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Variational segmentation of vector-valued images
with gradient vector flow

Vincent Jaouen, Student Member, IEEE, Paulo González, Simon Stute, Denis Guilloteau, Sylvie Chalon,
Irène Buvat, Senior Member, IEEE, and Clovis Tauber∗, Member, IEEE

Abstract—In this paper, we extend the gradient vector flow
field for robust variational segmentation of vector-valued images.
Rather than using scalar edge information, we define a vectorial
edge map derived from a weighted local structure tensor of
the image that enables the diffusion of the gradient vectors in
accurate directions through the 4DGVF equation. To reduce the
contribution of noise in the structure tensor, image channels
are weighted according to a blind estimator of contrast. The
method is applied to biological volume delineation in dynamic
PET imaging, and validated on realistic Monte Carlo simulations
of numerical phantoms as well as on real images.

Index Terms—Deformable models, Dynamic PET, Gradient
vector flow, Structure tensor
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I. INTRODUCTION

A. Motivation

VECTOR-valued images occur in contexts such as color
images, images of the same field of view acquired at

different wavelengths (i.e. multi and hyper spectral images),
medical images acquired at different time intervals (e.g. dy-
namic PET or functional MR images), with different equip-
ments (e.g. coregistered PET/CT images), different modes
(e.g. multi-spin echo MR images) or textured images. The
accurate segmentation of these images require appropriate
methods for exploiting additional information provided by the
extra dimension [1]–[5].

Deformable models such as snakes, as originally proposed
by Kass and Witkin [6] and active surfaces in 3D have become
very popular in image segmentation, including for medical
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applications [7]. Active surface models attempt to recover
the region of interest by conforming an evolving surface to
the boundary of the object. The evolution of the surface
is derived through a variational formulation of an energy
functional which can be seen, when reaching equilibrium, as
a force-balance relation between forces acting on the surface:
internal forces, which control the smoothness of the model,
and external forces, derived from image information. Such
external forces can either use local information like edges [6],
[8]–[10], global information based on region statistics [11],
hybrid approaches based on both local and global information
[12]–[15] or based on edge pixels interactions [16].

Implicit representations of deformable models such as the
geometric active contour model are able to handle topological
changes through the level-set paradigm [17], [18]. This topo-
logical flexibility can however constitute a drawback when
a single object has to be segmented, as it can be the case
in medical image segmentation. In such cases, additional
topology-preserving procedures must be implemented [19],
[20]. Another drawback of implicit representations is the
increased computational load, which can be prohibitive in 3D
clinical imaging. On the other hand, parametric deformable
models are particularly appropriate for single object delin-
eation because of their inherent ability to preserve the topology
of the initial model. In this study, we focus on parametric
edge-based deformable models.

Efforts have been made to overcome the original limita-
tions of parametric snakes, mainly through the derivation of
new expressions for the external force field that guides the
model toward the boundaries of the object [8]–[10], [21]–[23].
Among external force fields, the Generalized Gradient Vector
Flow (GGVF) field [8], [9], and more recently the Vector
Field Convolution (VFC) field [10] aroused great interest
because of their reduced sensitivity to noise and their ability
to progress into highly concave regions in the image, the latter
property being due to their nonconservative nature. However,
the efficiency of both GGVF and VFC force fields critically
relies on the choice of an accurate scalar edge map, usually
based on the spatial derivatives of the input image, e.g. a
Canny filter [24]. Refinements of these methods have been
proposed to tackle remaining issues such as sensitivity to
initialization [25], [26], capture range and ability to move into
long and thin concavities [27].

Aside from these improvements, deformable models tailored
for vector-valued images either using edge-based or region-
based approaches have been proposed [3], [13], [28]–[30]. In
the pioneering work of Di Zenzo [31], the image is considered
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as a vector field whose dimension is the number of channels
in the image. Edge detection is associated with the magnitude
of the gradient of the vector-valued image, or vector gradient,
derived from the norm of a local structure tensor (LST) that
integrates the different gradient contributions to locate real
edges, or vector edges more precisely. Structure tensors, also
known as second moment matrices, can estimate magnitudes
and directions of oriented structures like edges at a local scale.
They have been widely studied, especially in the field of
image restoration [5], [32]–[34]. In particular, Tschumperlé
and Deriche have devised a generic PDE (partial differential
equations)-based formulation for the regularization of vector-
valued images that exploits both amplitudes and directions of
the vector gradient computed from local structure analysis. In
image segmentation, LST have been studied first by Sapiro [2],
[28] for geometric active contours, who set the edge-stopping
term of the level set as a function of the norm of the LST.
This approach has been also used by Xie and Mirmehdi [13].
Goldenberg et al. used an alternative metric tensor based on
the Beltrami framework, where the color image is considered
as a two dimensional surface in a five dimensional space
[29]. Zhang et al. exploited the LST formalism for seeded
segmentation based on anisotropic diffusion [35]. In the case
of parametric active contours, the gradient magnitude in the
Luv color space was incorporated in the GVF framework by
Yang et al. [30] under the name Color GVF.

While the use of directions and magnitude derived from
local geometry analysis is well established for image regular-
ization using anisotropic diffusion, to our knowledge, there
is no deformable model approach that also takes profit of
the directional information carried by the LST for image
segmentation. Current deformable models generally identify
vector edges by a simple scalar value, i.e. the norm of the LST.
Another drawback of existing methods is that the different
channels of the image participate equally in the calculation of
the gradient, regardless of their relevance.

B. Outline of present work

The aim of this work is to propose a new external force
field for parametric deformable surfaces evolving in vector-
valued images. We focus our study on imaging modalities
where detection is hampered by varying contrast and noise
over the channels, but where physical edge location do not
vary, i.e. where regions of interest are characterized by the
homogeneity of their representation over the channels. In
such situations, while image edges may be ill-defined on
individual channels, the combination of information along
the different channels may improve their localization. We
introduce a new gradient vector flow field, the 4DGVF field
(Four Dimensional Gradient Vector Flow) that takes advantage
of the information available in the different channels. We
define a vectorial edge map which points toward the inflection
points of the vector-valued profiles and which is based on a
weighted local structure tensor of the image. This vectorial
edge map is propagated throughout the image by the means
of a nonlinear diffusion equation. By exploiting orientations
and magnitudes of the vector gradient in the GVF framework,

the 4DGVF model exploits more information than models in
which gradient is computed according to a scalar edge map.
By weighting the LST dynamically, we control the influence
of the different channels to favour the ones where the features
can be better detected, hence reducing sensitivity to noise.

Applied to dynamic PET imaging of the brain, our model
segments the brain structures as a function of the kinetic
profiles of voxels. We assess the quality of our model using
realistic dynamic Monte Carlo simulations of numerical head
phantoms and apply it to real PET images. We compare our
results to single-channel approaches based on VFC and GGVF
as well as to vector-valued approaches.

This paper is organized as follows. Section II briefly recalls
the formalism of parametric active surfaces and of GGVF
fields. Section III presents the proposed 4DGVF external
force field. The validation setup used for the experiments
is described in section IV. Results on synthetic images are
presented and discussed in section V, followed by results on
PET images in section VI. Finally, a conclusion is drawn in
Section VII.

II. BACKGROUND

In this section, we briefly describe the mathematical back-
ground of parametric active surfaces and of the GGVF of the
literature.

A. Active surface model

In the continous domain, a parametric active surface Sτ at
time τ of its deformation is represented as a mapping of a
bivariate parameter (m,n) on a regular grid Ω, superimposed
on the spatial image domain:

Sτ : Ω = [0, 1]× [0, 1]→ R3.

More explicitely,

(m,n)→ Sτ (m,n) = [x1(m,n), x2(m,n), x3(m,n)]
T
.
(1)

Sτ deforms under the influence of forces, iteratively minimiz-
ing the following energy functional:

E(Sτ ) =
x

m,n

[Eint(Sτ ) + Eext(Sτ )]dmdn, (2)

where Eint is the internal energy and Eext the external energy
of the surface. The internal energy term imposes smoothness
constraints on the surface, while the external energy term
drives it toward the object of interest. Expanding the internal
energy term, where the functionals of first and second order
define smoothness measures, the energy can be expressed as:

E(Sτ ) =
s
m,n

[α(‖Sτm‖2 + ‖Sτ n‖2) + β(‖Sτmm‖2+

‖Sτ nn‖2 + 2‖Sτmn‖2) + Eext(S
τ )]dmdn,

(3)
where coefficients α and β define the weighting of internal en-
ergies acting on the surface [36]. Elasticity terms are weighted
by α, rigidity terms and resistance to twist by β. Equation (3)
can be seen as a force balance equation. At equilibrium, i.e.
at minimum energy, one obtain the Euler-Lagrange equation:

α∆Sτ − β∆2Sτ −∇Eext = 0, (4)
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where∇ is the gradient operator and ∆ is the Laplace operator.
The first two terms define internal forces acting on the surface:

~Fint(S
τ ) = α∆Sτ − β∆2Sτ . (5)

The third term defines external forces derived from edge
information:

~Fext(S
τ ) = −∇Eext, (6)

so that an equilibrium is reached at the boundaries of the
object.

B. Generalized Gradient Vector Flow

The generalized gradient vector flow (GGVF) field [9] is
the vector field ~Fext defined as the steady-state solution of
the following vector partial differential equations:

∂~Fext
∂t

= g(|∇f |)∇2~Fext − h(|∇f |)(~Fext −∇f), (7)

where each spatial component of ~Fext is solved independently.
∇2 is the vector Laplace operator, f is an edge map derived
from the image typically ranging from 0 to 1 and having
strong values at the edges. g = e−

|∇f|
κ and h = 1 − g are

two functions that control the trade-off between the first and
second terms through parameter κ. The first term favors the
isotropic diffusion of ~Fext where |∇f | has low values, e.g.
in homogeneous regions. The second term tends to conform
the field to −∇f in regions of strong gradients. The resulting
vector field shares the desirable properties of providing a large
capture range and of allowing the models to progress into
narrow concavities.

III. METHOD

In this section, we present the 4DGVF external force field,
a generalization of GGVF fields to vector-valued images.

A. Weighted structure tensor of a 3D vector-valued image

In the continuous domain, we denote by I a 3D vector-
valued image consisting of M channels:

I(x, c) : (Ωs ⊗ Ωc) ⊂ R3 ⊗ N→ R,

where Ωs is the 3D spatial domain of the image and Ωc
the channel dimension. x = (x1, x2, x3) ∈ Ωs is the spatial
position of the voxel. We denote by Ik = I(x, k) the kth

channel of the image.
A natural generalization of the notion of gradient to vector-

valued images consists in averaging the different gradient
contributions in individual channels. However, this approach is
generally not satisfying, for example when opposite contribu-
tions cancel out. To avoid this drawback, Di Zenzo proposed a
geometrical approach in which a 2D color image is considered
as a 2D→3D vector field [31]. The gradient is then identified
as the direction that maximizes the quadratic form of the
total differential dI of I. Further developments of Di Zenzo’s
approach have expressed this maximization problem in tensor

notation [37], by introducing the structure tensor of a vector-
valued image. In the 3D case, I is a 3D→MD vector field and
its total differential is expressed as:

dI =
∂I

∂x1
dx1 +

∂I

∂x2
dx2 +

∂I

∂x3
dx3. (8)

A weighted quadratic form for dI, or first fundamental form,
is expressed as:

‖dI‖2ω = dxTGωdx, (9)

with Gω a regularized, weighted structure tensor of the image:

Gω = Kσ ∗
M∑
k=1

ωk(∇Ik ⊗∇ITk ), (10)

where Kσ is a Gaussian kernel of scale σ, ∗ is the convolution
operation, ⊗ is the tensor product, and ωk is a weighting
factor for channel Ik. The weighting factors ωk, k ∈ {1..M}
characterize the reliability of the different channels.

The contribution of this article is twofold. First, we establish
a new weighting strategy tailored for deformable models and
that is well adapted to vector-valued images in which the
representativeness of the studied object is varying along the
channels. Second, we exploit the above-mentioned geometrical
framework to define a new gradient vector flow field through
nonlinear diffusion of both directional and scalar information
carried by the LST.

B. Weights calculation

Without a priori knowledge, the extension of Di Zenzo’s
approach to 3D consists in weighting all channels equally:

ω1 = 1/M. (11)

With such weights, contributions from noise in channels
where the object is poorly represented might hamper edge
detection. Different application-specific solutions have been
proposed to weight the contribution of the LST, based for
example on noise estimations in the diffusion framework [38],
or local saliency for image fusion purposes [39].

In GVF-based approaches, it is desirable to maximize the
contrast-to-noise ratio (CNR) of the gradient signal in order to
perform accurate diffusion of the edge map gradient vectors
throughout homogeneous regions of the image. In low contrast
images, the gradient signal due to noise can be superior
to the gradient signal due to true edges. This can bias the
estimation of directions and magnitudes of vector edges and,
consequently, the directions of the GVF force field. Here, we
propose to exploit the active contours framework to define
a new weighting strategy tailored for image segmentation,
based on a blind estimation of the contrast of the object in
each channel. Such a global weighted averaging scheme can
maintain high contrast of the vector gradient signal while
reducing its variance [40].

For each channel Ik, let Rink be the set of voxels located
inside St, and let Routk be the set of voxels located outside
St and inside λSt, a morphological dilation of St of λ units
of length. The limitation of Routk to λSt prevents possible
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(a) (b)

Fig. 1: Illustration of the weighting method on a 2D repre-
sentation of the active surface St around a region of interest
(ROI). (a) High contrast channel. (b) Low contrast channel.
A measure of contrast is established by comparing average
intensities in Rink and Routk in each channel

influence from further regions. We define the weighting factor
for channel Ik as follows:

ωk :=

( ∣∣̄Iink − Īoutk

∣∣γ∑
j

∣∣̄Iinj − Īoutj

∣∣γ
)

, (12)

where summation is over the M channels. Īink and Īoutk are
the average intensities in Rink and Routk respectively. γ is a
parameter that controls the linearity of the influence of the
channels.

Figure 1 illustrates the weighting scheme on a conceptual
2D example. Figure 1a displays a high contrast channel where
average intensities Rin1 and Rout1 are significantly different and
for which the corresponding weight would be large. On the
contrary, Figure 1b shows a low contrast channel where the
corresponding weight would be low.

With such weighting factors, gradients from low contrast
channels have negligible influence on the calculation of the
LST, while avoiding the need for prior knowledge of the num-
ber of relevant channels. Such blind weighting scheme pro-
vides a compromise between high contrast (through weighting)
and low noise (through averaging) of the vector gradient
signal.

C. Vectorial edge map

The eigenvalues λ+ > λ−1 > λ−2 of the LST Gω give the
scalar rates of change of the first fundamental form in a local
basis of extremal variations. Depending on the applications,
these eigenvalues can be combined to define different LST
norms [33], [37], [38], [41]. In our study, we choose a
coherence norm proposed by Weickert in [38] that measures
the amount of local anisotropy, a generalization to the 3D case
of the norm presented by Sapiro in [33].

Nω
2 =

√
(λ+ − λ−1 )

2
+ (λ+ − λ−2 )

2
+ (λ−1 − λ

−
2 )2. (13)

Its square root Nω is homogeneous to the amplitude of vector
edges.

Sapiro exploited the LST formalism in an extension of the
geometric active contours to 2D color images [2]. He proposed

Fig. 2: Representation of a local isosurface element dA of a
vector-valued image. Eigenvectors of the LST Gω form a local
orthogonal basis of extremal variations. θ+ is in the direction
of maximum rate of change of the first fundamental form. The
proposed vectorial edge map ~V points toward vector edges and
is more accurate compared to ∇Nω

that the edge-stopping term of the level set function be a
function of the norm of a non-weighted LST, denoted here
by N1 (as opposed to Nω). In an extension of the GVF to 2D
color images, Yang et al. proposed to use the N1 norm as an
edge map [30]. However, restricting vector edges to a scalar
measure does not take profit of all information contained in
the LST, whose diagonalization gives the orientations of the
gradient vectors in the image.

The directions of the eigenvectors of Gω give the directions
of local extrema of the quadratic form (9). The eigenvector ~θ+
associated with the maximum eigenvalue λ+ gives the gradient
direction, and the other two define orthogonal ”isophote”
directions. We thus propose here, rather than only exploiting
the eigenvalues of Gω , to take also advantage of the directional
information carried by ~θ+ in order to produce the external
force field. We define a vectorial edge map ~V, a vector
field collinear to the local dominant eigenvectors of Gω , but
oriented toward the nearest vector edge:

~V = ~θ+sign〈~θ+,∇Nω〉, (14)

where 〈 , 〉 denotes the dot product. Figure 2 shows a
local isosurface element dA in a vector-valued image. The
eigenvectors of Gω form an orthogonal set in the directions
of maximal (gradient) and minimal (isophote) change. This
illustrates the fact that the vectorial edge map ~V is orthogonal
to vector edges, which is not necessarily the case for ∇Nω

(and a fortiori for ∇N1).

D. The 4DGVF equation

The 4DGVF external force field is the result of nonlinear
diffusion of the vectorial edge map ~V throughout the image. In
the vicinity of vector edges, as detected by Nω , the directions
of the vectors are constrained by ~V, while isotropic diffusion
of ~V occurs in homogeneous regions. The 4DGVF field is
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defined as the steady-state solution of the following vector
partial differential equation:

∂~Fext
∂t

= g(Nω)∇2~Fext − h(Nω)(~Fext − ~V), (15)

where g and h are the functions used in eq. (7), replacing
the gradient magnitude |∇f | with Nω . At each iteration τ of
the deformation, the surface Sτ undergoes locally the external
force field ~Fext. To avoid convergence issues and ensure a
smooth deformation, the deformation force field is projected
on the normal direction to Sτ . The surface is iteratively moved
according to the following gradient descent flow :

∂Sτ

∂τ
= α∆Sτ − β∆2Sτ + 〈~Fext, ~n〉, (16)

where elasticity terms are weighted by α and rigidity terms by
β. ~n denotes the normal direction to the local surface element
dSτ . The LST is computed according to the proposed weight-
ing scheme, and at each timestep τ , weights are recomputed
to construct a more accurate external force field for the next
iteration.

Figure 3 shows a comparison between the eigenvector
field ~θ+ (Fig. 3b) and the vectorial edge map ~V (Fig. 3c),
superimposed on one frame of a dynamic PET image (Fig.
3a). The resulting 4DGVF field is shown in figure 3d. Fields
are projected on a 2D slice. While the diagonalization of
the LST does not uniquely specify the sign of the gradient
vectors, equation (14) lifts the indeterminacy and orients the
field toward vector edges, a desirable property for external
force fields. The resulting 4DGVF field is consistent with the
studied object.

E. Initialization

Minimizing equation (3) is equivalent to finding the ideal
isosurface of minimal total energy E. In general, the energy
landscape associated with the segmentation problem is not
convex, requiring the initial model to be close to the desired
optimum. To this end, we propose to initialize the 4DGVF
model with an extension of the Poisson Inverse Gradient (PIG)
approach, proposed by Li and Acton [26], to vector-valued
images. The PIG approach approximates the potential energy
Eext from which the external force field would derive. As
fields such as GVF fields and VFC fields are nonconservative,
this scalar potential does not exist and is estimated through
a least-squares minimization problem. The initial model is
identified as the isosurface of the reconstructed external energy
Eext with lowest energy.

We adapt the PIG approach to vector-valued images and
build an initialization field ~F0

ext based upon the 4DGVF
framework. We use equal weighting of all channels, following
eq. (11), as finer weights such as proposed in section III-B can
only be derived after an initial surface is defined. Once ~F0

ext

is computed, we estimate the scalar potential Eext by solving
the Poisson equation:

∆Eext = −∇ · ~F0
ext, (17)

(a) (b)

(c) (d)

Fig. 3: (a) 2D slice of a channel of a dynamic PET image and
enlarged area in (b)-(c). (b) Eigenvector field ~θ+ of the local
structure tensor Gω . The ground truth surface is represented
as a black line. (c) Vectorial edge map field ~V oriented toward
vector edges. (d) Proposed 4DGVF field obtained by nonlinear
diffusion of ~V in the image. Vectors are mostly oriented
toward closest vector edges

This equation is solved numerically by matrix inversion for
which Dirichlet boundary conditions are applied on the bound-
ary ∂Ω of the image domain Ω:

Eext(∂Ω) = −Nω(∂Ω). (18)

We scale Eext in the range [0,−1], and perform P trian-
gulated isosurface reconstructions for different values Ep =
(E1, E2...EP ), Ep ∈ [0,−1], using a marching cubes
algorithm [42]. In our experiments, we retain only closed
surfaces as candidates models. We then select the surface
model with minimal total external energy. This shape is then
used for the computation of the initial weights prior to the
deformation. To emphasize that vector-valued information is
used in the initialization, we refer to this initialization in the
following as Vector Poisson Inverse gradient (VPIG).

F. Numerical implementation
We implemented our method using MATLAB R©. The active

surface Sτ was represented as a triangulated mesh and oriented
such that the normals to the faces point inwards. Normals to
each vertex were computed as the weighted average of the face
normals incident to the vertex [43]. We solved eq. (16) with a
standard finite difference approach expressed in a matrix form
[6]. The Laplacian was linearly estimated at each vertex vi by
the umbrella operator [44]:

∆(vi) =
1

|i∗|
∑
j∈(i∗)

vj − vi, (19)

where i∗ corresponds to the neighborhood of vi (vertices
connected directly to vi). As this number remained constant
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throughout the deformation and the internal forces only de-
pended on the Laplacian, the neighborhood matrix correspond-
ing to internal forces needed to be inverted only once. The
deformable surface was considered to have converged when
the maximum displacement of vertices between two iterations
was less that 0.1 voxel side.

In our experiments, the amplitude maps Nω were scaled in
the range [0, 1]. In each image, the parameter κ that controls
the trade-off between field smoothness and gradient confor-
mity was set so as to maximize the Jaccard similarity score
between segmentation result and ground truth. The parameter
γ that controls the linearity of the weights in equation (12)
was empirically set to 2, emphasizing the relevance of high
contrast channels.

IV. VALIDATION SETUP

A. Comparison with other approaches

We compared the proposed 4DGVF approach with two
single-channel and two vector-valued approaches of the lit-
erature.

• The Generalized Gradient Vector Flow (GGVF). For this
single-channel approach, the diffusion of the gradient
vectors is performed in each channel by finding the
equilibrium solution of equation (7) [9], where the edge
map of channel Ik is defined as follows:

fk = Kσ ∗ |∇Ik| . (20)

In our experiments, we scaled every fk in the range [0, 1].
The parameter κ that controls the trade-off between field
smoothness and gradient conformity was manually set
so as to maximize the Jaccard similarity score between
segmentation result and ground truth.

• The Vector Field Convolution (VFC) is also a single
channel approach in which a convolution is performed
between fk and a vector field kernel ~C whose vectors
point toward the kernel’s center [10]:

~Fext = ~C ∗ fk (21)

In each image, the size of ~C and the power parameter of
the magnitude function were set so as to maximize the
Jaccard similarity score.
In our experiments, GGVF and VFC approaches were
performed in each channel of the tested images. For
comparison with vector-valued approaches, we retained in
each 4D image the channel that obtained the best Jaccard
score.

• The Vector Geometric Snake (VGS) is an extension of the
implicit geometric snake to 3D vector-valued images [2],
where the edge-stopping term of the level-set function is
based on the gradient magnitude of the vector-valued im-
age from a local structure tensor that weighs all channels
equally:

G1 = Kσ ∗
N∑
k=1

ω1(∇Ik ⊗∇ITk ), (22)

The corresponding gradient magnitude N1 is then derived
from the eigenvalues of G1. In our experiments, we
scaled N1 in the range [0, 1].

• The Color Gradient Vector Flow (CGVF) [30] uses the
gradient magnitude N1 of the vector-valued image as the
edge detector from which to perfom gradient diffusion in
the GVF equation (7).
In our experiments, the parameter κ was set so as to
maximize the Jaccard similarity score.

Table I summarizes the edge detection terms used in the
above-mentioned models.

TABLE I: Tested models and associated edge information used

Type Single-channel Vector-valued
Methods GGVF,VFC VGS,CGVF 4DGVF

Edge amplitude fk,∇fk N1,∇N1 Nω ,~V
and direction

B. Initialization

As results depend on the quality of the initialization, all
comparative tests between models were performed using iden-
tical initialization. We generated results with the following
initialization models:
• Ellipsoid initialization: an ellipsoidal shape centered

around the object and fitting its shape.
• VPIG initialization: the approach described in section

III-E, built upon the PIG approach and the initial 4DGVF
field.

C. Validation criterion

When a ground truth was available (synthetic 4D data, PET
image simulations), the segmentation results were compared
to the true volumes after convergence by using the Jaccard
coefficient J(A,B) that expresses volume similarity [45]. It is
the ratio between the intersection and the union of the ground
truth volume (A) and the segmented object (B). It ranges from
0 to 1, with 1 meaning a perfect match:

J(A,B) =
|A ∩B|
|A ∪B|

(23)

For VGS, only visual results were analyzed, as the high
noise levels of the studied images led to multiple spurious
surface reconstruction in all the tested images, making the
Jaccard score uninterpretable. This issue stressed the need for
topology-preserving procedures for such applications, a known
drawback of implicit representations [20].

V. SYNTHETIC 4D BENCHMARK

We generated 5 synthetic images of dimensions 70× 50×
50 × 10 voxels featuring a spherical object of diameter 36
voxels inside a uniform background. In each image, the noise-
free background intensity was set to 1 in every channel while
the object intensity varied along the channels. By analogy with
PET imaging studied hereafter in section VI, the curve that
represents the different values of a voxel along the channels
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Channel number

Fig. 4: Intensity values of the sphere object along the 10
channels (TAC) for the 5 images of the synthetic benchmark
dataset

Fig. 5: Top: 2D slices of the 10 channels of a synthetic 4D
image that exhibits varying contrast with background. Bottom:
corresponding 4DGVF weights obtained for this image

is referred to as its time-activity curve (TAC). We generated 5
4D images for which the object TACs are displayed in Fig. 4.
From these noise-free images, a set of noisy 4D images was
generated by adding white Gaussian noise in the channels (σ =
0.2). As a consequence, the number of channels in which the
contrast between foreground and background was significantly
superior to the noise-induced gradient amplitude varied along
the different images of the dataset. These images presented two
difficulties that can be found in 4D images, namely low SNR
that makes edge detection challenging in individual channels,
as well as variations in representativeness of the sphere along
the channels.

For the model initialization, a spherical triangulated surface
mesh of radius 10 voxels was placed at the center of mass of
the object (initial Jaccard index of 0.23).

1) Weighting influence on edge detection: The different
channels in a 2D slice of one of the synthetic 4D images
are displayed at the top of figure 5. The corresponding

(a) (b) (c)

Fig. 6: Surface plots of the gradient amplitude of a synthetic
4D image: (a) fk (best contrasted channel) (b) N1 (c) Nω

Fig. 7: CNR of vector gradient maps Nω averaged over the
synthetic benchmark image dataset as a function of the number
of high-weight channels used for their calculation

weights obtained with the proposed 4DGVF approach after
initialization of the surface model are shown below. In this
image, the weighting scheme was consistent with the observed
variations of contrast. It was indeed desirable to lower the
contribution of channels 4 to 7 in the calculation of the LST.

To study the influence of weighting the LST we compared
the proposed weighted magnitude Nω to the magnitude N1

as well as the gradient amplitude fk obtained in the best
contrasted channel. Figure 6 displays representative amplitude
edge maps of one slice, where the maximum value of each
3D map was set to 1. The edge signal was enhanced with
Nω compared to fk and N1, and in homogeneous regions,
spurious variations due to noise were kept at lower levels,
leading to better edge detection with the Nω amplitude edge
map.

We studied quantitatively the quality of the vector gradient
amplitude Nω as a function of the number of high contrast
channels used for its calculation. We computed Nω using
varying numbers of high contrast channels, ranging from 1
(best channel only) to 10 (all channels included: proposed
method). The criterion for assessing the quality of the resulting
amplitude maps was the CNR of Nω:

CNR = |µe − µbg| /σbg, (24)

where µe is the average intensity value of edge voxels, µbg
is the average intensity of non-edge voxels (background), and
σbg is the standard deviation of the background. Fig. 7 displays
CNR for Nω maps averaged over the dataset as a function of
the number of channels (ordered by decreasing contrast) used
for their calculation. On average, using the n = 7 channels
with the highest contrast values led to maximum CNR for
Nω (CNR = 2.36), with an increase of about 53% compared
with the CNR obtained by only using the highest contrasted
channel (n = 1, CNR = 1.53). Including all channels with
the proposed weighted averaging did not lower significantly
the CNR of the edge maps compared to the maximum value
(n = 10, CNR = 2.34). This is due to the fact that low contrast



8 IEEE TRANSACTIONS ON IMAGE PROCESSING, LATEX

(a) (b) (c) (d) (e) (f) (g)

Fig. 8: Representative segmentation results for an image of the synthetic 4D benchmark image set. (a) ground truth (b) initial
shape (c) best GGVF (d) best VFC (e) VGS (f) CGVF (g) 4DGVF

(a) (b) (c)

Fig. 9: (a) Representative channel of a synthetic 4D image
where the region that was analyzed here is outlined, (b) CGVF
field based on Nω and ∇Nω , (c) 4DGVF field based on both
Nω and ~V

channels have a reduced influence on the LST calculation with
the proposed blind weighting scheme. In addition, this strategy
does not require any prior selection of the number of channels
that are considered valuable for edge localization.

2) Orientations of vector edges: We evaluated the accuracy
of the force field around edges by comparing the 4DGVF field
based on the diffusion of ~V to a CGVF field based on the
diffusion of ∇Nω rather than ∇N1, in order to remove the
influence of the weighting scheme.

Figure 9 shows a typical behaviour of these two fields in
a noisy 4D image of the synthetic dataset. Near the contour,
some CGVF vectors collapsed around an edge voxel (Fig. 9b).
On the contrary, the 4DGVF field was oriented toward the
contour (Fig. 9c). This example illustrates the advantage of
constraining the directions of the 4DGVF field acccording to
the principal eigenvector of the structure tensor Gω around
edges.

3) Segmentation performances: Figure 8 displays segmen-
tation results on an image of the synthetic dataset for the
tested approaches. In this image, the 4DGVF model was
able to recover the sphere shape, while the other approaches
partially failed due to excessive noise levels. Single-channel
approaches (e.g. Fig. 8b and Fig. 8c) obtained comparatively
worse segmentation results due to the fact that all channels,
including the best-contrasted ones, were too corrupted by
noise for unambiguous edge detection. The color GVF snake,
although benefiting from vector-valued data, did not capture
the sphere shape entirely (Fig. 8e). The vector geometric snake
was even more penalized due to its topological flexibility,
leading to arbitrary surface reconstructions throughout the
image (Fig. 8d). For all tested images, the 4DGVF method
visually outperformed the other approaches.

Table II shows quantitative results averaged over the syn-
thetic benchmark image dataset. For each image, a single result
was obtained for vector-valued models (CGVF and 4DGVF)

while we retained the channel corresponding to the best
Jaccard similarity coefficient for single-channel approaches
(GGVF and VFC). Overall, analysis of the Jaccard results
suggests that the 4DGVF model improved segmentation re-
sults. CGVF provided the second best results after 4DGVF on
average, but single channel approaches were able to perform
better than CGVF in sufficiently well contrasted channels.
The 4DGVF scheme was less hampered by the low contrast
channels than CGVF due to the weighting scheme.

TABLE II: Jaccard scores for the synthetic 4D benchmark
image set

Initial GGVF VFC CGVF 4DGVF
(best channel) (best channel)

0.23 0.79±0.13 0.76±0.13 0.74±0.23 0.86±0.12

VI. VALIDATION ON DYNAMIC PET IMAGES

Dynamic PET imaging consists in the successive acquisi-
tion of different time frames of an identical field of view.
A dynamic PET image can therefore be considered as a
vector-valued image, where each time frame of the sequence
corresponds to one channel. The resulting images reflect the
dynamics of a radiotracer concentration in the body, but suffer
from low resolution and low SNR. In these images, regions
of interest, or kinetic regions have varying contrasts with
respect to the surrounding regions over time. PET imaging
is a functional imaging modality that can provide information
unavailable in structural imaging modalities such as computed
tomography. There has been a growing interest for its appli-
cation to the early diagnosis of neurodegenerative pathologies
such as Alzheimer’s disease [46], [47] or amyotrophic lateral
sclerosis [48], and in the study of neuroinflammation [49],
[50].

The validation of segmentation results using real clinical
images is difficult due to lack of ground truth. While we
show examples of application to real data in section VI-E,
we assess the 4DGVF approach with quantitative results on
realistic Monte Carlo simulations of dynamic PET images.

A. PET-SORTEO benchmark image database

We used simulations of [11C]-Raclopride dynamic 3D+t
PET images of the brain from the publicly available PET-
SORTEO benchmark image database (http://sorteo.cermep.fr)
[51]. We focused on the segmentation of the putamen in both
cerebral hemispheres. These realistic images account for the
inter-individual variability of anatomical structures by using
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Fig. 10: Segmentation of the left putamen superimposed with
a transaxial slice of image P02 of the PET-SORTEO bench-
mark. Ground truth (black wireframe), initial model (white
wireframe) and 4DGVF result after convergence (solid yellow)

TABLE III: Jaccard segmentation results for the left (L) and
right (R) putamina in the PET-SORTEO benchmark image
dataset

Method GGVF VFC CGVF 4DGVF
(best ch.) (best ch.)
L R L R L R L R

Image
Jacob 0.65 0.68 0.67 0.68 0.62 0.63 0.77 0.77
P02 0.61 0.58 0.62 0.61 0.60 0.61 0.68 0.70
P03 0.61 0.58 0.62 0.61 0.60 0.54 0.65 0.66
P04 0.57 0.58 0.59 0.61 0.48 0.58 0.60 0.64

different real MR images as numerical head models. Each
dynamic PET volume has dimensions of 128× 128× 63× 26
voxels, while each MR volume contains 181 × 217 × 181
voxels. We limited our experiments to 4 images of the bench-
mark: the Jacob, P02, P03 and P04 images. Each of the
dynamic PET images were registered to their corresponding
MR volumes with a rigid registration algorithm using the
medical imaging software PMOD v.3.4. The provided labeled
MR images were used as ground truth for the validation of
the segmentation results. For a fair comparison, we used for
this dataset identical initial ellipsoid models for every method.
We centered a sphere at the center of mass of the considered
putamen in the corresponding labeled MR image. The radius
of the sphere was set to 10 voxels (initial Jaccard index of
0.46 on average).

Figure 10 shows a cropped transaxial slice in the 20th

channel of the P02 image around the putamina (slice 69/181).
The 3D surfaces of the ground truth, of the initial model, and
of the 4DGVF model after convergence are showed in black
wireframe, white wireframe and solid yellow respectively. The
4DGVF model was able to capture the shape of the left
putamen. For this image, the Jaccard score of the 4DGVF
model after convergence was 0.68. According to this criteria,
the 4DGVF model outperformed the other approaches for both
left and right putamen segmentation on all tested images (table
III).

B. Simulations of realistic 4D PET images with GATE

Additional dynamic PET images were simulated using
GATE, a highly realistic medical image simulator based on

(a) (b) (c)

Fig. 11: Simulations of dynamic PET images. (a) Zubal
phantom (b) Zubal simulation (mid SNR) (c) Zubal simulation
(low SNR)

(a)

(b)

Fig. 12: (a) 2D transverse slices of the 20 frames of the
low SNR Zubal simulation around the thalamus. (b) 4DGVF
weights per frame for simulation shown in (a)

the CERN’s GEANT4 particle interaction platform [52], [53].
We used the Zubal head phantom [54], describing the

main brain structures as a voxelized source. Six regions were
considered for the simulation: cerebellum, thalamus, parietal,
frontal and occipital lobes, and the remaining parts of the brain
were the background (Fig. 11a).

Time-activity curves, which represent the variations of each
voxel intensity along the time frames, were generated ac-
cording to a three-compartment model [55] that models the
kinetics of the radiotracer in the body. The reconstruction of
the PET image was performed using a fully 3D OP-OSEM
(ordinary Poisson ordered-subset expectation-maximization)
iterative method into 2.2 × 2.2 × 2.8 mm3 voxels. We per-
formed two different reconstructions: one using 2 iterations
and 16 subsets (figure 11b) and one using 10 iterations and
16 subsets (figure 11c) that resulted in different levels of SNR,
called mid and low respectively. The simulation of these two
images required 90 days of parallel computations on a 12 cores
48 GB RAM computer.
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(a) (b) (c) (d) (e) (f)

Fig. 13: Segmentation results for cerebellum in the mid SNR Zubal simulation illustrated on a selected slice. Solid lines
represent intersections of mesh with slice. The black contour represents the ground truth surface. (a) Ground truth (white),
initial shape (yellow) (b) GGVF in one frame (c) VFC in the same frame (d) VGS (e) CGVF (f) 4DGVF

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 14: Representative segmentation results in the low SNR Zubal simulation. First row: cerebellum. Scond row: thalamus.
(a,h) ground truth. (b,i) initial shape. (c,j) GGVF in the best frame (d,k) VFC in the best frame (e,l) VGS (f,m) CGVF (g,n)
Proposed 4DGVF

For each of the reconstructed images of the Zubal head
phantom, we studied the segmentation of the cerebellum and
of the thalamus, two structures showing different kinetics and
volumes, colored in red in figure 11a.

C. Weighting scheme

Figure 12a displays 2D transverse slices of the 20 frames of
the low SNR Zubal simulation around the thalamus. Thalamus
can be distinguished as a hypersignal in frames of the second
row and as a hyposignal in late frames. Estimated weights for
the calculation of the corresponding LST are shown in figure
12b after convergence of the model. The 4DGVF weights were
in good agreement with the subjective quality observed in each
channel: the weight values followed the variations of contrast
along the channels and thereby the representativeness of the
object.

D. Segmentation performances on 4D PET simulations

Figure 13 illustrates segmentation results in the mid SNR
Zubal simulation around the cerebellum. 2D slices of the
results are displayed for the sake of readability. The first
column shows the ground truth and the ellipsoidal shape used
as initialization. Columns b-f present segmentation results of
the tested methods superimposed with the edge map used by
the method and with the corresponding external force field.
The intersection of the active surface with the slice is depicted
as a red line and the ground truth as a black line. While GVF,
VFC, CGVF and 4DGVF all led to consistent cerebellum
segmentation, the best result was achieved with 4DGVF,
followed by CGVF. 4DGVF was able to better capture the
concavity of the cerebellum formed by the fourth ventricle

(bottom part of figure 13f). Again, the implicit VGS model
created numerous splitted reconstructed surfaces of various
sizes and shapes and hence was not quantitatively evaluated.

Figure 14 shows 3D representative segmentation results
in the low SNR simulation for all tested methods, either
using the VPIG initialization (top row, cerebellum) or using
an ellipsoidal initialization (bottom row, thalamus). For both
initialization methods, the overall shape of the two objects
was best recovered by the 4DGVF approach. Despite low
SNR conditions, the 4DGVF approach was able to capture
the thalamus, a small region compared to the voxel size. The
second best segmentation of the thalamus was obtained with
CGVF, with segmentation results that were however visually
less precise than the 4DGVF model (Fig. 14f and Fig. 14m).

Table IV shows the quantitative similarity criteria between
the segmentation results and the ground truth after convergence
for the two different simulations. For both images, segmenta-
tion results were improved by the 4DGVF approach. In the
case of the segmentation of the cerebellum, the best VFC
and GGVF results produced relatively high Jaccard. However,
single-channels approaches require to select the channels of
interest a priori, which is not always feasible in practice. On
the contrary, a single segmentation result was obtained for
vector-valued models, with systematic improvement observed
for 4DGVF.

In general, the 4DGVF external force field benefited from
comparatively larger attraction range than other approaches,
allowing initialization from farther distances, which is con-
firmed by the stability of the segmentation result against the
initialization. The cumulative effect of exploiting accurate
gradient directions drawn from the vectorial edge map and
of weighting the image channels led to better performance
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of 4DGVF over CGVF, which obtained second best results
on average. The improved robustness of 4DGVF under low
SNR is emphasized in the case of the noisier Zubal simulation,
where the proposed method led to distinct improvements of
figures of merit.

TABLE IV: Segmentation results for the Zubal simulations

Jaccard index
Initialization Ellipsoid VPIG Ellipsoid VPIG
Zubal mid SNR

Thalamus Cerebellum
Initial score 0.23 0.41 0.48 0.65
GGVF (best channel) 0.36 0.47 0.82 0.83
VFC (best channel) 0.42 0.57 0.82 0.82
CGVF 0.56 0.56 0.82 0.81
4DGVF 0.61 0.64 0.83 0.85
Zubal low SNR

Thalamus Cerebellum
Initial score 0.23 0.36 0.48 0.61

GGVF (best channel) 0.36 0.48 0.72 0.77
VFC (best channel) 0.45 0.46 0.75 0.79
CGVF 0.49 0.50 0.64 0.81
4DGVF 0.55 0.55 0.79 0.84

In the tested images, the weighting scheme led to systematic
enhancement of the gradient magnitude map Nω over N1 to
the benefit of the 4DGVF approach. The most computationally
expensive aspect of the method lies in the re-calculation of
the force field due to the re-evaluation of the weights at
each iteration. However, in practice, recalculating weights at
each iteration is not necessary because they converge to a
steady result along with the surface model. For example, one
can re-evaluate weights depending on the amount of global
deformation of the model, as small deformations are likely to
cause negligible change in the weights. While the proposed
weighting scheme is convenient for numerous modalities and
applications, the 4DGVF approach can be enriched by other
type of weights, also based for example on noise estimation
or available a priori knowledge.

E. Illustration on real data

Fig. 15: Segmentation of a quinolinic acid lesion in the
striatum region of a rat brain. Result is shown in red, initial
shape in white (left), superimposed onto the 4DGVF field
(middle, right)

To illustrate the behavior of the 4DGVF approach in a pre
clinical context, we performed a dynamic PET acquisition of
a rat using [18F]-DPA-714 injections, a radiotracer specific
to the translocator protein (TSPO). This protein is over ex-
pressed under pathologic neuroinflammatory conditions and

can therefore measure active diseases in the brain. The inflam-
mation was produced by performing unilateral quinolinic acid
lesions in the right striatum of the rat. Images were acquired
on a microPET-CT GE Vista in list-mode and reconstructed
using 3D-OSEM iterative method with corrections for atten-
uation, random and scattered coincidences. 27 time frames
of 175 × 175 × 61 voxels of 0.39 × 0.39 × 0.78 mm3 were
reconstructed over a period of 50 minutes according to the
following protocol: 4×10s, 4×20s, 6×60s, 10×80s, 3×600s.

Figure 15 shows a representative segmentation result for one
rat. The shape produced was consistent with the morphology
and location of the injured region.

VII. CONCLUSION

We have proposed a novel external force field for the
segmentation of vector-valued images using parametric active
surfaces. The proposed 4DGVF field enables the segmentation
of noisy 4D images where edge information cannot be deduced
from a single channel, and where only the redundancy of edge
information along the channels can help recover the feature
of interest. In the 4DGVF approach, the gradient signal is
weighted according to a blind estimation of contrast, favouring
channels in which edges are better defined. While existing
approaches based on deformable models applied to vector-
valued images exploit local structure information in a scalar
way to define vector edges, the 4DGVF field is produced
through nonlinear diffusion of a vectorial edge map computed
from the eigenvector analysis of the local structure tensor,
improving robustness to noise.

Quantitative assessment on synthetic images and realistic
simulations, and results on real dynamic PET images con-
firmed the potential impact of the method for segmentation
of vector-based 2D or 3D imaging modality, such as dynamic
PET, functional MRI or hyper-spectral imaging.
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