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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Tours

https://core.ac.uk/display/54020562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01072227


Elliptic equations involving general subcritical

source nonlinearity and measures

Huyuan Chen1 Patricio Felmer2 Laurent Véron3

Abstract

In this article, we study the existence of positive solutions to elliptic
equation (E1)

(−∆)αu = g(u) + σν in Ω,

subject to the condition (E2)

u = ̺µ on ∂Ω if α = 1 or in Ωc if α ∈ (0, 1),

where σ, ̺ ≥ 0, Ω is an open bounded C2 domain in RN , (−∆)α denotes
the fractional Laplacian with α ∈ (0, 1) or Laplacian operator if α = 1,
ν, µ are suitable Radon measures and g : R+ 7→ R+ is a continuous
function.

We introduce an approach to obtain weak solutions for problem
(E1)-(E2) when g is integral subcritical and σ, ̺ ≥ 0 small enough.

Key words: Fractional Laplacian; Radon measure; Green kernel; Poisson kernel;

Schauder’s fixed point theorem.

MSC2010: 35R11, 35J61, 35R06

1 Introduction

Let α ∈ (0, 1], Ω be an open bounded C2 domain in R
N with N > 2α,

ρ(x) = dist(x, ∂Ω), g : R+ 7→ R+ be a continuous function and denote by
(−∆)α the Laplacian operator if α = 1 or the fractional Laplacian with
α ∈ (0, 1) defined as

(−∆)αu(x) = lim
ε→0+

(−∆)αε u(x),

where for ε > 0,

(−∆)αε u(x) = −

∫

RN

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz

and

χε(t) =

{

0, if t ∈ [0, ε],

1, if t > ε.

1hc64@nyu.edu
2pfelmer@dim.uchile.cl
3Laurent.Veron@lmpt.univ-tours.fr
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Our first purpose of this paper is to study the existence of weak solutions
to the semilinear elliptic problem

(−∆)αu = g(u) + σν in Ω, (1.1)

subject to the Dirichlet boundary condition

u = 0 on ∂Ω if α = 1 or in Ωc if α ∈ (0, 1), (1.2)

where σ > 0, ν ∈ M(Ω, ρβ) with β ∈ [0, α] and M(Ω, ρβ) being the space of
Radon measures in Ω satisfying

∫

Ω
ρβd|ν| < +∞.

In particular, we denote M
b(Ω) = M(Ω, ρ0). The associated positive cones

are respectively M+(Ω, ρ
β) and M

b
+(Ω).

When α = 1, problem (1.1)-(1.2) has been studied for some decades.
The basic method developed by Ni [21] and Ratto-Rigoli-Véron [22] is to
iterate

un+1 = G1[g(un)] + σG1[ν], ∀n ∈ N.

The crucial ingredient in this approach is to derive a function v satisfying

v ≥ G1[g(v)] + σG1[ν].

Later on, Baras-Pierre [3] applied duality argument to derive weak solution
of problem (1.1)-(1.2) with α = 1 under the hypotheses:
(i) the mapping r 7→ g(r) is nondecreasing, convex and continuous;
(ii) there exist c0 > 0 and ξ0 ∈ C1.1

0 (Ω), ξ0 6= 0 such that

g∗
(

c0
−∆ξ0
ξ0

)

∈ L1(Ω),

where g∗ is the conjugate function of g;
(iii)

∫

Ω
ξdν ≤

∫

Ω
g∗

(

−∆ξ

ξ

)

dx, ∀ξ ∈ C1.1
0 (Ω).

When g is pure power source, Brezis-Cabré [2] and Kalton-Verbitsky [16]
pointed out that the necessary condition for existence of weak solution to

−∆u = up + σν in Ω,

u = 0 on ∂Ω,
(1.3)

is that
G1[(G1[ν])

p] ≤ c1G1[ν], (1.4)

2



for some c1 > 0. Bidaut-Véron and Vivier in [5] proved that (1.4) holds
for p < N+β

N+β−2 and problem (1.3) admits a weak solution if σ > 0 small.
While it is not easy to get explicit condition for general nonlinearity by
above methods.

In this article, we introduce a new method to obtain the weak solution
of problem (1.1)-(1.2) involving general nonlinearity without convex and
nondecreasing properties, which is inspired by the Marcinkiewicz spaces ap-
proach.

Let us first make precise the definition of weak solution to (1.1)-(1.2).

Definition 1.1 We say that u is a weak solution of (1.1)-(1.2), if u ∈
L1(Ω), g(u) ∈ L1(Ω, ραdx) and

∫

Ω
u(−∆)αξdx =

∫

Ω
g(u)ξdx + σ

∫

Ω
ξdν, ∀ξ ∈ Xα,

where Xα = C1.1
0 (Ω) if α = 1 or Xα ⊂ C(RN ) with α ∈ (0, 1) is the space of

functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in
Ω, for all ε ∈ (0, ε0].

We denote by Gα the Green kernel of (−∆)α in Ω×Ω and by Gα[.] the
associated Green operator defined by

Gα[ν](x) =

∫

Ω
Gα(x, y)dν(y), ∀ν ∈ M(Ω, ρα).

Our first result states as follows.

Theorem 1.1 Let α ∈ (0, 1], σ > 0 and ν ∈ M+(Ω, ρ
β) with β ∈ [0, α].

(i) Suppose that
g(s) ≤ c2s

p0 + ǫ, ∀s ≥ 0, (1.5)

for some p0 ∈ (0, 1], c2 > 0 and ǫ > 0. Assume more that c2 is small enough
when p0 = 1.

Then problem (1.1)-(1.2) admits a weak nonnegative solution uν which
satisfies

uν ≥ σGα[ν]. (1.6)

(ii) Suppose that

g(s) ≤ c3s
p∗ + ǫ, ∀s ∈ [0, 1] (1.7)

and

g∞ :=

∫ +∞

1
g(s)s−1−p∗

βds < +∞, (1.8)
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where c3, ǫ > 0, p∗ > 1 and p∗β = N+β
N−2α+β .

Then there exist σ0, ǫ0 > 0 depending on c3, p∗, g∞ and p∗β such that for
σ ∈ [0, σ0) and ǫ ∈ (0, ǫ0), problem (1.1)-(1.2) admits a nonnegative weak
solution uν which satisfies (1.6).

We remark that (i) we do not require any restriction on parameters
c2, ǫ, σ when p0 ∈ (0, 1) or on parameters ǫ, σ when p0 = 1; (ii) the assump-
tion (1.8) is called as integral subcritical condition, which is usually used
in dealing with elliptic problem with absorption nonlinearity and measures,
see the references [5, 9, 10, 24].

Let us sketch the proof of Theorem 1.1. We first approximate the nonlin-
earity g and Radon measure ν by {gn} and {νn} respectively, then we make
use of the Marcinkiewicz properties and embedding theorems to obtain that
for n ≥ 1, problem

(−∆)αun = gn(un) + σνn in Ω,

subject to condition (1.2), admits a nonnegative solution un by Schauder’s
fixed point theorem. The crucial point is to obtain uniformly bound of {un}
in the Marcinkiewicz space. The proof ends by getting a subsequence of
{un} that converges in the sense of Definition 1.1.

Our second purpose in this note is to obtain the weak solution to elliptic
equations involving boundary measures. Firstly, we study the weak solution
of

−∆u = g(u) in Ω,

u = ̺µ on ∂Ω,
(1.9)

where ̺ > 0 and µ ∈ M
b
+(∂Ω) the space of nonnegative bounded Radon

measure on ∂Ω. When g(s) = sp with p < N+1
N−1 , the weak solution to

problem (1.9) is derived by Bidaut-Véron and Vivier in [5] by using iterating
procedure. More interests on boundary measures refer to [4, 6, 13, 17, 18, 19].

Definition 1.2 We say that u is a weak solution of (1.9) , if u ∈ L1(Ω),
g(u) ∈ L1(Ω, ρdx) and

∫

Ω
u(−∆)ξdx =

∫

Ω
g(u)ξdx+ ̺

∫

∂Ω

∂ξ(x)

∂~nx
dµ(x), ∀ξ ∈ C1.1

0 (Ω),

where ~nx is the unit normal vector pointing outside of Ω at point x.

We denote by P the Poisson kernel of −∆ in Ω × ∂Ω and by P[.] the
associated Poisson operator defined by

P[µ](x) =

∫

∂Ω
P (x, y)dµ(y), ∀µ ∈ M

b(∂Ω).

Our second result states as follows.
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Theorem 1.2 Let ̺ > 0 and µ ∈ M
b
+(∂Ω).

(i) Suppose that
g(s) ≤ c4s

q0 + ǫ, ∀s ≥ 0, (1.10)

for some q0 ∈ (0, 1], c4 > 0 and ǫ > 0. Assume more that c4 is small enough
when q0 = 1.

Then problem (1.9) admits a weak nonnegative solution uµ which satisfies

uµ ≥ ̺P[µ]. (1.11)

(ii) Suppose that

g(s) ≤ c5s
q∗ + ǫ, ∀s ∈ [0, 1] (1.12)

and

g∞ :=

∫ +∞

1
g(s)s−1−q∗ds < +∞, (1.13)

where c5, ǫ > 0, q∗ > 1 and q∗ = N+1
N−1 .

Then there exist ̺0, ǫ0 > 0 depending on c5, q∗, g∞ and q∗ such that for
̺ ∈ [0, ̺0) and ǫ ∈ [0, ǫ0), problem (1.9) admits a nonnegative weak solution
uµ which satisfies (1.11).

We remark that the key-point in the proof of Theorem 1.2 is to derive
the uniform bound in Marcinkiewicz quasi-norm to the solutions of

−∆u = gn(u+ ̺P[µ]) in Ω,

u = 0 on ∂Ω,
(1.14)

where {gn} is a sequence of C1 bounded functions approaching to g in
L∞

loc(R+). In fact, the weak solution uµ could be decomposed into

uµ = vµ + ̺P[µ],

where vµ is a weak solution to (1.14) replaced gn by g.
Inspired by the fact above, we give the definition of weak solution to

(−∆)αu = g(u) in Ω,

u = ̺µ in Ωc
(1.15)

as follows.

Definition 1.3 We say that uµ is a weak solution of (1.15) , if

uµ = vµ + ̺Gα[wµ],

where

wµ(x) =

∫

Ωc

dµ(z)

|z − x|N+2α
, x ∈ Ω (1.16)
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and vµ is a solution of

(−∆)αu = g(u+ ̺Gα[wµ]) in Ω,

u = 0 in Ωc
(1.17)

in the sense of Definition 1.1.

In Definition 1.3, the function Gα[wµ] plays the role of P[µ] when α = 1. In
order to better classify the measures tackled in follows, we denote

Rβ := {µ ∈ M+(Ω
c) : wµ ∈ L1(Ω, ρβdx)}, (1.18)

where β ∈ [0, α] and wµ is given by (1.16).

Theorem 1.3 Let α ∈ (0, 1), σ > 0 and µ ∈ Rβ with β ∈ [0, α].
(i) Suppose that

g(s) ≤ c6s
q0 + ǫ, ∀s ≥ 0, (1.19)

for some q0 ∈ (0, 1], c6 > 0 and ǫ > 0. Assume more that c6 is small enough
when q0 = 1.

Then problem (1.15) admits a weak nonnegative solution uµ which sat-
isfies

uµ ≥ ̺Gα[wµ]. (1.20)

(ii) Suppose that

g(s) ≤ c7s
q∗ + ǫ, ∀s ∈ [0, 1] (1.21)

and

g∞ :=

∫ +∞

1
g(s)s−1−p∗

βds < +∞, (1.22)

where c7, ǫ > 0, q∗ > 1 and p∗β = N+β
N−2α+β .

Then there exist σ0, ̺0 > 0 depending on c7, q∗, g∞ and p∗β such that for
̺ ∈ [0, ̺0) and ǫ ∈ [0, ǫ0), problem (1.15) admits a nonnegative weak solution
uµ which satisfies (1.20).

The rest of this paper is organized as follows. In section §2, we re-
call some basic results on Green kernel and Poisson kernel related to the
Marcinkiewicz space. Section §3 is addressed to prove the existence of weak
solution to elliptic equation with small forcing measure. Finally, we obtain
weak solution to elliptic equation with small boundary type measure.
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2 Preliminary

In order to obtain the weak solution of (1.1)-(1.2) with integral subcritical
nonlinearity, we have to introduce the Marcinkiewicz space and recall some
related estimate.

Definition 2.1 Let Θ ⊂ R
N be a domain and ̟ be a positive Borel measure

in Θ. For κ > 1, κ′ = κ/(κ − 1) and u ∈ L1
loc(Θ, dµ), we set

‖u‖Mκ(Θ,d̟) = inf

{

c ∈ [0,∞] :

∫

E
|u|d̟ ≤ c

(
∫

E
d̟

)
1

κ′

, ∀E ⊂ Θ, E Borel

}

(2.1)
and

Mκ(Θ, d̟) = {u ∈ L1
loc(Θ, d̟) : ‖u‖Mκ(Θ,d̟) < +∞}. (2.2)

Mκ(Θ, d̟) is called the Marcinkiewicz space of exponent κ, or weak
Lκ-space and ‖.‖Mκ(Θ,d̟) is a quasi-norm. We observe that

‖u+ v‖Mκ(Θ,d̟) ≤ ‖u‖Mκ(Θ,d̟) + ‖v‖Mκ(Θ,d̟) (2.3)

and
‖tu‖Mκ(Θ,d̟) = t‖u‖Mκ(Θ,d̟), ∀t > 0. (2.4)

Proposition 2.1 [1, 11] Assume that 1 ≤ q < κ < ∞ and u ∈ L1
loc(Θ, d̟).

Then there exists c8 > 0 dependent of q, κ such that

∫

E
|u|qd̟ ≤ c8‖u‖Mκ(Θ,d̟)

(
∫

E
d̟

)1−q/κ

for any Borel set E of Θ.

The next estimate is the key-stone in the proof of Theorem 1.1 to control
the nonlinearity in {g ≥ 1}.

Proposition 2.2 Let α ∈ (0, 1], β ∈ [0, α] and p∗β = N+β
N−2α+β , then there

exists c9 > 0 such that

‖Gα[ν]‖
M

p∗
β (Ω,ρβdx)

≤ c9‖ν‖M(Ω,ρβ). (2.5)

Proof. When α ∈ (0, 1), it follows by [9, Proposition 2.2] that for γ ∈ [0, α],
there exists c10 > 0 such that

‖Gα[ν]‖Mkα,β,γ (Ω,ργdx)
≤ c10‖ν‖M(Ω,ρβ),

where

kα,β,γ =

{

N+γ
N−2α+β , if γ < Nβ

N−2α ,

N
N−2α , if not.
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We just take γ = β, then kα,β,γ = p∗β and (2.5) holds.
When α = 1, (2.5) follows by [24, Theorem 3.5]. �

The following proposition does not just provide regularity but also plays
an essential role to control in {g < 1}.

Proposition 2.3 Let α ∈ (0, 1] and β ∈ [0, α], then the mapping f 7→ Gα[f ]
is compact from L1(Ω, ρβdx) into Lq(Ω) for any q ∈ [1, N

N+β−2α). Moreover,

for q ∈ [1, N
N+β−2α ), there exists c11 > 0 such that for any f ∈ L1(Ω, ρβdx)

‖Gα[f ]‖Lq(Ω) ≤ c11‖f‖L1(Ω,ρβdx). (2.6)

Proof. When α ∈ (0, 1) and β ∈ [0, α], it follows by [9, Proposition 2.5] that
for p ∈ (1, N

N−2α+β ), there exists c12 > 0 such that for any f ∈ L1(Ω, ρβdx)

‖Gα[f ]‖W 2α−γ,p(Ω) ≤ c12‖f‖L1(Ω,ρβdx), (2.7)

where γ = β + N(p−1)
p if β > 0 and γ > N(p−1)

p if β = 0. By [20, Theorem

6.5], the embedding of W 2α−γ,p(Ω) into Lq(Ω) is compact, then the mapping
f 7→ Gα[f ] is compact from L1(Ω, ρβdx) into Lq(Ω) for any q ∈ [1, N

N+β−2α).
We observe that (2.6) follows by (2.7) and the embedding inequality.

When α = 1 and β ∈ [0, 1], it follows by [5, Theorem 2.7] that

‖Gα[f ]‖
W

1, N
N−1+β

0
(Ω)

≤ c13‖f‖L1(Ω,ρβdx), (2.8)

where c13 > 0. By the compactness of the embedding from W
1, N

N−1+β

0 (Ω)
into Lq(Ω) with q ∈ [1, N

N+β−2), we have that the mapping f 7→ Gα[f ] is

compact from L1(Ω, ρβdx) into Lq(Ω) for q ∈ [1, N
N+β−2). Similarly, (2.6)

follows by (2.8) and the related embedding inequality. �

When we deal with problem (1.9), the Poisson kernel changes the bound-
ary measure to forcing term and the following proposition plays an important
role in obtaining the weak solution to (1.14) replaced gn by g.

Proposition 2.4 [5, Theorem 2.5] Let γ > −1 and pγ = N+γ
N−1 , then there

exists c14 > 0 such that

‖P[ν]‖Mpγ (Ω,ργdx) ≤ c14‖ν‖Mb(∂Ω). (2.9)

3 Forcing measure

3.1 Sub-linear

In this subsection, we are devoted to prove the existence of weak solution
to (1.1) when the nonlinearity is sub-linear.
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Proof of Theorem 1.1 part (i). Let β ∈ [0, α], we define the space

Cβ(Ω̄) = {ζ ∈ C(Ω̄) : ρ−βζ ∈ C(Ω̄)}

endowed with the norm

‖ζ‖Cβ(Ω̄) = ‖ρ−βζ‖C(Ω̄).

Let {νn} ⊂ C1(Ω̄) be a sequence of nonnegative functions such that νn → ν
in sense of duality with Cβ(Ω̄), that is,

lim
n→∞

∫

Ω̄
ζνndx =

∫

Ω̄
ζdν, ∀ζ ∈ Cβ(Ω̄). (3.1)

By the Banach-Steinhaus Theorem, ‖νn‖M(Ω,ρβ) is bounded independently
of n. We may assume that ‖νn‖L1(Ω,ρβdx) ≤ ‖ν‖M(Ω,ρβ) = 1 for all n ≥ 1.

We consider a sequence {gn} of C1 nonnegative functions defined on R+

such that gn(0) = g(0),

gn ≤ gn+1 ≤ g, sup
s∈R+

gn(s) = n and lim
n→∞

‖gn − g‖L∞

loc
(R+) = 0. (3.2)

We set
M(v) = ‖v‖L1(Ω).

Step 1. To prove that for n ≥ 1,

(−∆)αu = gn(u) + σνn in Ω,

u = 0 in Ωc
(3.3)

admits a nonnegative solution un such that

M(un) ≤ λ̄,

where λ̄ > 0 independent of n.
To this end, we define the operators {Tn} by

Tnu = Gα [gn(u) + σνn] , ∀u ∈ L1
+(Ω),

where L1
+(Ω) is the positive cone of L1(Ω). By (2.6) and (1.19), we have

that
M(Tnu) ≤ c11‖gn(u) + σνn‖L1(Ω,ρβdx)

≤ c2c11
∫

Ω up0ρβ(x)dx + c6(σ + ǫ)

≤ c2c15
∫

Ω up0dx+ c6(σ + ǫ)

≤ c2c16(
∫

Ω udx)p0 + c6(σ + ǫ)

= c2c16M(u)p0 + c6(σ + ǫ),

(3.4)
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where c15, c16 > 0 independent of n. Therefore, we derive that

M(Tnu) ≤ c2c16M(u)p0 + c11(σ + ǫ).

If we assume that M(u) ≤ λ for some λ > 0, it implies

M(Tnu) ≤ c2c16λ
p0 + c11(σ + ǫ).

In the case of p0 < 1, the equation

c2c16λ
p0 + c11(σ + ǫ) = λ

admits a unique positive root λ̄. In the case of p0 = 1, for c2 > 0 satisfying
c2c16 < 1, the equation

c2c16λ+ c11(σ + ǫ) = λ

admits a unique positive root λ̄. For M(u) ≤ λ̄, we obtain that

M(Tnu) ≤ c2c16λ̄
p0 + c11(σ + ǫ) = λ̄. (3.5)

Thus, Tn maps L1(Ω) into itself. Clearly, if um → u in L1(Ω) as m →
∞, then gn(um) → gn(u) in L1(Ω) as m → ∞, thus Tn is continuous.
For any fixed n ∈ N, Tnum = Gα [gn(um) + σνn] and {gn(um) + σνn}m is
uniformly bounded in L1(Ω, ρβdx), then it follows by Proposition 2.3 that
{Gα [gn(um) + σνn]}m is pre-compact in L1(Ω), which implies that Tn is a
compact operator.

Let

G = {u ∈ L1
+(Ω) : M(u) ≤ λ̄},

which is a closed and convex set of L1(Ω). It infers by (3.5) that

Tn(G) ⊂ G.

It follows by Schauder’s fixed point theorem that there exists some un ∈
L1
+(Ω) such that Tnun = un and M(un) ≤ λ̄, where λ̄ > 0 independent of n.
We observe that un is a classical solution of (3.3). For α = 1, since gn

bounded and C1, then it is natural to see that. When α ∈ (0, 1), let open
set O satisfy O ⊂ Ō ⊂ Ω. By [23, Proposition 2.3], for θ ∈ (0, 2α), there
exists c17 > 0 such that

‖un‖Cθ(O) ≤ c17{‖g(un)‖L∞(Ω) + σ‖νn‖L∞(Ω)},

then applied [23, Corollary 2.4], un is C2α+ǫ0 locally in Ω for some ǫ0 > 0.
Then un is a classical solution of (3.3). Moreover, from [10, Lemma 2.2], we
derive that

∫

Ω
un(−∆)αξdx =

∫

Ω
gn(un)ξdx+ σ

∫

Ω
ξνndx, ∀ξ ∈ Xα. (3.6)
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Step 2. Convergence. We observe that {gn(un)} is uniformly bounded
in L1(Ω, ρβdx), so is {νn}. By Proposition 2.3, there exist a subsequence
{unk

} and u such that unk
→ u a.e. in Ω and in L1(Ω), then by (1.19), we

derive that gnk
(unk

) → g(u) in L1(Ω). Pass the limit of (3.6) as nk → ∞ to
derive that

∫

Ω
u(−∆)αξ =

∫

Ω
g(u)ξdx + σ

∫

Ω
ξdν, ∀ξ ∈ Xα,

thus u is a weak solution of (1.1)-(1.2) and u is nonnegative since {un} are
nonnegative. �

3.2 Integral subcritical

In this subsection, we prove the existence of weak solution to (1.1) when the
nonlinearity is integral subcritical. We first introduce an auxiliary lemma.

Lemma 3.1 Assume that g : R+ 7→ R+ is a continuous function satisfying

∫ +∞

1
g(s)s−1−pds < +∞ (3.7)

for some p > 0. Then there is a sequence real positive numbers {Tn} such
that

lim
n→∞

Tn = ∞ and lim
n→∞

g(Tn)T
−p
n = 0.

Proof. Let {sn} be a sequence of real positive numbers converging to ∞.
We observe

∫ 2sn

sn

g(t)t−1−pdt ≥ min
t∈[sn,2sn]

g(t)(2sn)
−1−p

∫ 2sn

sn

dt

= 2−1−ps−p
n min

t∈[sn,2sn]
g(t)

and by (3.7),

lim
n→∞

∫ 2sn

sn

g(t)t−1−pdt = 0.

Then we choose Tn ∈ [sn, 2sn] such that g(Tn) = mint∈[sn,2sn] g(t) and then
the claim follows. �

Proof of Theorem 1.1 part (ii). Let {νn} ⊂ C1(Ω̄) be a sequence of
nonnegative functions such that νn → ν in sense of duality with Cβ(Ω̄)
and we may assume that ‖νn‖L1(Ω,ρβdx) ≤ 2‖ν‖M(Ω,ρβ) = 1 for all n ≥ 1.

We consider a sequence {gn} of C1 nonnegative functions defined on R+

satisfying gn(0) = g(0) and (3.2). We set

M1(v) = ‖v‖
M

p∗
β (Ω,ρβdx)

and M2(v) = ‖v‖Lp∗ (Ω),
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where p∗β and p∗ are from (1.7) and (1.8). We may assume that p∗ ∈

(1, N
N−2α+β ). In fact, if p∗ ≥ N

N−2α+β , then for any given p ∈ (1, N
N−2α+β ),

(1.8) implies that
g(s) ≤ c3s

p + ǫ, ∀s ∈ [0, 1].

Step 1. To prove that for n ≥ 1,

(−∆)αu = gn(u) + σνn in Ω,

u = 0 in Ωc
(3.8)

admits a nonnegative solution un such that

M1(un) +M2(un) ≤ λ̄,

where λ̄ > 0 independent of n.
To this end, we define the operators {Tn} by

Tnu = Gα [gn(u) + σνn] , ∀u ∈ L1
+(Ω).

By Proposition 2.2, we have

M1(Tnu) ≤ c9‖gn(u) + σνn‖L1(Ω,ρβdx)

≤ c9[‖gn(u)‖L1(Ω,ρβdx) + σ]. (3.9)

In order to deal with ‖gn(u)‖L1(Ω,ρβdx), for λ > 0 we set Sλ = {x ∈ Ω :

u(x) > λ} and ω(λ) =
∫

Sλ
ρβdx,

‖gn(u)‖L1(Ω,ρβdx) ≤

∫

Sc
1

g(u)ρβdx+

∫

S1

g(u)ρβdx. (3.10)

We first deal with
∫

S1
g(u)ρβdx. In fact, we observe that

∫

S1

g(u)ρβdx = ω(1)g(1) +

∫

∞

1
ω(s)dg(s),

where
∫

∞

1
g(s)dω(s) = lim

T→∞

∫ T

1
g(s)dω(s).

It infers by Proposition 2.1 and Proposition 2.2 that there exists c18 > 0
such that

ω(s) ≤ c18M1(u)
p∗
βs−p∗

β (3.11)

and by (1.8) and Lemma 3.1 with p = p∗β, there exist a sequence of increasing

numbers {Tj} such that T1 > 1 and T
−p∗

β

j g(Tj) → 0 when j → ∞, thus

ω(1)g(1) +

∫ Tj

1
ω(s)dg(s) ≤ c18M1(u)

p∗
βg(1) + c18M(u)p

∗

β

∫ Tj

1
s−p∗

βdg(s)

≤ c18M1(u)
p∗
βTj

−p∗
βg(Tj) +

c18M1(u)
p∗
β

p∗β + 1

∫ Tj

1
s−1−p∗

βg(s)ds.

12



Therefore,
∫

S1
g(u)ρβdx = ω(1)g(1) +

∫

∞

1 ω(s) dg(s)

≤ c18M1(u)
p∗
β

p∗
β
+1

∫

∞

1 s−1−p∗
βg(s)ds

= c18g∞M1(u)
p∗
β ,

(3.12)

where c18 > 0 independent of n.
We next deal with

∫

Sc
1

g(u)ρβdx. For p∗ ∈ (1, N
N−2α+β ), we have that

∫

Sc
1

g(u)ρβdx ≤ c3
∫

Sc
1

up∗ρβdx+ ǫ
∫

Sc
1

ρβdx

≤ c3c19
∫

Ω up∗dx+ c19ǫ

≤ c3c19M2(u)
p∗ + c19ǫ,

(3.13)

where c19 > 0 independent of n.
Along with (3.9), (3.10), (3.12) and (3.13), we derive

M1(Tnu) ≤ c9c18g∞M1(u)
p∗
β + c9c3c19M2(u)

p∗ + c9c19ǫ+ c9σ. (3.14)

By [20, Theorem 6.5] and (2.6), we derive that

M2(Tnu) ≤ c11‖gn(u) + σνn‖L1(Ω,ρβdx),

which along with (3.10), (3.12) and (3.13), implies that

M2(Tnu) ≤ c11c18g∞M1(u)
p∗
β + c11c3c19M2(u)

p∗ + c11c19ǫ+ c11σ. (3.15)

Therefore, inequality (4.7) and (4.8) imply that

M1(Tnu) +M2(Tnu) ≤ c20g∞M1(u)
p∗
β + c13M2(u)

p∗ + c21ǫ+ c22σ,

where c20 = (c9+c11)c18, c21 = (c9+c11)c19 and c22 = c9+c11. If we assume
that M1(u) +M2(u) ≤ λ, implies

M1(Tnu) +M2(Tnu) ≤ c20g∞λp∗
β + c21λ

p∗ + c21ǫ+ c22σ.

Since p∗β, p∗ > 1, then there exist σ0 > 0 and ǫ0 > 0 such that for any
σ ∈ (0, σ0] and ǫ ∈ (0, ǫ0], the equation

c20g∞λp∗
β + c21λ

p∗ + c21c2ǫ+ c22σ = λ

admits the largest root λ̄ > 0.
We redefine M(u) = M1(u)+M2(u), then for M(u) ≤ λ̄, we obtain that

M(Tnu) ≤ c20g∞λ̄p∗
β + c21λ̄

p∗ + c21ǫ+ c22σ = λ̄. (3.16)
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Especially, we have that

‖Tnu‖L1(Ω) ≤ c8M1(Tnu)|Ω|
1− 1

p∗
β ≤ c23λ̄ if M(u) ≤ λ̄.

Thus, Tn maps L1(Ω) into itself. Clearly, if um → u in L1(Ω) as m →
∞, then gn(um) → gn(u) in L1(Ω) as m → ∞, thus Tn is continuous.
For any fixed n ∈ N, Tnum = Gα [gn(um) + σνn] and {gn(um) + σνn}m is
uniformly bounded in L1(Ω, ρβdx), then it follows by Proposition 2.3 that
{Gα [gn(um) + σνn]}m is pre-compact in L1(Ω), which implies that Tn is a
compact operator.

Let

G = {u ∈ L1
+(Ω) : M(u) ≤ λ̄}

which is a closed and convex set of L1(Ω). It infers by (4.9) that

Tn(G) ⊂ G.

It follows by Schauder’s fixed point theorem that there exists some un ∈
L1
+(Ω) such that Tnun = un and M(un) ≤ λ̄, where λ̄ > 0 independent of n.
In fact, un is a classical solution of (3.8). For α = 1, since gn bounded

and C1, then it is natural to see that. When α ∈ (0, 1), let open set O
satisfy O ⊂ Ō ⊂ Ω. By [23, Proposition 2.3], for θ ∈ (0, 2α), there exists
c24 > 0 such that

‖un‖Cθ(O) ≤ c24{‖g(un)‖L∞(Ω) + σ‖νn‖L∞(Ω)},

then applied [23, Corollary 2.4], un is C2α+ǫ0 locally in Ω for some ǫ0 > 0.
Then un is a classical solution of (3.8). Moreover,

∫

Ω
un(−∆)αξdx =

∫

Ω
gn(un)ξdx+ σ

∫

Ω
ξνndx, ∀ξ ∈ Xα. (3.17)

Step 2. Convergence. Since {gn(un)} and {νn} are uniformly bounded
in L1(Ω, ρβdx), then by Propostion 2.3, there exist a subsequence {unk

} and
u such that unk

→ u a.e. in Ω and in L1(Ω), and gnk
(unk

) → g(u) a.e. in Ω.
Finally we prove that gnk

(unk
) → g(u) in L1(Ω, ρβdx). For λ > 0, we

set Sλ = {x ∈ Ω : |unk
(x)| > λ} and ω(λ) =

∫

Sλ
ρβdx, then for any Borel

set E ⊂ Ω, we have that
∫

E
|gnk

(unk
)|ρβdx =

∫

E∩Sc
λ

g(unk
)ρβdx+

∫

E∩Sλ

g(unk
)ρβdx

≤ g̃(λ)

∫

E
ρβdx+

∫

Sλ

g(unk
)ρβdx

≤ g̃(λ)

∫

E
ρβdx+ ω(λ)g(λ) +

∫

∞

λ
ω(s)dg(s),

(3.18)

where g̃(λ) = maxs∈[0,λ] g(s).
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On the other hand,

∫

∞

λ
g(s)dω(s) = lim

Tm→∞

∫ Tm

λ
g(s)dω(s).

where {Tm} is a sequence increasing number such that T
−p∗

β
m g(Tm) → 0 as

m → ∞, which could obtained by assumption (1.8) and Lemma 3.1 with
p = p∗β.

It infers by (3.11) that

ω(λ)g(λ) +

∫ Tm

λ
ω(s)dg(s) ≤ c18g(λ)λ

−p∗
β + c25

∫ Tm

λ
s−p∗

βdg(s)

≤ c25T
−p∗

β
m g(Tm) +

c25
p∗β + 1

∫ Tm

λ
s−1−p∗

βg(s)ds,

where c25 = c18p
∗

β. Pass the limit of m → ∞, we have that

ω(λ)g(λ) +

∫

∞

λ
ω(s) dg(s) ≤

c25
p∗β + 1

∫

∞

λ
s−1−p∗

βg(s)ds.

Notice that the above quantity on the right-hand side tends to 0 when
λ → ∞. The conclusion follows: for any ǫ > 0 there exists λ > 0 such that

c17
p∗β + 1

∫

∞

λ
s−1−p∗

βg(s)ds ≤
ǫ

2
.

Since λ is fixed, together with (3.10), there exists δ > 0 such that

∫

E
ρβdx ≤ δ =⇒ g(λ)

∫

E
ρβdx ≤

ǫ

2
.

This proves that {g ◦ unk
} is uniformly integrable in L1(Ω, ρβdx). Then

g ◦ unk
→ g ◦ u in L1(Ω, ρβdx) by Vitali convergence theorem.

Pass the limit of (3.17) as nk → ∞ to derive that

∫

Ω
u(−∆)αξ =

∫

Ω
g(u)ξdx + σ

∫

Ω
ξdν, ∀ξ ∈ Xα,

thus u is a weak solution of (1.1)-(1.2) and u is nonnegative since {un} are
nonnegative. �

4 Boundary type measure

In order to prove the elliptic problem involving boundary type measure, the
idea is to change the boundary type measure to a forcing source.
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Lemma 4.1 For µ ∈ M
b
+(∂Ω), we have that

P[µ] ∈ C1(Ω).

Proof. It infers by [5, Proposition 2.1] that for (x, y) ∈ Ω× ∂Ω,

P (x, y) ≤ cN |x− y|1−N and |∇xP (x, y)| ≤ cN |x− y|−N ,

then by the formulation of P[µ] we have that P[µ] ∈ C1(Ω). �

Lemma 4.2 Assume that ̺ > 0, µ ∈ M
b
+(∂Ω), g is a nonnegative function

satisfying (1.12) and (1.13), {gn} are a sequence of C1 nonnegative functions
defined on R+ satisfying gn(0) = g(0) and (3.2).

Then there exists ̺0 > 0 and ǫ0 > 0 such that for ̺ ∈ [0, ̺0] and ǫ ∈
[0, ǫ0],

−∆u = gn(u+ ̺P[µ]) in Ω,

u = 0 on ∂Ω
(4.1)

admits a nonnegative solution wn such that

M1(wn) +M2(wn) ≤ λ̄

for some λ̄ > 0 independent of n, where

M1(v) = ‖v‖Mq∗ (Ω,ρdx) and M2(v) = ‖v‖Lq∗ (Ω),

with q∗ and q∗ given in (1.12) and (1.13) respectively.

Proof. Without loss generality, we assume ‖µ‖Mb(∂Ω) = 1 and q∗ ∈ (1, N+1
N−1).

Redenote the operators {Tn} by

Tnu = G1 [gn(u+ ̺P[µ])] , ∀u ∈ L1
+(Ω).

By Proposition 2.2, we have

M1(Tnu) ≤ c9‖gn(u+ ̺P[µ])‖L1(Ω,ρdx)

≤ c9‖g(u + ̺P[µ])‖L1(Ω,ρdx)

(4.2)

For λ > 0, we set Sλ = {x ∈ Ω : u+ ̺P[µ] > λ} and ω(λ) =
∫

Sλ
ρdx,

‖g(u + ̺P[µ])‖L1(Ω,ρdx) ≤

∫

Sc
1

g(u + ̺P[µ])ρdx+

∫

S1

g(u+ ̺P[µ])ρdx.

(4.3)
We first deal with

∫

S1
g(u+ ̺P[µ])ρdx. In fact, we observe that

∫

S1

g(u+ ̺P[µ])ρdx = ω(1)g(1) +

∫

∞

1
ω(s)dg(s),
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where
∫

∞

1
g(s)dω(s) = lim

T→∞

∫ T

1
g(s)dω(s).

It infers by Proposition 2.2 and Proposition 2.4 with γ = 1 that there exists
such that

ω(s) ≤ c26‖u+ ̺P[µ]‖q
∗

Mq∗ (Ω,ρdx)
s−q∗

≤ c27

(

‖u‖Mq∗ (Ω,ρdx) + ‖̺P[µ]‖Mq∗ (Ω,ρdx)

)q∗

s−q∗

≤ c27 (M1(u) + c14̺)
q∗ s−q∗

(4.4)

where c26, c27 > 0 independent of n. By (1.13) and Lemma 3.1 with p = q∗,
there exist a sequence of increasing numbers {Tj} such that T1 > 1 and

T−q∗

j g(Tj) → 0 when j → ∞, thus

ω(1)g(1) +

∫ Tj

1
ω(s)dg(s)

≤ c27 (M1(u) + c14̺)
p∗
β g(1) + c27 (M1(u) + c14̺)

q∗
∫ Tj

1
s−q∗dg(s)

≤ c27 (M1(u) + c14̺)
q∗ Tj

−q∗g(Tj)

+ c27(M1(u)+c14̺)
q∗

q∗+1

∫ Tj

1 s−1−q∗g(s)ds.

Therefore,

∫

S1
g(u)ρdx = ω(1)g(1) +

∫

∞

1 ω(s) dg(s)

≤ c27(M1(u)+c14̺)
q∗

q∗+1

∫

∞

1 s−1−q∗g(s)ds

≤ c28g∞M1(u)
q∗ + c28g∞̺q

∗

,

(4.5)

where c28 > 0 independent of n.
We next deal with

∫

Sc
1

g(u+ ̺P[µ])ρdx. For q∗ ∈ (1, N+1
N−1), we have that

∫

Sc
1

g(u+ ̺P[µ])ρdx ≤ c5
∫

Sc
1

(u+ ̺P[µ])q∗ρdx+ ǫ
∫

Sc
1

ρdx

≤ c5c29
∫

Ω uq∗dx+ c5c29̺
q∗ + c29ǫ

≤ c5c29M2(u)
q∗ + c5c29̺

q∗ + c29ǫ,

(4.6)

where c29 > 0 independent of n.
Along with (4.2), (4.3), (4.5) and (4.6), we derive that

M1(Tnu) ≤ c9c26g∞M1(u)
q∗ + c9c5c29M2(u)

q∗ + c9c29ǫ+ c9l̺, (4.7)
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where l̺ = c28g∞̺p
∗

+ c5c29̺
p∗ . By [20, Theorem 6.5] and (2.6), we derive

that
M2(Tnu) ≤ c11‖g(u + ̺P[µ])‖L1(Ω,ρdx),

which along with (4.3), (4.5) and (4.6), implies that

M2(Tnu) ≤ c11c26g∞M1(u)
q∗ + c11c5c29M2(u)

q∗ + c11c29ǫ+ c11l̺. (4.8)

Therefore, inequality (4.7) and (4.8) imply that

M1(Tnu) +M2(Tnu) ≤ c30g∞M1(u)
q∗ + c31M2(u)

q∗ + c31ǫ+ c32l̺,

where c30 = (c9 + c11)c26, c31 = (c9 + c11)c5c29 and c32 = c9 + c11. If we
assume that M1(u) +M2(u) ≤ λ, implies

M1(Tnu) +M2(Tnu) ≤ c30g∞λq∗ + c13λ
q∗ + c31ǫ+ c32l̺.

Since q∗, q∗ > 1, then there exist ̺0 > 0 and ǫ0 > 0 such that for any
̺ ∈ (0, ̺0] and ǫ ∈ (0, ǫ0], the equation

c30g∞λq∗ + c31λ
q∗ + c31c5ǫ+ c32l̺ = λ

admits the largest root λ̄ > 0.
We redefine M(u) = M1(u)+M2(u), then for M(u) ≤ λ̄, we obtain that

M(Tnu) ≤ c30g∞λ̄q∗ + c31λ̄
q∗ + c31ǫ+ c32l̺ = λ̄. (4.9)

Especially, we have that

‖Tnu‖L1(Ω) ≤ c8M1(Tnu)|Ω|
1− 1

q∗ ≤ c33λ̄ if M(u) ≤ λ̄.

Thus, Tn maps L1(Ω) into itself. Clearly, if um → u in L1(Ω) as m → ∞,
then gn(um) → gn(u) in L1(Ω) as m → ∞, thus Tn is continuous. For
any fixed n ∈ N, Tnum = G1 [gn(um + ̺P[µ])] and {gn(um) + ̺P[µ]}m is
uniformly bounded in L1(Ω, ρdx), then it follows by Proposition 2.3 that
{G1 [gn(um + ̺P[µ]]}m is pre-compact in L1(Ω), which implies that Tn is a
compact operator.

Let

G = {u ∈ L1
+(Ω) : M(u) ≤ λ̄}

which is a closed and convex set of L1(Ω). It infers by (4.9) that

Tn(G) ⊂ G.

It follows by Schauder’s fixed point theorem that there exists some wn ∈
L1
+(Ω) such that Tnwn = wn and M(wn) ≤ λ̄, where λ̄ > 0 does not depend
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on n. Since gn and P[µ] are C1 functions by Lemma 4.1, then wn is a classical
solution of (4.1) and

∫

Ω
wn(−∆)ξdx =

∫

Ω
gn(wn + ̺P[µ])ξdx, ∀ξ ∈ C1.1

0 (Ω).

Proof of Theorem 1.2 (ii). It derives by Lemma 4.1 that wn is a classical
solution of (4.1). Denote un = wn + ̺P[µ] and then

∫

Ω
un(−∆)ξ =

∫

Ω
gn(un)ξdx+ ̺

∫

∂Ω

∂ξ(x)

∂~nx
dµ(x), ∀ξ ∈ Xα, (4.10)

Since {gn(un)} are uniformly bounded in L1(Ω, ρdx), then by Propostion
2.3, there exist a subsequence {wnk

} and w such that wnk
→ w a.e. in Ω

and in L1(Ω) and then unk
→ u a.e. in Ω and in L1(Ω) where u = w+̺P[µ].

Thus, gnk
(unk

) → g(u) a.e. in Ω.
Similarly to the argument in Proof of Theorem 1.1 part (ii) in Step 2,

we have that gnk
(unk

) → g(u) in L1(Ω, ρdx).
Pass the limit of (4.10) as nk → ∞ to derive that

∫

Ω
u(−∆)ξdx =

∫

Ω
g(u)ξdx + ̺

∫

∂Ω

∂ξ

∂~n
dµ, ∀ξ ∈ Xα,

thus u is a weak solution of (1.9) and u is nonnegative since {un} are non-
negative. �

Proof of Theorem 1.2 (i). It proceeds similarly to the proof of Theorem
1.1 (i), so we omit here. �

5 Boundary type measure for α ∈ (0, 1)

5.1 Basic results

In this subsection, we devoted to study the properties of Rβ with β ∈ [0, α],
see the definition 1.18. Here and in what follows, we assume that α ∈ (0, 1).

Lemma 5.1 Let 1 ≤ β′ ≤ β ≤ α, then

∅ 6= Rβ′ ⊂ Rβ 6= M+(Ω
c). (5.1)

Proof. Let x0 ∈ ∂Ω, xt = x0 + t~nx0
and δt be the dirac mass concentrated

at xt, where ~nx0
is the unit normal vector pointing outside at x0.

Fixed t > 0, wδt(x) = |x − xt|
−N−2α for x ∈ Ω. It is easy to see that

wδt ∈ L∞(Ω) and then δt ∈ Rβ for any β ∈ [0, α].
Fixed t = 0, wδ0(x) = |x − x0|

−N−2α for x ∈ Ω. We observe that
wδ0 6∈ L1(Ω, ραdx) and then δ0 6∈ Rβ for any β ∈ [0, α]. �
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Example. Let x0 ∈ ∂Ω, xt = x0 + t~nx0
and δt be the dirac mass concen-

trated at xt. Denote

µ =

∞
∑

n=1

bnδ 1

n
,

where {bn} a sequence nonnegative numbers will be chosen latter. We ob-
serve that

wµ(x) =

∞
∑

n=1

bn
|x− x 1

n
|N+2α

, x ∈ Ω

and wµ ∈ L1(Ω, ρβdx) if and only if

∞
∑

n=1

bnn
2α−β < +∞. (5.2)

Lemma 5.2 Let µ ∈ Rβ with β ∈ [0, α] and wµ is given by (1.16).
(i) wµ ∈ C1(Ω) ∩ L1(Ω, ρβdx).
(ii) Let w̃µ = Gα[wµ] in Ω and w̃µ = µ in Ωc, then w̃µ is a weak solution

of
(−∆)αu = 0 in Ω,

u = µ in Ωc
(5.3)

in the sense of
∫

Ω
u(−∆)αξdx =

∫

Ω
ξwµdx, ∀ ξ ∈ Xα.

Proof. (i) µ ∈ Rβ implies that wµ ∈ L1(Ω, ρβdx) and since the function:
x :→ |x− y|−N−2α is C1(Ω) for any y ∈ Ωc, then wµ ∈ C1(Ω).

(ii) For µ ∈ Rβ with β ∈ [0, α], let {µn} ⊂ C1
0 (R

N ) with supp(µn) ⊂ Ω̄c

be a sequence of nonnegative functions such that µn → µ in distribution
sense.

Then we derive that wµn ∈ C1(Ω̄) and there exists a unique classical
solution Gα[wµn ] to

(−∆)αu = wµn in Ω,

u = 0 in Ωc.
(5.4)

Moreover,
∫

Ω
u(−∆)αξdx =

∫

Ω
ξwµdx, ∀ ξ ∈ Xα. (5.5)

Let un = Gα[wµn ] + µn, then we have that

(−∆)αun = (−∆)αGα[wµn ] + (−∆)αµn = wµn − wµn = 0

and (5.5) holds for un. Passing the limit of n → ∞, we derive that w̃µ is a
weak solution of (5.4). �

We note that (i) Lemma 5.2(ii) indicates that Gα[wµ] has the similar
role as P[µ] when α = 1; (ii) the definition 1.3 is equivalent to
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Definition 5.1 uµ is a weak solution of (1.15), if uµ ∈ L1(Ω), g(uµ) ∈
L1(Ω, ραdx) and

∫

Ω
uµ(−∆)αξdx =

∫

Ω
g(uµ)ξdx+

∫

Ω
wµξdx, ξ ∈ Xα,

where wµ is given by (1.16).

5.2 Proof of Theorem 1.3

Inspired by the proof of Theorem 1.2, we first give an important lemma,
which is important in dealing with the subcritical case.

Lemma 5.3 Assume that ̺ > 0, µ ∈ Rβ , g is a nonnegative function
satisfying (1.21) and (1.22), {gn} are a sequence of C1 nonnegative functions
defined on R+ satisfying gn(0) = g(0) and (3.2).
Then there exists ̺0 > 0 and ǫ0 > 0 such that for ̺ ∈ [0, ̺0] and ǫ ∈ [0, ǫ0],

(−∆)αu = gn(u+ ̺Gα[wµ]) in Ω,

u = 0 in Ωc
(5.6)

admits a nonnegative solution wn such that

M1(wn) +M2(wn) ≤ λ̄

for some λ̄ > 0 independent of n, where

M1(v) = ‖v‖
M

p∗
β (Ω,ρβdx)

and M2(v) = ‖v‖Lq∗ (Ω),

with q∗ and p∗β given in (1.21) and (1.22) respectively.

Proof. For µ ∈ Rβ, we have that wµ ∈ L1(Ω, ρβdx), which, by Proposi-

tion 2.3, implies that Gα[wµ] ∈ Mp∗
β(Ω, ρβdx). It proceeds as Lemma 4.2,

replaced P[µ] by Gα[wµ] to obtain that there exists ̺0 > 0 and ǫ0 > 0 such
that for ̺ ∈ [0, ̺0] and ǫ ∈ [0, ǫ0], there exists wn such that

wn = Gα[gn(wn + ̺Gα[wµ])]

and
M1(wn) +M2(wn) ≤ λ̄

for some λ̄ > 0 independent of n.
By Lemma 5.2 (i), we see that wn is a classical solution of (5.6). More-

over,

∫

Ω
wn(−∆)αξdx =

∫

Ω
gn(wn + ̺Gα[wµ])ξdx, ∀ξ ∈ C1.1

0 (Ω). (5.7)
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Proof of Theorem 1.3 (ii). It derives by Lemma 5.3 that wn is a classical
solution of (5.6). Denote un = wn + ̺Gα[wµ] Since {gn(un)} are uniformly
bounded in L1(Ω, ρdx), then by Propostion 2.3, there exist a subsequence
{wnk

} and w such that wnk
→ w a.e. in Ω and in L1(Ω) and then unk

→ u
a.e. in Ω and in L1(Ω) where u = w+ ̺Gα[wµ]. Thus, gnk

(unk
) → g(u) a.e.

in Ω.
Similarly to the argument in Proof of Theorem 1.1 part (ii) in Step 2,

we have that gnk
(unk

) → g(u) in L1(Ω, ρβdx).
Pass the limit of (5.7) as nk → ∞ to derive that

∫

Ω
w(−∆)αξdx =

∫

Ω
g(w + ̺Gα[wµ])ξdx, ∀ξ ∈ Xα.

Thus u = w + ̺Gα[wµ] is a weak solution of (1.15) and u is nonnegative
since {wn} are nonnegative. �

Proof of Theorem 1.3 (i). It proceeds similarly to the proof of Theorem
1.1 (i), so we omit here. �
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