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émanant des établissements d’enseignement et de
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ABSTRACT

In this paper, we propose a new method for vector-valued

image restoration in order to reduce noise while simulta-

neously sharpening vector edges. Our approach is a coupled

anisotropic diffusion and shock filtering scheme that exploits

a new robust 4DGVF vector field tailored for vector-valued

images. The proposed scheme sharpens edges in directions

diffused from the entire spatio-spectral information available

with a more precise and a more stable sharpening effect along

the iterative processing. We validate our method on color

images as well as on realistic simulations of dynamic PET

images.

Index Terms— PDE, Image restoration, Vector-valued

images, Gradient vector flow, Positron emission tomography

1. INTRODUCTION

Vector-valued images occur in various contexts such as

color images, hyperspectral images (e.g. radar, LiDAR), or

medical images acquired at different time intervals (e.g. dy-

namic positron emission tomography (PET) imaging or func-

tional magnetic resonance imaging). Such images require de-

dicated methods that take profit of additional information pro-

vided by the extra dimension available [1]. In particular, edge-

based techniques extended to the vector-valued case typically

require a redefinition of the notion of gradient. A popular ge-

neralization of this notion to vector-valued images or vector

gradient, was proposed by Di Zenzo, following considera-

tions from Riemannian geometry [2]. According to Di Zenzo,

the image I is considered as a vector field whose components

are the different channels. The gradient direction is then as-

sociated with the direction that maximizes a quadratic form

of the total differential dI of I. This idea was later develo-

ped using the tensor formalism [3], converting this geometric

problem into an algebraic one in which the gradient direction

can be associated to the dominant eigenvector of a local struc-

ture tensor, or second-moment matrix of the image. The gra-
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dient magnitude is then generally obtained from a combina-

tion of the different eigenvalues of the structure tensor. Over

the years, Di Zenzo’s gradient and the local structure tensor

formalism have been used for different applications such as

feature or saliency detection [4, 5], image segmentation [6, 7],

edge detection (known as vector edge) [8], and image filtering

[1, 9, 10, 11].

For single channel images, many non-linear filtering ap-

proaches, such as the anisotropic diffusion filter of Perona

and Malik (PM) and its refinements [12, 13, 14] have been

proposed in order to reduce noise while preserving edge

strength. Alvarez and Mazzora proposed a filtering equation

that couples PM anisotropic diffusion and a shock filter term

[15, 16] in order to further enhance the edge signal and res-

tore sharpness. This term can be seen as an inverse diffusion

that restores abrupt discontinuities around edges. However, a

direct extension of this latter approach to the vector-valued

case, by applying it independently on each channel, is not

satisfying. Indeed, edges are often difficult to identify accu-

rately in individual channels of vector-valued images, and

independent morphological operations acting in the different

channels are likely to create false spectral characteristics,

such as false colors [17]. Based on the geometrical conside-

rations of Di Zenzo, Tschumperlé and Deriche extended the

Alvarez-Mazorra formulation to the vector-valued case by

combining a nonlinear diffusion term, a shock filter term and

a data-fidelity term for color image restoration [10]. By ac-

ting on all channels in the same fashion, this method reduces

incoherent restoration of the vector components. However,

shock filters rely on the localization of the Laplacian zero-

crossings and therefore remain very sensitive to noise, even

when coupled to vector diffusion schemes.

In this paper, we propose a novel approach for vector-

valued image sharpening and denoising based on a coupled

vector diffusion and shock filtering scheme. The proposed ap-

proach exploits sharpening directions drawn from a new 4D

gradient vector flow (4DGVF) field that propagates and regu-

larizes vector gradient information throughout the image. By

partially transferring the vector edges localization and orien-

tation tasks the 4DGVF field, we define more accurate and



robust directions along which blur is compensated in a stable

fashion. As all image channels are sharpened in coherent di-

rections, the proposed method also reduces the appearance

of spurious spectral characteristics. To a certain extent, this

approach can be considered as a generalization of the GVF-

based anisotropic diffusion model proposed by Yu and Chua

for 2D grayscale images to the vector-valued case [18]. We

validate our method on synthetic color images and realistic

simulations of 4D (3D+t) dynamic PET images, and com-

pare our results to the approaches of Yu and Chua [18] and of

Tschumperlé and Deriche [10].

2. PROPOSED METHOD

In this section, we present our vector-valued restora-

tion approach based on the 4DGVF field, a gradient vector

flow (GVF) field tailored for vector-valued images [19]. We

start by defining a vector geometry in order to characterize

vector edges at a local scale, both in amplitude and in di-

rection. These geometrical considerations are the foundation

upon which the 4DGVF field and the proposed regularization

scheme are built.

2.1. Definition of a vector geometry

In the continuous domain, we denote by I a nD vector-

valued image constituted of M channels :

I(x, c) : (Ωs ⊗ Ωc) ∈ R
n ⊗ N → R,

where Ωs is the nD spatial domain of the image and Ωc the

channel dimension. x = (x1, ..., xn) ∈ Ωs is the voxel posi-

tion in each channel. We denote by Ik the kth channel of the

image.

According to Di Zenzo, I is a nD→ MD vector field. The

gradient field of the multichannel image is locally oriented in

the direction which maximizes the quadratic form of the total

differential dI of I [2] :

dI =

n
∑

i=1

∂I

∂xi
dxi. (1)

We define a weighted quadratic form for dI, or first funda-

mental form :

‖dI‖2ω = dxT
Gωdx, (2)

with Gω a regularized, weighted structure tensor of the image

[20]

Gω = Kσ ∗
M
∑

k=1

ωk(∇Ik ⊗∇Ik
T ), (3)

where Kσ is a Gaussian kernel of scale σ, ∗ is the convolu-

tion operation, ⊗ is the tensor product, and ωk is a weighting

factor for channel Ik. The weighting factors allow to charac-

terize the reliability of the different channels. Without a priori

estimation, a natural generalization of Di Zenzo’s approach is

to weight all channels equally by choosing ωk = 1/M, ∀k.

Let λ1 ≥ ... ≥ λn be the ordered set of eigenvalues of

the structure tensor Gω and
{

~θ1, ..., ~θn

}

the associated or-

thonormal eigenvector set. The eigenvalues λi give the scalar

rates of change of the first fundamental form in a local basis

of extremal variations. The dominant eigenvector ~θ1 associa-

ted with λ1 is collinear to the vector gradient, while the re-

maining eigenvectors span the hyperplane tangent to the local

isophote. In order to measure the vector gradient amplitude,

several combinations of the eigenvalues can be found in the

literature [10]. In our study, we choose a coherence norm pro-

posed by Weickert in [21] :

‖dI‖2ω =

n−1
∑

i=1

m
∑

j=i+1

(λi − λj)
2. (4)

This norm measures the amount of local anisotropy, a genera-

lization to the nD case of the norm presented by Sapiro in [1].

This measure exhibits oriented gradient patterns in the image.

We thus define a measure Nω of the vector edge amplitude.

Nω := ‖dI‖ω . (5)

2.2. 4DGVF field

We have recently proposed the 4DGVF vector field for

the robust segmentation of vector-valued images with active

surfaces [22]. This field is obtained through a gradient vec-

tor flow-like scheme that propagates vector gradients in the

image in a nonlinear fashion [19]. It exploits both amplitude

and directional information contained in the analysis of the

structure tensor, on the contrary of previous approaches that

rely on the norm of the tensor only [23, 24].

We define a vectorial edge map ~V, a vector field collinear

to the local dominant eigenvectors of Gω , but oriented toward

the nearest vector edges :

~V = ~θ+sign < ~θ+,∇Nω > . (6)

The 4DGVF field is obtained by nonlinear diffusion of the

components of ~V throughout the image. It is defined as the

steady-state solution ~Fext of the following vector partial dif-

ferential equation :

∂~Fext

∂t
= g(Nω)∆~Fext − h(Nω)(~Fext − ~V), (7)

where g(s) = e−|∇s|/κ and h = 1 − g are two functions

that control the tradeoff between the first and second terms

through parameter κ [19], and ∆ is the vector Laplace opera-

tor. In the vicinity of vector edges, as measured by Nω , the

directions of ~Fext are constrained by ~V, while isotropic dif-

fusion of ~Fext prevails in homogeneous regions. We obtain

a regularized vector field oriented locally toward the nearest

vector edge.



2.3. 4DRSF vector regularization

We propose a new regularization approach for nD vector-

valued images that combines anisotropic diffusion and 4DGVF-

regularized shock filtering. The proposed 4D regularized

shock filter (4DRSF) approach is driven by the following set

of coupled partial differential equations :

∂Ik
∂t

= cD+
(Nω)

∂2Ik

∂~θ21
+ cD

−

(Nω)

n
∑

i=2

∂2Ik

∂~θ2i

+ α(0Ik − Ik)− cS(Nω)sign(< ~F,
∇Ik
|∇Ik|

>)

∣

∣

∣

∣

∂Ik

∂~θ1

∣

∣

∣

∣

, (8)

where operators ∂/∂~θi and ∂2/∂~θi
2

respectively correspond

to the directional derivative of first and second order in the ~θi
direction and where < , > is the dot product.

The first two terms in equation (8) respectively correspond

to a diffusion along the vector gradient direction and along the

hyperplane tangent to the local isophote, weighted by diffu-

sion coefficients cD+
and cD

−

, decreasing functions of Nω .

The third term is a classical data-attachment term controlled

by parameter α, where 0Ik denotes the original kth channel.

The last term in eq. (8) is the 4DGVF-based shock filter term.

It sharpens vector edges in robust directions established prior

to diffusion by the 4DGVF field ~Fext. cS is a decreasing func-

tion of Nω so that sharpening occurs more near edges than in

flat regions. While previous shock filter based regularization

schemes ([15, 10]) sharpen edges in the direction of the cur-

vature zero-crossings, which may change along the iterations,

such a scheme guarantees a stable edge-enhancement beha-

vior along robust directions determined by the 4DGVF field.

2.4. Implementation

We implemented the 4DRSF regularization method using

MATLAB. We used the following diffusion and shock coeffi-

cients : c−(s) =
1√
1+ s

r

, c+ = c2− and cS = 1−c−, where r is

a scale parameter. In order to handle data with similar orders

of magnitude, all intensities were scaled to the range [0 1].

3. RESULTS

We tested our method on two different data sets for which

ground truths were available : synthetic color images and rea-

listic simulations of dynamic PET images.

3.1. Comparative evaluation

We compared the 4DRSF approach to three other me-

thods : 1) an isotropic Gaussian filter applied in each chan-

nel Ik independently ; 2) the GVF-based anisotropic diffusion

model of Yu and Chua for single-channel images [18]. This

method couples anisotropic diffusion with a shock filter term

that exploits directions established prior to diffusion by a clas-

sical GVF vector field. As for the Gaussian filter, this method

was applied in each channel independently ; 3) the regulariza-

tion approach of Tschumperlé and Deriche, which takes profit

of Di Zenzo’s vector gradient in order to reduce noise and to

sharpen edges in a coherent way along the channels of vector-

valued images [10].

The parameters of all methods were established so as to

minimize the root mean square error (RMSE) between the re-

sult and the ground truth. We evaluated two quantitative cri-

teria : the RMSE and the signal-to-noise ratio (SNR) [25].

3.2. Synthetic color images

We generated a dataset of 50 synthetic 2D color images

having various levels of Gaussian blur and of additive Gaus-

sian noise. The filtering process was performed in the RGB
color space. The ground truth is displayed in Fig. 1a and a

representative image of the dataset is shown in Fig. 1b. Re-

sults of the different approaches are shown in figures 1c-f.

For this image, the isotropic Gaussian filter (Fig. 1c) redu-

ced noise at the expense of lowering the spatial resolution.

The anisotropic diffusion filter of Yu and Chua (Fig. 1d) re-

duced noise rather efficiently across the image while provi-

ding a sharp rendering of edges. However, a spurious edge

sharpening behavior occurred in flat regions. Moreover, false

colors were produced around edges. This can be explained by

the fact that edges are not sharpened with the same ampli-

tude or along the same directions in the R, G and B chan-

nels. The approach of Tschumperlé and Deriche (Fig. 1e) led

to a well-rendered image, mostly avoiding the above mentio-

ned issues. However, vector edges were less sharpened that

with the method of Yu and Chua, as shocks are developed in

varying directions along the iterative treatment, causing the

spatial smearing of edges. A visual inspection suggests that

the proposed 4DRSF approach was better able to restore the

original piecewise constant aspect of the image. These obser-

vations were confirmed by the quantitative results displayed

in table 1. For this dataset, the Gaussian filter (Gaus.), the ap-

proach of Yu and Chua (Yu.), the approach of Tschumperlé

and Deriche (Tsch.) and the proposed 4DRSF approach in-

creased the SNR of the unfiltered image (U.I.) by 42%, 63%,

61% and 65% respectively.

3.3. Dynamic PET image simulations

The validation of filtering results using clinical images is

difficult due to lack of ground truth. We assessed the 4DRSF

regularization approach with quantitative results on realis-

tic Monte Carlo simulations of dynamic PET images. Three

images with different levels of noise were generated using

GATE, a highly realistic PET image simulator based on the

CERN’s GEANT4 particle interaction platform [26]. Noise



(a) (b) (c)

(d) (e) (f)

Fig. 1. Results for the synthetic image. (a) Ground truth, (b)

unprocessed image, (c) isotropic Gaussian smoothing, (d) Yu

and Chua channel-by-channel approach, (e) Tschumperlé and

Deriche approach, (f) proposed 4DRSF approach.

levels varied between these images due to the number of itera-

tions (it) and subsets (s) used by the OP-OSEM reconstruction

algorithm (first image : 5it/10s, second image : 2it/16s, third

image : 10it/16s.) We used the Zubal head phantom [27], a

phantom of the main brain structures, as a voxelized source

for the simulated tomographic reconstructions, constituted

each of 20 time frames (channels). Results on a sagittal slice

of one of the simulations are shown in figure 2, using the

same ordering as the one used in figure 1.

While the isotropic Gaussian filter (Fig. 2c) lowered the

spatial resolution, the channel-by-channel approach of Yu and

Chua (Fig. 2d) led to better denoising. However, it failed at

providing sharp boundaries and the image remained blurred.

Indeed, this method does not take advantage of the redun-

dancy of the edge signal along the channels in order to lower

its sensitivity to noise. The GVF fields calculated in individual

channels were too much affected by noise and thus failed at

providing relevant sharpening directions. The vector-valued

restoration approach of Tschumperlé and Deriche (Fig. 2e)

sharpened edges in a coherent way and benefited of the spec-

tral information to identify and to locate edges more preci-

sely. However, the geometry of the different tissues was al-

tered during the process. For example, the thalamus and the

frontal lobe regions have been artificially joined due to spu-

rious diffusion behavior. This can be explained by the displa-

cements of the Laplacian zero-crossings along the iterations.

Once again, the 4DRSF approach provided both better de-

noising and better sharpening ability, a property which was

confirmed by the quantitative results displayed in the last co-

lumn of table 1.

To illustrate the method in a preclinical context, an

example on a real [18F]-DPA-714 dynamic PET image is

shown in Fig. 3. Quinoleic acid was injected in the right

striatum of a rat, producing a hypersignal in the image dis-

played. The filtering result was consistent with the expected

morphology of the pathological region.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Sagittal slice of a representative channel of a dyna-

mic PET image simulation. (a) Ground truth, (b) unprocessed

image, (c) isotropic Gaussian smoothing, (d) Yu and Chua

channel-by-channel approach, (e) Tschumperlé and Deriche

approach, (f) proposed 4DRSF approach.

Table 1. Average scores for the two datasets

2D color images 4D PET simulations

RMSE SNR (dB) RMSE SNR (dB)

U.I. .15±.04 11.0±1.9 .27±.09 07.9±3.6

Gaus. .14±.03 11.5±1.7 .15±.04 10.7±1.0

Yu. .11±.01 14.9±0.3 .12±.01 11.2±0.4

Tsch. .10±.01 14.9±0.3 .11±.01 11.7±0.8

4DRSF .09±.01 15.2±0.3 .10±.01 12.9±1.9

4. CONCLUSION

We have proposed a new restoration method for vector-

valued images that allows to increase the SNR while simulta-

neously sharpening vector edges. The proposed approach ex-

ploits robust sharpening directions derived from a new vector

field that takes profit of the entire spatio-spectral information

available in order to better identify both edges strength and

direction. Results obtained on synthetic images confirm the

potentiality of the proposed method for the restoration of 2D

color and 3D+t images.

Fig. 3. Real [18F]DPA-714 PET acquisition of a rat brain.

left : original image. middle,right : 4DRSF filtering result
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