proof. By Lemma 4.29, there is a capacitary measure o for a compact subset K of
{Wf:g[u] > A} such that Wﬁ’g [](z,t) < ¢1 on suppo and CapEg,a/p/m(K) ~ o(K) where
C1 = Cl(N,CK,p, 6)

1(Qp (1))

@) for any (z,t) € suppo. Then, for any (z,t) € suppo

Set M, o](x,t) = sup
p>0

, e [ (0@l )\ 0o
)\<W5,3[M](33,t)S(M[MO](JCJ)) /0 ( N +2-ap ) mm{l,(R> )

1

< co (M[p, o](z,t)) 7T .

~1
Thus, for any A > 0, suppo C {c2 (M[[,u,a])ﬁ > A} = M|y, o] > ()‘)p }. By Vitali

C2

Covering Lemma one can cover suppo with a union of Qs,,, (;,t;) for i = 1,...,m(K) so that
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Q. (x4, t;) arve disjoint and o(Qs,, (i, t:)) < (Mea) PP u(Q,, (x4, ). Tt follows that

CapEg <03 Z Q3Pz z;,t z )
m(K)
< ey AT Z (@ (i)
i=1
< ez TIATPT (RN,
So, for all compact subset K of {Wi’g (1] > A},
CapEf,g/pl’p(K) < ey ETINTPHL (RN,

Therefore we obtain (4.45). |
Remark 4.31 Let 0 < d < a < N +2 and § < 1. From the following inequality

| max{|z; — 2|, v/2|t1 — 8]}V — max{|xg — 2|, \/2|t2 — 5|}V
< 1 (max{ler - 21, v/20t1 — s}V max{les — 2, /20t — 5]} V7200

1/2 J
X (|J)1—l‘2|+|t1—t2‘ ) s

for all (z1,t1), (z2,t2), (2,8) € RN*L where ¢y is a constant depending on N,«,d. Thus,
for p e My (RNF)

alt)@1,t2)~Talp) (@2, £2)] < c2 (Taslpl (@1, t1) + Taslp] (22, £2)) (Jor = @] + [t — t2|”2)6,

for all (z1,t1), (z2,t2) € RN*L and ¢y = Cl%'

Consequently, for any p € M (RN, 1, [u] is 6—Holder Capg,_, o-quasicontinuous this

means, for any € > 0 there exists a Borel set O, C RN*! and c. > 0 such that
Lalplon, 1) = Talil(e, )] < €2 (o = 2l +11 ~ 612)” Wi, 1), (2, 12) € O
and Capg__, o(RNTN\O,) < e
2
Now we are ready to prove Proposition 4.23.

Proof of Proposition 4.23. By Lemma 4.26, 4.29 and 4.30, there is the capacitary
measure g of a compact subset K C RV such that Wg:g” ] > ¢ aein K, Wg;;jp (] <

¢z a.e in RV*! and Capgrs  ({Wip ' [u] > A}) < AP Cappyrs (K) for all A > 0,

(Wﬁ’gp/ [1])? € A for any 0 < B < % From second assumption we have

/ |gl(WEp [u]) P dedt < Co / | FI(WEY () davdt.
RN+1 RN+1
Thus

/ \glddt < ¢7f / |91 (W' [14])8 ddt

K N+1

<o [ UAOWE ) das
_035/ /m |f|dxdt)\5_1d>\.
Wa p”
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By first assumption we get
/WE’SP’ o | fldxdt < ClCapEg,a’p({Wi’gp, [u] > A}) < C4A*p+1CapE§,a’p(K).
Therefore,
 laldadt < 55 [ AP Cap e (KON = coCap s ()

since one can choose § > p — 1. This completes the proof of the Proposition. [

Definition 4.32 Let s > 1, a > 0. We define the space MM es(RNF1) OGa:s(RN+)
resp.) to be the set of all measure p € M(RNFL) such that

[1onra.c a1y :=sup {|u|(K)/Capy, ((K): Capy, (K) >0} < oo,
([1longa-s@a+1y := sup {|p|(K)/Capg, ,(K): Capg, (K) >0} < oo resp.)

where the supremum is taken all compact sets K ¢ RN*TL,
For simplicity, we will write M3 MI=s to denote MMas(RN+L) 9NGars(RN+L) resp.

We see that if as > N + 2, MHes(RVTY) = {0}, if as < N + 2, MHas(RVHL) C
IMNYe-s(RN+1). On the other hand, Mo~ (RN+1) 5 9, (RVH1) if as > N + 2.
We now have the following two remarks:

Remark 4.33 For s > 1, there is C = C(N, «a, s) > 0 such that

[flomGa.r < C’[|f|5];j/lzmp for all function f. (4.46)

Indeed, set a = [|f|*]smar, so for any compact set K in RN*T1,

/K |fPdzdt < aCapga’p(K).

This gives 2aCapg_ ,(K) > [i (1f|° + cra) dwdt > caa'=V/* [, | fldadt, here we used (4.24)
in Remark 4.11 at the first inequality and Holder’s inequality at the second one. It follows
(4.46).

Remark 4.34 Assume that p > 1 and % <a< N+ %. Clearly, from Corollary 4.20 we
assert that for w € MM (RY)

O o < [98 By apsan < O gt

Cy ! WlggGaa/pr < [0 81—0} ] gpoa < C2 [WgnGas/pr

for some C; = Cy(N,p,a), i = 1,2. Where Mle—2/pP .= Mla—2/pP(RV) | 9NGa2/0P =
IMGe—2/pP(RN) and

[w]mlafz/p,p(RN) = sup {W(K)/CGPIO_Q/,,,;;(K) : Capla_Q/p’p(K) > 0} ,

WlgnSa-apr oy = sup {w(K)/ Capg,_,, ,(K): Cape,_,, ,(K) >0},
where the supremum is taken all compact sets K C RN,

Clearly, Theorem 4.2 and Proposition 4.23 lead to the following result.
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Proposition 4.35 Letqg>p—1,s>1 and 0 < ap < N+2. Then the following quantities
are equivalent

(W2 ()]

for every p € MT(RNFL) and 0 < R < oc.

q

(I8, [u) "

q

and {(Mf‘p [,u]) p=1

MHars [ Lnﬂa,s LmHms ’

In the next result, we present a characterization of the following trace inequality:
NEZ? % fllLo@y+,an) < Collfllio ey VF € LPRNTY). (4.47)

Theorem 4.36 Let 0 < R < o0o,1l <p < a '(N+2),0<d<aandu be a nonnegative
Radon measure on RNT1. Then the following statements are equivalent.

1. The trace inequality (4.47) holds.

2. There holds
IEE? % fllo@a+1,aw) < Callfllpo@n+ry Vf € LP(RNTY), (4.48)

where dw = (170 1P dadt.
3. There holds
B # fll e @yt apy < Callfllo@yeny Vf € LP(RYHY). (4.49)
4. For every compact set E C RN*L

n(E) < CiCapyrs (E). (4.50)

5. I29[u] < 0o a.e and
IO (U2 ()] < CIE (] ace, (4.51)

6. For every compact set E C RN+
/E (159 ] dadt < CoCapprs (). (4.52)

7. For every compact set E C RN+,
/R (@ laxg)? dedt < Cru(E). (4.53)

8. For every compact set E C RN+,

/E (I8 [uxg))? drdt < Csp(E). (4.54)

We can find a simple sufficient condition on x so that trace inequality (4.47) is satisfied from
the isoperimetric inequality (4.39).

Proof of Theorem 4.36. As in [80] we can show that 1 & 2 & 3 & 4 < 6 < 7 and
7= 8,5 = 2. Thus, it is enough to show that 8. = 5. First, we need to show that

p'—1

(/TOO *M min{1, (Ip{)é}cff) <cpre <min{1, (;)5}) o (4.55)
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We have for any (y,s) € Q,(z, 1)

-5

I (14X, (w0 (Y5 8 / CE xi,g%(y’ 5)) min{1, (%) oo

1(Qr (2, 1) N Qp(y,5)) . P\ % dp

/ oN+2- o min{1, (ﬁ) }?

w(Qr(x,t ) r\ 9
> 02% min{1, (E) }.
n (4.54), we take E = Q,.(x,1)
cn(Qy(z,t)) > 5o (Talexg, @n))” ,

’

v

5 (Wmmu,(;)%) ulo 1)
So p(Q(w,1)) < carVT2or (min{l, (%)‘5})717 which implies (4.55).

Next we set . B 5 g
oo t —
L) = [ A g, ()72

Olilent) = [ 2D iy, (£) )L,

and
dw = (Inp)? dxdt, doy, = (L,u))? dedt, dos, = (Un[p))” ddt.

We have dw < 2¢'~1 (doy . + dos,,) . To prove (4.51) we need to show that

| i, (1)1 < .o, (4.56)
|2 D gy, (1) <t e, (457)

Since, for all r > 0, 0 < p < r and (y,s) € Q,(x,t) we have @,,(y, s) C Qar(x,t). So,

0o Q1)) = /Q . (U 1) (y. )" dyds = /Q » (U 1X 0 ) 9:9)) .

Thus, from (4.54) we get

~ p
020 (00 (2,1)) < / Urlix, o @:5)) dyds
Gon(a,t) ( Qa2r(z,t) )

R, v’
< [ o (8, o)) duds
2r(2,t

< cop(Qar(2,1)).
Therefore, (4.57) follows. - 3 )
Since, for all > 0, p > r and (y,s) € Q-(z,t) we have Q,(y,s) C Q2,(z,t). So, for all
(y,s) € Qr(z,t) we have
“+o0 ~ _

1(Qop(x,1)) . P\ dp

< — T 7 s pali
L) < [ P D ming, (5) )

T

< er L [p](x,t).
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Hence,

Ul,r(@r(x’t)) = / (LT[M](yaS))p/ dyds

Qr(z,t)

Since 7' min{1, (%)
[P g, (7)1 < [ e vt ()

< (;_75 /OOO % (7«& min{1, (;)‘H) (L[, £))" dr

> a p'— M(Qr(x’t)) : T\ 0 dr
Scs/o % (L [p] (2, 1)) lmmm{lv(§> }27~

Therefore, we get (4.56) from (4.55). This completes the proof of Theorem. ]

Remark 4.37 It is easy to assert that if 8. holds then for any 0 < § < N + 2
I [(I]])" | < Clglu) (4.58)

for some C = C(N,a,f,d,p) > 0.

Corollary 4.38 Let p > 1,a > 0 such that 0 < ap < N + 2. There holds

/

7 e < [Walt)”] < Ol (4.59)
for all p € MT(RNTL). Furthermore,
[(,On * /’[’]fm""am S 02 [/’L]g)jtﬂo“p (460)

forn € N, u € MH(RNFY) where {@,} is a sequence of mollifiers in RNTL. Here C; =
Ci(N7p7 Oé), i= 1a2

Proof. For R = oo we have I%9[y] = I,[u] and Ef® = E,. Thus, by (4.20) in Corollary
4.10 and Theorem 4.36 we get for every compact set £ C RV*1,

w(E) < e1Capy, ,(E)
if and only if for every compact set £ C RN+,
/ (Ia[u))? dzdt < csCapy,(E).
B
It follows (4.59).

Since To[@n * 1] = o * Lo[1] < M (I4[p]) and M is bounded in LP' (RN*!, dw) with w € A,
yield

[ o alons)” dw < callula,) [ (L))" do.
RN+1 RN+1
Thanks to Proposition 4.23 we have

(Calon s )], < et [Malu)”']

which implies (4.60). |

MHa P MHa P ’
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Corollary 4.39 Letp > 1, a>0with0<ap < N+2,0<d < a and R,d > 0. There
holds ,
R,$ p
@]
for all € MT(RN*Y) with diam(supp(p)) < d. Furthermore,

[‘pn * M]Dﬁgaw < 02<d> [M]Dﬁga«l’ (4'62>

forn € N, p € MT(RNFY) with diam(supp(u)) < d where {pn} is a sequence of standard
mollifiers in RN*TL,

< Ci(d/R, R) [y (4.61)

Proof. It is easy to see that
(Cl(d/R))_lHEf[MH|Lp’(]RN+1) < ||Eo}?’5 * M||LP'(RN+1) < Cl(d/R)HEf[MH|LP’(RN+1)

for any p € MT(RN*1) with diam(supp(p)) < d, thus two quantities Capgrs (E) and

CapEg’p(E) are equivalent for every compact set £ C RN+l diam(E) < d where equiv-
alent constants depend only on N,p,a and d/R. Therefore, by Corollary 4.10 we get
CapEf,sw(E) ~ Capg,_ ,(E) for every compact set £ C RN*1 diam(E) < d where equiva-
lent constants depend on d/R and R. Thus, by Theorem 4.36 and diam(supp(u)) < d we
get, if for every compact set £ C RN+,

u(E) < ca(d/ R, R)Capg, ,(E),

then for every compact set £ ¢ RV*1,
/ (120(u))"" dudt < ca(d/ R, R)Cap s (E) < ea(d/R, R)Capg, ,(E).
5 o ;

It follows (4.61). As in the Proof of Corollary 4.38 we also have for w € A,

[, Gt ) dw < esula,) [ (0 .

Thanks to Proposition 4.23 and Theorem 4.36 we obtain (4.62). |
Remark 4.40 Likewise (see [71, Lemma 5.7]), we can verify that if% <a< N+ %,

[(plyn * wl]mla—2/p’p S Cl [wl]gﬁla—Q/pfp and
[9017” * w2]mGa72/p’p S CQ(d) [w2]§)ﬁGo<—2/pvP )
forn € N and wi,ws € MT(RN) with diam(supp(ws)) < d where C; = C1(N, a, p), Co(d) =

Cao(N, a,p,d), {11} is a sequence of standard mollifiers in RN and [.]
was defined in Remark 4.34. Hence, we obtain

oile—2/pP) ['LmGa—vaP

[(p1,n *w1) ® 5{t=0}:|9«n7-¢a,p < Csfwr ® 5{t=0}]mna,p )
[(P1,n % w2) © 8(1=0} | gponr < Cald) (w2 @ S1=0}] gyou.n »

forn € N and wy,wy € MRV diam(supp(u)) < d where Cs = C3(N,a,p), Cy(d) =
Cy4(N,a,p,d).

Proposition 4.41 Letg>1,0<ag < N+2,0< R<00,0<d < aand K > 0. Let
0< feLl (RNt Let Cy,Cs be constants in inequalities (4.50) and (4.51) in Theorem
4.36 with p = ¢'. Suppose that {u,} is a sequence of nonnegative measurable functions in
RN*L satisfying
tni1 < KLl + f vneN
w < f (463)
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Then, if for every compact set E C RN+,

/ fldzdt < CCapyrs ,(E) (4.64)
E « b
with ot
2-atl /g1 \N\"
c<c 4.65
- 4<Cs(q—1) (qmql) ) ’ (469
then - .
29~
un < = 1R9f7] 4+ VneN. (4.66)
q—

Proof. From (4.50) and (4.51) in Theorem 4.36, we see that (4.64) implies

ISR 1)) < (g) eI (4.67)

Now we prove (4.66) by induction. Clearly, (4.66) holds with n = 0. Next we assume that
(4.66) holds with n = m. Then, by (4.65), (4.67) and (4.63) we have

Ump1 < KL [ud] + f
Kq291

gmq—l(
q—1

>q I (M LFD) Y] + K20 I [f9) + f

Kq20 1\ T
<wt (Y () et k2 4

Kq2e¢1
< qilﬂg’a[fq] +f
q

Therefore (4.66) also holds true with n = m + 1. This completes the proof of the Theorem.
N

Corollary 4.42 Let q¢ > ij_;rza, a > 0 and f € LL(RNTY). There exists a constant
C > 0 depending on N,a,q such that if for every compact set E C RN*L fE fldxdt <

CCapy, o(E), then u = Hou] + f admits a positive solution u € L], (RN*1).

Proof. Consider the sequence {u, } of nonnegative functions defined by ug = f and u, 11 =
Holul]l + f Vn > 0. It is easy to see that u,+1 < c1lo[ul] + f Vn > 0. By Proposition
4.41 and Corollary 4.38, there exists a constant ca = ca(V, «,¢) > 0 such that if for every
compact set E C RNt [ fidzdt < c;Capy,, ,(E) then uy, is well defined and

39-1
< c19g

nS = g Lelf+f V=0

Since {uy,} is nondecreasing, thus thanks to the dominated convergence theorem we obtain

u(z,t) = nh_}rr;o u, (2, t) is a solution of u = Hs[ud]+ f which u € LL (RN T1). This completes

the proof of the Corollary. [

Corollary 4.43 Let ¢ > 1, a > 0,0 < R < 00,0 < § < a and u € MH(RNFL). The
following two statements are equivalent.

a. for every compact set E C RNTL, fE f1<CCapgr.s p (E) for some a constant C > 0

b. There exists a function u € L] (RN*Y) such that u = I%9[ul] + ¢ f for some € > 0.

loc
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Proof. We will prove b. = a. Set dw(z,t) = ((I%%[u9))? + 9f9) dzdt, thus we have
dw(z,t) > (12° [w])q dzdt. Let M, denote the centered Hardy-littlewoood maximal function
which is defined for g € L} (RN T, dw),

1
M, g(x,t) = sup —=

p>0 m /Qp(m’t)

|gldew(z, ).

For E c RV*! is a compact set, we have

[ ey (0l) dzt < [ (e da )
RN+1

RN+1

Since M., is bounded on L*(RV*!, dw) for s > 1 and (Muxg)? (IF0[w])? > (IF°(wxg])?,
thus

/ (]If"s[wxE])q dadt < cyw(E).
RN+1
By Theorem 4.36, we get for any compact set £ C RN+1

w(E) < c2Capyrs , (E).

It follows the results. [ ]

Remark 4.44 In [64], we also use Theorem (4.36) to show exzistence of mild solutions to
the Navier-Stokes Equations

{ Oru — Au + Pdiv(u @ u) = PF in RN x (0, 00),

u(0) =ug in RV, (4.68)

where u, F € RN | P = id— VA~!V. is the Helmholtz Leray projection onto the vector fields
of zero divergence, i.e, for f € RN, Pf = f — Vu and Au = divf. Namely, there exists
C = C(N) > 0 such that if div(ug) =0 and

/ |D(z, t)’dadt < CCapyy, 5(K), (4.69)
K
for any compact set K C RNF1 where if (z,t) € RN x [0, +00),
t
D(z,t) = (e'®up)(z) —|—/ (eU3)APF) (x)ds,
0

and D(x,t) = 0 otherwise. Then, the equation (4.68) has global solution u satisfying
lu(z,t)| < |D(z,t)] + L [|D]?)(z, 1), (4.70)

for all (z,t) € RY x (0,00) for some ¢ = c(N).

5 Global point wise estimates of solutions to the parabolic
equations

First, we recall Duzzar and Mingione’s result [27], also see [42, 43] which involves local
pointwise estimates for solutions of equations (2.4).

Theorem 5.1 Then, there exists a constant C' depending only N, A1, Ao such that if u €
L2(0,T, H () N C(Q7) is a weak solution to (2.4) with p € L?(Q7) and u(0) =0

w0 <CF Juldyds + CBR ]l (e, 1 (5.1)
Qr(z,t)
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for all Qap(x,t) C Q x (—o0,T).
Furthermore, if A is independent of space variable x, (2.27) is satisfied and Vu € C(Qr)
then

Vu(a,t)| <CF |Vuldyds + CT| ) (=, 1) (5.2)
QR(JJ,t)

for all Qap(x,t) C Q x (=00, T).

Proof of Theorem 2.1. Let pu = pg + ps € Mp(Qr), with po € Mo(Qr), ps € Ms(2r).
By Proposition 3.7, there exist sequences of nonnegative measures fin.0.i = (frn.is Gn,is ini)
and fin s such that fn i, Gni,hns € C°(Qr) and strongly converge to some f;, g;, h; in
Ll (QT)> LQ(QT7 RN) and L2 (Oa T> H(% (Q)) respectively and Hn 15 Hn,25 Bn,s,1y Hn,s,2 € Cé’o (QT)
converge to ut, u=, uf, uy resp. in the narrow topology with fi, ; = pin,0,i+kn,s,i, fori = 1,2
and satisfying ud = (f1, 91, h1), g = (f2,92,ho) and 0 < g1 < @p#pt,0 < o < @p¥p™,
where {¢,} is a sequence of standard mollifiers in RVF1.

Let 01,02, € C°(2) be convergent to o+ and o~ in the narrow topology and in L (€2)
if o € LY(Q) resp. such that 0 < 01, < 1.0 %x07,0 < 09y < @1, x 0~ where {p1,} is a
sequence of standard mollifiers in RY. Set p,, = Hn,1 — Pn2 and o, = 015 — 02 .
Let wp, un,1,un,2 be solutions of equations

(un )t — div(A(x,t,Vuy)) = pn, in Qp,
u, =0 on 0Q x (0,7T), (5.3)
u,(0) =0, on Q,

(un,1)e — div(A(z,t, Vup 1)) = XQTMn 1 in Bor, (z0) x (0,275),

Un1 =0 on dBar, (7o) x (0,2T3), (5.4)
Un,1(0) = 01,n on Bap,(x0),
(un,2)t + div(A(z, t, —Vuy, 2)
Un,2 = 0 on 8B2TO (330) (0
’LLn,Q(O) = 0—2777( on B2TO (iCo)

)= Xortin,2 in Bar, (o) % (0,27T5),
,2T3), (5.5)

)

where Q C Br,(x¢) for 2 € Q.

We see that w1, un2 > 0 in Bag, (z0) % (0,277) and —up, 2 < 4y < Uy in Qr.

Now, we estimate u, 1. By Remark 3.3 and Theorem 3.6, a sequence {un,1,m} of solutions
to equations

(tn,1,m)e — div(A(@, ¢, Vin,1,m)) = (gnm); + Xerbna 0 Bar(zo) x (—217, 217),
Un,1,m = 0 on 8BQTO (.’170) X (—2T027 21—‘02)7
Un1.m(—2T¢) =0 on Boar, (o),

(5.6)
converges t0 U, 1 in Bar, (20) X (0,21¢), where gy m(x,t) = o1,,() fi2T§ 2,m(s)ds and
{¢2.m} is a sequence of mollifiers in R.

By Remark 3.2, we have

||“n,1,m||L1(Q”2TO(I070)) < ClTQQAn,m, (5.7)

where A, ;= pn1(Qr) + 'fQZTO (20.0) 0110 (T) P21 (t)dzdt.
Hence, thanks to Theorem 5.1 we have for (x,t) € Qr

Un,1,m(z, 1) < csTofN72||Un,1,m||L1(Q2T0(x070)) + cgla[pin1](z, t) + csla[o1 nm] (2, t)
< colla[pn,1](w, ) + colz[o1 nipm](, 1)

Since 0 < pin1 < ppxpt, 010 < @1 xo™,

Un,1m (2,1) < copn * L[] (2, 1) + co(@1mpam) * Ia[0" @ Sgmoy] (2,1) ¥ (2,t) € Q.
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Letting m — oo, we get

Un,1(2,1) < coon * L[] (2,8) + coprn * (I2[07 ® dpu=y](-,1)) () ¥ (2,¢) € Q.
Similarly, we also get

Un 2 (2, 1) < copn * Ip[pu ™ )(2, 1) + coprm * (Ialo™ ® d—y](-, 1)) (2) V (z,t) € Q.

Consequently, by Proposition 3.5 and Theorem 3.6 , up to a subsequence, {u,} converges to
a distribution solution (a renormalized solution if o € L'(Q)) u of (2.4) and satisfied (2.7).
|

Remark 5.2 Obviously, if o =0 and supp(p) C Q x [a,T], a > 0 then u =0 in Q x (0,a).
Remark 5.3 If A is independent of space variable x, (2.27) is satisfied then

|VU($7t)| < C(NvAlvAQaTO/d)H?TOHIU’| + ‘O’| ® 5{t:0}}(x,t) (58)

for any (z,t) € Q4 x (0,T) and 0 < d < 3 min{sup,¢q, d(z, 89),T01/2} where Q4 = {x € Q :
d(z,0Q) > d}. Indeed, by Remark 3.3 and Theorem 5.6, a sequence {v, m} of solutions to
equations

(Vn,m)e — div(A(t, Vun,m)) = (Gnm); + XQrfn i1 QX (=212,7),
Vpom =0 on 0Q x (=213, T), (5.9)
Vnm(—2T8) =0 on L,

converges to u, in L*(0,T, Wol’l(Q)), where Gnm(x,t) = on(x) ijTZ w2,m(s)ds and {p2.m}
0

is a sequence of mollifiers in R.

By Theorem 5.1, we have for any (z,t) € Q% x (0,T)

|an,m|dyd5 + Cl]I(liHMn‘ + low| ® @2,771](1'70-

Quay2(z,t)

|VUn,m(x,t)| < clf

On the other hand, by remark 3.2,
11V nmlll L @x (12 ) < 2To(lin] + [on] @ 02,m)(Q x (=15, T)).
Therefore, for any (z,t) € Q4 x (0,T)
[Vonm (2, )] < eslu[|pn] + on] © ©2.m](x, 1),

where c3 depends on Ty/d.
Finally, letting m — oo and n — oo we get for any (z,t) € Q¢ x (0,7)

[Vu(z, t)] < esh[|ul + |o| @ S0y ] (2, 1)
We conclude (5.8) since I1[|u] 4 o] ® dq1—03] < a2 [|u| + |o| @ dpi—0y] in Qr.
Next, we will establish pointwise estimates from below for solutions of equations (2.4).

Theorem 5.4 Ifu € C(Q,(y,s))NL%(s —r% s, HY(B,(y))) is a nonnegative weak solution
of (2.4) with data p € MT(Q,(y,s)) and u(s — r?) > 0, then there exists a constant C
depending on N, A1, Ay such that

> ,U(Qrk/s(ya §— 132587"13))
>C 5.10
o020 s (5.10)

where 1, = 47 Fr.
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Proof. It is enough to show that for p € (0,r)

35 2
/‘L(Qp/g(yvs - ﬁp )) < Cl(
pN -

u —

inf inf w). (5.11)
Qp/a(y,s) Qp(y,9)

By [50, Theorem 6.18, p. 122 ], we have for any 6 € (0,1 + 2/N),

1/6
(7[ (u—a)9> < ea(b—a), (5.12)
Qp/a(y,s—p?/4)

where b = ianpM(y,s) u, a = infq (, ¢ u and a constant c; depends on N, Ay, A, 6.
Let 1 € C°(Qp(y,s)) such that 0 < n < 1, suppy C Q,a(y,s — 1p°), n = 1 in
Quys(y,s — 22p?) and |Vn| < ¢3/p?, |m| < c3/p? where ¢z = c3(N). We have

35
Qpys(y: s = 1550°) < / n*du(z,t)
Qp(y,s)
= / g’ dadt + 2/ nA(x,t, Vu)Vndxdt
Qp(y,s) Qp(y,9)
= —2/ (u — a)nendadt + 2/ nA(z,t, Vu)Vndzdt
Qp(y:9) Qp(y,s)
< 03r_2/ (u — a)dzdt + 2A4 / n|Vu||Vn|dzdt
Qp/4(y1‘ —11’2) Qp(yvs)
<eyrN(b—a)+ C4/ n|Vul||Vn|dzdt.

Qp(y,s)

Here we used (5.12) with 6 = 1 in the last inequality. It remains to show that
/ n|Vu||Vn|dzdt < csr™N (b — a). (5.13)
Qr(y,5)
First, we verify that for € € (0,1)

/ |Vul|?(u — a) "¢ n?dedt < 06/ (u—a)'= (n|ne] + [Vn|?) dadt. (5.14)
Qp(yss) Qp(y:s)

Indeed, for § € (0,1) we choose ¢ = (u — a + §)~°n? as test function in (2.4),
0< / ug(u — a + 8) " nPdadt + / A(z,t, Vu)V ((u — a+ 0)"*n?) dadt
Qo (y:5) Qp(y:s)
<2(1 75)/ (ufa+5)17€|nt\ndxdt75/\2/ |Vul*(u — a+ 6) " tn?dadt
Qp(y:9) Q

P(y7s)

—|—2A1/ n|Vul|(u — a + §)~%|Vn|dxdt.
Qp(y:s)
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So, we deduce (5.14) from using the Holder inequality and letting 6 — 0.
Therefore, for € € (0,2/N) using the Holder inequality and we get

/ n|Vul||Vn|dxdt
Qr(y;s

1/2 1/2
< / |Vu|?(u — a)€1n2dxdt> (/ (u— a)5+1|V77|2dxdt>
Qp(y:s) Qp(y:s)
1/2 1/2
<e¢ (/ (u—a)' == (nlme| + | Vn]?) dwdt) (/ (u— a)E“IVnIdedt)
Qp(y,9) Qp(y,9)

1/2 1/2
<cgp? / (u— a)lsdmdt> (/ (u— a)Ededt) .
Qp/a(y,s—5p?) Qp/a(y,s—5p?)

Consequently, we get (5.11) from (5.12). |

Proof of Theorem 2.3. Let 1, € (C2°(Qr)) ", 0, € (C°(Q2))T be in the proof of Theorem
2.1. Let u, be a weak solution of equation

(un)t — div(A(x,t,Vuy)) = pn, in Qp,
u, =0 on 0Q x (0,7T),
u,(0) =0, on Q.

As the proof of Theorem 2.1, thanks to Theorem 5.4 we get By Remark for any Q,(y,s) C
Q x (—diam(2),T) and r, = 47 *r

= QTk/S(yv B 128rk)) Un ® 5{t 0})(@“/8(1% - 13258T/2€))
n(y,8) > ¢ +c .
Finally, by Proposition 3.5 and Theorem 3.6 we get the results. ]

Remark 5.5 If u € L(Qr) satisfies (2.8) then Go[xpp] € LI(RNTY) and G%[XFO'] €

LiRN) for every E cC Q x [0,T) and F CC Q. Indeed, for E CcC Q x [0,T), ¢ =
dist (B, (2 x (0,T))U(Q x {t =T1})) > 0, we can see that for any (y,s) € Qp, r, = 47%¢/4

i EmQ7k/8(ya - 13258r]%))

k

u(y,s) > c , (5.15)

where fi = p+ 0 @ df—q} -
Moreover, for any (y,s) ¢ Qr

=0.

i Evak/E%(ya 77587%))

N
k=0 k
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Thus,

_ 35,2 4
OO>/RN+1Z< EQO/Sjga 128rk))> dyds
AENQr, sy, s — 2r?)) )
/RNZ/ < T;ZCV dsdy
q
/ /< EmQrk/8<ya ))> dey
RN
e/64
>CZ/ / ( Eme(y, ))) /38
]RN+1

> (o) [ | (Galie])” dsdy

Thus, from Proposition 4.19, we get the results.

Proof of Theorem 2.5. Set D,, = B,,(0) x (—n?,n?). For n > 4, by Theorem 2.1, there
exists a renormalized solution u,, to problem

(un)t — div(A(z,t,Vu,)) = xp,_,w in Dy,
up =0 on 0B, (0) x (—n?,n?),
un(—n?) =0 on B,(0).

relative to a decomposition (fy, gn, hn) of xp, _,wo satisfying

~Kly[w (z,t) < up(x,t) < Klp[wt](z,t) V (2,t) € D,. (5.16)

From the proof of Theorem 2.1 and Remark 3.9, we can assume that u, satisfies (3.14) and
(3.15) in Proposition 3.16 with 1 < g < 2F2, L = 0 and

fnllzr iy +1lgnll2) + nl + VAl L2(D,) < 2|w](Diga) (5.17)

for any i = 1,...,n — 1 and h,, is convergent in L{ (RN*1).
On the other hand, by Lemma 4.26 we have for any s € (1, %)

/ Iunlsd:fdtSKs/ (Iy[|w|])*dadt

m m

< K/ (Ls[|w]])*dzdt
Qam(zo,to)

< e MmNt?, (5.18)

for n > m > |zo| + |to|'/?. Consequently, we can apply Proposition 3.17 and obtain that ,,
converges to some u in L}, (R; VVlicl(]RN))
Since for any « € (0,1/2)

2
/ %dmdt < Cla) ¥ =m,
Unp

N+2

thus using (5.18) and Holder inequality, we get for any 1 < s1 < $75

/ [Vu,|*tdedt < Cp,(s1) for all n>m > |xg| + \to\l/z.
Dy,
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This yields u, — u in L (R; W21 (RN)).

loc loc

Take p € C°(RV*H1) and mg € N with supp(¢) C Dyp,, we have for n > mg + 1

*/ Un@tdzdtJr/ A(x,t,Vun)Vgod:cdt:/ wdw
RN+1 RN+1 RN+1

Letting n — oo, we conclude that u is a distribution solution to problem (2.6) with data
p = w which satisfies (2.9).
Claim 1. If w > 0. By Theorem 2.3, we have for n > 4F0F1 (y, s) € By, x (0,n?)
> w .8 — 22r2YN D,,_
y, s Z co Z (Qrk/S(y r;]gg k) 1)
k

)

k+ko

where 7, = 4~ . This gives

(y,8) > e Y wW(Qp-2r-3(y, s — 35 x 2*42:7]3: Byn1(0) x (0, (n — 1)*))
k=—ko

Letting n — oo and kg — oo we have (2.10). Finally, thanks to Proposition 4.8 and Theorem
4.2, we will assert (2.11) if we show that for ¢ > &2

2\ w(Qo-ne—s(, t — 35 x 27T\ oo (o0, (x,1)) \ " dp
/R< Z 9—2Nk ) dxdt > Cs/R/O (;N> ?dxdt‘

k=—o00

Indeed,

o0

. _ —ak—7\\\ ¢
/(Z (@q-an-s (.t~ 35 x 2 ))) it
7\, 4 2
—4k—T7 q
Z / ( Qg 2k—3 l‘2t 2Ni5 X 2 ))) dide

k=—o00

Q ak—s(x,t !
z/( el ”) @
k=—o00

>c4/RNH/+OO< ”) dppd dt.

Claim 2. If A is independent of space variable x and (2.27) is satisfied. By Remark 5.3 we
get for any (z,t) € Dy, /4

|V, (z,t)] < sy [Jw|](z,t).

Letting n — oo, we get (2.12).

Claim 3. If w = 1+ 0 ® 8oy with g € MRY x (
(5.2) we can assume that u,, = 0 in B, (0) x (—n?,0
clearly u|]RN><[O ) 18 a distribution solution to (2.5

0,00)) and o € M(RY), then by Remark
). So, u = 0 in RY x (—00,0). Therefore,
). The proof is complete. [

Remark 5.6 If w € M,(RYHL) then u satisfies

< C(N, Aq, o) |w|(RNT).

(]RN+1

Moreover, I[|w|] € L™~ (RN} and Iy[jw|] < co a.e in RN+,
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6 Quasilinear Lane-Emden Type Parabolic Equations

6.1 Quasilinear Lane-Emden Parabolic Equations in ()
To prove Theorem 2.8 we need the following proposition which was proved in [6].

Proposition 6.1 Assume O is an open subset of RN*1. Let p > 1 and p € M+ (0). If p
is absolutely continuous with respect to Capy ;1 ,, in O, there exists a nondecreasing sequence
{pn} COF(O)N (Wg’l(RN“))*, with compact support in O which converges to p weakly
in M(O). Moreover, if pn € M} (O) then ||pn — pllon,0) — 0 as n — oo.

Remark 6.2 By Theorem 4.17, W2 (RNTY) = LERNTY) it follows {pun} C 9 (0) N

* v v ’
(LHRNT))". Note that |\pn||(£,2,(RNH))* = G2 [pnlll Lo g1y S0 Galun] € LP (RN+1),
Consequently, from (4.17) in Proposition 4.8, we obtain I%[u,] € LY (RN*Y) for any n € N
and R > 0. In particular, Iz[p,] € LY (RN*1) for any n € N.

loc

Remark 6.3 As in the proof of Theorem 2.5 in [16], we can prove a general version of
Proposition 6.1, that is: for p > 1, if u is absolutely continuous with respect to Capg_ ,,
in O, there ezists a nondecreasing sequence {p,} C M (0) N (LE, (RN“))*, with compact
support in O which converges to p weakly in M(O). Furthermore, Iy [un] € Lf;C(RN“) for
all n € N. Besides, we also obtain that for pn € My(O) is absolutely continuous with respect
to Capg,_ , in O if and only if p = f + v where f € L'(0) and v € (EZ(RN“))* )

Proof of Theorem 2.8. First, assume that ¢ € L!(Q). Because u is absolutely continuous
with respect to the capacity Cap, ; ., so are ut and p~. Applying Proposition 6.1 there
exist two nondecreasing sequences {p1.,} and {u2,} of positive bounded measures with
compact support in Q7 which converge to ™ and p~ in 9%, (Qr) respectively and such that

Io[p1,n], Io[po,n] € L9(Qr).

For i = 1,2, set [Li71 = M1 and /.Nl,iJ' = M5 — Hij—1 > O, SO Win = Z?:l ﬂ@j. We write
Min = Min,0Flin,ss flij = fij,0F i j,s With i n.0, im0 € Mo(Q1), tin,ss fin,s € Ms(Qr).
As in the proof of Theorem 2.1, for any j € N and ¢ = 1, 2, there exist sequences of nonneg-
ative measures fim.i ;.0 = (fm.ij»Gm.igs lom.ij) and fim,i s such that finij, gm.ij, hm,ij €
C>°(Q7) and strongly converge to some f; j, gi j, hi ; in LY(Q7), L2(Qr,RY) and L?(0, T, H (2))
respectively and i, i j, fim,i,j,s € C°(Qr) converge to fi; j, fli ;s resp. in the narrow topol-
ogy Wlth [Lm,i,j = ﬂm,i,j,O -+ ,[Lm,i,j,s Wthh satisfy ,ai,j,O = (fi,jagi,jahi,j) and O S ,am,i,j S
©Om, * ﬁz,j and

fm il + 19m,igll 2oy may + 1hmiasl L2 0,1, 13 (9)) F Hmiigs (Qr) < 2/3,5(Qr). (6.1)

Here {¢,,} is a sequence of mollifiers in RV*1.
For any n, k,m € N, 1et W g m, U1 0 kms U2,nkm € W with W = {z: 2 € L*(0,T, H}(Q)), 2 €
L2(0,T,H=1(Q))} be solutions of problems

(’U’?’hk,m)t - dl’U(A(.Z‘, L, vun,k,m)) + Tk)(lun7k7m|q_1un7k,m) = Z?:l ([LmJ,j - ﬂmg)j) in QT;
Un om = 0 on 092 x (0,7,
un,k,m(o) = T7L(U+) - TTL(U_) on €,

(Ul,n,k,m)t - di’U(A(CU,t, Vulyn’kﬁm)) + Tk(u‘in,k,m) - Z?:l /-Lm,1,j in QT;
U1 k,m =0 on 9Q x (0,T), (6.3)
ul,n,k,m(o) = Tn(0'+) in Q,

(u2,n,k’,m)t - d“}(;l(‘ra t, vu?ﬂ%kam)) + Tk (ugm,k,m) = Z?:l ﬂm72,j in QTa
U2,n,k,m = 0 on 99 x (0,7), (6.4)
U2,n,k,m(0) - Tn(O'i) in Q7
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where A(x,t,&) = —A(x, t, —£).
By Comparison Principle Theorem and Theorem 2.1, there holds, for any m, k the sequences
{u1 nk,m tn and {ug n k,m}n are increasing and

*K]IQ[Tn(O—i) & 5{t=0}] - K]I2[N2,n * Som] < —U2n,km < Un, k,m < U1, n,k,m
S KHZ [Nl,n * @m] + K]IZ[Tn(U+) ® 6{2&:0}]7

where a constant K is in Theorem 2.1. Thus,

*K]IQ[Tn(O—i) ® 5{t:0}] - KI[Q[,U’Q,TL] * Oy < —U2.n,k,m < Un, k,m < U1,,n,k,m
< Klo[pn n] * om + KIo[Th(0F) @ dgi—0y)-

Moreover,

/ Ti(ut,, o, )dadt < / m * Himdrdt + 10(Q) < |ul(Qr) + [o](2).
QT QT

As in [14, Proof of Lemma 5.3], thanks to Proposition 3.5 and Theorem 3.6, there exist subse-
quences of {tn km }m {U1nkm}tm, {U2.n km}m, still denoted them, converging to renormal-
ized solutions wuy, k U1 n K, U215k Of equations (6.2) with data w5, — po.n, Un x(0) = T (0T) —
Tn(o™) and the decomposition (327 f1,; — D27 1 f2.50 2oyt 91,5 — 2oyt 92,55 2ojmr h1g —
Z;;l ha ;) of p1,n,0 — H2,n0, (6.3) with data p1 ., u1,,£(0) = T5,(c7) and the decomposition

Xy frgs 2oj=1 91y 2=y haj) of pi1n 0, (6.4) with data i, u2,,x(0) = T, (07) and the
decomposition (3°7_; f2,5, 25— 92,5 21 h2,j) of p2.n 0 respectively, which satisfy

—KI[Tn(07) ® dgp—0y] — Kla[po,n] < —tompk < Unk < U1k
< Kl + KL [Th(0h) @ 640y
Next, as in [14, Proof of Lemma 5.4] since Is[y; ] € L4(Q2r) for any n, thanks to Proposition

3.5 and Theorem 3.6, there exist subsequences of {un ki {¢1,n.k}k, {U2,nk}k, still denoted
them, converging to renormalized solutions w, 1, U2, of equations

(un)t - d“}(A(-T7 t7 vun)) + ‘un‘q_lun = /”‘l,n - /-1/2,n in QTa
Up =0 on 092 x (0,7, (6.5)
un(o) = Tn(o+) - Tn(ai) in Q,

(u1,n)e — div(A(z, t,Vuy n)) +uf ,, = p1n in Qr,
Ut =0 on 092 x (0,7, (6.6)
u,n(0) =Ty(c™) in Q,

(ug.n)e — div(A(z,t, Vuz,)) + ug , = piz;n in Qr,
Uz =0 on 09 x (0,7, (6.7)
u2.,(0)=T,(c7) in Q,

relative to the decomposition (37 fi; — D20 ;1 fo, 2ojo 915 — Doio1 92,50 2oyt M1 —
n n n n n

i1 heg) of pino — kom0, (Xoioq Sy, 2o5=1 915y 2oj—1 1) of pino and (325, fa

Z?Zl 92,5, Z;’:l ha ;) of pi2, 0 respectively, which satisfy

—KI [T’ﬂ(ua) ® 5{7&:0}] - K]IQ[MZn] < —U2n <u, < Ul,n
< Kl [p 0] + K2[Tn (ug ) @ 61—y

and the sequences {u1,,}, and {uz .}, are increasing and

[ utdode < (@) + lol(9).
Qr
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Note that from (6.1) we have

I fi.j

L1 @) T 19i5 0l L2 vy + RisllL2 0,7, H2(0)) < 24,5 (Q7)

which implies

S il + D gisllza@eryy + D Mhijll 2o, mi @) < 20im(Qr) < 2/p|(Qr).
j=1 j=1 j=1

Finally, as in [14, Proof of Theorem 5.2] thanks to Proposition 3.5, Theorem 3.6 and Mono-
tone Convergence Theorem there exist subsequences of {wy, }ny {t1,n }n, {t2,n }n, still denoted
them, converging to renormalized solutions w, u1, ug of equations (6.5) with data p, ©(0) = o
and the decomposition (3277, f1.;— 32721 f2.js D50 915 = 2o je1 920> Dojer Mg — 20 h2g)
of o, (6.6) with data ™, ui(0) = o and the decomposition (377, f1.5, > ;= 91,4,

>252 1 huy) of pg s (6.7) with data i, up(0) = o~ and the decomposition (3272, fa;, 3272, 92,5,
> 5=y haj) of pg , respectively and

—Kb[o~ ®6—0y) — Kla[p7] < —up < u < ug < Klp[put] + Kla[o™ @ 60y

We now have remark: if o = 0 and supp(p) € Q x [a,T], a > 0, then u = u; = up = 0 in

Q2 x (0,a) since U = U1 nk = Uz pk = 0in Q x (0,a).

Next, we will consider o € 9,(€2) such that o is absolutely continuous with respect to the

capacity Capg, y in Q. So, xa;# + 0 ® d—gy is absolutely continuous with respect to
2,

the capacity Cap,; , in Q x (=T,T). As above, we verify that there exists a renormalized
solution u of

uy — div(A(x,t, Vu)) + [ul]?'u = xopp+ 0 @ d—0y In Qx (=T,T),
u=0 on 00 x (=T,T), (6.8)
u(=T)=0 on £,

satisfying u = 0 in Q x (=7,0) and
—K]IQ[U_ (9 6{t:0}] — K]IQ[/,L_] S u S KHQ[/.L+] + K]IQ[O’+ X 5{,5:0}].

Finally, from remark 3.11 we get the result. This completes the proof of the theorem. ]

Proof of Theorem 2.9. Let {u,;} C C&®(Qr),0,, € CX(2) for i = 1,2 be as in
the proof of Theorem 2.1. We have 0 < 1 < @n * u7,0 < pino < @ xpu=,0 < 01, <
01 x07,0 < 09, < @1, %0 for any n € N where {¢,} and {¢1,,} are sequences of
standard mollifiers in R¥ Y RN respectively.

We prove that the problem (2.2) has a solution with data g = pn, = fing1 — lng,2,0 =
Ony = O1,ny — O2,n, f0r ng € N. Put

K
J = {u € LQr):ut < quﬂgTo’é[Mno,l + 01,00 @ df1=0}]

K
and u” < qqiingTO’é[,uan +02,ny ® 6{t:0}] } .

where max{—% +2,0}<d<2

Clearly, J is closed under the strong topology of L4(Qr) and convex.

We consider a map S : J — J defined for each v € J by S(v) = u, where u € L'(Qr) is the
unique renormalized solution of

Ut — dZU(A(Z‘,t, VU)) = |U|q_1v + Hng,1 = Hng,2 in Qr,
u=0 on 90 x (0,T), (6.9)

w(0) =01,y — 02, In Q.
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By Theorem 2.1, we have

u < K3 [(v™) 9] 4+ KI3™ [ttne.1 + 01,0 @ =0y,
u < K]IgTO [(Ui)q] + K]IgTO [ﬂnm? + 02,0y ® 6{t=0}]a

where K is the constant in Theorem 2.1. Thus,

K \1 q
ek (ql) B | (B ang + 010 © Sge=y]) | + KT [ty 1 + 01y @ Spaoy);

K

a q
. 1> H;TO"S {(HgTo’s[Mno,Q + 02,0y @ 5{,5:0}}) :| + KI[;TO’&[/LnO’Q + 02,0y @ 5{75:0}}.

u < K <
Thus, thanks to Theorem 4.36 there exists ¢; = ¢1 (N, K, 8, q) such that if for every compact
sets £ C RN+,

[noil () + (|05, | © Og1=0y)(E) < e1Cap poms , (E). (6.10)

then ]IgTO"S[uno,i + Oing ® Og1=0}] € LI(RN*1) and

q —1)a1 )
HgTo’é [(HgTo’é[Mno,i + Ting ® 5{t:0}]) } < (q(Kq))q]IgToya[Mno,z’ + Oing ® dpp—0y] i =1,2.

which implies u € L(Qr) and

qK
u < B fng1 + 01, @ Opu=y] and
qK

u <
S y—1

157 [ting2 + 02,n0 © 810}
Now we assume that (6.10) is satisfied, so S is well defined. Therefore, if we can show
that the map S : J — J is continuous and S(J) is pre-compact under the strong topology
of L9(Q7) then by Schauder Fixed Point Theorem, S has a fixed point on J. Hence the
problem (2.2) has a solution with data p = iy, 0 = op,.
Now we show that S is continuous. Let {v,} be a sequence in J such that v, converges
strongly in L?(Qr) to a function v € J. Set u,, = S(v,). We need to show that u, — S(v)
in L1(Qr).

By Proposition 3.5, there exists a subsequence of {u,,}, still denoted by it, converging to
u a.e in Qp. Since

K
|un| < Z qq_ill[gTo’é[Mno,i + Ting @ dpi—0y] € L1(Qr) VneN
i=1,2

Applying Dominated Convergence Theorem, we have u,, — u in L?(Q27). Hence, thanks to
Theorem 3.6 we get u = S(v).

Next we show that S is pre-compact. Indeed if {u,} = {S(v,)} is a sequence in S(J). By
Proposition 3.5, there exists a subsequence of {u,}, still denoted by it, converging to u a.e
in Q7. Again, using get Dominated Convergence Theorem we get u,, — w in L?(Qr). So S
is pre-compact.

Next, thanks to Corollary 4.39 and Remark 4.40 we have

(i + i ® Spp—0}loman.ar < C2[|u] + 0| @ dqi—0y]opas.r YV €Nji=1,2,

for some ¢ = c2(N, q).
In addition, by the proof of Corollary 4.39 we get

(c3(Tp)) ~*Capg, 4 (E) < Cap garys  (E) < e3(To)Capg, o (E)
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for every compact set E with diam(E) < 2Tj. Thus, there is ¢4 = c4(N, K, d, ¢, Tp) such
that if

[[1] + o] @ dr—0}]opgn.ar < ca, (6.11)

then (6.10) holds for any ng € N.
Now we suppose that (6.11) holds, it is equivalent to (2.13) holding for some constant
C1 = C1(Tp) by Remark 4.34. Therefore, for any n € N there exists a renormalized solution
Uy, of
(un)e — div(A(z,t, Vu,)) = [un|T Yy + fn1 — pin2 in Qp,
Up =0 on 90 x (0,7, (6.12)
un(0) =01, — 02, iIn Q,

which satisfies

qK 270,68

. qK H2Tg,6
q-17

12 [fn,2 + 02,0 @ Sgi=0y] < un < [tn1 + 01,0 @ di=0y]-

Thus, for every (z,t) € Qr,

K _ K _
— e BN ) - e s (Bl @ 5mg) ] 0)(@) < (e )

K
< T+ ([0 )) (@, t) +

qK 2T, 7 —
p - PLn* (157%™ @ dge=0y (-, 1)) ().

Since o 137 (1], £), 91,0137 [0% @6 4oy (- 1)) () converge to B2 ¥, 1), TP [
dpi=0y](w,t) in LA(RN*+1) as n — oo, respectively, so |u,|? is equi-integrable.

By Proposition 3.5, there exists a subsequence of {u, }, still denoted by its, converging to u

a.e in Qp. It follows |u, |9 u, — |ul? " u in LY(Q7).

Consequently, by Proposition 3.5 and Theorem 3.6, we obtain that w is a distribution (a
renormalized solution if o € L(Q)) of (2.2) with data u, o, and satisfies (2.14). Further-
more, by Corollary 4.39 we have

(c5(Tp))~t [lul + o] ® 5{:::0}};3392,(/

q
< [(B™ (il + o1 @ 8p=p)) ] < es(@0) [l + 0] © Sy ] iy

MmG2.4’

which implies [|u|%gpg,. < ca(To) and we get (2.15). This completes the proof of the
Theorem. [ ]

Remark 6.4 In view of above proof, we can see that

i. The Theorem 2.9 also holds when we replace assumption (2.13) by

HI(E) < CCapy, ,(E) and |o|(F) < CCapy, ,(F).

for every compact sets E C RN*1 F c RN where C = C(NAy,As,q) is some a
constant.

ii. If o =0 and supp(u) C Qx[a,T), a > 0, then we can show that a solution u in Theorem
2.9 satisfies u =0 in Q x (0,a) since we can replace the set E by E’:

K
E = {u €LQr):u=0inQ x (0,a) and u™ < %H%T“"s[uno,l + 01,0 ® d1—0}]

_ K
and u- < %Hngé[uan + 02,0y @ 5{75:0}} } .
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6.2 Quasilinear Lane-Emden Parabolic Equations in RY x (0, 00) and
RN—H

This section is devoted to proofs of Theorem 2.12 and 2.14.

Proof of the Theorem 2.12. Since w is absolutely continuous with respect to the
capacity Capy, , in RV |w| is too. Set D, = B,(0) x (—n*n?). From the proof of
Theorem 2.8, there exist renormalized solutions u,,, v,, of

(un)e — div(A(x, t, Vug)) + |un|? tu, = xp,w in Dy,
u, =0  on 8B,(0) x (—n?,n?),
up(—n?) =0 in B,(0),

and
(vn)¢ — div(A(z,t, Vv,)) +vd = xp, |w| in Dy,
v, =0 on 0B, (0) x (—n? n?),
vp(—n?) =0 in B,(0),

relative to decompositions (£, gn, hn) of Xp,wo and (f,,,G,,, hn) of X B, (0)x (0,n2)|wol, satis-
fied (3.14), (3.15) in Proposition 3.16 with 1 < go < q, L(uy) = |un|?7 tu,, L(v,) = v and
w is replaced by xp,w and xp, |w| respectively. Moreover, there hold

~KLw™] <u, < KLw'], 0<v, < KL[jw|] in D,, (6.13)

and 41 > Un, |un| < v, in Dy,

By Remark 3.9, we can assume that
[ fallzr (o) + llgnlle2 (o, ryy + [[1An] + VRl 22D,y < 2lw[(Diy1) and
[l + Gnllzzo, wyy + Anl + [Vhall L2,y < 2|w|(Diva),

for any i = 1,...,n — 1 and hy,, h,, are convergent in L{ (RN*1). On the other hand, since

Un, Uy, satisfy (3.14) in Proposition 3.16 with 1 < qo < ¢, L(uy) = |un|?  uy, L(v,) = vl
and thanks to Holder inequality: for any ¢ € (0, 1)
(lun] + D) < elup|? +c1(e) and  (Jun| +1)% < elvn]? + c1(e).

Thus we get

/ |un|qudt—|—/ \un|q°dxdt—|—/
Di Di D

fori=1,...,n — 1, where the constant C(i) depends on N, A1, As, qo, ¢ and i.
Consequently, we can apply Proposition 3.17 with j,, = —|u,|9" u, + xp, w, —vL + xp, |w|
and obtain that there are subsequences of u,, v,, still denoted by them, converging to some

vl dxdt +/ vlodrdt < C(i) + co|lw|(Dit1). (6.14)

i

w,v in LY (R; W (RN)). So, % € L} (RN for all @ > 0 and u € L (RN*)
satisfies (g(.zl’?). In addition, using Holder inequality we get u € L} _(R; W\ (RY)) for any
1<~y < =

Thanks to (6.14) and Monotone Convergence Theorem we get v, — v in L}, (RVT1). After,
we also have u, — u in L] (RN*1) by |u,| < v, and Dominated Convergence Theorem.
Consequently, w is a distribution solution of problem (2.16) which satisfies (2.17).
Ifw=p+0o®dy—g with p € M(RY x (0,00)) and o € M(RY), then by the proof of
Theorem 2.8 we can assume that u, = 0 in B, (0) x (=n2,0). So, u = 0 in RY x (—o00,0).
Therefore, clearly ulgx (g o is a distribution solution to (2.18).

This completes the proof[ of the theorem. [

Proof of the Theorem 2.14. By the proof of Theorem 2.9 and Remark 6.4, 4.34, there
exists a constant ¢; = ¢ (N, ¢, A1, Ay) such that if w satisfy for every compact set £ ¢ RN F1,

|w|(E) < c1Capyy, o (E), (6.15)

67



NGUYEN QUOC HUNG

then there is a renormalized solution u,, of

(un)e — div(A(x, t, Vuy)) = |up|? tu, + xp,w in D,
Up =0 on 0B, (0) x (—n?,n?),
un(—n?) =0 in B,(0),

relative to a decomposition (fn, gn,hn) of Xp,wo, satisfying (3.14), (3.15) in Proposition
3.16 with g = ¢, L = 0 and y is replaced by |u,|9" u, + xp, w and
qK
qg—1

Tofw™](z,t) < un < qul]Ig[wﬂ(x,t) (6.16)
for a.e (z,t) in D,, and L[w*] € L} (RN*1).

Besides, thanks to Remark 3.9, we can assume that f,, gn, h, satisfies (5.17) in proof of
Theorem (2.5) and h,, is convergent in L (RN 1),

Consequently, we can apply Proposition 3.17 and obtain that there exist a subsequence of
Up, still denoted by it, converging to some u a.e in RV*! and in LL (R; W2 (RN)). Also,

loc loc

u, — u in LL (RN+1) by Dominated Convergence Theorem, (luﬁ% € L (RN*1) for

all @ > 0. Using Holder inequality we get v € L] (R; WIL’J(RN)) forany 1 < v < %.

Thus we obtain that u is a distribution solution of (2.20) which satisfies (2.21). Since (6.15)
holds, thus by Theorem 4.36 we get

3 wllgprig.er < [Allwl])Ioprea.a < €2 [0y, »

so we have [Ju|¥]yp2,.0 < cs3. It follows (2.23).
If w= i+ 0 ® dp—g} with g € MRY x (0,00)) and o € M(RY), then by Remark 6.4 we
can assume that u,, = 0 in B, (0) x (—=n?,0). So, u = 0 in R x (—o0,0). Therefore, clearly
Ulpn  [0,00) I8 & distribution solution to (2.22).
This completes the proof of the theorem. ]

7 Interior Estimates and Boundary Estimates for Parabolic
Equations
In this section we always assume that u € C(=T,T, L*(Q))NL3(=T,T, H}(R)) is a solution

to equation (2.4) in Q x (=T,T) with u € L*(Q x (=T,T)) and u(-=T) = 0. We extend u
by zero to Q x (—oo, =T, clearly u is a solution to equation

{ up — div (A(z,t,Vu)) = x(_rmy(H)p in Qx (—00,T), (7.1)

u=0 on 00 x(—o0,T).
7.1 Interior Estimates
For each ball Bog = Bag(xo) CC Q and ¢y € (=T, T), one considers the unique solution
w € C(ty — 4R? to; L*(Bag)) N L2(tg — 4R? to; H' (Bag)) (7.2)
to the following equation

{ wy — div (A(z,t, Vw)) = 0 in Q2r, (7.3)

w=1u on 0,Q2r,

where Qar = BQRX(tQ_4R2,tO) and 8pQ2R = (BB2R X (to — 4R2,t0))U(BgR X {t =1y — 4R2}).
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Theorem 7.1 There exist constants 6, > 2, 1 € (0, %] and Cy,Cs,C3 depending on
N, A1, Ay such that the following estimates are true

1 (Q2r
]é |Vu — Vw|dzdt < Cl|]|%]\]7+1), (7.4)
2R
1
01
][ Vweldxdt> <Oy ][ |Vw|dzdt, (7.5)
Qp/2(y7s) Qp(yvs)
1/2 e 1/2
][ |w - EQ” (y,5)|2d.rdt> < 03 <p1> (][ |w - EQPQ (?J;S)|2dxdt> )
Qﬁl (y,s) p2 Qp2 (yws)
(7.6)

and

1/2 51 1/2
][ |Vw|2dxdt> <04 (”1) (7[ |Vw|2da:dt> (7.7)
Qpy (4:9) P2 Qps (4:5)

fO’I" any Qp(ya S) - Q2R; and QPI (y7 S) - sz (y7 5) C QQR-

Proof. Inequalities (7.4), (7.5) and (7.6) were proved by Duzaar and Mingione in [27]. So,
it remains to prove (7.7) in case p; < ps/2. By interior Caccioppoli inequality we have

1/2 1/2
][ Vw|?dzdt | <& ][ |w — o, (ye?dzdt | .
Qﬂl (y,s) P1 Q201 (yvs)

On the other hand, by a Sobolev inequality there holds

1/2 1/2
<][ lw —Wq,, (y.5) dedt> < capo <][ Vw|2dxdt> .
Qp2 (yrs) QPQ (.%5)

Therefore, (7.7) follows from (7.6). |

Corollary 7.2 Let 31 be the constant in Theorem 7.1. For 2— 31 < 0 < N + 2, there exists
a constant C' = C(N, A1, Az, 0) > 0 such that for any B,(y) C B,y(y) CC Q, s € (=T,T)

B T N+3-0
/ \Vuldadt < CpN+3~° ((0> + 1| [IMop]l o< (x (—1,1))- (7.8)
Qp(yvs) pO

Proof. Take B,,(y) CC Q and s € (=T,T). For any Q,, (y,s) C Q,,(y,s) with p1 < pa/2,
we take w as in Theorem 7.1 with Q2r = @, (v, s). Thus,

p N+B1+1
/ \Vwl|dzdt < ¢, <1> / |Vw|dadt,
Qpq (y,s) P2 Qpy (y,s)

/ IV — Vuwldadt < espa|ul(Qpy (Y, 9)),
Qo (y,8)

and we also have

cgl/ |Vu|dzdt S/ [Vw|dzdt < 03/ |Vu|dxdt.
ng (y,s) ng(yﬁs) ng(yvs)
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It follows that

/ |Vu|dzdt < / |Vw|dzdt + / |[Vu — Vw|dzdt
Qﬂl (y15) Qpl (yvs) Qﬂl (yvs)

N+p1+1
<cy (pl) / |Vw|dxdt —|—/ |Vu — Vw|dzdt
p2 Qpy (y,8) Qpy (y,8)

o1 N+p1+1
<eo(Z) [ Vuldedt+ gl @),
P2 QpQ(y’S)

This implies

o1 N+pB1+1
/ |Vuldzdt < cs () / |Vuldwdt + cspy 37 [Mp || Lo (ox (- 7.7)) -
Qpy (,8) P2 Qpy (,8)

Since N +3 — 8 < N + 1 + 1, applying [50, Lemma 4.6, page 54] we obtain

N+3-6
[ vudsar < (£) Ul oy + oo™ ol e ry
Qp(?l»s) Po

for any B,(y) C B,,(y) CC Q, s € (=T,T). On the other hand, by Remark 3.2
IVl x(—r.1)) < erTolul(Q x (=T, T)) < esTy' 27| Mg (]| o= (2 (-7
Hence, we get the desired result. ]
To continue, we consider the unique solution
v € C(to — R? to; L*(BR)) N L*(to — R*,to; H' (BR)) (7.9)
to the following equation

VUt — div (ZB (Io)(t7 VU)) =01n QR,
{ v =w onR OpQR, (7.10)

where Qr = BR(xo)X(to—RQ,to) and 0,Qr = (8BR X (tg — RQ,to))U(BR X {t =19 — RQ}).

Lemma 7.3 Let 0 be the constant in Theorem 7.1. There exist constants C1 = C1(N, A1, Ag)
and Cy = Ca(A1, As) such that

1/2
<][ VwVv|2dxdt) < Cl[A}ﬁ][ |Vw|dzdt, (7.11)
R 2R
with s1 = 9?0712 and
C;l/ |Vv|2dxdt§/ \Vw\2dxdt§02/ |Vo|2dadt. (7.12)
Qr Qr Qr

Proof. We can choose ¢ = w — v as a test function for equations (7.3), (7.10) and since

1
/ wi(w — v)dzdt — / ve(w —v)dadt = = / (w —v)*(to)dx > 0,
Qr Qr 2 /g
we find

—/ Ap g (zo) (t, VO)V (0 — v)dzdt < —/ A(z,t, Vw)V(w — v)dadt.
Qr Qr
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By using inequalities (1.2) and (1.3) together with Holder’s inequality we get
c;1/ |Vo|2dzdt < / |Vw|?ddt < cl/ |Vo|2dadt, (7.13)
Qr Qr Qr

and we also have

Ag/ |Vw — Vo|2dzdt < / (ABp(zo) (t: VW) = AB (a0 (£, VV)) (Vw — V) dzdt
Qr Qr

< / (ABp(zo) (t, VW) = A(z,t, Vw)) (Vw — Vo) dzdt

Qr

< O(A, Br(zo))(z,t)|Vw||Vw — Vu|dzdt.
Qr

Here we used the definition of ©(A, Br(xo)) in the last inequality. Using Holder’s inequality
with exponents s; = %, 6, and 2 gives

1/81 1/91
AQ][ |Vw — Vo|? < ( @(A,BR(xO))(m,t)sldxdt> (][ |Vw|91dxdt)
Qr Qr Qr

1/2
X <][ [Vw — Vv|2d:cdt) .
Qr
In other words,

1/2 1/6,
<][ IV — Vv|2dxdt> < ASAR (][ |Vw|91dmdt) .
R Qr

After using the inequality (7.5) in Theorem 7.1 we get (7.11). |

Lemma 7.4 Let 01 be the constant in Theorem 7.1. There exists a functions v € C(tg —
R2,to; L*(Bgr)) N L?(to — R?,to; HY(Br)) N L™ (tg — 1 R?, to; Wh*°(Bpr/2)) such that

pl(Q2r)
2R

and

][ |Vu — Vo|dzdt < C’M(Niﬁ%) +ClA)E (][ |Vu|dzdt + |N|(NQE%)> , (7.15)
Qr R Q2r R

where s1 = Gf(ilQ and C' = C(N, A1, As).

Proof. Let w and v be in equations (7.3) and (7.10). By standard interior regularity and
inequality (7.5) in Theorem 7.1 and (7.12) in Lemma 7.3 we have

1/2
||VUHL°°(QR/2) < <][ |Vv|2da:dt>
Qr

1/2
<c <f |Vw|2dxdt)
R
< 03][ |Vw|dzdt.
QZR

Thus, we get (7.14) from (7.4) in Theorem 7.1.
On the other hand, (7.11) in Lemma 7.3 and Holder’s inequality yield

][ \Vw — Voldadt < cy[A]F ][ |Vw|dzdt.
Qr

Q2R
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It leads

][ |Vu — Vo|dedt < ][ \Vu — Vwl|dzdt + c4[A)F ][ |Vw|dxdt.
Qr Qr Q2r
Consequently, we get (7.15) from (7.4) in Theorem 7.1. The proof is complete. ]

7.2 Boundary Estimates

In this subsection, we focus on the corresponding estimates near the boundary. R
Let g € 99 be a boundary point and for R > 0 and ty € (=7,T), we set Qsp =

Qor(z0,t0) = (2N Bsr(xo)) X (to — (6R)?,t9) and Qer = Qsr(zo, to).
We consider the unique solution w to the equation

{ wy — div (A(z,t, Vw)) = 0in Qgp, (7.16)

w=1u on 0p,Q%R.

In what follows we extend p and u by zero to (2 X (—oc0,T))“ and then extend w by u to
RN\ Qg g.

In order to obtain estimates for w as in Theorem 7.1 we require the domain € to be satisfied
2—Capacity uniform thickness condition.
7.2.1 2-Capacity uniform thickness domain

It is well known that if RV\Q satisfies uniformly 2—thick with constants cg,79 > 0, there

exist pg € (1\2,—52,2) and C = C(N, ¢p) > 0 such that

Cap,, (Br(z) N (RM\Q), Ba,(2)) > Cr¥ 70, (7.17)
for all 0 < 7 < 7y and all z € RN\Q, see [47, 57].

Theorem 7.5 Suppose that RN\Q satisfies uniformly 2—thick with constants co,ro. Let w
be in (7.16) with 0 < 6R < ro. There exist constants 6 > 2, B2 € (0, %], Cs, C3 depending
on N, A1, Ao, co and Cy depending on N, A1, Ay such that

I Qor

][ |Vu — Vw|dzdt < cl%ijl), (7.18)
6R
2y
(f vwezdxdt> < 02][ |Vwl|dzdt, (7.19)
Qp/2(z,8) Q3p(2,5)
1/2 8 1/2

][ wl2dedt | < Cy <”1) ][ wo2dedt | (7.20)

Qpy (y,8) P2 Qpy (y,8)

and

1/2 Byl 1/2
(7[ |Vw|2dxdt> <Cs (”1) (7[ |Vw|2dxdt> : (7.21)
Qpq (2,9) P2 sz(zvs)

fOT any QBp(Zas) - QGR} ) S aQ; Qpl (y75> - sz (y,S) C QGR and Qpl (Z,S) C sz (278) -
Qer
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Proof. 1. For n € C=([to — (6R)?,t9)) , 0 <n < 1,7 <0 and n(tg — (6R)?) = 1. Using
¢ = Ti(u — w)n, for any k > 0, as a test function for (7.1) and (7.16), we get

/~ (u — w) Tk (v — w)ndadt
Q6r

+ /~ (A(z,t,Vu) — A(z,t, Vw)) VI (u — w)ndxdt = / Tk (v — w)ndp.
Qer Q

6R

Thanks to (1.3), we obtain

- / T (u — w)edadt + A / VT4 (v — w) Pndadt < k|u|(Qen),
Qsr

Q6r
where T(s) = [; Ti(7)dr. As in [13, Proposition 2.8], we also verify that

IV (u = w) < c1lul(Qor).

|||L%I?w(@6R)

Hence we get (7.18).

2. We need to prove that

2

PO
1
][ |Vw|2dzdt < 7][ \Vw|2dadt + c; ][ |Vw|Podzdt |, (7.22)
Qrjalz.9) 2JQus,(29) Qag,(2.9)

for all Q%gr(z, 8) C Qsr = Qsr(xo,to). Here the constant py is in inequality (7.17).
Suppose that B,(z) C Q. Take p € (0,7]. Let ¢ € C°(B,(2)), n € C=((s — p?, s]) be such
that 0 < ¢,n <1, ¢ = 1in B,js(2), n = Lin [s — p*/4,5] and [V| < e1/p, | < e1/p.

We denote .
i, o)1) = ( / w(aﬁ)2dw> | ey
Bp(z) BP(Z)

Using ¢ = (w — g, (2))¢°n* as a test function for the equation (7.16) we have for all
s’ € [s—p*/4,s]

/ (w— tDBp(z))t(w — @Bp(z))<p2n2dxdt
By (z)x(s—p?,s")
+ / Az, t, Vw)V ((w — pr(z))ganQ) dzdt = 0.
B, (z)x(s—p?,s")

Here we used the equality pr(z)X(sfp2 o) (@Bp(z))t (w — W, (z))e*n*dedt = 0.
Thus, we can write

1
5/ (w(s') —Wp,(2)(s) @ dx +/ Az, t, Vw)Vwe?n*dedt
B,(2) B, ()% (s—p%,5")

= —2/ Az, t, Vw)Voen*(w — Wp,(z))dxdt
B, (2)x(s—p2,")

+ / (w— @Bp(z))2g0277ntdxdt.
Bp(2)x(s=p?s")

From conditions (1.2) and (1.3), we get
1

f/ (w(s") 71DBP(Z)(S/))2Q02dI+A2/ |Vw|2302772d:17dt
2 JB,(2) By (2)x (s—p?.")

< 2A4 / |Vw||Vo|en?|w — Wp, (2 |drdt + C% / (w— @Bp(z))zdxdt.
Bp(2)x(s—p?,s) P™JQp(z,9)
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Using Holder inequality we can verify that

sup / (w(s") — ﬁ)Bp(z)(s/))chde
s'€[s—p2/4,s] J B,(z)

+ / Vo dudt < / o — i o Pdedt.  (7.23)
Qp/2(2,3) P™JQp(z,9)

On the other hand, for any s’ € [s — p?/4, s]

/ (w(s') =g, () (s") de < 2(1 + 2N+2)/ (w(s') —bp,z)(s)*p dx, (7.24)
BP/Q(Z) B,(z)

where ¢1(z) = ¢(z +2(z — 2)) for all v € B,/5(2) and

WB, () = / o1 () da / w(z, t)pr () da.
' Bo/a() Bo/a()

In fact, since 0 < ¢ <1 and ¢ = 1in B,/5(2) thus
| ) =, ()
Bp/Z(z)
< 2/3 ( )(w(s/) — W, (=) (s) de + 28N (g, ) (s) — W, (2)(s))?| By/a(2)]
p/2\7
< 2/ (w(s') — QI)BP(Z)(S/))2<,D2d£L‘ + 2N+2/ (w(s') — pr/z(z)(s’))Q@%dac
By (2) By /2(2)
F2V [ (wl) < i ()R
Bp/?(z)

which yields (7.24) due to the following inequality

/ (') — W5, 2 () 262 < / (w(s') — 1)>2dz Vi € R,
Bp/2(z)

Bp/Z(Z)
Therefore,
sup / (w(s') — wBP/Q(Z)(s’))Zda:
welsp/43) B, a(2)
+/ \Vaw|?dzdt < %0/ |w — W, (| ddt. (7.25)
Qp/2(z,5) 1Y Qp(z,s)

Now we use estimate (7.25) for p = r/2, we have

/ |Vw|2dzdt < C% (w— @Br/z(z))Zdzdt
Qr/a(2,8) r Qr/2(2,8)
2

N+2
C10 / ~ "N\2
< = sup / (w(s') —wp, ,,)(s))"dx
r2 <5,6[8T2/4¢S] B, /2(2) 2(2)

N

s g
X / </ (w—ﬂ}BTﬂ(Z))Qd.’L‘) dt.
s—r2/4 \J B, /2(2)
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After we again use estimate (7.25) for p = r we get

1 N+2
/ |Vw|2dzdt < % ﬁ/ |w — @B,r(z)|2dxdt>
Qr/a(z,s) Qr(2,9)

N

s N+2
X / (/ (w— wBT/Q(Z))Qd.I?) dt.
s—r2/4 Bp/z(z)

Thanks to a Sobolev-Poincare inequality, we obtain

2

N+2
/ Vel dedt < 2 / |Vw|2dacdt> / V| ¥z dedt.
Qr/a(z,8) r Qr(z,8) Qr/2(2,8)

Since pg € (%, 2), thanks to Holder inequality we get (7.22).

Finally, we consider the case B,(z) N # (. In this case we choose zy € 9 such that
|z — 20| = dist(z,8Q). Then |z — 2| < r and thus 3r < p; < 2r,

B%r(z) C B%T(Zo) - Bp1+r(ZO) C Bpl+%r(20) - B%T(Z()) C B%T(z) C BﬁR(xo). (7.26)

Let ¢ € C°(B,, +11,(20)) be such that 0 < ¢ <1, ¢ = 1 in By, 4,(20) and [Vy| < C/r.
For 1r < po <, let n € C°((s — p3, s]) be such that 0 <n < 1,p=11in [s — p3/4,s] and
In:| < ¢/r?. Using ¢ = wy?n? as a test function for (7.16) we have for any s’ € (s — p3, s)

/ wwen?dedt
(Blergr(Zo)ﬂQ) X (s—p2,s’)
10

+ / A(z,t, Vw)V (wp®n?) dzdt = 0.
(B, 4 13, (2019 x (5= 3.9")

As above we also get

sup / w?(s")dx
5/€ls—p2/4,5] I By 4n(20)
as

+ / Vwl*dedt < — wdaxdt.
Bpy r(20)x(s—p3/4,s) r

Bp1+%r(20)><(8—pg,s)

In particular, for p; = ir, p2 = %r and using (7.26) yield

/ |Vw|*dzdt < cu w?dadt, (7.27)
QlT(zvs)
4

r? /ngq‘(zo)x(srz/ll,s)

and p1 = (3 + 15)rp2 =1,
sup / w?(s')dx < CL; w?dxdt.
s'€[s—12/4,s] B, 11, r Bag, (z0)x(s—72,s)

4 10 20
Set K1 = {w = 0} OE%T(Z()) and Ks = {w =0} NB

rt11,(20), Since RN\ satisfies an
uniformly 2—thick,we have the following estimates

ENE

Capy (K7, B%T(Zo)) > c16rV 2 and Cap,, (K2, B%M%T(zo)) > cqgr?V PO,

So, by Sobolev-Poincare’s inequality we get

][ w?dr < 0177"2][ |Vwl|?dz, (7.28)
Bgg, (20) Bs,(2)
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and
2 2
Pro ro
][ w?drdt < cigr? ][ |[Vw|Podx < c1or? ][ [Vw[Podaz
Bi,, 11,(20) Bi1,, 11, (20) Bs, . (z0)
4 10 4 1 2
Leads to
sup / w?(s")dx < 620/ |Vw|*dzdt, (7.29)
'€[s—r2/4,s] B%H_%T(zo) Qs5,.(2,8)
and
2
Po
/ W2 (t)dr < o2 ][ Vol (de | (7.30)
Bi,;11,(20) Bs, (20)

From (7.27), we have

][ |Vw|?dzdt < ]CVZ_?_4/ widadt
Q%T(z,s) r B 1 (20)%X(s—r2/4,s)

Frtisr

_ro PO
2 2

< ]Cv2i4 sup / w?(s')dx / / w?(t)dx dt.
r s'€[s—r2/4,s] B%T+%T(Zo) s—r2/4 B 11..(20)

Using (7.30), (7.29) and Holder’s inequality we get

-
][ |Vw|?dzdt < JC\?_?_4 / \Vw|?dadt erﬂpofN/ |Vwl[Pe dadt
Q1,(z,) r Qs,(2,9) Qs ,.(z,5)
4 2 2
-
= Co4 ][ |Vw|*dzdt ][ |Vwl|Podxdt
Qs5,.(2,9) Qs5,.(2,9)
2 2
2
1 PO
<

7][ |Vw|*dzdt + cos ][ |Vw|Podadt
2JQas,(z9) Q30 ()

So we proved (7.22).

Therefore, By Gehring’s Lemma (see [60]) we get (7.19).

3. Now we prove (7.20). Let y € 99, Q,, (y,5) C Qp,(y,5) C Qsr with p; < pa/4. First,
we will show that there exists a constant 32 = B2(N, A1, Ao, o) € (0,1/2] such that

B2
osc(w, Qp (4, ) < 26 (;’) ose(w, @y, 2(y: ), (7.31)

where osc(w, A) = sup 4 w — inf 4 w.
Indeed, since

L Cap, »(2¢N B,.(2), Bar(2)) dr
/0 N2 = +oo Vz € 0N

thus by the Wiener criterion (see [83]), we have w is continuous up to 8p(~26 Rr- S0, we can
choose ¢ = (V — My,,)n* € L*(—oco, T; H} (2N Bsr(z0))) as test function in (7.16), where
a. 1€ C°(Qup,(y,5)), 0 < n < 1such that n = 1 in Q,, /2(y,s — 177/)%), supp(n) CC
Qpi (y, s — 4p7) and V| < cor/pa, [me| < cas/p7.
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b. My,, = SUDQ,, (y.5) W and V = inf{My,, —w, My, } in Qer, V = M,,, outside Qon.
We have

/ wy (V — My, ) n*dxdt
Q6r

+ / 2nA(x,t, Vw)Vn (V — My,,) dedt + / Az, t, Vw)VVdzdt = 0,

QGR Q6R

which implies

/ Az, t, —VV)(=VV)dzdt = / 2nA(z,t, =VV)Vn (V — My,,) dzdt
Q6r

Q6r

- / (V - M4P1)t (V - M4p1) 772df)3dt
Q6r
Using (1.2) and (1.3) we get
Az/ | VV |2dxdt
QGR

<2ny [ VVIVHIY - My ldede ~ 1/2 [ (V= M) < M, ) () e
QGR QGR

§2A1M4p1[ 77|VVHV7)|dxdt—|—2M4p1/~ NV |n:|dzdt.

QGR QGR
Since supp(|VV|]) Nsupp(n) C Qgr, thus

/ |V (nV)|?dadt < ca9Ma,, (/ n|VV||Vn|dzdt —|—/ \% (77|7]t\ + |V77|2) dxdt)
RN+1 RN+1 1

RN+

1
< e30Map, / 77|VV\|V77|dmdt+—2/ Vdzdt ). (7.32)
RN+1 1 Qp1(yvsf4P%)

By [50, Theorem 6.31, p. 132], for any o € (0,1 + 2/N) there holds

1/o
][ Vdxdt S C31 inf V= C31(M4p1 — Sup w) = 031(M4;01 — Mpl)'
Qpy (y,5—4p3) Qo1 (1:9) Qpy (4:5)

(7.33)

In particular,
1
= / Vdrdt < czopty (Myy, — M,,). (7.34)
P1 Qpy (y,5—4p?)

We need to estimate fQGRn\VVHVdedt. Using Holder inequality and (7.33), for ¢ €
(0, min{2/N, 1}) we have

1/2 1/2
/ n|VV||Vn|dzdt < (/ PV —1+e) VV|2d:cdt> (/ V1+E|Vn|2d:cdt)
Qer Qer Q6r

1/2 1/2
< ca8 (/ 772V_(1+6)VV|2d$dt> / Vitedzdt
Q6r Qp, (y,5—4p?)

1/2
< ¢33 (/ 772V_(1+5)VV|2dxdt) in/Q(M4pl — M, )1+e)/2,
Q6r
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1/2
To estimate (fflaR n?V—(+e) |VV|2dxdt) , we can choose p = ((V48) ¢ —(Ma,, +6))n?,
for § > 0, as test function in (7.16), we will get

[ P (V + 6)~ 04| TV 2 dadt

Q6r
< 634/: 77(V—&—(5)_5\VVHV77|dxdt—1—634/~ n(V 4 6) || dxdt.
Qsr Q6r

Thanks to Holder’s inequality, we obtain

[ n2(v+6)*(1+6>|v1/|2dzdt§035/

QGR Q(BR

(V40" (nlme| + |Vn|?) dwdt

< c36p7 / (V +0)'“dxdt.
Qpl (:%574/)%)
Letting § — 0 and using (7.33), we get

/ V14|V 2 dzdt < c%p%/ Vi-edadt
Q6r Qpl (y75_4p§)

< C37P{V (Map, — Mpl)l_e .

Thus,
| aVVIValdadt < st (M, — M),
Q6r
Combining this with (7.32) and (7.34),
[ Vet < gl Mayy (M, = M)

Note that nV = My, in (Q°N B, /2(y)) x (s — 2p3,s — LLp?) thus
it
ST P

/ Y (V) [2dadt > / YV (V) [2dadt
RN+1 sfgp% RN

17 2

ST P 5 .

> [ M}, Cap, (08 0 By alu): B ()

STaP1
> cao M3, py-

Here we used Cap; o(2°N By, /2(y), By, (v)) = cp¥ 72 in the last inequality. It follows

M4P1 < C41(M4P1 - Mm)'

So c
4.

sup w < Y o sup w where Y=
Qp1 (y75) Q4p1 (y,s) C41 + 1

Of course, above estimate is also true when we replace w by —w. These give,
OSC(’LU, Qm (ya 5)) S ’}/OSC(U}, Q4p1 (y7 S))

It follows (7.31).
We come back the proof of (7.20).
Since w = 0 outside 2 this leads to

1/2
(f |w2d;z:dt> < cazosc(w, @y /2(y, 9))-
Qp1 (y,9)
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On the other hand, By [50, Theorem 6.30, p. 132] we have

1/2
sup  w < c¢43 <][ (w+)2d1‘dt> and
Qpy/2(yss) Qo (y,9)

1/2
sup  (—w) < caq ][ (w™)2dxdt )
Qpy/2(y:9) Qpa (y:9)
Thus, we get (7.20).

Next, we have (7.21) for case z = y € 99 since from Caccippoli’s inequality,

/ Vw|2dzdt < <22 |w|2dzdt,
Qpy (2:9) T Qo (219)

and using Sobolev-Poincare’s inequality as in (7.28),

/ |w|?dzdt < 046,0%/ |Vw|?dxdt.
sz (2,8) sz (2,8)

We now prove (7.21). Take Q,,(2,5) C Qp,(2,5) C Qsr, it is enough to consider the case
p1 < p2/20. Clearly, if B,,,4(z) C Q then (7.21) follows from (7.7) in Theorem 7.1. We
consider B, /4(z) NOQ # 0, let 2o € B,,4(z) N OQ such that |z — zo| = dist(z,0Q) < py/4.
Obviously, if p1 < |z — 20|/4 and z ¢ Q, then (7.21) is trivial. If p; < |z — 29|/4 and z € Q,
then (7.21) follows from (7.7) in Theorem 7.1.

Now assume p1 > |z — z|/4 then since Q,, (z,5) C Qsp, (20, 5)

1/2 1/2
(f |Vw|2dmdt> < car (7[ Vw%lxdt)
Qpy (2,9) Q504 (20,9)
Ba—1 1/2
< g (,01) (][ Vw|2da:dt>
P2 Qpy/a(z0,8)
Ba2—1 1/2
< ey (p1> <][ Vw|2d:vdt> ,
P2 Qpy/2(2,8)

which implies (7.21). |

Corollary 7.6 Suppose that RV\Q satisfies uniformly 2—thick with constants co,ro. Let
B2 be the constant in Theorem 7.5. For 2 — B3 < 8 < N + 2, there exists a constant
C =C(N,A1,M\2,0) > 0 such that for any B,(y) NON#0, se (-T,T), 0<p<rg

B T N+3—-0
[, IVl < Cp 9(() 1) Molplllsmoxry,  (739)
p\Y,s

where Ty = diam(Q) + T2,

Proof. Take B, 4(y)NOQ # 0 and s € (=T, T), p2 < 2ro. Let yo € By, /4(y) N2 such that

|y - yO‘ = dlSt(y789) S p2/4a thus Qp2/4(yas) - Qp2/2(y0as) For any Qp1 (y,S) C sz (y7s)
with p1 < p2/4, we take w as in Theorem 7.5 with Qsr = Q,,/2(%0, ). Thus,

N+pB1+1
/ |[Vw|dzdt < ¢ (pl) / |Vw|dzdt,
Qo (y,8) P2 sz/‘l(yvs)

/ Y — Vuldedt < capalpl @y o (o, 5))
Qpy/2(Y0,5)

As in the proof of Corollary 7.2, we get the result. ]

79



NGUYEN QUOC HUNG

7.2.2 Reifenberg flat domain

In this subsection, we always assume that A satisfies (2.27). Also, we assume that Q is a
(0, Rp)- Reifenberg flat domain with 0 < § < 1/2 . Fix 29 € 0Q and 0 < R < Ry/6. We
have a density estimate

|Bi(x) N (RNV\Q)| > ¢|B;(z)| Vx € 89,0 < t < Ry, (7.36)

with ¢ = ((1 —4)/2)N >4V,

In particular, RV\Q satisfies uniformly 2—thick with constants ¢,y = Ry.

Next we set p = R(1 —¢) so that 0 < p/(1 — ) < Ro/6. By the definition of Reifenberg flat
domains, there exists a coordinate system {yi,ya, ..., yn } with the origin 0 € Q such that in
this coordinate system zo = (0, ...,0, —pd/(1 — 4)) and

B (0) c 2N B,(0) € B,(0) N {y = (y1,y2, -y yn) s ynv > —2p8/(1 — )}
Since § < 1/2 we have
B;(O) C QN B,0) C B,(0)N{y = (y1,¥Y2, s YN) s YN > —4pé},

where B (0) := B,(0) N {y = (y1,Y2, - yn) : yn > 0}.
Furthermore we consider the unique solution

v € C(to — p°,to; L* (2N B,(0))) N L2 (to — p°, to; H (2N B,(0))) (7.37)
to the following equation

vy — div (Ap, (0)(t, V) = 0 in 0,(0), (7.38)
vV =w on 8pr(O)7 .

where Q,(0) = (2N B,(0)) x (to — p?,to) (=T < to < T).

We put v = w outside ©,(0). As Lemma 7.3 we have the following Lemma.

Lemma 7.7 Let 05 be the constant in Theorem 7.5. There exists constants C1 = C1(N, A1, Ag),
02 = CQ(Al,AQ) such that

1/2
(7[ |Vw — vqﬂ) < [A]E ][ |Vwl|dzdt, (7.39)
QP(OatU) Qﬂ(ovto)
202

with s9 = - and

Cgl/ |Vo|?dxdt g/ |Vw|?dzdt < cz/ |Vo|?dadt. (7.40)
Qﬂ(ovto) Qp(oatO) Qp(oatO)

We can see that if the boundary of Q is bad enough, then the L*°-norm of Vv up to
00N B,(0) x (to — p?,tp) could be unbounded. For our purpose, we will consider another
equation: o
Vi — div (Ap,(0)(t,VV)) =0 in Q}(0,t0), (7.41)
V=0 on T,(0,t),
where QF(0,t0) = B (0) x (to — p?,to) and T,(0,t0) = Q,(0,t0) N {zn = 0}.
A weak solution V' of above problem is understood in the following sense: the zero extension
of V to Q,(0,tp) is in V € C(to — p?, to; L*(B,(0))) N L2 .(to — p?,to; H*(B,(0))) and for
every ¢ € CH(Q}(0,%0)) there holds

—/ Vidzdt + / ZBP(O)(t, VV)Vpdxdt = 0.
Q7 (0,t0) Q7 (0,t0)

We have the following gradient L°° estimate up to the boundary for V.
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Lemma 7.8 (see [48, 49]) For any weak solution V € C(to—p?,to; L*(B/(0)))N L, (to—
p*,to; H (B} (0))) of (7.41), we have

IVV | oo (0 <C |VV|?dzdt ¥V 0<p <p. (7.42)
L (Qpl/z(o»tO)) Q:,(O,to)
for some constant C = C(N, A1, As) > 0. Moreover, VV is continuous up to T,(0,t).

Lemma 7.9 IfV € C(to— p?, to; L*(B; (0))) N L?(to — p°, to; H' (B (0))) is a weak solution
of (T.41), then its zero extension from QF(0,t0) to Q,(0,to) solves

. oF
Vi — div (ABP(O) (t, VV)) = orn (7.43)

weakly in Q,(0,t), for (z,t) = (2',zn,t) € Q,(0,t0),

— -1 —3 —N —N

ABP(O) = (AB,,(O)7ABp(O)7 ceey ABP(O)), and F(l’,t) = X$N<0ABp(O) (t, VV(IZ?/, O,t))

Proof. Let g € C*°(R) with ¢ = 0 on (—00,1/2) and ¢ = 1 on (1,00). Then, for any

p € CX(Qy(0,tp)) and n € N. We have p,(z,t) = ¢,(a',zn,t) = glnan)e(z,t) €
C(QF(0,tg). Thus, we get

/ Vipndxdt + / Ap,0)(t, VV)V (g(nzn)e(x,t)) dedt = 0,
Q7 (0,t0) Q7 (0.t0
which implies

/ Vipndzdt + / Ap,0)(t, VV)V(z,t)g(ney)dedt
Q/T (O,to) Q/T (O,to)

— /Op G(zn)g (nzy)ndry.

where

to _N
Glan) = / / AN V)l e, t)daldt € C([0,50)).
to—p? J |a!|<\/p?—a3 B0

Letting n — oo we get

/ Vipdxdt + / ZBP(O) (t, VV)Vo(z,t)dzdt = —G(0)
Qi (0,t0) Qi (0,t0)
=- / 722 guar.
Qu(0,t0)  OTN
Since VV =0,V = 0 outside Q;f, therefore we get the result. [

We now consider a scaled version of equation (7.38)

vy — div (Ag,0)(t, Vv)) =0 in €(0),
{ v=0 o(n %;81(0)\ (§)2 x (=T, T)), (7.44)

under assumption
B (0) c QN B1(0) € B1(0) N {zy > —46}. (7.45)

Lemma 7.10 For any € > 0 there exists a small 6 = 6(N,A1,A2,e) > 0 such that if
v € Ctg — 1,t0; L2(Q N B1(0))) N L2(tg — 1,t0; HX(Q N B1(0))) is a solution of (7.44) and
(7.45) is satisfied and the bounded

][ \Vo2dzdt < 1, (7.46)
Q1(0,t0)
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then there exists a weak solution V € C(to — 1,to; L*(B{ (0))) N L%(to — 1,t0; HY(B{ (0))) of
(7.41) with p = 1, whose zero extension to Q1(0,to) satisfies

][ lv — V|2 dzdt < 2, (7.47)
Q1(0,to)

Proof. We argue by contradiction. Suppose that the conclusion were false. Then, there
exist a constant eg > 0, {9 € R and a sequence of nonlinearities {A} satisfying (1.2) and
(2.27), a sequence of domains {Q2*}, and a sequence of functions {vx} C C(tg—1,t0; L2(Q2FN
B1(0))) N L2(tg — 1,to; H(Q2F N B1(0))) such that

B (0) € Q* N B,(0) € B1(0) N {xy > —1/2k}, (7.48)
(vk)s — div (Ag g, (0)(t, Vor)) =0 in QF(0), (7.49)
vy =0 on (apQIIC(O))\(Qk x (_T7 1)), .
and the zero extension of each v;, to Q1(0,to) satisfies

][ |Vog|?dedt <1 but (7.50)

Q1(0,to)
][ log, — Vi|2dadt > €3, (7.51)

Q1(0,t0)

for any weak solution Vj of

(Vk)t — di’U (Zk,Bl(O)(t7 VVk)) = 0, in QY(Q to), (7 52)
Vie=0 on T1(0,tp). '

By (7.48) and (7.50) and Poincare’s inequality it following that
vkl L2t —1,t0;11 (B1 (0))) < €1l VOR]|L2(Q1 (0,00) < €25
and

||(U;9)t| |L2(f,0_1,t0;H*1(B1(0))) = ||Zk,Q1(0,to) (V'Uk)|‘Lz(to—l,tU;Hfl(Bl(O)))

< / |4y, By (0) (&, Vog) Pdzdt
Q1(0,t0)

< ecs / |V |?dzdt
Q1(0,t0)
S Cq.

Therefore, using Aubin—Lions Lemma, one can find vy and a subsequence, still denoted by
{vi} such that

v — vo weakly in L?(tg — 1,to, H'(B1(0))) and strongly in L*(to — 1,0, L?(B1(0))),
and
(k)¢ — (vo)¢ weakly in L*(tg — 1,to, H *(B1(0))).

Moreover, vg = 0 in Q7 (0,t0) := (B1(0) N {znx < 0}) x (1 — to, 1) since vy = 0 on outside
QF N Q1(0,t0) for all k.

To get a contradiction we take V, to be the unique solution of (Vi) —div (Zkygl(o) (¢, VVk)) =
0 in QY (0,t9) and Vi — vy € L*(to — 1, %0, Hy(BY (0))) and Vi (to — 1) = wo(to — 1). As above,
one can find V and a subsequence, still denoted by {V;} such that

Vi — Vo weakly in L*(tg — 1,t0, H'(B1(0))) and strongly in L?(tq — 1,to, L*(B1(0))),
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and
(Vk)t — (Vb)t weakly n Lz(to — 1,t0, H_1<B]_)),

for some Vo € vy + LQ(tQ — 1,t0,H3<B{r(O)) and ‘/O(to — 1) = Uo(to — 1).
Thanks to (7.51), the proof would be complete if we could show that vy = Vj. In fact,
Let Ji : X — L2(Q7(0,t0), RYN) determined by

Te(d(x,1)) = Ag. B, (0)(t, Vo(x,t)) for any ¢ € X,
where X C L?(tg—1,t9, H*(B1(0))) is closures (in the strong topology of L?(tg—1,to, H*(B1(0))))
of convex combinations of {vk}r>1 U {Vi}r>1 U {0}.
Since vy, Vi converge weakly to vg, Vo in L2(tg — 1,to, H*(B1(0))) resp., thus by Mazur The-
orem, X is compact subset of L?(tg — 1,to, H'(B1(0))) and g, Vp € X.
Thanks to (1.2) and (2.27), we get J;(0) =0 and

[ Tk(01) = Ti(D2)ll 20+ (0,60) 17y < Malldr = d2llL2to—1,t0,1 (81 (0)))

for every ¢1, o € X and k € N. Thus, by Ascoli Theorem, there exist J € C(X, L*(Q7 (0,t9), RY))
and a subsequence of {7}, still denote by it, such that

sup 1T(0) = T (D) 120t 010y, mw) =+ 0 a8 &k — o0, (7.53)
€

and also for any ¢, ¢ € X,
/tho) (T (1) = T(02)) - (Vb1 = Vo) dadt > Dol[[V1 = Véolll 1205 01y (7:54)
From (7.48), we deduce
/QT(Oyto)(Uk — Vi)t (vo — Vo)dadt

+ / (Zk,Bl(O) (t, v’l}k) — Zk,Bl(O) (t, VVk;)) .V(Uo - Vo)dxdt =0.
QT(Oth)

We have
/ Ay, 5y (0)(Vop)|Pdadt < 09/ |Vog|?dzdt < ¢yp and
QY (0,t0) QY (0,t0)
/ A5, (0) (VVi) Pdadt < co / YV Pdadt < ey,
QY (0,t0) QY (0,t0)
for every k.

Thus there exists a subsequence, still denoted by {A g, (0)(t, Vi), Ak, 5, (0)(t, VVi)} and a
vector field Ay, Ay belonging to L2(Q7 (0,t0), RY) such that

Zk7Bl(O) (t, VUk) — Al and Zk,Bl(O)(ta VVk) — AQ,

weakly in L2(Q7 (0,t0),RN). It follows
1

/+ (’UO — VO)t(UO — Vb)dxdt + / +( )(Al - AQ).V(’UO - Vo)d.’tdt =0.
Q7 (0,t0) Q7 (0,to

Since

/ (v — Vi) (v — Vo)dadt = / (w0 — Vo)2(to)dar > 0,
Q7 (0,t0) B (0)
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we get
QT(O»tO)
For our purpose, we need to show that
/ (Ar — T(00)).V(vo — Vo)dzdt > 0 and (7.56)
Qf (Ovto)
/ (As — T(Vo)).V (Vo — vo)dadt > 0. (7.57)
QT (Ovto)
To do this, we fix a function g € X and any ¢ € C}(Q7 (0,t0)) such that ¢ > 0. We have
0 S / 2 (Zk731(0) (t, V’Uk) — Zk731(0) (t, Vg)) (V’l)k — Vg) dl’dt
QT(OvtO)
= / @Zk,Bl(o) (t, Vo) Vordzdt — / SDZk,Bl(O) (t, Vug)Vgdzdt
Q?— (O,to) QT (07t0)
— / @Zkal(o) (t,Vg) (Vur, — Vg) dzdt
QT(OJU)

= B1 +B2+B3

It is easy to see that

k—o0 k—o0

lim B, = —/ pA1Vgdzdt and lim Bg = —/ oJ(g9) (Vvg — Vg) dzdt.
QT(OatO) QT(Oth)
Moreover, we have

B = —/ (vi)rpvpdedt — / Zk)Ql(o’to)(Vvk)Vgovkdxdt
Q7 (0,t0) QF (0,t0)

1 _
= 5/ vigrdadt —/ A.010,t0) (Vur) Vourdadt.
QY (0,t0) QY (0,t0)
Thus,
. 1 9
khm B = 3 vpprdrdt — A1 Vvodadt
-0 QT (0,t0) QY (0,t0)
= —/ (vo)rpvodadt —/ A1V(g0v0)dxdt+/ pA1Vugdadt
Q7 (0,t0) Q7 (0,t0) Q7 (0,t0)
= / A, Vugdxdt.
QT(Oth)
Hence,

0< / o (A — T(g)) (Voo — Vo) dadt
QT(OJU)

holds for all p € C1(Q(0,%y)), ¢ > 0 and g € X. Now we choose g = vg — &(vo — Vo) =
(1—&wo+E&Vh e X for £ €(0,1), s0

0< / 0 (A= T(wg —&(wo — W) (Vg — VVp) dadt
QT (0,t0)
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Letting ¢ — 07 and ¢ — Xt (0,t9)7 W get (7.56). Similarly, we also obtain (7.57).
Thus,

/ (Ar — A9)V (0o — Vo)dadt > / (T (00) — T(Vo))V (w0 — Vo)dadt.
Q7 (0,t0) Q7 (0,t0)

Combining this with (7.54), (7.55) and vy — Vi € L?(tg — 1,to, H} (B (0))), yields vy = Vp.
This completes the proof of Lemma. [

Lemma 7.11 For any € > 0 there exists a small § = 6(N,A1,A2,e) > 0 such that if
v € Oty — 1,t0; L2(2N B1(0))) N L3(tg — 1,t9; H(Q2 N B1(0))) is a solution of (7.44) and
(7.45) is satisfied and the bounded

][ |Vo|?dzdt < 1, (7.58)
Q1(0,t0)

then there exists a weak solution V € C(tg — 1,to; L*(B; (0))) N L2(to — 1,to; H (B (0))) of
(7.41) with p = 1, whose zero extension to Q1(0,ty) satisfies

||VVHL°°(Q1/4(O,160)) <C and (7.59)

][ |Vv — VV|?dzdt < €2, (7.60)
Q1/8(0,t0)

for some C = C(N,A1,A2) > 0.

Proof. Given g1 € (0,1) by applying Lemma 7.10 one finds a small § = §(N, A1, Ag,e1) >0
and a weak solution V € C(to — 1,to; L?(B{ (0))) N L2(to — 1,t0; HY (B (0))) of (7.41) with
p =1 such that

][ |v — V|*dzdt < €7, (7.61)
Q1(0,t0)

Using ¢V with ¢ € C°(B; x (to — 1,19]), 0 < ¢ < 1 and ¢ = 1 in Q1/2(0,t0) as test
function in (7.41), we can obtain

/ VV[2dzdt < o / WV dud.
Q1/2(0,t0) Q1(0,t0)

This implies

/ IV Rdedt < C2/ (Jo = V2 + [o]?) dodt
Q1/2(0,t0) Q1(0,t0)

§03/ (Jo = V> +|Vv|?) dzdt
Q1(0,t0)

S Cy4,

since (7.58), (7.61) and Poincare’s inequality. Thus, using Lemma 7.8 we get (7.59).
Next, we will prove (7.60). By Lemma 7.9, the zero extension of V' to Q1(0, 1) satisfies

_ OF
Vi, — div (ABl(O)(t7 VV)) = pr. in weakly Q1(0,tp).

where F(z,t) = X$N<ozgp(0) (t,VV(2',0,t)). Thus, we can write

/ (V —v)rpdxdt
Ql(o,tg)

_ — 0
+/ (ABl(O) (t, VV) — ABl(O) (t, V’U)) V(pdl’dt = */ Fid.fdt,
Ql(o,to) Ql(o,to) 8$N

85



NGUYEN QUOC HUNG

for any o € L2(tg — 1,to, H}(Q2 N B1(0))).
We take ¢ = ¢*(V —v) where ¢ € C®(Byyq x (to — (1/4)%,t9]) ,0< ¢ <1l and ¢ =1 on
Ql/s(oato)a 50

/ & (Ap, (o) (£, VV) — Ap, (£, Vo)) (VV — Vo) dudt
Ql(O,to)
—2 o OV =) (A 05) =T, (4, 92) Vo
1(0,t0

- / &*(V —0)(V — v)dzdt
Q1(0,t0)

- / <¢2Fa(v_”) +20F(V — v)%) dxdt.
Q1(0,t0)

oz N ozrn

We can rewrite Iy = Iy + I3 + 4.
We see that

I > 05/ $*|VV — Vo|?dzdt
Ql(o,tg)
and using Holder’s inequality

Bl e [ 6V = ol(VVI+ Vo)) Vldude
1(0,t0

352/ ¢2(|VV\2+|VU|2)dxdt+C7(62)/ |V —v|?|Vo|?dxdt.
Q1(0,t0) Q1(0,t0)
Similarly, we also have
|14] < 62/ H*(|VV|? + |Vv|?)dzdt + 08(62)/ |V —v|?|V¢|*dxdt
€1(0,t0) 21(0,t0)
+ es(e2) / P26 dadt,
S:ll((),tg)
and
I3 < / e p(V — v)2dadt < CQ/ |V — v|?dzdt.
Q1(0,0) 1/4(0,t0)
Hence,
[ IVV — Vo?
21 /8(0,t0)
Scoea [ (VVPHVoP) +ene) [ (V- oP 4 |FP)
Q3/4(0,t0) 1,4(0,t0)

< 1289 + c13(g2) <€% + /
a

< c1289 + c14(€2) (5% + 5) :

|VV (2',0,t) |2dxdt>

174(0,to)N{—46<x N <0}

Finally, for any € > 0 by choosing €2,¢1 and 0 appropriately we get (7.60). This completes
the proof of Lemma. [

Lemma 7.12 For any € > 0 there exists a small § = 6(N,A1,A2,e) > 0 such that if
v e C(ty — p? to; LA(Q2 N B,(0))) N L2(tg — p?,to; H (2N B,(0))) is a solution of

{ vy — div (Ap, 0y (t, Vv)) = 0in Q,(0)

v=0 on 3,Q,(0\(Qx (-T,T)) (7.62)
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and
B (0) c QN B,(0) C B,(0) N {xn > —4pd}. (7.63)

then there exists a weak solution V € C(to — p?, to; L*(B;F(0))) N L*(to — p?, to; H' (B} (0)))
of (7.41), whose zero extension to Q1(0,to) satisfies

||VVH%°°(QP/4(O¢0)) S C |VU|2d.'L'dt and (764)
Qn(ovtO)
][ Vo — VV2dedt < 52][ IVo|2dadt. (7.65)
Q,/8(0:t0) Qp(0,t0)

for some C = C(N,A1,A2) > 0.
Proof. We set
Az, t,6) = Apz, to + p*(t — to), 5€) [k and B(z,t) = v(px,to + p*(t — t0))/(pr)

1/2 . ..
where £ = (m pr(Qto) \Vv|2dxdt) . Then A satisfies conditions (1.2) and (2.27)
with the same constants A; and As. We can see that ¥ is a solution of

{ ¥ — div (Ap, o) (1, V0)) =0 in Q7(0)

F=0 on (09N Bi(0)) x (fo - Lt) U (N Bi(0) x {t =tg —1})  69)

where O = {z = x/p : © € Q} and satisfies le(O t0) |Vo|2dzdt = 1. We also have
B (0) € QN B1(0) C B1(0) N {xn > —45}.

Therefore, applying Lemma 7.11 for any € > 0, there exist a constant § = §(N, Ay, Ag,€) >0
and V satisfies

Hv‘7||L°°(Q1/4(0,to)) <c¢ and Vo — V‘?‘Zdl‘dt <e?
Q1/8(0,t0)

We complete the proof by choosing V (x,t) = kpV (x/p, to + (t — to)/p?). ]

Lemma 7.13 Let sy be as in Lemma 7.7. For any € > 0 there exists a small § =
(N, A1, Aa,e) > 0 such that the following holds. If Q2 is a (6, Ro)-Reifenberg flat domain and
u € C(0,T; L3())NL2(0,T; HY(Q)) is a solution to equation (2.4) with p € L*(Qx (=T,T))
and uw(=T) = 0, for xg € 0N, =T <ty < T and 0 < R < Ry/6 then there is a function
Ve L2(tg — (R/9)* to; H (Bryo(20))) N L>®(to — (R/9)?, to; W (Bryo(20))) such that

|1|(Qer (o0, to))
19V Il @na(monte)) < € ]{g IVl g M) (7.67)

and

][ |Vu — VV|dzdt
QRry9(wosto)

<cle+ [A]i“)][ |Vu|dzdt + c(e + 1 + [A]F0)

s2
Qer(wo,to)

|1l(Qer(wo, to))

N (168)

for some ¢ = ¢(N, A1, Ag) > 0.

Proof. Let a9 € 9Q, -T < tg < T and p = R(1 — ¢), we may assume that 0 € ,
xo = (0,...,—0p/(1 —4)) and

Bf(0) € QN B,(0) C By(0) N {zn > —4pd}. (7.69)
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We also have

Qryo(To,t0) C Qps(0,t0) C Q,/4(0,20) C Q,(0,t0) C Q6,(0,t0) C Qor(x0,t0), (7.70)

provided that 0 < § < 1/625.

Let w and v be in Theorem 7.5 and Lemma 7.7. By Lemma 7.12 for any ¢ > 0 we can
find a small positive § = §(NV, i, B,€) < 1/625 such that there is a function V € L%(ty —
p% to; HY(B,(0))) N L>®(tg — p2, to; WH°(B,(0))) satisfying

IVV][7 < ][ |Vo|?dzdt and
L>(Q,/4(0,t0)) Q,(0:t0)

][ Vv — VV|? < 52][ |Vo|?dxdt.
Q,/8(05t0) Qp(0,t0)

Then, by (7.40) in Lemma 7.7 and (7.19) in Theorem 7.5 and (7.70) we get

1/2
IVV Lo (@r o (x0,t0)) < €2 ][ |Vwl|?dzdt
Qp(oﬂfo)

< 03][ |Vw|dzdt (7.71)
Qor(z0,t0)

and

1/2
][ |Vv — VV|dxdt < cye ][ |Vw|?dadt
Qn/S(O)tO) QP(07t0)

< 055][ |Vw|dzdt. (7.72)
Qer(zo0,t0)

Therefore, from (7.18) in Theorem 7.5 and (7.71) we get (7.67).
Now we prove (7.68), we have

][ |[Vu — VVi|dzdt < 06][ |Vu — VV|dxdt
Qryo(xosto) Q,/8(0,t0)

< 06][ |Vu — Vw|dxdt + 06][ |[Vw — Voldzdt
Q,/8(0,t0) Q,/8(0,t0)

+ Cg][ Vv — VV|dxdt.
Q,/8(0,t0)

From Lemma 7.7 and Theorem 7.5 and (7.72) it follows that

][ Vu — Vldzdt < ¢, 1 @or(@0, o))
Q,/8(0,t0) - RN+1

][ Vv — Vw|dzdt < 08[14]520 ][ |Vw|dxdt
Q,/8(0,t0) Q65 (0,t0)

< co[A]F0 ][ |Vw|dzdt
Qer(wo,to)

t
< co[ Al <][ Vuldzdt + ll(Qer(wo, 0))) 7
Qsr(zo,to)

RN+1

and

][ Vo — VV|dzdt < 01167[ |Vw|dzdt
Q,/8(0,t0)

Qor(zo0,t0)

< croe ][ Vuldzdt + LLQorzo o)}
Qsr(zo,to) R
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Hence we get (7.68).

8 Global Integral Gradient Bounds for Parabolic equa-
tions

8.1 Global estimates on 2-Capacity uniform thickness domains
We use the Theorem 7.1 and 7.5 to prove the following theorem.

Theorem 8.1 Suppose that RN\Q satisfies uniformly 2—thick with constants co,7o. Let
01,0 be in Theorem 7.1 and 7.5. Set § = min{6,,6>} and Ty = diam(S) +~T1/2. Let Q =
B giam()(®0) x (0,T) that contains Qp. Let By = Qr, (Yo, 50), B2 = 4B1 := Qug, (Yo, 50) for
Ry > 0. For p € My(Q7), 0 € M(Q), setw = |u|+|0|@0 0y, there exist a distribution so-
lution u of equation (2.4) with data pu, ug = o and constants C1 = C1(N, A1, As, co,To/70), c2 >
0,1 = El(N,A1,A27C(),T()/T0),€2 = El(N,AhAQ,Co) > 0 such that

{M(|Vul) > e™OA My [w] < e'77A} N Q| < Cre[{M(IVul) > A} N @), (8.1)
for all x> 0,e € (0,e1) and
{M(x5,|Vu|) > e Yo\ My [xp,w] < e #AINBy| < Cre|{M(xp,|Vu|) > A\}NBi|, (8.2)

fOT all A > 6_1+%||VU;HLI(QTQBZ)R2_N_2, €€ (0752) with Re = inf{ro,Rl}/lﬁ.
Moreover, if o € L*(Q) then u is a renormalized solution.

Proof of Theorem 8.1. Let {u,} C CZ(Qr),{on} C CX(N) be as in the proof of
Theorem 2.1. We have |u,| < ¢, * |u| and |o,| < @1, * o] for any n € N, {p,}, {p1,,} are
sequences of standard mollifiers in RV RN respectively.

Let u,, be solution of equation

(un)e — div(A(z, t, Vuy)) =y in Qrp,
up, =0 on 00 x (0,T), (8.3)
un(0) =0, in Q.

By Proposition 3.5 and Theorem 3.6, there exists a subsequence of {u,}, still denoted by
{u,} converging to a distribution solution u of (2.4) with data p € 9My(Qr) and wg = o

such that u, — u in L*(0,T, Wy>*(2)) for any s € [1, ]X,—ﬁ) and if o € LY(Q) then u is a
renormalized solution.

By Remark 3.3 and Theorem 3.6, a sequence {uy, 1, }, Of solutions to equations

(Un,m)e — div(A(z, t, Vn,m)) = ptinm in Qx (=T,T),
Un,m =0 on 9 x (=T,T),
Un,m(—T) =0 on Q,

converges to xapu, in L*(=T,T, Wy*(2)) for any s € [1, %—ﬁ), where finm = (Gn,m); +

XQp s Gn,m (T, 1) = op(2) fiT ©a2,m(s)ds and {pa2,m} is a sequence of mollifiers in R.
Set

E\. = {M(Vul) > e7/AM W] < 70AINQ, FY = {M([Vu]) > A}NQ,
B} . = {M(xp,|Vul) > e\ My[xp,w] <79 N By, F{ = {M(xs,|Vul) > A} 0 By,

for e € (0,1) and A > 0.
We verify that 3
|EX. | < c1elQry] VA>0,6€(0,1) and (8.4)
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B2l < coelQmy| ¥ A > e8|Vl apnay Ry Y2 € (0,1) (8.5)

for some ¢; = ¢1(To/ro),c2 > 0 and R3 = inf{rq, To}/16.
In fact, we can assume that E} _ # 0 so (|u|(Qr) + |o](©2)) < TN+'el=5X. We have

1 C3
|EX | < /0y /QT |Vu|dzdt.

By Remark 3.2, fQT |Vup|dedt < csTo (|pn|(Qr) + |0n|(2)) for all n. Letting n — oo we
get fQT |Vuldzdt < caTo (|p] (1) + |o](2)). Thus,
C3Cq

C3C4 _1 ~
|E) | < mTO (|ul(Q7) + |o](2)) < 6,1/9/\T5V+251 I\ = c56|QRs-

Hence, (8.4) holds with ¢; = ¢5(To/r0).-
For any A > 571+$||Vu||L1(QTmBQ)R§N72 we have

C3 ~
E? | < —— Vuldzdt < :
| A,5| = o-1/0) ./QT XB2| U| X 025|QR2|

Hence, (8.5) holds. )

Next we verify that for all (z,¢) € Q and r € (0, R3] and A > 0,¢ € (0,1) we have Q,(x,t)N
Q C Fy if |E} . N Qy(x,1)] > c6e|Qy(x, )] where the constant cg does not depend on A and
e. Indeed, take (z,t) € Q and 0 < 7 < R3. Now assume that Q,.(z,t) N QN (F})¢ # () and
E; . NQ,(z,t) # B i.e, there exist (z1,t1), (x2,t2) € Qr(x,t)NQ such that M(|Vu|)(z1,t1) <
A and M [w](wa,t2) < £1=% \. We need to prove that

|EX.e N Qr(a,0))] < coelQr(a, )] (8.6)
Obviously, we have for all (y,s) € Q. (x, t) there holds
M(IVul)(y, 5) < max{M (xq, (0| Vul) (4 5), 3V 22},
Leads to, for all A > 0 and ¢ € (0,) with g < 3= (V+2)¢,
EL. NQu(x,t) = (M (X@%(z,t) |vu\) S e VO M W] <A NQN D, (2, t).  (8.7)
In particular, £ _ N Q. (z,t) = 0 if By (z) cC RN\Q. Thus, it is enough to consider the
case By,r(xz) CC Q and By, () NQ # (.

We consider the case By, (z) CC Q. Let wy, ., be as in Theorem 7.1 with Q2 = Qur (2, t0)
and u = u,, , where tg = min{t + 2r?,T}. We have

[V m — Vg m|dedt < e [, m| (Qar (@, 20)) and (8.8)
Quar(2,t0) ) ) riVH
0
][ |V, m|?drdt < cg ][ |Vwp, pm|ddt | . (8.9)
Q2r(x,to) Qar(z,t0)
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From (8.7), we have

B2 1@l 0)] < 1M (X (0. Viinm]) > =7 Y0/4} 0 Q)
1M (X, (00| Vitnom = Vtnm|) > &™/90/4} 1 Qr(a,)]
1M (X o)Vt n — Veta]) > <™0/4} 1 Q1 (2, )

+ HM (X, 00| Vitn = Vul) > €700/} 1 Qs (1)

< 095)\_9/ |an)m\9dmdt + 0951/9)\_1/ |Vt m — Vwp, m|dedt
Qar(,t) Qar(z,t)
+ coet/ N1 / |Vt — Vi, |dzdt + coe/O N1 / |V, — Vu|dzdt.
Q27‘(z7t) Q2T(I7t)

Thanks to (8.8) and (8.9) we can continue

0
B e N Qr(z,0)] < c10eA™|Qr ()] (7[ Vun,mldxdt>
Q

ar(z,t0)

6
A n,m T{E,t —11 A n.m riC,t
wen ?iQ (o, (L Qe ) 10311,y (Gl to)

+ 10t/ ONT |Vt m — Vg, |dedt + c10e/ON1 |Vu, — Vuldzdt.
Qa2r(z,t0) Qar(,to)

Letting m — oo and n — oo, we get

0
Bxe 0 G, 8)] < cr0eA 0|0y (2, 0)| (7[ Vu|dxdt>
Q

ar(x,to)

- 6 -
+ 10230 (2, )| (w(@i;«v(f{ to))) n 01061/0/\_1|C~27-(x,t)\w(Q:;“\,(fl’ to))

Since, M(|Vu|)(z1,t1) < A and My [w](z2, t2) < €175 X we have

/ |Vu|dzdt < / |Vu|dzdt < / \Vau|dzdt < |Qoy(x1,11)|A,
Qar(z,t0) Dsr(z,t) Qor(w1,t1)
and
w(Qur(,10)) < w(Qsr(x,1)) < w(Qor (o, ta) < =T A(9r)NHL.
Thus

|EA,5 N Qr($,t)| < 6116|Q7~(I’,t)|.

Next, we consider the case By, (x)NQ # (). Let x3 € 09 such that |z3 —z| = dist(z, 052). Let
wy, be as in Theorem 7.5 with Qgr = Q16 (23,t0) and u = uy, ,,, where tg = min{t + 2%, T'}.
We have Q12,(7,%0) C Qi6r(23,0),

][ [Vt m — VW m|dodt < c12 |“”’m‘(911[6:1(w37t0)) and
Q12r(z:t0) r

( ][ |vwn,m|9dxdt>
QQT(IvtO)
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As above we also obtain

0
|E)1\76 NQ,(z,1)] < c14eA™%Q, (z,1)] <][ |Vu|d:17dt>
Q

12-(,t0)

N .
+Cl4€>\70|QT(IE7t)‘ <W(Q1f§\/(ff7t0))> +01461/0)\71‘(27«(177t)|—w(Q1ﬁ§V(ff’tO)).

Since, M(|Vu|)(z1,t1) < A and My [w](z2, t2) < €175 X we have

/ |Vul|dzdt < / |Vu|dzdt < / \Vau|dzdt < |Qasr(1,11)|A
Q12 (z,to) Q2ar (z,t) Qasr(z1,t1)

and

w(Qier (73, t0)) < w(Qa2r(23,1)) < W(Q36,(,1)) < w(Qa7r(2a,t2)) < 617%/\(377“)]\]“-

Thus R ~
|EXc N Qr(z,1)] < c15¢]Q(, 1))

Hence, (8.6) holds with ¢g = 2max{c;1, c15}.
Similarly, we also prove that for all (x,t) € By and r € (0, Rp] and A > 0,¢ € (0,1) we have
Qr(x,t)N By C FY if |[E3 _NQr(x,t)| > c166|Qy(, )| where a constant ¢z does not depend
on A and e. Now, choose £1 = (2max{1,¢1,cs}) ! and e = (2max{1, ¢y, c16} L. We apply
Lemma 3.21 with F = E}\,E,F = F} and ¢ is replaced by max{ci,cg}e for any 0 < € < &
and A > 0 we get (8.1), for E = E _, F = F} and ¢ is replaced by max{cy, ci7}e for any
0<e<eyand A >e 110 ||Vu||L1(QTNB)Q)RQ_N_2 we get (8.2).
This completes the proof of the Theorem. [

Proof of Theorem 2.17. By theorem 8.1, there exist constants ¢; > 0,0 < g9 < 1 and
a renormalized solution u of equation (2.4) with data p, ug = o such that for any e € (0, 1),
A>0

{M(|Vu]) > e 0N M [w] < 51*%)\} NQ| < c1el{M(|Vu]) > A} N Q).

Therefore, if 0 < s < 00

S —s >~ s — gdA
IM(Vul)l[zoe(q) = € /9p/0 M{(z,t) € Q: M([Vul) > e™V/OA}» =

s s(0—p o0 gd)\
< 7% )p/ Nl{(,0) € Q : M(IVul) > A}[3 2
0

A
s(6—

S ?) s —s s
= &7 MUVl 0.e ) & M1l 0.e -

+€_S/‘9p/oo MH{(z,t) € Q : M [w] > 51_5)\}
0

Since p < 8, we can choose 0 < € < gg such that ci/pas“z’i;p) < 1/2 we get the result for case
0 < s < oco. Similarly, we also get the result for case s = co.

Also, we get (2.29) by using (4.16) in Proposition 4.8, (4.28) in Proposition 4.19. This
completes the proof. [

Remark 8.2 Thanks to Proposition 4.4 we have for any s € (N+2 N+2+9) ifu e L =L oo

N+1' Ni2
and o = 0 then

|||VU|S|\L%, < C2||M||SL(5—1><N+2>,OC ;

(Qr) (Qr)

where constant co depends on N, Ay, Ao, s,co,To/70o.

As the proof of Theorem 8.1, we also get
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Theorem 8.3 Suppose that RN\Q satisfies uniformly 2—thick with constants co,7o. Let
0 be as in Theorem 8.1. Let 1 < p < 0,0 < s < oo and p € M(Qr), 0 € M(Q), set
w = |p|+|o|@dy—oy. There exist C1 = C1(N, A1, A2, p,5,c0) > 0 and a distribution solution
u of equation (2.4) with data p and ug = o such that

N+t2 | N
||M(XQ4R(@/0,SO)|vu|)HLP’S(QR(y07SO)) <CiR > mf{ro’R} N 2||Vu||L1(Q4R(y0780))
+Cl'|M1[XQ4R(?/07SD)M]||Lp’S(QR(y07So))’ (810)

for any QR(yo, s0) C RN*Y and if o € LY(Q) then u is a renormalized solution.

Proof of Theorem 2.19. Let {uym} and gy, m be in the proof of Theorem 8.1. From
Corollary 7.2 and 7.6 we assert: for 2 — inf{f31, 82} < v < N + 2, there exists a constant
C =C(N,A1, A2, cp,7v) > 0 such that for any 0 < p < T

/Q .9) |V’Lan|dl'dt < O(N7 Al; AQa 7, Co, TO/TO)pN+37’Y||M’)’[|,u’n,mm|L°°(Q><(—T,T))7
p\Y,S8

where 1, 82 are constants in Theorem 7.1 and Theorem 7.5. It is easy to see that

[IMLy [| o, m [ oo (2x (=, 7)) < MG W] oo (x (=7, 1)) = My [W]]] Lo (@)

for any n, m large enough.
Letting m — oo, n — oo, yield

/ ) ‘vu|d1‘dt < O(Na AlaA277aCOaTO/TO)pN+37’Y||M’Y[w]||L°°(QT)
Qp(y;s

By Theorem 8.3 we get

N+42

|||VUH|Lp,s(QR(yO,SO)nQT) <ci(To/ro)R >

MLy (]| 2 (20
+ cof My [XQR(yoxSO)w]||L”’S(QR(.U0,SO))

for any Qr(yo,s0) C RNT! and 0 < R < Tp. It follows (2.30).
=Dp (v=Ds. .,
Finally,ifp e L, * 7 “ 1)p(QT) and ¢ = 0, then clearly u is a unique renormalized

solution. It suffices to show that

My [l Lo () < esllpl]l a=ve a=vs and (8.11)
L* Y Y (QT)
p(y—1)—N-2
R IMilXa (50 Bl Lot (0 n (50,50)) CsH/iHL@,@M,W(Q : (8.12)
* T

for any Qr(yo, so) € RN and 0 < R < Ty, where ¢3 = ¢3(N, A1, Aa, p, 5,7, o, To/70).
In fact, for 0 < p < Ty and (z,t) € Qr we have

_ _ > _
Il e ooy 2 W] e oy
(y=1)p—N-2
(v=1p
>p v ||M|| G=Vp o
L v T(Qu(z,t)NQr)

(y=lp-N-2
(y=Dp

>cp 0 |Qp( )T EE | ul(Q (2, t) N Q)

_ @z ) n Q1)
=G pN+27'y ’
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which obviously implies (8.11).
Next, we note that

1

1— 1
M, [XQR(yO,SO)m”(l',t) < ¢ (M (XQR(yO,SO)LUD (Jc,t)) ! el amve (=ns

I )

We derive

M
R HMl[XQR y750 |ILI’|]||LP S'(CQR(ZI/O,-So))

< CGRWHM (XQR(?!O 80)|M|> || (v’y—l)p (=Ds ||'u||%(”’ Lp 7(7 Ds

(3o, L7 0T (Qrlyosse) g T (g
p=1)-N-2 1-1 3
§C7R P HM” (wwfl)p (v=1)s _ ||N||77(7*1)”.7(771)8-(«/—1)10 ’
L 7 77 (Qr(yo,s0)) L, (Qr)

G-Up l)P (—=1)s 1)5

Here we used the boundedness property of M in L™ 7 (RN+1) for =Lp 1)p > 1. There-
fore, immediately we get (8.12). This completes the proof of theorem.
]

8.2 Global estimates on Reifenberg flat domains

Now we prove results for Reifenberg flat domain. First, we will use Lemma 7.4, 7.13 and
Lemma 3.19 to get the following result.

Theorem 8.4 Suppose that A satisfies (2.27). Let s1,s2 be in Lemma 7.3 and 7.7, set
s = max{si,so}. Let w € As, p € My(Qr), 0 € M(Q), set w = |p| + [0] @ dgr=0y-
There exists a distribution solution of (2.4) with data p and uy = o such that following
holds. For any ¢ > 0,Ry > 0 one finds 61 = 61(N,A1,Az,e,[w]a) € (0,1) and § =
52(N,A1,A2,€, [w]Aw,To/Ro) S (O, 1) and A = A(N, Al,Ag) > 0 such that if Q is (Jl,Ro)-
Reifenberg flat domain and [A]E0 < 6, then

w{M(|Vu|) > AN M [w] < 820} N Q) < Bew({M(|Vu|) > A} N Q) (8.13)

for all X > 0, where the constant B depends only on N, A1, A2, To/Ro, [w]a
Furthermore, if o € LY(Q) then u is a renormalized solution.

oo *

Proof. Let {pn}, {on}, {ttn,m}: {un}, {tnm}, u be as in the proof of Theorem 8.1. Let € be
in (0,1). Set Eys, = {M(|Vu|) > AN\, Mi[w] < d2A} NQr and F\ = {M(|Vu|) > A} N Qp
for e € (0,1) and A > 0. Let {y;}Z, C Q and a ball By with radius 27} such that

L
QC U Bro(yi) C By
i=1
where rg = min{Ry/1080,7p}. Let s; = T — jr¢/2 for all j = 0,1,. ,[—CZF] and Qor, =
7o
Bo x (T — 4T2,T). So,
Qr < | JQro(wir 55) € Qo

)
We verify that ~
w(Eys,) < ew(Qry(¥i,55)) VA>0 (8.14)
for some &5 small enough, depended on n,p, a, B, €, [w]a__, To/Ro.-

In fact, we can assume that Ey 5, # 0 so |u|(2r) + |o|(©2 ) < TP 16\, We have

|E)\ 52| < A/\/ |VU|d(L’dt
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We also have
/ |Vuldzdt < coTo(|u|(Qr) + |o|(2)).
Qr

Thus,

C C
[Bxel < 55 To(ll(Q) +101() < T3 2020 = c40a|Qamy |-

which implies

|E/\,52|
|Q2T0|

where (A,v) is a pair of As, constants of w. It is known that (see, e.g [33]) there exist
A; = A1(N, A, v) and v; = v1(N, A, v) such that

?@m0<&<~ﬁhuyle
w(Qry (Yir85)) |Qro (Yi5 55)] ’

w(E)\,éz) <A ( )V w(Q2Tg) <A (6452)V w(QZTO)

So,

|QT0| A

w(Exs,) < A(cab2)” Ay ( = ) W(Qro (Y11 57)) < ew(Qry (i, 85)) Vi, J
|Q7’o(yia8j)|

1/v
where 3 < (%> . It follows (8.14).

205(T07-51)(N+2)V1

Next we verify that for all (z,t) € Q7 and 7 € (0,2ro] and A > 0 we have Q,.(z,t)NQp C Fy
~ 1/v
if w(Eys, NQr(z,t)) > cw(Qr(z,t)) for some da < (%) .

265(T0T[51
Indeed, take (z,t) € Qr and 0 < r < 2r. Now assume that Q,(z, t)NQrNFY # @ and E) 5,N
Qr(z,t) # 0 i.e, there exist (x1,t1), (z2,t2) € Qr(z,t) N Q7 such that M(|Vul)(z1,t1) < A
and M [w](x2,t2) < d2A. We need to prove that

w(Ex s, N Qu(x,1)) < ew(Q,(x,1)). (8.15)
Clearly,
M(IVul)(y, 5) < max{M (xq, (o |Vul) (4,5),3¥ 2N} Wy, s) € Qp(a,1).
Therefore, for all A > 0 and A > 3V+2,
EMEHQAQQZ{M(M%@MWM)>AmMm4§®XHWhﬂQA%ﬂ. (8.16)
In particular, Ej 5, N QT(x,t) = 0 if Bg,(x) cC RN\Q. Thus, it is enough to consider the
case Bg,(z) CC Q and Bg,(x) NQ # (.

We consider the case Bg,(xz) CC Q. Let v, be as in Lemma 7.4 with Qo = Qs (z,to)
and u = u,, , where tg = min{t + 22, T}. We have

n,m ' 7t
1V0nmllem@uan < o f (Vunldeds + g LG lol) g
Qsr(z,t0) r

and

n,m T 7t

f |vun,m - vvn,m,|dxdt < cs |M - |(?Vi1(z O)) + cg [A]io ][ |vun,m|dzdt

Qar(x,to) r Qsr(x,to)

+ |Mn,m|(Q8r(fE7 to)) )

TN+1 :
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Thanks to M(|Vu|)(z1,t1) < A and M [w](z2,t2) < d2X with (z1,t1), (z2,t2) € Q. (z,t), we
get

w(Q r(T2,T
lim sup im sup ||V, m || Lo (Qa, (2,1)) < 09][ |Vuldzdt + 69%“22))
o0 Qi7r(x1,t1) r

n—oo m—r
< g+ cgda A
< croA,

and

lim sup lim sup ][ |V, — Vu,|dzdt
Q4r(z to)

n—roo m—r 00

w Q17r($2,t2)) W(QNT T2, 12))
= Cll(T'N—H - CII[A]?OO Qurr(w1,t1) Vuldedt %

S 01152>\ + Cll[A}io ()\ + 52)\)
<ci1 (52 + 61(1 + 52)) A.

Here we used [A]f° < 4y in the last inequality.
So, we can find ng large enough and a sequence {k,} such that

I Vonmll e (@) = IV ml Lo (Qar(at0)) < 2€10A and (8.18)

][ |V'I.Ln,m - an7m|dxdt S 2611 (62 + 51(1 + (52)) )\, (819)
Qar(z,t0)

for all n > ng and m > k,,.
In view of (8.18) we see that for A > max{3"V+2 8cio} and n > ng, m > ky,,

M (Xqy. (0| VOnml ) > AN/4} 0 Qu(a,1)] = 0.
Leads to
[Exse 1 Qr(@,0)] < M (X, (o) [ Vtinm = Fonml ) > AN/4} 0 Qo (2, )]
1M (XQy, (o) [ Vttn = Fttnml ) > AN/4} 0 Qu (2, 1)

(xe.
+ 1M (Xqy (0 [V = Vil ) > AN/} N Qr (1))

Therefore, by (8.19) and er(ac, t) C Qar(z,tg) we obtain for any n > ng and m > k,

[Exs, N Q,.(x )] < 0;2 /~ [Vt m — VU m|dedt
Q27‘(m t)
+ 42 Vit — Vit | dadt + 22 \Vu — Vu, |dzdt
A JGan(at) A S Gty
< c13 (02 + 61(1 + 02)) |Qr (2, 1)]
2 Vit — Vit | dadt + 22 IV — Vi, |dzdt.
A Gt A J Gt

Letting m — oo and n — oo we get

|Exs, N Qr(x,1)] < c13 (82 + 01(1 + 02)) |Qr (2, 1)].
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Thus,

w(Bxs5, NQp(x,t)) < C <|Emz N Ch(:v,t)) .

G D) w(Qr(x,1))

< C(e13 (02 +01(1+92)))" w(Qr (1))
< sw(Q,ﬂ(x,t)).

where d5, 071 are appropriately chosen, (C,v) is a pair of A, constants of w.
Next we consider the case Bs,(x) N Q # 0. Let x5 € 9 such that |z3 — x| = dist(x, OQ).
Set to = min{t + 2r2,T}. We have

Qar(2,t0) C Quor(3,t0) C Qsa0r(23,t0) C Qrosor(3,t) C Quossr(2,t) C Quosor(T1,t1)
(8.20)
and

Qs40r(73,t0) C Q1080r($37t) C Qlosgr(%t) - Q1089r($2,t2) (8.21)
Let V., be as in Lemma 7.13 with Q¢r = Qsa0r(23,%0), U = Up,m and € = 63 € (0,1). We
have

|tin,m | (@540 (23, t0))
RNT1

HVmeHLoo(er(m&to)) < 014][ \Vun7m|dxdt + C14

Qs40r(23,t0)

and

][ Vet — Vi |decdlt
Qior(x3,t0)

) | tin,m|(@s40r (23, 10))
RN+1 :

< c15(65 + [A] ) f |Vt |dadt + c15(53 + 1 4 [A]Fo

S0
Qs40r(x3,t0)

Since M(|Vu|)(z1,t1) < A, Mj[w](x2,t2) < dzA and (8.20), (8.21) we get

lim sup lim sup || V'V, m || Lo (Qay (2,t0)) < limsuplimsup [|VVi | o Q10 (,t0))

n— oo m—r oo n—oo m—r 00

AR e
< C14][ |Vu|dxdt+cl4w
Qs40r(x3,t0)

RN+1
) t
< 015][~ |Vu|dzdt + 61500(@1089]:;&2, 2))
Q1o89r(z1,t1) R

< 16 + ci602A
<cizA

and

n— o0 m—o0

lim sup lim sup ][ [Vt m — VVy m|dzdt
Qar(,to)

w(Qs40r(x3,10))
FNHL

W(Q1089(!E2, t2))
FN+1

< c1s(0s + [A}go)][ Vuldedt + c1s(8 + 1+ [A]7)

Qs40r(23,t0)

< c19(63 + [A]gio)][

Q1os9r(T1,t1)
20(03 + [A]ZO)N + 21 (85 + 1 + [A]F0) 52
20 (((53 + (51) + ((53, + 14+ 51)52) A

|Vul|dxdt + c19(03 + 1+ [A]ﬁo)
<c
<ec

Here we used [A]f < §; in the last inequality.
So, we can find ng large enough and a sequence {k,} such that

||vvn,m”[,00(@2,,.(g;,t)) = ||vvn,mHL°°(Q2r(a:,to)) <2ci17A  and (8.22)
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][ |Vun}m - VVn’m|d$dt < 2¢91 (((53 + (51) + ((53 + 14+ 51)(52) A, (823)
Q2r(x,to)

for all n > ng and m > k,,.
Now set A = max{3¥+2 8¢c;o,8¢17}. As above we also have for n > ng, m >k,

[Exse 1 Qr(@,8)] < M (X, (o) [ Vtinom = VVaml ) > AN/4} 0 Qr(a, 1)
+ M (X )| Vtin = Vitnml ) > AN/4} 1 Qe (2,1)]
+{M (X@w(z,t) Vu— Vun|) > AN/4Y N Oy (2, 1).
Therefore from (8.23) we obtain

(Vg — V Vi | dadt

Bran Qo) <2 [

QQT(m,t)
+22 Vit — Vit | dadt + 22 \Vu — Vu, |dzdt
A JGor(at) A S Qo (at)
< cg3 ((63 4 01) + (03 + 1 4 01)62) |@r(x, t)]
+22 / Vit — Vit | dadt + 22 \Vu — YV, |dzdt.
A JGor(at) A S Qo (at)

Letting m — oo and n — oo we get

|Ex5, N Qp(x,1)] < a9 (83 + 61) + (83 + 14 61)82) |Qrr(, 1)
Thus

G D) w(Qr(z, 1))

S C (622 ((53 + 51) + (53 + 1+ (51)52))V w(@r(x, t))
< ew(Q(,1)),
where d3, 01, 02 are appropriately chosen, (C,v) is a pair of A, constants of w. }
Therefore, for all (z,t) € Qp and r € (0,2r¢] and A > 0 if w(E 5, NQr(2,t)) > ew(Q,(x,1))
then QT(.’E, t)mQT - F)\ where 51 = 51(N7 Alu A27 g, [w]A ) € (07 1) and 52 = 52(N7 Alu A27 & [w]Aoc ) TO/RO) €

oo

(0,1). Applying Lemma 3.19 we get the result. ]

w(Ey s, N Qr<3’;7t)) <C <|E>\752 N Qr(a:,t)> .

Proof of Theorem 2.20. As in the proof of Theorem 2.17, we can prove (2.32) by

using estimate (8.13) in Theorem 8.4. In particular, thanks to Proposition 4.4 for g > %—ﬁ,

e L(N+231(Q71)7°°(QT) and 0 =0,
Vul?|| vi2a-1) < ¢f|ul]? . , (8.24)
||| | HL%"”(QT) L(N+231( 1)’°°(QT)
where the constant ¢ depends only on N, Ay, As, ¢ and Ty/Ry. [ |
Proof of Theorem 2.22. By Theorem 2.20, there exists a renormalized solution of
(2.4) with data p, u(0) = o satisfied
/ |Vu|Tdw < cl/ (M [w])? dw (8.25)
QT QT

for any w € A, where ¢; = ¢1(N, Ay, Az, q,To/Ro, [w] 4., )

oo /"

For 0 < § < 1 we have My [w] < 02]I2T°76 w] in Q7. Thus, (8.25) can be rewritten
1

/ Vu|9dw < ¢ / (HfTo’é[qudw. (8.26)
Qr Q

T
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Thanks to Proposition 4.23 and Corollary 4.39 and 4.38 we obtain the result. [

In follow that we usually employ the the Minkowski inequality, for convenience we recall
it, for any 0 < ¢1 < g2 < oo there holds

(Lo ) s o)

for any measure function f in X x Y, where pi, o are nonnegative measure in X and Y
respectively.

Proof of Theorem 2.21. We will consider only the case s # oo and leave the case
s = oo to the readers. Take k; € (0,k). It is easy to see that for (zo,tp) € Qr and
0 < p < diam(Q) + T/?

w(z, t) = min{p_N_Q'm_”‘1 ,max{ |z — xo|, /2|t — t0|}_N_2+”_”1} € A

where [w]4_ is independent of (z¢,to) and p. Thus, from (2.32) in Theorem 2.20 we have
(N+2— ﬁ+n1)
||M(|VU|)||Lq #(Qp(z0,to)NQr) =r |‘M(|vu|)|‘Lq‘s(Qp(Io,to)ﬂQTydw)
(N+2-rtry)s s
< cap ‘ |[IM1 [@][|70.2 (27, u0)

(N+2—rtnry)s dA

=qcp ¢ /000 Mw({My[w] > A} N Q) X

(N+2—Kk+r71)s o o
=qci1p a / ()\Q/ {M; [w] >)\,w>T}ﬂQT|dT) ~
0 0

(N4+2—r4ry)s

=:c1p ¢« A (827>

Qe
R

Since w < p~N=2+57%1 and {M[w] > A\, w > 7} C {M;[w] > A} NQ S N (xo,to),

> pr T - A
A< q/ (XI/ H{M;[w] > A}NQ m(zo,to) n QT|dT> <
0 0 T !

We divide to two cases.
Case 1: 0 < s < ¢q. We can verify that for any nonincreasing function F in (0,00) and

0 < a <1 we have
(/OOO F(T)dT)a < 4/OOO(TF(T))aCiT.

Hence,
e ; § dr dA
As<d AT [{M AFN )N )q ar A
B q/o /0 ( THML[W] > AN Qo (w0, 0) N O] )7
S 9 g d\ sdr
:4(1/ / ()\q\{Ml[w} >ANQ m(;ﬂo,to)mgﬂ) Tﬁ7
0 T
piN T s dT
4 / I llne L sornn™
—N-2+4+K—rq
<4
p

sk

/ [V 0] [0, 000 g2y T &N—Eiﬁm%)”qdj
co||M

Uz @pp™ 7 -
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Case 2: s > ¢. Using the Minkowski inequality, yields

A<e (/ ([ (o> 0@ Gotnanl)’ T df>q

—N—-24r—r]

0

pri Cvirme 87
<el [ ([ s

SK1

:C5HM1[W]||SLQ,S;N(QT)[;_ a .

Therefore, we always have

SK1

A < co| ML ][ 700 ()P 7

which implies (2.33) from (8.27).
Similarly, we obtain estimate (2.46) by adapting

w(z,t) = min{p VTV |z — g0 VT € A

in above argument, where 0 < ¥1 < ¥, 29 € Q and 0 < p < diam(Q?) and [w]a_ is
independent of xy and p.

Next, to archive (2.35) we need to show that for any ball B, C RY

1
T q
_9
(/0 |OSCBmeu(t)|th> < erp! IVl o2 oy (8.28)

Since the extension of u over (Q7)¢ is zero and u € L'(0,T, W;''(Q)) thus we have for a.e
€ (0,7), u(.,t) € WHL(RN). Applying [32, Lemma 7.16] to a ball B, C RV, we get for a.e
€(0,T) and z € B,

[Vu(y,t)]
u(z,t) —u d
1) = (8] < 75 |/ oy
<2 [Vu(y. t)|
< [P oL
N[B1(0)] /i, @) = =y
3p fB (z )‘VU v, t)|dy qr
é TN 1 r T
here up,(t) is the average of u(.,t) over B,,, i.e up,(t ‘B | fB u(z, t)de.

Using the Minkowski and the Holder inequality, we dlscover that for a.e = €B,

T é 3p V’LL Y, dy 4q %
/ fu(, t) — up, (Odt ) < cs / o [Vely Dldy ar ",
0 0 0 r r
3p T z dr
< Cs/ / o (/ |Vu(y,t)|th> dyﬁv
3p g1 dr
<08/ (/ x)/ |Vu(y,t |thdy> |B,(x)] @ N

71 N—9 N(-1 dr
< es| By ()| / i [T
0

= cop IVl g .
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Therefore, we find (8.28) with ¢7 = 2¢q. |
Proof of Proposition 2.28.  Clearly, estimate (2.46) is followed by (4.12) in Propo-

sition 4.7. We want to emphasize that almost every estimates in this proof will be used the
Minkowski inequality. For a ball B, C RY, we have for a.e z € RV

too o (Qy r\" i
|ﬂ1[u1<x,.>|Lq(R></ (/ Wd> dt)

<[ ( / +°°<u<égr<:c,t)))%it)é L (3.20)

— 00

Q=

Now, we need to estimate (fj;o (1(Qr(, t)))th) :
b. We have

(/_:O(M(Q’"(x’t)))th); - (/_J:o (/RN+1 XQr () (whtl)du(ml,tl))th);

1
+oo q
S/N </ XQT(z,t)(xlﬂtl)dt) dp(@, 1)
RN+1 —o00

2
= (B (z))
Combining this with (8.29) we obtain (2.47) and (2.49).
Thus, we also assert (2.49) from [1, Theorem 3.1 |.
c. Set dus(z) = ||, .)||pa rydz. Using Holder’s inequality, yields
a1
a1

- 2(q1—1) t*é
p@e) < [ [ et | do
B, (x) t

P il
2

Leads to

too a 2(qy ~1) +oo b+
([ w@oya) <5 [ [ T wnyean | a|
- B, (x) — 0 t— L2

2

S
Q=

Note that

) </_:O </‘:O X(e-garg) P tl))qldm) ' dt) %

+oo +o0 qu
S/_OO </—oo X(t_pz‘27t+pz‘2>(t1)dt) (w(zy,t1))"dty

Hence

+oo ~ q 2((11—1)+g
/ (O (0t ) < 404 / IRZCRIPs
B, (z

2(g1—-1) 4 2
T+7

* pa(By(2))-

=r
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Consequently, since (8.29) we derive (2.50) and (2.51).
We also obtain (2.52) from [1, Theorem 3.1 ]. |

8.3 Global estimates in RY x (0,00) and RV*!

Now, we present the proofs of Theorem 2.25 and 2.27.
Proof of Theorem 2.25 and Theorem 2.27. For any n > 1, it is easy to see that

Cap,,(B1/4(20),B2(0)) _

i. RN\ B, (0) satisfies uniformly 2—thick with constants ¢y = Cap, (51 (0).55(0)) * 0 =

(1/2,0,...,0) € RN and ry = n.

ii. for any ¢ € (0,1), B,(0) is a (d,2nd)— Reifenberg flat domain.
iii. [A]7 < [A]®

S0 — S0°

Assume that |[M;[|wl[]||zr.s@n+1) < 0o. Thus by Remark 2.26 we have
I[|w|](z,t) < oo for a.e (z,t) € RN (8.30)

In view of the proof of the Theorem 2.5 and applying Theorem 2.17 to B,,(0) x (—n?,n?) and
with data Xp, ,(0)x(=(n-1)2,(n—1)2)w for any n > 2, there exists a sequence renormalized
solution {u,} ( we will take its subsequence if need ) of

(un)¢ — div(A(x,t, Vun)) = XB, 1 (0)x(—(n—1)2,(n—1)2)w 0 By (0) x (—n?,n?),

up, =0 on dB,(0) x (—n? n?),
un(—n?) =0 in B,(0),

converging to a distribution solution u in L (R; Wli)’cl(RN )) of 2.6 with data u = w such
that

IVun|llLrs (8,0 x (—n2,n2)) < elM1[XB, 1 (0)x(~(n-1)2,(a=1)2) [W[]l| L7 (Bar (0) x (—n2,n2))
< a1 [Mu[|w|]]| Lo vy

2n+(1+n2)1/2 ~

Here ¢; = ¢1(N, A1, Aa, p, s) is not depending on n since %‘ = -

Using Fatou Lemma, we get estimate (2.38).

As above, we also obtain (2.39).

And similarly, we can prove Theorem 2.27 by this way.

This completes the proof of Theorem. ]

Remark 8.5 (sharpness) The inequality (2.41) is in a sense optimal as follows:
CHIM[[w[]l] oqr+1y < [I[VH2] * W]l Lagey x(0,00)) < ClIM[Jw]]]] Lagr+1) (8.31)
for every q > 1 where C = C(N,q). Indeed, we have

VHy (2, t) = ~ 5 HNTD2 eXp(_Z)\/{’

leads to

-1
C

1 C1
SN Xt>0X} Vi<lo|<2vi < [VHa(z, 1) < e [2], V2N

Immediately, we get

o /°° w ((Br(x)\BT/Q(x)) X (t—r2t— r2/4)) dr
> Jo

FNFI o < |VHs |+ |wl(z,t) < ey [w](, T).
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By Theorem 4.2, gives the right-hand side inequality of (8.31). So, it is enough to show that

q
* w ((Br(2)\Byj2(x)) x (t —r%,t —r2/4)) dr
A= RN+1 </0 ( / rN+1 ) r dxdt > c3||My [MH‘%LI(RNJrl)

(8.32)

To do this, we take r, = (3/2)* for k € Z,

(/ % 1 ((By (2)\Byja(@)) x (t = 12,1 — 12/4)) d) q
0 r

PN+

N+1
Tk

S ( (2)\Bar, /a(x)) x <t—r£,t—9rz/16>)>q

k=—o00

We deduce that

A>cy Z / ( By, ()\Bay, /a()) x (t—rz,t_grz/m)))qudt.

N1
Tk

For any k, puty =x + Iry and s =t — 2272, so By, (x)\Bsy, j4(x) D By, /s(y) and

I <w (B, (2)\Bar, ja(a)) x (¢ = 7.t = 912/16)) ) ' ded
RN+1

N+1
Tk

q
) <w (Brk/s(y)x(5—77”;%/327t+7T’%/32))> dyds.
RN+1

N1
Tk

Consequently,

B, —r2/32,t +7r2/32)) \ *
A>C4/RNH Z ( N ))) dyds

Tk

It follows (8.32).

9 Quasilinear Riccati Type Parabolic Equations

9.1 Quasilinear Riccati Type Parabolic Equation in

We provide below only the proof of Theorem 2.30, 2.32 and 2.33. The proof of Theorem
2.31 can be proceeded by a similar argument.

Proof of Theorem 2.30. Let {u,} C C*(Qr) be as in the proof of Theorem 2.1.
We have |un|(Qr) < |p|(2r) for any n € N. Let o, € C°(Q2) be converging to ¢ in the
narrow topology of measures and in L'(Q) if o € L'(Q) such that ||oy||11(0) < |o|(€2). For
ng € N, we prove that the problem (2.53) has a solution with data p = p,, and o = oy,.

Now we put
Ex = {uc LY(0,T, W, (Q)) :

< A},

N
1% (Qr)

where L%ﬁ’“(QT) is Lorent space with norm
1
f = sup (D_N+2/ f)
1l =y = 0 (12177 1
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By Fatou’s lemma, E, is closed under the strong topology of L(0, T, 01 (©)) and convex.
We consider a map S : Ey — E, defined for each v € Ep by S(v) = u, where u €
LY(0,T, VVO1 1(Q)) is the unique solution of

—div (A(z,t,Vu)) = |[Vu|? + pp, in Qp,
u=0 on 90 x(0,T) (9.1
u(0) = op,.

By Remark 3.2, we have

I S

for some ¢; = ¢1(IV, A1, Ag). It leads to

< 1 (IVelllLs @) + 1nd Q1) + llon |l @)

(N

<c1(c2|QT|1 RVl +|u|<QT>+|o|<Q>)

Njﬁ o o
(Qr) N+1%°(Qr)

< er (ealf2rl' = WA+ [l(Q) + [01(2))

for some co = c3(NV, q) > 0. Thus, we now suppose that

1

Q| T (|ul(Q0) + [01() < (2e1) Ve T

then

IVl 32 ) < A= 202l + 1o (@),

which implies that S is well defined.

Now we show that S is continuous. Let {v,} be a sequence in E, such that v,, converges
strongly in L1(0 T, W, (Q)) to a function v € Ey. Set u, = S(v,). We need to show that
U, — S(v) in L0, T, Wy' (). We have

(un)¢ — div (A(z, t, Vup)) = |[Voa|? + pn, in Qr,
u, =0 on 90 x (0,7T), (9.2)
Un(0) =0y, in €Q,

satisfied

V|l e <A, <A

LN (Qr) = (@Qr)
Thus, |Vv,|? — |[Vo|? in LY(Qr). Therefore, it is easy to see that we get u, — S(v) in
LY(0,T,Wy' () by Theorem 3.6.

Next we show that S is pre-compact. Indeed if {u,} = {S(v,)} is a sequence in
S(Ea). By Proposition 3.5, there exists a subsequence of {u,} converging to some u in
LY(0,T,Wy' (€)). Consequently, by Schauder Fixed Point Theorem, S has a fixed point on
E, this means: the problem (2.53) has a solution with data pi,,, op,-

Therefore, for any n € N, there exists a renormalized solution u,, of

(un)e — div (A(z,t, Vuy,)) = |Vug|?+ py  in Qp,

u=0 on 900 x(0,T), (9.3)
un(0) = oy,
which satisfies
1Vl 22 o “ (o )<261(|u\( )+ [o](€2)).

Thanks to Proposition 3.5, there exists a subsequence of {u, } converging to u in L' (0, T, Wy"' (2)).
S0, IVulll, ., < 261(|8l(Q) + lol(2)) and [Vun|? = [Vul? in L}(Q) since {|Vun|'}

1°°00
is equi-integrable. It follows the results by Proposition 3.5 and Theorem 3.6. ]
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Proof of Theorem 2.32. Case a. A is linear operator. By Theorem 2.22, there
exist § = (N, A1, Aa,q) € (0,1) and sg = so(N, A1, A2) > 0 such that Q is (d, Rg)- Reifen-
berg flat domain and [A]f < § for some Ry and a sequence {uy }, as distribution solutions
of

(u1)e — div(A(z,t,Vuy)) = p in Qr,
up =0 on 90 x(0,7),
u1(0) =0 in Q,

and
(unt1)e — div(A(z, t, Vupt1)) = |[Vup|? + p in Qr,

Unt1 =0 on 90N x (0,7),
un-‘rl(o) =0 in Q)

which satisfy

[[Vtni1|loner.ar < el Vun|? +wlf 6 ¥R 20 (9.4)

where up = 0 and constant ¢; depends only on N, Ay, As,q and Ty/Ro,To. Moreover, if
o € L1(Q) then {u,} is the sequence of renormalized solutions.

i. Suppose
[Woner ot < (4= 1)7(qer2771) 77, (95)
we prove that
gei 2771
[[Vtn|gper.ar < i W g > 1. (9.6)

Indeed, clearly, we have (9.6) when n = 1. Now assume that (9.6) is true with n = m, that
is,
qc1 2971

q—1

[Vum|oper.ar <

[w]gﬁgpq’ .
From (9.4) we obtain

Hvum+1 |q]9:ng1;q/ é C1 Hvum|q + w]g_'ngl,q/
< a2 (Vi |V, + 01y, )

_ q612q71 a -1
<o ((2) bt +1) bl

qc12971
a—1 “oora

Here, the last inequality is obtained by using (9.5). So, (9.6) is also true with n = m + 1.
Thus, (9.6) is true for all n > 1.
ii. Clearly, u,+1 — uy is the unique renormalized solution of

up — div (A(x,t, Vu)) = [Vuy|? — [Vup—1|7 in Qr,
u=0 on 00 x(0,T), (9.7)
w(0) =0 in Q.

So, we have

Hvun—i-l - vun|q}gmgl,q’ < Cl[lvun|q - ‘vun—l‘q] Vn > 1.

q
Mmo1.a
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Since, |s{ — s3] < g|s1 — s2|(max{sy,s2})97! for any s, sa > 0 and using Holder inequality,
we get

[[Vtngr — vun‘q]gmgpq’ < c1q? [|[Vup — vun—1|q]§mg1vq’ [(max{|Vu,|, |vun—1|})q]g£gll,q'

-1
< aq?[|[Vu, — V“n71|q]§m91,q’ ([|vun|q]§mgl>q’ =+ [|vunfl|q]m91vq/)q
which follows from (9.6),

[|Vun+1 — vun|q]9ﬁg1,q' S C [|Vun — Vun_l\q]mgl,q/ Vn>1

where N
C=ciq? ({26121) [w]g)(zqulq),.
Hence, if C' < 1 then u,, converges to u = uj + o0 (Un41 — up) in LI(0, T, W, %(Q)) and
satisfied 401201
q—1

(IVul?gpa,.a <
Note that C' < 1 is equivalent to
1
1 [(qe29\ ¢
[Wlgpor.ar < (c1¢?) ™ 7@=D (qll>

Combining this with (9.5) and using Theorem 3.6, we conclude that the problem (2.53) has
a distribution solution u (a renormalized if o € LY(Q)) , if

1
24\ "7
[W]gnoy.r < min {(q — )3 (gey297) 7T, (¢1¢%) T (qcl ) } :

q—1

[W}mgl,q’ .

Next, we will prove Case b. and Case c..

Let {un} C C*(Qr),0, € CX(Q) be as in the proof of Theorem 2.1. We have |u,| <
On * |, |on| < @1 % |o| for any n € N, {¢n}, {10} are sequences of standard mollifiers in
RNHTL RN respectively. Set wy, = [pn| + |on| @ dp—oy and w = |u| + 0| @ dgr—oy-

Case b. For ng € N, ¢ > 0, we prove that the problem (2.53) has a solution with data
W= ny,0 = 0p,. Now we put

Exn={ue Ll(OaTa W()Ll(Q)) : [|vu|q+€]m91v(q+5)/(QT) <A}

By Fatou’s lemma, E, is closed under the strong topology of L(0, T, WOM(Q)) and convex.
We consider a map S : Ex — Ej defined for each v € Ep by S(v) = u, where u €
LY(0,T,Wy' () is the unique solution of problem (9.1). By Theorem 2.22, there exist
d=0(N,A1,A2,qg+¢) € (0,1) and sog = so(N, A1, A2) > 0 such that Q is (§, Ro)- Reifenberg
flat domain and [A]f0 < § for some Ry we have

Hvu\qﬁ}mgl‘(ws)’ < o[ Vol? +wno]§;§1,<q+ay,

where ¢g = ca(N, A1, A2, g+ ¢,To/Ro, To). By Remark 4.33, we deduce that

_a_
[|Vv|q]9;ng1 ,(g+e)! S C3[|Vv|q+€]§;51,(q+5)/ )

where a constant c3 depends on N, q + ¢.
Thus,

+
[|Vu|q+a]gm91,(q+s>/ < e ([\V0|q]gmgl,(q+s)' + [wno]mg1,<q+s)')q :

N q q+te
< e (03[|V“|q E]§§l,<q+gy + ["Jno]mgly(wa)/)

q q+te
é C2 (CgA q+te + [wnﬂ]mglv(q+i)/)

A

IN

)
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! 1

provided that [wylone, ey < €4 = 2"1l02_mc;ﬁ and A := 29t¢c, [wno]g;;(ﬁe),.

which implies that S is well defined with [wn,]oper.atey < ca-

Now we show that S is continuous. Let {v,} be a sequence in E, such that v,, converges
strongly in L'(0, T, Wy (€2)) to a function v € Ex. Set u,, = S(v,). We need to show that

u, — S(v) in LY(0,T, W, (€)). We have u,, satisfied (9.2) and
Hvun|q+€]gm91,(q+s)’ S Aa van|q+€]gmgl,(q+s)’ S A

In particular, |[Vou||pete(ar) < ACapg, (giey (Qr) for all n. Thus, [Vu,|? — [Vo[? in
L'(Q7). Therefore, it is easy to see that we get u,, — S(v) in L(0,T, W,""(Q)) by Theorem
3.6. On the other hand, S is pre-compact. Therefore, by Schauder Fixed Point Theorem, S
has a fixed point on E. Hence the problem (2.53) has a solution with data p = piny, 0 = op,-
Thanks to Corollary 4.39 and Remark 4.40 we get

[Wnlopar (arer < C5lwWlgner.arey ¥V mEN, (9.8)

where ¢5 = ¢5(N,q+¢,Tp).

Assume that [w]gre, (g4ey < C4C5_1. S0 [wnlgner.arer < ¢4 for all n.

Therefore, for any n € N, there exists a renormalized solution u,, of problem (9.3) which
satisfies

Hvun|q+s]£mglv(q4rs)' < 2q+862[wn} .

q+te q+e qte qte
gmgl,<q+s>'§2 cac " [w]

M1 (a+e)”
By Proposition 3.5, there exists a subsequence of {u,,} converging to u in L'(0, T, WO“(Q))

So, [[VulT]gper ey () < 2q+50202+5[w]g;§1y(q+5),(QT) and |Vu,|? — |Vu|? in L' () since

{|Vun|?} is equi-integrable. It follows the result by Proposition 3.5 and Theorem 3.6.

Case c. For ny € N. We prove that the problem (2.53) has a solution with data u =
lngs T = On,. Now we put

EA = {u S Ll(O,T, Wol’l(Q)) : |||Vu|||L<N+2)(q71>,oo(QT) < A},

where L(N+2)(a=1),20(Q)) is Lorent space with norm

R S
I[fll Lv+ra=1) .00 () = SUD <|D| e / |f|dxdt> .
0<|D|<o0 DNQr

By Fatou’s lemma, E, is closed under the strong topology of L'(0,T, W,"'(Q)) and convex.
We consider a map S : Ex — Ej defined for each v € Ep by S(v) = u, where u €
LY(0,T, Wy (€)) is the unique solution of problem (9.1). By Theorem 2.20, there exist
§ = 6(N,A1,A2,q) € (0,1) and sg = so(IN,A1,A2) > 0 such that Q is (J, Rp)- Reifenberg
flat domain and [A]f> < § for some Ry we have

U[||L(N+2)(a=1),00(Qp) = C6 1 v Wng ||| L(N+2)(¢=1),00 (Qpr
[Vl @r) < el Ma[[Vo]? 4+ wn ]| (@r)

< ¢ ([IM1 [Vl 7| pov+2)a-1).00 () + [M [wno ]| v 423 6a-1).00 (07 ) 5

where cg = cg(N, A1, Aa, q,To/Ro) and Ty = diam(Q) + T/2.
By Proposition 4.4 we have

IVl Lovt2rca—1),00 ety < cr|[If| FI9]] Lovsrcam1),00 ot
< Cs\|f\|%<N+2><q71>,m(Rn+1) Vf € L(N+2)(Q*1)700(Rn+1)’

where a constant cg only depends on N, q. Thus,

7l o0 @) < €6 (€slIVOlE v saria-sr ) + M ]l 00 )

< cg (csA? + \|M1[wno]||L<N+2>(q—1),oc(QT)) ,
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1
which implies that S is well defined with |[Mi [wn]||1ov+2)-1.00 () < €0 == (2¢6) T cg * "
and A = 206\|M1[wn0] | ‘L(N+2)(q—1),oo(QT).

As in Case b we can show that S : Ex — Ej is continuous and S(E,) is pre-compact, thus
by Schauder Fixed Point Theorem, S has a fixed point on E,. Hence the problem (2.53)
has a solution with data p = pp,, 0 = op,-

To continue, we need to show that

||I\/H1 [w””|L<N+2)(Q—1),00(RN+1)

< crol M [l pev+2)a-).00 1) + caol[T —allollll o @@y, (9.9)

2
(N+2)(g—1

for every n > ko. Where kg is a constant large enough and c¢19 = ¢19(V, ¢) Indeed, we have
M [wn] < erili[on * |ul] + c11li[(01,0 * |0]) @ dg4=0}]. Thus, by Proposition 4.19 we deduce

| |M1 [(A}n] ‘ |L(N+2)(q—1),oo(RN+1)

< cu|[lifen * |pllll Lovi2a-1).00 @a1y + €12 I _1lern *of]llLovin - @y)

2
(N+2)(¢—1)

= cu1|len * I [lulll| Lovear@—1 .00 @n+1) + C12]|p1,5 * T oIl Lav+2a-v @)

P E—
(N+2)(g—1)

— 011||]I][|,LL|]||L(N+2)(qfl),oo(RN+l) + CleI [|0’HHL(N+2)(¢1*1)(RN) as n — oQ.

2
e !

It implies (9.9).
Now we assume that

[Ty [ 2l}| v+ a=1),00 vy, [T o povea-n @y < co(2e10) 7,

2
(N+2)(g—1)

then [|My [wy]|| Lv+2)(a-1),00mv+1) < €9 for all n > ko. Consequently, there exists a renor-
malized solution u, of problem (9.3) satisfied

V||| Loviza—1.0(0p) < 2¢6|[Mi{wn]llLiv2)a-1).00 (0

< 2cgc10||Ta[| ]| Lv+2)ca-1).00 @41y + 2¢6¢10 ([T ol Lovez - @y = C

2
=D !

for any n > kg. Thanks to Proposition 3.5, there exists a subsequence of {u,} converging
to w in LY(0,T, W, (Q)). So, Vulll vtz 0 < C and [Vup|? = [Vul? in L'()
since {|Vuy,|?} is equi-integrable.

It follows the result by Proposition 3.5 and Theorem 3.6. This completes the proof. ]

Proof of Theorem 2.33. Let {u,} C CX(Qr),0, € CZ(Q) be as in the proof of
Theorem 2.1. We have |u,| < ¢p * |ul, |on] < @10 % |0 for any n € N, {p,}, {p1..} are
sequences of standard mollifiers in RN +1 RY respectively. We can assume that supp(p,) C
(Y +B4/4(0))x[0,T] and supp(c,,) C Q' +Bg/4(0) for any n € N. Set wy,, = |pn|+|0n|@01—0y
and w = || + o] & 3o}
First, we prove that the problem (2.53) has a solution with data p = pp,,0 = oy, for
no € N. By Corollary 4.39 and Remark 4.40, we have

[Wnlonar .t < €160 Vn € N, (9.10)

where ¢; = ¢1(N,q,Tp) and €9 = [w]yye, .- By Proposition 4.36 and Remark 4.37, we have

q
1770 [(H%To’é[wnD ] < el 2T [, ] aein RNT! and (9.11)

112[@‘;%*5[%])‘1] < el yfwn] aein RVHL (9.12)
for any n € N, where ¢3 = ¢o(N,0,q,Tp) and 0 < § < 1. We set

Ej = {u € L'0,T, W} (Q)) : [Vu| < AT [w,,,]}.
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Clearly, E, is closed under the strong topology of L'(0, T, VVO1 1((2)) and convex.
We consider a map S : Ey — L'(0, T, W, () defined for each v € Ex by S(v) = u, where
u € L'0,T, W, (2)) is the unique renormalized solution of problem (9.1). We will show
that S(E,) is subset of E, for some A > 0 and ¢ small enough.
We have

[Vl < Al [wn,]- (9.13)

In particular, |Hv’U|||Loo(Qd/2X(O7T)) < AN +1)7Yd/2) "N tw,, (Qr), where Qg = {z €
Q:d(z,00) < d/2}.
From (9.11) and (9.12) lead to

q
B0 (1Vel1) < AR (70 wn,] )| < 20728 R ] and
L Vol7] < AT [ (7 wn,)) ] < 209 Tafeon, -

Clearly, from [27, Theorem 1.2], we have for any Q,(z,t) CC Q X (—o0,T) with r < rg

[Vu(z, t)] < 0372 " \Vuldyds + csIZ70°[|Vo|? + wp, ] (2, )
e x?

< c3 ][ \Vuldyds + csI3700[| Vo] 9] (2, t) 4 es1270 [w, ] (2, £)
Qu(a.t)

< C3]€2 o |Vuldyds + c3 (@A%‘Sfl + 1) H?TO’S[wnO](:r,t), (9.14)
(zx,t

where c3 = c3(N, A1) and rg = ro(N, A1, As, A3, 8) > 0.
since [[Vullli(ar) < eTo (IIV0ll1E0(ay) +wno (@), for any (z,1) € (@\Qaza) x (~00,T)
where Q4,4 = {z € Q : d(x,00) < d/4},

1

Qa0 Jgp ey V10080 < 5™ T (I1V¥l oy + 0 )
o\Ls do (T,

< el (V0|7 + wny (2, 8)

< o (C2Aqeo +1) 12709 [, ] (2, 1), (9.15)

where dy = min{d/8,7r¢} and ¢g = (N, p, A1, A2, Tp/dp).
By regularity theory, we have

(I Vul| L @4)5x 0,7)) < erl|ullLe@,ox0,1) + VUL (9,0 % (0,7)))

where ¢; = ¢7 (N, A1, Ao, A5, Q,T).
a. Bstimate [||Vv|?]| Lo (q,,,x(0.7)). Thanks to (9.13),

|||Vv\q\|Loo(Qd/2x(0,T)) = ( (d/2) (Wno(QT)))q-
Since wp, (Qr) < cleoCapgl’q,(QTO (x0,%0)) = cs(N, ¢, p, To)eo with (zg,9) € Qp, thus
[Vl Loo (0 x (0,7)) < coATel™ T (@, t) V(,t) € Qp,

where Cg = Cg(N,Al,AQ, Ag, q,d7 Q,T)
b. Estimate ||u||r=(q,,,). By Theorem 2.1 we have

lu(z, t)| < c1ol2]|VU|? + wa,|(z,t) V(x,t) € Qp,
where ¢19 = ¢10(N, A1, Ag). Thus,
u(z,t)] < crola[|Vo[](z, 1) 4 crolzlwn,] (2, 1)
S C10 <62Aq5g_1 + 1) ]IQ [wno](x, t),
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which implies

[lullzoe (@42 x (0,1 < €1 (Cquﬁgfl + 1) d™Nwn, (Qr)

< iz (20987 + 1) 0w, J(2,8) W(w,t) € Qr,
where ¢15 = ¢12(N, A1, Ao, A3, q,Tp/d). Therefore,

VUl Lo (9,,.x(0,1)) < €13 <614Aq53_1 + 1) @ glefﬂT 1770 [wne ) (2, 1). (9.16)
where €13 = 613(N7 A17 A27 A3a q, d7 Q? T)
Finally from (9.15) (9.16) and (9.14) we get for all (z,t) € Qp

Vu(z,b)] < c1q (015/\’158_1 n 1) 1270 0,1z, ).

where C14 = C14 (N7 A17 A27 AS; q, da Qa T) and C15 = ClS(Na 57 Q)
1

So, we suppose that A = 2¢14 and g < c;5ﬁ(2014)7ﬁ, it is equivalent to (2.61), (2.62)
holding for some C' > 0. Then for any (x,t) € Qr

Vu(a, )] < AT [, (2 8),

and S is well defined.

On the other hand, we can see that S : Ex — E, is continuous and S(FE) is pre-compact
under the strong topology of L'(0, T, WOM(Q))

Thus, by Schauder Fixed Point Theorem, S has a fixed point on E,. This means: the
problem (2.53) has a solution with data p = iy, 0 = op,.

Therefore, for any n € N, there exists a renormalized solution u,, of problem (9.3) which
satisfies

[V (2, 1) < AT (w,] (2, t) ¥ (2,t) € Q.

Since I [wn](, 1) < @ x I3l (2, )+ o1, % (I [0 @120y (-, 1)) () =: Ap(a,t) and
A,, converges to ]I?TO’(SHILLH + H?TO’6[|J| ® bgr—oy] in LY(RNTY), thus |[Vuy,|? is equi-integrable.
As in the proof of Theorem 2.32, we get the result by using Proposition 3.5 and Theorem
3.6. This completes the proof. ]

9.2 Quasilinear Riccati Type Parabolic Equation in RY x (0, 00) and
RNJrl

In this subsection, we provide the proofs of Theorem 2.37 and 2.38. In the same way, we
can prove Theorem 2.36.
Proof of Theorem 2.37. As in the proof of Theorem 2.25 and Theorem 2.27, we can
apply Theorem 2.32 to obtain: there exists a constant ¢; = ¢1(V, Ay, Ag, ) that if [A]3° < §
and (2.64) holds with constant ¢; then we can find a sequence of renormalized solutions
{un,} of

(Uny )t — div(A(z,t, Vi, )) = [Vug, |7+ XD, W in Dy,

Up, =0 on By, (0) x (—ni,n}),

Up,, (—n3) =0 on By, (0).

converging to some u in L{, (R; Wlicl (RY)) and satisfying

192, | 0052100 () < al Tl w2010 v,

n
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for some ca = ca(N, A1, Aa, q), where D,, = B,,(0) x (—n? n?). It follows |Vu,, |9 — |Vul?
in LL _(RN+1). Thus, u is a distribution solution of (2.55) which satisfies (2.63).
Furthermore, if w = p —|— 0 ® b—oy with g € M(RY x (0,00)) and o € M(RY), then
Up,, = 0 in By, (0) x (—n%,0). So u =0 in RY x (—o0,0). Therefore, clearly Ulpn [0,00) 1
a distribution solution to (2.54).

[
Proof of Theorem 2.38. Let w, = ¢, *(xp,_,w) for any n > 2. We have y,, € C°(RN+1)
with supp(w,) C D, and w,, — w weakly in (RN *1).
According to Corollary 4.39 and Remark 4.40, we have

[wn]ﬁmﬂl,q’ <cigg YneN
where ¢; = ¢1(N, q) and [w]yyw, .+ < €0. Thus, thanks to Theorem 1.3 we get

Iy (T [wn))?] < c2ed ' [wn]  and (9.17)
Ty [(Ih [wn))?] < coed ' Tafwn] Vn € N, (9.18)

where ¢g = c3(N, g, ¢1).
We fix ng € N, put:

Ex = {u € Ll( n07n07W01 1( no(O))) : |V’U,| < AHl[Wno] in Bn0/4(0) X (_n%an%)} .

By using estimate (5.8) in Remark 5.3, we can apply the argument of the proof of Theorem
2.9, with problem (6.9) replaced by

— dwv (A(ta vu)) = XB"O/4(O)><(—n3,n(2))|vv|q + Wy in Dy,
u=0 on 0By (0) x (—n3,nd),
u(-ng) =0 in B, (0),
to obtain: the operator S (in the proof of Theorem 2.9) has a fixed point on E, for some

A=A(N,A1,A2,q) > 0and gg = g9(N, A1, Ag, q) > 0. Therefore, for any n € N there exists
a solution u,, of problem

(un)e — div (A(t, Vuy,)) = XB,L/4(0)><( n2n2) |V |? + wp in Dy,
u, =0 on 0B,(0) x (—n? n?),
up(—n?) =0 in B,(0),

which satisfies
[V (z,t)| < Al [wy](2,t) V(z,t) € Byya(0) x (—n*,n?).

Moreover, combining this with (9.18) and Theorem 2.1 we also obtain

[un (2, 1) < Kl {XBHM(O)X(*nz,nz)|vun|q + lwnl| (z,1)
< KA (I [Jwn|))?] + K12 [Jwn] (2, t)
S C3H2 HwnH (x7t)
< c3pn * Iy |:|XDn,—1w|] (I’t)v
for any (z,t) € B,(0) x (—n?,n?).
Since T [w](o, to) < oo for some (x0,t9) € RN, thus sup,, [, xp, [un|®dzdt < oo for all
meN, 1< qy< 2

In addition, since I;[w] € L{_(RN*Y), thus ¢, * I [|xp,_,w|] = Ii[w] in L{_(RN*!) and
{XBn/4(0)><(_n2 n2)|Vu,|9} is equi local integrable in RN+

Therefore, we can apply Corollary 3.18 to obtain: u,, — w in L{ (R; VV&)C1 (RM)) (we will
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take its subsequence if need) and u satisfies (2.66). Also, |Vu,|? — |[Vu|? in L}, (RVT).
Finally, we can conclude that u is a distribution solution of problem (2.65). Note that the
assumption [w]gyw, .« < €0 is equivalent to (2.67) holding with C' = .

Furthermore, if w = 1+ 0 ® §g—0y with p € MRY x (0,00)) and o € M(RY), then u, =0
in B, (0) x (—n?, a,) where supp(w,,) C RY x (a,,00) and a,, — 0~ as n — co0. So, u =0
in RY x (—00,0). Therefore, clearly Uulgn « [0,00) 18 & distribution solution to (2.68).

This completes the proof of the Theorem. ]

10 Appendix

Proof of the Remark 2.7. For w € MH(RVT1) 0 < a < N + 2 if [, [w](w0, ty) < oo for

some (zg,to) € RNV*! then for any 0 < 8 < o, Ig[w] € L{ (RN +1) for any 0 < s < NJX';Eﬁ.

Indeed, by Remark 4.28 we have I, [w] € L (RN F1) for any 0 < s < N]j_;EB.

Take0 < f <aand0 < s < NJX;EB. For R > 0, by Proposition 4.4 we have I [XQZR(O,O)“J} €
L5 (RN+1). Thus,

loc

L sl ) dod

Qr(0,0)

SCl/ Islxa wl(zx,t dedt—i—cl/ I [X~ Cw](x’t) sdxdt
Gr(0.0) ( B[ Q2r(0,0) ]( )) 5r(0.0) ( BIXG3r(0,0) )

< 01/62 00 <]Ig [XQQR(O,O)W](m’ t)) dxdt 4+ c; R=5(@=H) / (Ia[w](z,t))® dedt
R )

Qr(0,0)

< 00.

For 0 < 8 < a < N + 2, we consider

w(z,t) = = = X6 5 0.0 (T, 1),
2 B (0.0 Gu 0.0 @100 25000
where ap = 2" (V+2-9) if k = 2" and a;, = 0 otherwise with 8 € (3, al.

It is easy to see that I,[w] = oo and Ig[w] < oo in RVFL, [
Proof of the Remark 2.26. For w € M+ (RN 1) since [r[w] < ¢1 17 [I1[w]] thus:

If I; [w] € L5°°(RNF1) with 1 < s < N + 2, then by Proposition 4.4 in next section

[Tz [w]]

) < ¢ [T [w]|

s(N+1) Ls:oo(RN+1) < 00
LN+2=s % (RN+

If I; [w] € LN*T2°(RN*1) then by Theorem 4.3,

Lw] € L2 (RN T ¥ 59 > 1
So, Ir[w] < 0o a.e in RN if I} [w] € L (RNV+L) with 1 < s < N + 2.

For s > N + 2, there exists w € M (RY*1) such that I[w] = oo in R¥*! and I;[w] €
L*(RN*1). Indeed, consider

kN_l

w(z,t) = = = X4 2 (z,1).
kZ:l 1Q111(0,0\Q(0,0)] Qi+1(0,0)\Qx(0,0)
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We have for (z,t) € RV*1 and ng € N with ng > log, (max{|z|, /2[t[})

Io[w](z,t) > C2ZM > C2ZM

2nN 2nN

gn—1_1 kN—l

PO - IR SYAS RERP
> Co Z =2 Z ZngT‘L—lfl o k
k=1 no
>y Z E ! = .

k‘:TLo

On the other hand, for s; > %

00 Es(N—1 Es1(N-1)
S1 _ T (e AN NLT1)
/]Rz\url wtdxdt = c;,kz::l (hr V2= kN+2)81 T = 062 L(s1—1 (N+1)

since (s;1 — 1)(N 4+ 1) — s1(N — 1) > 1. Thus,

||y [w]

<C7Hw|| s(N+2)
LNF2Fs (RN+1)

|
Proof of the Proposition 3.16. We will use an idea in [9, 10] to prove 3.14. For
S e Whee(R) with §(0) =0, 8” >0, S(7)r > 0 for all 7 € R and ||S”|| = ®) < 1 we have

—/ NS (u)dxdt +/ S’ (u)A(z, t, Vu)Vndzdt
D D
+/ S"(u)nA(zx, t, Vu)Vudzdt +/ S'(u)nL(u)dzdt = / S’ (u)ndp.
D D D
Thus,
AQ/ S” (w)n|Vu|?dxdt
D
+/ S’(u)nL(u)dmdtSAl/ |Vu\|V17|dxdt+/ nd|,u|+/ [ne||w|dxdt.
D D D D

a. We choose S’ = ¢ T, for ¢ > 0 and let ¢ — 0 we will obtain

/n\L(u)|dzdt§A1/ \Vu\|V7]|d:17dt+/ nd|u|+/ |7e||u|dzdt. (10.1)

D D D D

b. for S'(u) = (1 — (Ju| +1)~*)sign(u) for a > 0 then

v 2
/%ndzdtgcl (/ |Vu|\Vn|dxdt+/ nd|u|+/ |77t|u|d:17dt>,
p (Jul +1) D D D

Using Holder’s inequality, we have

\V4 2
/|Vu||V77\d:cdt_ %ndwdt—&—cz/(|u|—|—1)q°nd;1:dt—|—62/ |Vt 9|8 dadt.
2¢1 Jp (Ju|+1)*
Hence,
/|Vu||Vn\dmdt+/ %ndaﬁdt<c B (10.2)
D o (ju] +1)°" - '
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—k+6 . .
c. for §'(u) = “E2H sign (u) Xp—s<uj<hors + SI8D(U)X|ujz s, 0 < & < K then

1

— |Vu|*ndrdt < c4 (/ \Vu\|V77|dxdt+/ nd| ] +/ |17t|u|dxdt) . (10.3)
20 k—d<|u|<k+d D D D

In particular,

1
7/ |V T (u)|*ndzdt < cs (/ \Vu||V77|dmdt—|—/ T}d|,u|—|—/ |nt||u|dxdt) vk > 0.
kJp D D D

(10.4)

Consequently, we deduce (3.14) from (10.1)-(10.4).

Next, take ¢ € C°(D) and S'(u) = X|u|<k—s + k+‘;g|u‘xk_§<|u‘<k+6, S(0) = 0 we have

—/ gotnS(u)dxdt—i—/ S/(u)nA(x,LVu)Vapdxdt—i—/ S"(u)pA(x,t, Vu)Vndxdt
D D D
1

20 k—d<|u|<k+d

:/ S'(u)apnd,u+/ oneS(u)dzdt.
D D

sign(u)gonA(%t,Vu)Vudxdt+/ S’ (u)nL(u)dzdt
D

Combining with (10.1), (10.2) and (10.3), we get

—/ wtnS(u)dzdtJr/ S'(u)nA(z,t, Vu)Vedrdt < cs||¢|| L p)B-
D D

Letting § — 0, we get
—/ oinTg (u)dzdt +/ nA(z,t, VI (u))Vedrdt < cs||¢||L=p)B.
D D
By density, we can take ¢ = T (Tk(u) — (Tk(w)),),
0
~ [ 5 (0w = (@) T
D
+/ nA(x, t, VT (u)) VT (Tk(u) — (Tk(w)),)dxdt < cseB.
D
Using integration by part, we have

- / % (Te(Th(u) = (Ti(w))y)) nTk (u)dzdt
D

1

5 [ = B ot

ﬁ/MHMf@WMWWMMMﬁ
D

+1// (T (w) = (T (w))) Te(Th(u) = (Th(w)) )ddt.
D

> —e(L+k)lnellvpy + V/Dn(Tk(w) — (Ti(w))o) Te(Ti(u) — (Th(w))y ) dadt,
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which follows (3.15). |
Proof of the proposition 3.17. Let S € W2 (R) such that Sk(z) = z if |2| < k and
Sk(2) = sign(z)2k if |z| > 2k. For m € N, let n,, be the cut off function on D,,, with respect
to Dy,y1. It is easy to see that from the assumption and Remark 3.4, Proposition 3.15 we
get Unmn = NmSk(vn), Un = Un — hyp

211111 (” (Um,n)t ||L2(7m2,m2,H*1(Bm(O)))+L1(Dm) + ||Um,n||L2(—m2,m2,Hg(Bm(0)))

HlunllL1 (D) + 0nllL1(D,,)) < Mim < o0

Thus, {Usm.ntn>m+1 is relatively compact in L'(D,,). On the other hand, for any ni,ngy >
m+1

Hlvn, = vny| > A} 0 Din| = {0mn, — Nmvn,| > A} N Dyl

1 1

< = (lonalli ) + ons [l 21 (D) + 5 10mSk (Vnr) = 0mSk (vn )3 (,0)
2M,, 1

S T + X”Um,nl - Um,ngHLl(Dm)a

and hy, is convergent in L{ (RNT1). So, for any m € N there is a subsequence of {u,,}, still
denoted by {uy,} such that {u,} is a Cauchy sequence (in measure) in D,,. Therefore, there
is a subsequence of {u,}, still denoted by {u,} such that {u,} converges to u a.e in RV*1
for some u. Clearly, u € LL _(R;W,"!(RN)). Now, we prove that Vu, — Vu a.e in RN+,

loc loc

From (3.15) with D = Dy,19, 1 = 0, and Tg(w) = T (9m41u) we have
V/D Nm (Tk(Mm+11) = (T (my1w))w) Te(Th(un) — (Tk(Mmt1u))y )drdt
m+2

+ /D T A, £,V T (1)) VT (To (1) — (T (s 1))y, )davdlt
< 012212 +k)B(n,m) Yn>m-+2, (10.5)
where
B(n,m) = [|(nm)¢([un] + Dl|L1(Dynsn)

+ / (] + 1) ®ndrdt + / |0 e + / |t
Dm+2 Dm+2

Dipy2

with q1 < %. By the assumption, we verify that the right hand side of (10.5) is bounded
by cae, where co does not depend on n.

Since {1 Tk (un) tn>m+2 is bounded in L?(—(m + 2)?, (m + 2)?; Hj (Bin42(0))), thus there
is a subsequence of {u,}, still denoted by {u,} such that

lim / T A(, £, VT (1)) (T () — To(w)) davdt = 0.

n—oo
[Tk (un) =Tk (Nm+1u)) v |<e

Therefore, thanks to u, — u a.e in Dy, 1o and (Tk(mi1u))y — Te(Mmy1u) in L2(—(m +
2)%, (m + 2% HY (B 2(0))), we get

lim sup lim sup / M,m®n pdrdt < coe Ve € (0,1),
V—00 n— oo
[Tk (wn) = (T (Nm+1u))v|<e
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where @, 1, = (A(z, t, Tk (un)) — Az, t, Ti(w))) V (Tk (ur,) — Tk (v)) . Using Holder inequality,

/D nmq)i{idmdt = / nm¢]:::7/2X‘Tk(un)7<Tk(nm+lu)>u‘ggdxdt
m+2

Dm,+2

1/2
+ / D@ X T () — (T (1)), | >l
D2

1/2
< |‘771,77L||2/12(Dm+2) / nmq)n,kdxdt
T (tn ) =Tk (Nm+1u))v|<e
1/2
+ {1 T (un) = (Tk(m1w))w| > €} N Dy |/ (/ nﬁl@k,ndwdt>
D?n+2

= An,u,s-

Clearly, limsup limsup limsup A4,, , . = 0. It follows
e—0 v—00  n—00

lim sup/ nmfbllc/dedt =0.
D2 ’

n—oo

Since ®,, 1 > Aa| VT (un) — VT (u)|?, thus VT (u,) — VTk(u) in LY(D,y,).
Note that

1
|{\Vun1 - Vun2| > /\} N Dm| < = (||un1||L1(Dm) + ||un2”L1(Dm))

1
+ LV Tk (Uny) = VT (o)l 2 (,0)

oM, 1
< — T IVTk(un,) = VT (una)ll21(D,0)-
Thus, we can show that there is a subsequence of {Vu,} still denoted by {Vu,,} converging
Vu a.e in RN+, ]
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