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ABSTRACT

In this paper, we extend the gradient vector flow field to the

vector-valued case for robust variational segmentation of 4D

images with active surfaces. Instead of only exploiting scalar

edge strength in order to identify vector edges, we propagate

both directions and amplitudes of vector gradients computed

from the analysis of a structure tensor of the vector-valued

image. To reduce contributions from noise in the calculation

of the structure tensor, image channels are weighted accor-

ding to a blind estimator of contrast that take profit of the

deformable models framework. The proposed 4DGVF vector

field is validated on synthetic image datasets and applied to

biological volume delineation in dynamic PET imaging.

Index Terms— Deformable models, Image segmenta-

tion, Gradient vector flow, Vector-valued images, Positron

emission tomography

1. INTRODUCTION

Active surface models attempt to recover a region of in-

terest by conforming to its boundary an evolving surface su-

perimposed onto the image domain [1, 2] . The evolution

of the surface toward equilibrium can be seen as a force-

balance relation between forces acting on the surface : inter-

nal forces, which control the smoothness of the model, and

external forces, derived from image information. In this pa-

per, we focus on edge-based parametric deformable models.

Among external force fields used for parametric models, gra-

dient vector flow (GVF) fields [4, 5] aroused great interest

due to their reduced sensitivity to noise and their ability to

progress into concave regions in the image. However, their

extension to the vector-valued case is not straightforward.

It is generally not satisfying to average the gradient orien-

tations of the different channels in order to express the gra-

dient of a vector-valued image, or vector gradient [6]. A more

relevant approach was proposed by Di Zenzo who considered

the image as a vector field [7]. In this context, the gradient
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direction and amplitude are associated with the maximization

of a quadratic form of the total differential of the image, a

problem which can be expressed algebraically using the local

structure tensor (LST) formalism [8]. Previous segmentation

approaches that rely on this paradigm use the amplitude of the

vector gradient to identify vector edges [9, 10, 11, 12]. Howe-

ver, relevant directional information can also be drawn from

the analysis of the LST in order to further enhance gradient

identification, and hence segmentation results. Moreover, the

different channels generally participate equally in the calcu-

lus of the gradient, even those where the feature of interest is

badly represented.

The aim of this work is to propose a new external force

field for parametric deformable surfaces evolving in vector-

valued images. We introduce a new gradient vector flow field,

the 4DGVF field (Four Dimensional Gradient Vector Flow)

that takes advantage of both direction and amplitude of vector

gradients to propagate them throughout the image. The vector

gradients are drawn from the analysis of a LST of the image

that combines gradient information available in the different

channels. We focus our study on imaging modalities where

detection is hampered by varying contrast and noise over the

channels, but where physical edges locations do not vary. In

such situations, while image edges may be ill-defined on in-

dividual channels, the combination of information along the

different channels may improve edge location. By weighting

the structure tensor dynamically, we control the influence of

the different channels in order to favor the ones where the

features can be better detected, hence reducing sensitivity to

noise.

We assess the quality of our model using synthetic

images, realistic Monte Carlo simulations of dynamic Po-

sitron Emission Tomography (dPET) images and apply it to

real dPET images. dPET images consist of subsequent ac-

quisitions of the same field of view at different time intervals

and can therefore be considered as vector-valued images. We

compare our results to single-channel approaches based on

Generalized GVF [5] and Vector Field Convolution (VFC)

[13], and to the Color GVF model of Yang et al. for vector-

valued images [11].



2. PROPOSED METHOD

2.1. Vector geometry

In the continuous domain, we denote by I a 3D vector-

valued image constituted of M channels :

I(x, c) : (Ωs ⊗ Ωc) ∈ R
3 ⊗ N → R,

where Ωs is the 3D spatial domain of the image and Ωc the

channel dimension. x = (x1, x2, x3) ∈ Ωs is the spatial po-

sition of the voxel. We denote by Ik the kth channel of the

image. A parametric active surface S
τ at time τ of its defor-

mation is represented as a mapping of a bivariate parameter

(m,n) on a regular grid Ω, superimposed on the spatial image

domain :

(m,n) → S
τ (m,n) = [x1(m,n), x2(m,n), x3(m,n)]

T
.
(1)

The vector gradient is associated with the direction that

maximizes the quadratic form of the total differential dI of I

[7]. In the 3D case, I is a 3D→MD vector field and a weigh-

ted quadratic form, or first fundamental form of dI is expres-

sed as :

‖dI‖
2

ω = dxT
Gωdx, (2)

with Gω a regularized, weighted LST [14] :

Gω = Kσ ∗
M
∑

k=1

ωk(∇Ik ⊗∇ITk ), (3)

where Kσ is a Gaussian kernel of scale σ, ∗ is the convolu-

tion operation, ⊗ is the tensor product, and ωk is a weighting

factor for channel Ik. The weighting factors ωk, k ∈ {1..M}
allow to characterize the reliability of the different channels.

Without a priori knowledge, the extension of Di Zenzo’s ap-

proach to 3D consists in weighting all channels equally by

choosing ωk = 1/M, ∀k. With such weights, contributions

from noise in channels where the object is poorly represen-

ted might hamper edge detection. Taking profit of the defor-

mable model framework, we propose a blind estimation of the

weights based on the object representativeness in the chan-

nels. For each channel Ik, let Rin
k be the set of voxels located

inside S
t, and let Rout

k be the set of voxels located outside

S
t and inside λSt, a homothetic transformation of St of pa-

rameter λ. The limitation of Rout
k to λSt prevents possible

influence from further regions. We compare the intensities of

voxels located inside the region to voxels of its outer neigh-

borhood in order to define a contrast measure. We define the

weighting factor for channel Ik as follows :

ωk :=

(

∣

∣̄I
in
k − Ī

out
k

∣

∣

γ

∑M
j=1

∣

∣̄Iinj − Īoutj

∣

∣

γ

)

, (4)

where summation is over the M channels. Īink and Ī
out
k are

the average intensities in Rin
k and Rout

k respectively. γ is a

parameter that controls the linearity of the influence of the

channels. Figure 1 contains an illustration of the weighting

scheme on a conceptual 2D example. Figure 1a displays a

high contrast channel where average intensities Rin
1 and Rout

1

are significantly different and for which the corresponding

weight would be large. On the contrary, Figure 1b shows a

low contrast channel where the corresponding weight would

be low.

(a) (b)

Fig. 1. Illustration of the weighting method on a 2D repre-

sentation of the active surface S
t around a region of interest

(ROI). (a) High contrast channel. (b) Low contrast channel.

2.2. 4DGVF-based active surface

2.2.1. 4DGVF external force field

The eigenvalues λ+ > λ−
1 > λ−

2 of the LST Gω give the

scalar rates of change of the first fundamental form in a local

basis of extremal variations. Depending on the applications,

these eigenvalues can be combined to define different norms

of the LST [15, 16, 17, 18]. In our study, we choose a cohe-

rence norm that measures the amount of local anisotropy [18],

a generalization to the 3D case of the norm presented by Sa-

piro in [16]. This measure exhibits oriented gradient patterns

in the image :

‖dI‖
2

ω =

√

(λ+ − λ−
1 )

2
+ (λ+ − λ−

2 )
2
+ (λ−

1 − λ−
2 )

2.
(5)

We define the gradient amplitude Nω as : Nω = ‖dI‖ω .

The directions of the eigenvectors of Gω give the directions

of local extrema of the quadratic form (2). The eigenvector
~θ+ associated with the maximum eigenvalue λ+ gives the

gradient direction, and the other two define orthogonal "iso-

phote" directions. We propose here, rather than only exploi-

ting the eigenvalues of the LST [9, 11, 12], to also take advan-

tage of the directional information carried by ~θ+. We define

a vectorial edge map ~V, a vector field collinear to the local

dominant eigenvectors of Gω , but oriented toward the nearest

vector edge :

~V = ~θ+sign < ~θ+,∇Nω >, (6)

where < , > denotes the dot product.



The 4DGVF external force field is the result of nonlinear

diffusion of the vectorial edge map ~V throughout the image.

The 4DGVF field is defined as the steady-state solution of the

following vector partial differential equation :

∂~Fext

∂t
= g(Nω)∆~Fext − h(Nω)(~Fext − ~V), (7)

where g(s) = e−|∇s|/κ and h = 1 − g are two functions

that control the tradeoff between the first and second terms

through parameter κ [5], and ∆ is the vector Laplace opera-

tor. In the vicinity of vector edges, as measured by Nω , the

directions of ~Fext are constrained by ~V, while isotropic dif-

fusion of ~Fext prevails in homogeneous regions. We obtain

a regularized vector field oriented locally toward the nearest

vector edge.

2.2.2. Model deformation

At each iteration τ of the deformation, the surface S
τ un-

dergoes locally the external force field ~Fext. To avoid conver-

gence issues and ensure a smooth deformation, the deforma-

tion force field is projected on the normal direction to S
τ . The

surface is iteratively moved according to the following Euler-

Lagrange equation :

∂Sτ

∂τ
= α∆S

τ − β∆2
S
τ+ < ~Fext, ~n >, (8)

where elasticity terms are weighted by α and rigidity terms by

β. ~n denotes the normal direction to the local surface element

dSτ . The LST is computed according to the proposed weigh-

ting scheme, and at each timestep τ , weights are recomputed

to construct a more accurate external force field for the next

iteration. Internal energy parameters were set for all methods

to typical values found in the literature α = 0.2 and β = 1.0.

2.3. Initialization

In general, the energy landscape associated with a varia-

tional segmentation problem is not convex, requiring the ini-

tial model to be close to the desired optimum [19]. To this end,

we propose to initialize the 4DGVF model with the Poisson

Inverse Gradient algorithm [20] adapted here to the vector-

valued case. We build an initialization field ~F0
ext based upon

the 4DGVF framework for which we use equal weighting of

all channels, as finer weights such as proposed in eq. (4) can

only be derived after an initial surface is defined. Once ~F0
ext

is computed, we estimate the scalar potential Eext by solving

the Poisson equation :

∆Eext = −∇ · ~F0
ext, (9)

This equation is solved numerically by matrix inversion

for which Dirichlet boundary conditions are applied on the

boundary of the image domain. We scale Eext in the range

[0,−1], and perform P energy isosurface reconstructions

Ep = (E1, ..., EP ), Ep ∈ [0,−1], using a marching cubes

algorithm [21]. We then select the closed model with mi-

nimal total external energy. This shape is then used for the

computation of the initial weights prior to the deformation.

3. RESULTS

The algorithm was implemented using MATLAB using a

finite difference scheme. We assessed the proposed 4DGVF

active surface model by comparing it with three other models

of the literature :

1) Generalized Gradient Vector Flow (GGVF) active sur-

face model [5]. The diffusion of the gradient vectors was per-

formed on a channel-by-channel basis, where the edge map

of each channel Ik was defined as fk = Kσ ∗ |∇Ik| ;

2) Vector Field Convolution (VFC) active surface model

[13]. A convolution was performed on a channel-by-channel

basis between fk and a vector field kernel ~C in which all vec-

tors point toward the kernel’s center : ~Fext = ~C ∗ fk. As per-

formances of the two above models depended on the channel

studied, we retained the result produced in the channel with

best Jaccard index value.

3) Color Gradient Vector Flow (CGVF) active surface mo-

del [11]. This vector-valued model computes a single edge

map based on Di Zenzo’s vector gradient amplitude, wherein

all channels are considered equally for the calculation of the

LST. On the contrary of GGVF and VFC, a single active sur-

face result was thus obtained for each dynamic image with

both CGVF and 4DGVF approaches.

For all methods, the parameters were established so as

to maximize the Jaccard similarity criterion [22] between the

segmentation result and the ground truth. All models were ini-

tialized using the same surface model to prevent results from

being affected by this step.

3.1. Synthetic images

Fig. 2. Top : 2D slices of the 10 channels of a synthetic 4D

image that exhibits varying contrast with background. Bot-

tom : corresponding 4DGVF weights obtained for this image.

A set of images of 70× 50× 40× 10 voxels was genera-

ted for which the contrast of the object with the background

varied along the channels. The different channels of one of



(a) (b) (c)

Fig. 3. Surface plots of the gradient amplitude of a synthe-

tic 4D image : (a) fk (best contrasted channel), (b) with

equal weighting of all channels, (c) with proposed weighting

scheme

these synthetic 4D images are displayed in the top row of fi-

gure 2, where 2D slices are shown for the sake of readabi-

lity. The bottom row of figure 2 displays the corresponding

weights obtained with the proposed 4DGVF approach, which

are consistent with the observed variations of contrast.

In order to study the influence of weighting the LST,

we compared the gradient amplitude fk obtained in the best

contrasted channel Ik (Fig. 3a) to the vector-gradient ampli-

tude obtained with equal weighting of all channels (Fig. 3b)

and to the proposed weighted vector gradient amplitude Nω

(Fig. 3c). In this image, the proposed weighting scheme led to

an enhancement of the edge signal while, in flat regions, spu-

rious variations due to noise were kept at lower levels, leading

to better edge detection. Figure 4 shows segmentation results

obtained on this image for the different tested models. The

4DGVF segmentation result (fig. 4e) is the closest to ground

truth result (fig. 4a). These observations were confirmed by

the Jaccard similarity scores displayed in the middle column

of table 1.

(a) (b) (c) (d) (e)

Fig. 4. Segmentation results for a synthetic 4D image. (a)

ground truth (b) GGVF (c) VFC (d) CGVF (e) 4DGVF.

Table 1. Average Jaccard similarity scores

Image 4D synthetic images 4D PET simulations

GGVF 0.89±0.12 0.80±0.26

VFC 0.91±0.11 0.82±0.20

CGVF 0.81±0.15 0.81±0.12

4DGVF 0.95±0.14 0.85±0.11

3.2. Monte Carlo simulations

We assessed the 4DGVF approach with quantitative re-

sults on realistic Monte Carlo simulations of dPET images ge-

(a) (b) (c) (d) (e)

Fig. 5. Cerebellum segmentation in a 4D PET simulation. (a)

ground truth (b) GGVF (c) VFC (d) CGVF (e) 4DGVF

nerated using GATE, an highly realistic PET image simulator

based on the CERN’s GEANT4 particles interaction platform

[23]. Two 4D images based on the Zubal head phantom [24]

were created, which necessitated 90 days of parallel compu-

tations on a 12 cores 48 GB RAM computer. For each of the

reconstructed images, we studied the segmentation of the ce-

rebellum. Representative segmentation results are shown in

Fig. 5. The average quantitative results obtained for the two

simulations are displayed in the right column of table 1. The

4DGVF-based model obtained the best Jaccard similarity in-

dex (0.85).

3.3. Real images

Fig. 6. Left : segmentation of a quinolinic acid lesion in the

striatum region of a rat brain. Middle, right : result (in red),

superimposed onto the 4DGVF field (in white).

To illustrate the behavior of the 4DGVF method in a real

pre clinical context, we performed a dPET acquisition of a rat

brain using [18F]-DPA-714, a radiotracer specific to the trans-

locator protein (TSPO). This protein is over expressed under

pathologic neuroinflammatory conditions. The inflammation

was produced by performing unilateral quinolinic acid lesions

in the right striatum of the rat. Figure 6 shows a representa-

tive segmentation result for one rat. The shape produced was

consistent with the morphology and location of the injured

region.

4. CONCLUSION

We have proposed a novel external force field in order to

perform robust active surface segmentation of 3D volumes

in vector-valued images. The proposed method exploits the

whole spatio-spectral information available in order to in-

crease its accuracy and reduce its sensitivity to noise. Re-

sults on synthetic images as well as real dPET images have

confirmed the potentiality of the proposed method for the

segmentation of vector-valued images.



5. REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes : Ac-

tive contour models,” International journal of computer

vision, vol. 1, no. 4, pp. 321–331, 1988.

[2] A. Dufour, R. Thibeaux, E. Labruyère N. Guillen and J.-

C. Olivo-Marin “3-D Active Meshes : Fast Discrete De-

formable Models for Cell Tracking in 3-D Time-Lapse

Microscopy” Image Processing, IEEE Transactions on,

vol. 20, no. 7, pp. 1925–1937, 2011.

[3] S. Osher and J.A. Sethian, “Fronts propagating

with curvature-dependent speed : algorithms based on

hamilton-jacobi formulations,” Journal of computatio-

nal physics, vol. 79, no. 1, pp. 12–49, 1988.

[4] C. Xu and J.L. Prince, “Snakes, shapes, and gradient

vector flow,” Image Processing, IEEE Transactions on,

vol. 7, no. 3, pp. 359–369, 1998.

[5] C. Xu and J.L. Prince, “Generalized gradient vector flow

external forces for active contours,” Signal Processing,

vol. 71, no. 2, pp. 131–139, 1998.

[6] Thomas Brox, Joachim Weickert, Bernhard Burgeth,

and Pavel Mrázek, “Nonlinear structure tensors,” Image

and Vision Computing, vol. 24, no. 1, pp. 41–55, 2006.

[7] S. Di Zenzo, “A note on the gradient of a multi-image,”

Computer Vision, Graphics, and Image Processing, vol.

33, no. 1, pp. 116–125, 1986.

[8] H.C. Lee and D.R. Cok, “Detecting boundaries in a vec-

tor field,” Signal Processing, IEEE Transactions on, vol.

39, no. 5, pp. 1181–1194, 1991.

[9] G. Sapiro, “Vector (self) snakes : A geometric frame-

work for color, texture, and multiscale image segmenta-

tion,” in Image Processing, 1996. Proceedings., Interna-

tional Conference on. IEEE, 1996, vol. 1, pp. 817–820.

[10] X. Xie and M. Mirmehdi, “RAGS : Region-aided geo-

metric snake,” Image Processing, IEEE Transactions

on, vol. 13, no. 5, pp. 640–652, 2004.

[11] L. Yang, P. Meer, and D.J. Foran, “Unsupervised seg-

mentation based on robust estimation and color active

contour models,” Information Technology in Biomedi-

cine, IEEE Transactions on, vol. 9, no. 3, pp. 475–486,

2005.

[12] V. Jaouen, P. González, S. Stute, D. Guilloteau, I. Bu-

vat, and C. Tauber, “Vector-based active surfaces for

segmentation of dynamic PET images,” in Biomedical

Imaging (ISBI), 2013 IEEE 10th International Sympo-

sium on. IEEE, 2013, pp. 61–64.

[13] B. Li and S.T. Acton, “Active contour external force

using vector field convolution for image segmentation,”

Image Processing, IEEE Transactions on, vol. 16, no. 8,

pp. 2096–2106, 2007.

[14] J. Weickert, Anisotropic diffusion in image processing,

vol. 1, Teubner Stuttgart, 1998.

[15] A. Cumani, “Edge detection in multispectral images,”

CVGIP : Graphical models and image processing, vol.

53, no. 1, pp. 40–51, 1991.

[16] G. Sapiro and D.L. Ringach, “Anisotropic diffusion of

multivalued images with applications to color filtering,”

Image Processing, IEEE Transactions on, vol. 5, no. 11,

pp. 1582–1586, 1996.

[17] P. Blomgren and T.F. Chan, “Color TV : total varia-

tion methods for restoration of vector-valued images,”

Image Processing, IEEE Transactions on, vol. 7, no. 3,

pp. 304–309, 1998.

[18] J. Weickert, “Coherence-enhancing diffusion filtering,”

International Journal of Computer Vision, vol. 31, no.

2-3, pp. 111–127, 1999.

[19] C. Tauber, H. Batatia, and A. Ayache, “Quasi-automatic

initialization for parametric active contours,” Pattern

Recognition Letters, vol. 31, no. 1, pp. 83–90, 2010.

[20] B. Li and S.T. Acton, “Automatic active model initiali-

zation via Poisson inverse gradient,” Image Processing,

IEEE Transactions on, vol. 17, no. 8, pp. 1406–1420,

2008.

[21] W.E. Lorensen and H.E. Cline, “Marching cubes :

A high resolution 3D surface construction algorithm,”

in ACM Siggraph Computer Graphics. ACM, 1987,

vol. 21, pp. 163–169.

[22] P. Jaccard, “Distribution de la flore alpine dans le bassin

des Dranses et dans quelques régions voisines,” Bulletin

de la Société Vaudoise des Sciences Naturelles, vol. 37,

pp. 241–272, 1901.

[23] S. Jan et al., “GATE v6 : a major enhancement of the

gate simulation platform enabling modelling of CT and

radiotherapy,” Physics in medicine and biology, vol. 56,

no. 4, pp. 881, 2011.

[24] G. Zubal et al., “Computerized three-dimensional seg-

mented human anatomy,” Medical Physics-New York-

Institute of Physics, vol. 21, no. 2, pp. 299–302, 1994.


