Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption

Hung Nguyen Quoc, Laurent Veron

To cite this version:

Hung Nguyen Quoc, Laurent Veron. Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption. To appear in Potential Analysis. 2014. <hal00851381v4>

HAL Id: hal-00851381
https://hal.archives-ouvertes.fr/hal-00851381v4

Submitted on 10 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption

Nguyen Quoc Hung*
Laurent Véron ${ }^{\dagger}$
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, FRANCE

Abstract

We obtain sufficient conditions, expressed in terms of Wiener type tests involving Hausdorff or Bessel capacities, for the existence of large solutions to equations (1) $-\Delta_{p} u+e^{u}-1=0$ or (2) $-\Delta_{p} u+u^{q}=0$ in a bounded domain Ω when $q>p-1>0$. We apply our results to equations (3) $-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0$, (4) $\Delta_{p} u+u^{-\gamma}=0$ with $1<p \leq 2,1 \leq q \leq p, a>0, b>0$ and $q>p-1, s \geq p-1, \gamma>0$.

2010 Mathematics Subject Classification. 31C15, 35J92, 35F21, 35B44. Key words: quasilinear elliptic equations, Wolff potential, maximal functions, Hausdorff capacities, Bessel capacities.

1 Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ and $1<p \leq N$. We denote $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$, $\rho(x)=\operatorname{dist}(x, \partial \Omega)$. In this paper we study some questions relative to the existence of solutions to the problem

$$
\begin{align*}
-\Delta_{p} u+g(u) & =0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty \tag{1.1}
\end{align*}
$$

where g is a continuous nondecreasing function vanishing at 0 , and most often $g(u)$ is either $\operatorname{sign}(u)\left(e^{|u|}-1\right)$ or $|u|^{q-1} u$ with $q>p-1$. A solution to problem (1.1) is called a large solution. When the domain is regular in the sense that the Dirichlet problem with continuous boundary data ϕ

$$
\begin{align*}
& -\Delta_{p} u+g(u)=0 \quad \text { in } \Omega \\
& u-\phi \in W_{0}^{1, p}(\Omega), u \in W_{\operatorname{loc}}^{1, p}(\Omega) \cap L^{\infty}(\Omega) \tag{1.2}
\end{align*}
$$

admits a solution $u \in C(\bar{\Omega})$, it is clear that problem (1.1) admits a solution provided problem $-\Delta_{p} u+g(u)=0$ in Ω having a maximal solution, see [14, Chapter 5]. It is known that a

[^0]necessary and sufficient condition for the solvability of problem (1.2) in case $g(u) \equiv 0$ is the Wiener criterion, due to Wiener [22] when $p=2$ and Maz'ya [15], Kilpelainen and Malý [7] when $p \neq 2$, in general case is proved by Malý and Ziemer [12]. This condition is
\[

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{C_{1, p}\left(B_{t}(x) \cap \Omega^{c}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}=\infty \quad \forall x \in \partial \Omega \tag{1.3}
\end{equation*}
$$

\]

where $C_{1, p}$ denotes the capacity associated to the space $W^{1, p}\left(\mathbb{R}^{N}\right)$. The existence of a maximal solution is guaranteed for a large class of nondecreasing nonlinearities g satisfying the Vazquez condition [19]

$$
\begin{equation*}
\int_{a}^{\infty} \frac{d t}{\sqrt[p]{G(t)}}<\infty \quad \text { where } G(t)=\int_{0}^{t} g(s) d s \tag{1.4}
\end{equation*}
$$

for some $a>0$. This is an extension of the Keller-Osserman condition [8], [16], which is the above relation when $p=2$. If for $R>\operatorname{diam}(\Omega)$ there exists a function v which satisfies

$$
\begin{align*}
-\Delta_{p} v+g(v) & =0 & & \text { in } B_{R} \backslash\{0\}, \\
v & =0 & & \text { on } \partial B_{R}, \tag{1.5}\\
\lim _{x \rightarrow 0} v(x) & =\infty, & &
\end{align*}
$$

then it is easy to see that the maximal solution u of

$$
\begin{equation*}
-\Delta_{p} u+g(u)=0 \quad \text { in } \Omega \tag{1.6}
\end{equation*}
$$

is a large solution, without any assumption on the regularity of $\partial \Omega$. Indeed, $x \mapsto v(x-y)$ is a solution of (1.6) in Ω for all $y \in \partial \Omega$, thus $u(x) \geq v(x-y)$ for any $x \in \Omega, y \in \partial \Omega$. It follows $\lim _{\rho(x) \rightarrow 0} u(x)=\infty$ since $\lim _{z \rightarrow 0} v(z)=\infty$.
Remark that the existence of a (radial) solution to problem (1.5) needs the fact that equation (1.6) admits solutions with isolated singularities, which is usually not true if the growth of g is too strong since Vazquez and Véron prove in [20] that if

$$
\begin{equation*}
\liminf _{|r| \rightarrow \infty}|r|^{-\frac{N(p-1)}{N-p}} \operatorname{sign}(r) g(r)>0 \quad \text { with } p<N, \tag{1.7}
\end{equation*}
$$

isolated singularities of solutions of (1.6) are removable. Conversely, if $p-1<q<\frac{N(p-1)}{N-p}$ with $p<N$, Friedman and Véron [5] characterize the behavior of positive singular solutions to

$$
\begin{equation*}
-\Delta_{p} u+u^{q}=0 \tag{1.8}
\end{equation*}
$$

with an isolated singularities. In 2003, Labutin [9] show that a necessary and sufficient condition in order the following problem be solvable

$$
\begin{aligned}
-\Delta u+|u|^{q-1} u & =0 \quad \text { in } \Omega, \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty,
\end{aligned}
$$

is that

$$
\int_{0}^{1} \frac{C_{2, q^{\prime}}\left(B_{t}(x) \cap \Omega^{c}\right)}{t^{N-2}} \frac{d t}{t}=\infty \quad \forall x \in \partial \Omega
$$

where $C_{2, q^{\prime}}$ is the capacity associated to the Sobolev space $W^{2, q^{\prime}}\left(\mathbb{R}^{N}\right)$ and $q^{\prime}=q /(q-1), N \geq 3$. Notice that this condition is always satisfied if q is subcritical, i.e. $q<N /(N-2)$. We refer
to [14] for other related results. Concerning the exponential case of problem (1.1) nothing is known, even in the case $p=2$, besides the simple cases already mentioned.

In this article we give sufficient conditions, expressed in terms of Wiener tests, in order problem (1.1) be solvable in the two cases $g(u)=\operatorname{sign}(u)\left(e^{|u|}-1\right)$ and $g(u)=|u|^{q-1} u, q>p-1$. For $1<p \leq N$, we denote by $\mathcal{H}_{1}^{N-p}(E)$ the Hausdorff capacity of a set E defined by

$$
\mathcal{H}_{1}^{N-p}(E)=\inf \left\{\sum_{j} h^{N-p}\left(B_{j}\right): E \subset \bigcup B_{j}, \operatorname{diam}\left(B_{j}\right) \leq 1\right\}
$$

where the B_{j} are balls and $h^{N-p}\left(B_{r}\right)=r^{N-p}$. Our main result concerning the exponential case is the following

Theorem 1. Let $N \geq 2$ and $1<p \leq N$. If

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(\Omega^{c} \cap B_{r}(x)\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r}=+\infty \quad \forall x \in \partial \Omega, \tag{1.9}
\end{equation*}
$$

then there exists $u \in C^{1}(\Omega)$ satisfying

$$
\begin{gather*}
-\Delta_{p} u+e^{u}-1=0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x)=\infty \tag{1.10}
\end{gather*}
$$

Clearly, when $p=N$, we have $\mathcal{H}_{1}^{N-p}\left(\left\{x_{0}\right\}\right)=1$ for all $x_{0} \in \mathbb{R}^{N}$ thus, (1.9) is true for any open domain Ω.

We also obtain a sufficient condition for the existence of a large solution in the power case expressed in terms of some $C_{\alpha, s}$ Bessel capacity in \mathbb{R}^{N} associated to the Besov space $B^{\alpha, s}\left(\mathbb{R}^{N}\right)$.

Theorem 2. Let $N \geq 2,1<p<N$ and $q_{1}>\frac{N(p-1)}{N-p}$. If

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(\Omega^{c} \cap B_{r}(x)\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r}=+\infty \quad \forall x \in \partial \Omega \tag{1.11}
\end{equation*}
$$

then, for any $p-1<q<\frac{p q_{1}}{N}$ there exists $u \in C^{1}(\Omega)$ satisfying

$$
\begin{align*}
-\Delta_{p} u+u^{q} & =0 \quad \text { in } \Omega, \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty . \tag{1.12}
\end{align*}
$$

We can see that condition (1.9) implies (1.11). In view of Labutin's theorem this previous result is not optimal in the case $p=2$, since the involved capacity is $C_{2, q_{1}^{\prime}}$ with q_{1}^{\prime} and thus there exists a solution to

$$
\begin{aligned}
-\Delta_{p} u+u^{q_{1}} & =0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty
\end{aligned}
$$

with $q_{1}>q$.

At end we apply the previous theorem to quasilinear viscous Hamilton-Jacobi equations:

$$
\begin{align*}
& -\Delta_{p} u+a|\nabla u|^{q}+b|u|^{s-1} u=0 \quad \text { in } \Omega, \\
& \quad u \in C^{1}(\Omega), \lim _{\rho(x) \rightarrow 0} u(x)=\infty \tag{1.13}
\end{align*}
$$

For $q_{1}>p-1$ and $1<p \leq 2$, if equation (1.12) admits a solution with $q=q_{1}$, then for any $a>0, b>0$ and $q \in\left(p-1, \frac{p q_{1}}{q_{1}+1}\right), s \in\left[p-1, q_{1}\right)$ there exists a positive solution to (1.13). Conversely, if for some $a, b>0, s>p-1$ there exists a solution to equation (1.13) with $1<q=p \leq 2$, then for any $q_{1}>p-1,1 \leq q_{1} \leq p, s_{1} \geq p-1, a_{1}, b_{1}>0$ there exists a positive solution to equation (1.13) with parameters $q_{1}, s_{1}, a_{1}, b_{1}$ replacing q, s, a, b. Moreover, we also prove that the previous statement holds if for some $\gamma>0$ there exists $u \in C(\bar{\Omega}) \cap C^{1}(\Omega), u>0$ in Ω satisfying

$$
\begin{aligned}
-\Delta_{p} u+u^{-\gamma} & =0 \quad \text { in } \Omega, \\
u & =0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

We would like to remark that the case $p=2$ was studied in [10]. In particular, if the boundary of Ω is smooth then (1.13) has a solution with $s=1$ and $1<q \leq 2, a>0, b>0$.

2 Morrey classes and Wolff potential estimates

In this section we assume that Ω is a bounded open subset of \mathbb{R}^{N} and $1<p<N$. We also denote by $B_{r}(x)$ the open ball of center x and radius r and $B_{r}=B_{r}(0)$. We also recall that a solution of (1.1) belongs to $C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$, and is more regular (depending on g) on the set $\{x \in \Omega:|\nabla u(x)| \neq 0\}$.

Definition 2.1 A function $f \in L^{1}(\Omega)$ belongs to the Morrey space $\mathcal{M}^{s}(\Omega), 1 \leq s \leq \infty$, if there is a constant K such that

$$
\int_{\Omega \cap B_{r}(x)}|f| d y \leq K r^{\frac{N}{s^{\prime}}} \quad \forall r>0, \forall x \in \mathbb{R}^{N} .
$$

The norm is defined as the smallest constant K that satisfies this inequality; it is denoted by $\|f\|_{\mathcal{M}^{s}(\Omega)}$. Clearly $L^{s}(\Omega) \subset \mathcal{M}^{s}(\Omega)$.

Definition 2.2 Let $R \in(0, \infty]$ and $\mu \in \mathfrak{M}_{+}^{b}(\Omega)$, the set of nonnegative and bounded Radon measures in Ω. We define the (R-truncated) Wolff potential of μ by

$$
\mathbf{W}_{1, p}^{R}[\mu](x)=\int_{0}^{R}\left(\frac{\mu\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \quad \forall x \in \mathbb{R}^{N}
$$

and the (R-truncated) fractional maximal potential of μ by

$$
\mathbf{M}_{p, R}[\mu](x)=\sup _{0<t<R} \frac{\mu\left(B_{t}(x)\right)}{t^{N-p}} \quad \forall x \in \mathbb{R}^{N}
$$

where the measure is extended by 0 in Ω^{c}.
We recall a result proved in [6] (see also [2, Theorem 2.4]).

Theorem 2.3 Let μ be a nonnegative Radon measure in \mathbb{R}^{N}. There exist positive constants C_{1}, C_{2} depending on N, p such that

$$
\int_{2 B} \exp \left(C_{1} \mathbf{W}_{1, p}^{R}\left[\chi_{B} \mu\right]\right) d x \leq C_{2} r^{N}
$$

for all $B=B_{r}\left(x_{0}\right) \subset \mathbb{R}^{N}, 2 B=B_{2 r}\left(x_{0}\right), R>0$ such that $\left\|\mathbf{M}_{p, R}[\mu]\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq 1$.
For $k \geq 0$, we set $T_{k}(u)=\operatorname{sign}(u) \min \{k,|u|\}$.
Definition 2.4 Assume $f \in L_{l o c}^{1}(\Omega)$. We say that a measurable function u defined in Ω is a renormalized supersolution of

$$
\begin{equation*}
-\Delta_{p} u+f=0 \quad \text { in } \Omega \tag{2.1}
\end{equation*}
$$

if, for any $k>0, T_{k}(u) \in W_{l o c}^{1, p}(\Omega),|\nabla u|^{p-1} \in L_{l o c}^{1}(\Omega)$ and there holds

$$
\int_{\Omega}\left(\left|\nabla T_{k}(u)\right|^{p-2} \nabla T_{k}(u) \nabla \varphi+f \varphi\right) d x \geq 0
$$

for all $\varphi \in W^{1, p}(\Omega)$ with compact support in Ω and such that $0 \leq \varphi \leq k-T_{k}(u)$, and if $-\Delta_{p} u+f$ is a positive distribution in Ω.

The following result is proved in [12, Theorem 4.35].
Theorem 2.5 If $f \in \mathcal{M}^{\frac{N}{p-\epsilon}}(\Omega)$ for some $\epsilon \in(0, p)$, u is a nonnegative renormalized supersolution of (2.1) and set $\mu:=-\Delta_{p} u+f$. Then there holds

$$
u(x)+\|f\|_{\mathcal{M}^{\frac{N}{p-\varepsilon}}(\Omega)}^{\frac{1}{p-1}} \geq C \mathbf{W}_{1, p}^{\frac{r}{4}}[\mu](x) \quad \forall x \in \Omega \text { s.t. } B_{r}(x) \subset \Omega
$$

for some C depending only on $N, p, \varepsilon, \operatorname{diam}(\Omega)$.
Concerning renormalized solutions (see [3] for the definition) of

$$
\begin{equation*}
-\Delta_{p} u+f=\mu \quad \text { in } \Omega \tag{2.2}
\end{equation*}
$$

where $f \in L^{1}(\Omega)$ and $\mu \in \mathfrak{M}_{+}^{b}(\Omega)$, we have
Corollary 2.6 Let $f \in \mathcal{M}^{\frac{N}{p-\epsilon}}(\Omega)$ and $\mu \in \mathfrak{M}_{+}^{b}(\Omega)$. If u is a renormalized solution to (2.2) and $\inf _{\Omega} u>-\infty$ then there exists a positive constant C depending only on N, p, ε, diam (Ω) such that

$$
u(x)+\|f\|_{\mathcal{M}^{\frac{N}{p-\varepsilon}}(\Omega)}^{\frac{1}{p-1}} \geq \inf _{\Omega} u+C \mathbf{W}_{1, p}^{\frac{d(x, \partial \Omega)}{4}}[\mu](x) \quad \forall x \in \Omega
$$

The next result, proved in $[2$, Theorem 1.1, 1.2], is an important tool for the proof of Theorems 1 and 2. Before presenting we introduce the notation.

Definition 2.7 Let $s>1$ and $\alpha>0$. We denote by $C_{\alpha, s}(E)$ the Bessel capacity of Borel set $E \subset \mathbb{R}^{N}$,

$$
C_{\alpha, s}(E)=\inf \left\{\|\phi\|_{L^{s}\left(\mathbb{R}^{N}\right)}^{s}: \phi \in L_{+}^{s}\left(\mathbb{R}^{N}\right), \quad G_{\alpha} * \phi \geq \chi_{E}\right\}
$$

where χ_{E} is the characteristic function of E and G_{α} the Bessel kernel of order α.
We say that a measure μ in Ω is absolutely continuous with respect to the capacity $C_{\alpha, s}$ in Ω if

$$
\text { for all } E \subset \Omega, E \text { Borel, } C_{\alpha, s}(E)=0 \Rightarrow|\mu|(E)=0
$$

Theorem 2.8 Let $\mu \in \mathfrak{M}_{+}^{b}(\Omega)$ and $q>p-1$.
a. If μ is absolutely continuous with respect to the capacity $C_{p, \frac{q}{q+1-p}}$ in Ω, then there exists a nonnegative renormalized solution u to equation

$$
\begin{aligned}
-\Delta_{p} u+u^{q}=\mu & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{aligned}
$$

which satisfies

$$
\begin{equation*}
u(x) \leq C \mathbf{W}_{1, p}^{2 \operatorname{diam}(\Omega)}[\mu](x) \quad \forall x \in \Omega \tag{2.3}
\end{equation*}
$$

where C is a positive constant depending on p and N.
b. If $\exp \left(C \mathbf{W}_{1, p}^{2 \operatorname{diam}(\Omega)}[\mu]\right) \in L^{1}(\Omega)$ where C is the previous constant, then there exists a nonnegative renormalized solution u to equation

$$
\begin{aligned}
&-\Delta_{p} u+e^{u}-1=\mu \\
& u=0 \text { in } \Omega, \\
& \text { on } \partial \Omega,
\end{aligned}
$$

which satisfies (2.3).

3 Estimates from below

If G is any domain in \mathbb{R}^{N} with a compact boundary and g is nondecreasing, $g(0)=g^{-1}(0)=0$ and satisfies (1.7)) there always exists a maximal solution to (1.6) in G. It is constructed as the limit, when $n \rightarrow \infty$, of the solutions of

$$
\begin{align*}
-\Delta_{p} u_{n}+g\left(u_{n}\right) & =0 & & \text { in } G_{n} \\
\lim _{\rho_{n}(x) \rightarrow 0} u_{n}(x) & =\infty & & \tag{3.1}\\
\lim _{|x| \rightarrow \infty} u_{n}(x) & =0 & & \text { if } G_{n} \text { is unbounded }
\end{align*}
$$

where $\left\{G_{n}\right\}_{n}$ is a sequence of smooth domains such that $G_{n} \subset \bar{G}_{n} \subset G_{n+1}$ for all $n,\left\{\partial G_{n}\right\}_{n}$ is a bounded and $\bigcup_{n=1}^{\infty} G_{n}=G$ and $\rho_{n}(x):=\operatorname{dist}\left(x, \partial G_{n}\right)$. Our main estimates are the following.

Theorem 3.1 Let $K \subset B_{1 / 4} \backslash\{0\}$ be a compact set and let $U_{j} \in C^{1}\left(K^{c}\right), j=1,2$, be the maximal solutions of

$$
\begin{equation*}
-\Delta_{p} u+e^{u}-1=0 \quad \text { in } K^{c} \tag{3.2}
\end{equation*}
$$

for U_{1} and

$$
\begin{equation*}
-\Delta_{p} u+u^{q}=0 \quad \text { in } K^{c} \tag{3.3}
\end{equation*}
$$

for U_{2}, where $p-1<q<\frac{p q_{1}}{N}$. Then there exist constants $C_{k}, k=1,2,3,4$, depending on N, p and q such that

$$
\begin{equation*}
U_{1}(0) \geq-C_{1}+C_{2} \int_{0}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2}(0) \geq-C_{3}+C_{4} \int_{0}^{1}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \tag{3.5}
\end{equation*}
$$

Proof. 1. For $j \in \mathbb{Z}$ define $r_{j}=2^{-j}$ and $S_{j}=\left\{x: r_{j} \leq|x| \leq r_{j-1}\right\}, B_{j}=B_{r_{j}}$. Fix a positive integer J such that $K \subset\left\{x: r_{J} \leq|x|<1 / 8\right\}$. Consider the sets $K \cap S_{j}$ for $j=3, \ldots, J$. By [18, Theorem 3.4.27], there exists $\mu_{j} \in \mathfrak{M}^{+}\left(\mathbb{R}^{N}\right)$ such that $\operatorname{supp}\left(\mu_{j}\right) \subset K \cap S_{j}$, $\left\|\mathbf{M}_{p, 1}\left[\mu_{j}\right]\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq 1$ and

$$
c_{1}^{-1} \mathcal{H}_{1}^{N-p}\left(K \cap S_{j}\right) \leq \mu_{j}\left(\mathbb{R}^{N}\right) \leq c_{1} \mathcal{H}_{1}^{N-p}\left(K \cap S_{j}\right) \quad \forall j,
$$

for some $c_{1}=c_{1}(N, p)$.
Now, we will show that for $\varepsilon=\varepsilon(N, p)>0$ small enough, there holds,

$$
\begin{equation*}
A:=\int_{B_{1}} \exp \left(\varepsilon \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right](x)\right) d x \leq c_{2} \tag{3.6}
\end{equation*}
$$

where c_{2} does not depend on J.
Indeed, define $\mu_{j} \equiv 0$ for all $j \geq J+1$ and $j \leq 2$. We have

$$
A=\sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(\varepsilon \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right](x)\right) d x
$$

Since for any j

$$
\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right] \leq c(p) \mathbf{W}_{1, p}^{1}\left[\sum_{k \geq j+2} \mu_{k}\right]+c(p) \mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right]+c(p) \sum_{k=\max \{j-1,3\}}^{j+1} \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right]
$$

with $c(p)=\max \left\{1,5^{\frac{2-p}{p-1}}\right\}$ and $\exp \left(\sum_{i=1}^{5} a_{i}\right) \leq \sum_{i=1}^{5} \exp \left(5 a_{i}\right)$ for all a_{i}. Thus,

$$
\begin{aligned}
A & \leq \sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{3} \varepsilon \mathbf{W}_{1, p}^{1}\left[\sum_{k \geq j+2} \mu_{k}\right](x)\right) d x+\sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{3} \varepsilon \mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right](x)\right) d x \\
& +\sum_{j=1}^{\infty} \sum_{k=\max (j-1,3)}^{j+1} \int_{S_{j}} \exp \left(c_{3} \varepsilon \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right) d x:=A_{1}+A_{2}+A_{3}, \text { with } c_{3}=5 c(p)
\end{aligned}
$$

Estimate of A_{3} : We apply Theorem 2.3 for $\mu=\mu_{k}$ and $B=B_{k-1}$,

$$
\int_{2 B_{k-1}} \exp \left(c_{3} \varepsilon \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right) d x \leq c_{4} r_{k-1}^{N}
$$

with $c_{3} \varepsilon \in\left(0, C_{1}\right]$, the constant C_{1} is in Theorem 2.3. In particular,

$$
\int_{S_{j}} \exp \left(c_{3} \varepsilon \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right) d x \leq c_{4} r_{k-1}^{N} \text { for } k=j-1, j, j+1
$$

which implies

$$
\begin{equation*}
A_{3} \leq c_{5} \sum_{j=1}^{+\infty} r_{j}^{N}=c_{5}<\infty . \tag{3.7}
\end{equation*}
$$

Estimate of A_{1} : Since $\sum_{k \geq j+2} \mu_{k}\left(B_{t}(x)\right)=0$ for all $x \in S_{j}, t \in\left(0, r_{j+1}\right)$. Thus,

$$
\begin{aligned}
A_{1} & =\sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{3} \varepsilon \int_{r_{j+1}}^{1}\left(\frac{\sum_{k \geq j+2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}\right) d x \\
& \leq \sum_{j=1}^{\infty} \exp \left(c_{3} \varepsilon \frac{p-1}{N-p}\left(\sum_{k \geq j+2} \mu_{k}\left(S_{k}\right)\right)^{\frac{1}{p-1}} r_{j+1}^{-\frac{N-p}{p-1}}\right)\left|S_{j}\right| .
\end{aligned}
$$

Note that $\mu_{k}\left(S_{k}\right) \leq \mu_{k}\left(B_{r_{k-1}}(0)\right) \leq r_{k-1}^{N-p}$, which leads to

$$
\left(\sum_{k \geq j+2} \mu_{k}\left(S_{k}\right)\right)^{\frac{1}{p-1}} r_{j+1}^{-\frac{N-p}{p-1}} \leq\left(\sum_{k \geq j+2} r_{k-1}^{N-p}\right)^{\frac{1}{p-1}} r_{j+1}^{-\frac{N-p}{p-1}}=\left(\sum_{k \geq 0} r_{k}^{N-p}\right)^{\frac{1}{p-1}}=\left(\frac{1}{1-2^{-(N-p)}}\right)^{\frac{1}{p-1}}
$$

Therefore

$$
\begin{equation*}
A_{1} \leq \exp \left(c_{3} \varepsilon \frac{p-1}{N-p}\left(\frac{1}{1-2^{-(N-p)}}\right)^{\frac{1}{p-1}}\right)\left|B_{1}\right|=c_{6} \tag{3.8}
\end{equation*}
$$

Estimate of A_{2} : for $x \in S_{j}$,

$$
\mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right](x)=\int_{r_{j-1}}^{1}\left(\frac{\sum_{k \leq j-2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}=\sum_{i=1}^{j-1} \int_{r_{i}}^{r_{i-1}}\left(\frac{\sum_{k \leq j-2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}
$$

Since $r_{i}<t<r_{i-1}, \sum_{k \leq i-2} \mu_{k}\left(B_{t}(x)\right)=0, \forall i=1, \ldots, j-1$, thus

$$
\begin{aligned}
\mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right](x) & =\sum_{i=1}^{j-1} \int_{r_{i}}^{r_{i-1}}\left(\frac{\sum_{k=i-1}^{j-2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \leq \sum_{i=1}^{j-1} \int_{r_{i}}^{r_{i-1}}\left(\frac{\sum_{k=i-1}^{j-2} \mu_{k}\left(S_{k}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \\
& \leq \sum_{i=1}^{j-1}\left(\sum_{k=i-1}^{j-2} r_{k-1}^{N-p}\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} \leq c_{7} j, \text { with } c_{7}=\left(\frac{4^{N-p}}{1-2^{-(N-p)}}\right)^{\frac{1}{p-1}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
A_{2} & \leq \sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{3} c_{7} \varepsilon j\right) d x=\sum_{j=1}^{\infty} r_{j}^{N} \exp \left(c_{3} c_{7} \varepsilon j\right)\left|S_{1}\right| \\
& =\sum_{j=1}^{\infty} \exp \left(\left(c_{3} c_{7} \varepsilon-N \log (2)\right) j\right)\left|S_{1}\right| \leq c_{8} \quad \text { for } \quad \varepsilon \leq N \log (2) /\left(2 c_{3} c_{7}\right) \tag{3.9}
\end{align*}
$$

Consequently, from (3.8), (3.9) and (3.7), we obtain $A \leq c_{2}:=c_{6}+c_{8}+c_{5}$ for $\varepsilon=\varepsilon(N, p)$ small enough. This implies

$$
\begin{equation*}
\left\|\exp \left(\frac{p}{2 N} \varepsilon \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right]\right)\right\|_{\mathcal{M}^{\frac{2 N}{p}\left(B_{1}\right)}} \leq c_{9}\left(\int_{B_{1}} \exp \left(\varepsilon \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right](x)\right) d x\right)^{\frac{p}{2 N}} \leq c_{10} \tag{3.10}
\end{equation*}
$$

where the constant c_{10} does not depend on J. Set $B=B_{\frac{1}{4}}$. For $\varepsilon_{0}=\left(\frac{p \varepsilon}{2 N C}\right)^{1 /(p-1)}$, where C is the constant in (2.3), by Theorem 2.8 and estimate (3.10), there exists a nonnegative renormalized solution u to equation

$$
\begin{aligned}
-\Delta_{p} u+e^{u}-1 & =\varepsilon_{0} \sum_{j=3}^{J} \mu_{j} & & \text { in } B, \\
u & =0 & & \text { in } \partial B,
\end{aligned}
$$

satisfying (2.3) with $\mu=\varepsilon_{0} \sum_{j=3}^{J} \mu_{j}$. Thus, from Corollary 2.6 and estimate (3.10), we have

$$
u(0) \geq-c_{11}+c_{12} \mathbf{W}_{1, p}^{\frac{1}{4}}\left[\sum_{j=3}^{J} \mu_{j}\right](0)
$$

Therefore

$$
\begin{aligned}
u(0) & \geq-c_{11}+c_{12} \sum_{i=2}^{\infty} \int_{r_{i+1}}^{r_{i}}\left(\frac{\sum_{j=3}^{J} \mu_{j}\left(B_{t}(0)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \geq-c_{11}+c_{12} \sum_{i=2}^{J-2} \int_{r_{i+1}}^{r_{i}}\left(\frac{\mu_{i+2}\left(B_{t}(0)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \\
& =-c_{11}+c_{12} \sum_{i=2}^{J-2} \int_{r_{i+1}}^{r_{i}}\left(\frac{\mu_{i+2}\left(S_{i+2}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \geq-c_{11}+c_{13} \sum_{i=2}^{J-2}\left(\mathcal{H}_{1}^{N-p}\left(K \cap S_{i+2}\right)\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} \\
& =-c_{11}+c_{13} \sum_{i=4}^{\infty}\left(\mathcal{H}_{1}^{N-p}\left(K \cap S_{i}\right)\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} .
\end{aligned}
$$

From the inequality

$$
\left(\mathcal{H}_{1}^{N-p}\left(K \cap S_{i}\right)\right)^{\frac{1}{p-1}} \geq \frac{1}{\max \left(1,2^{\frac{2-p}{p-1}}\right)}\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i-1}\right)\right)^{\frac{1}{p-1}}-\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i}\right)\right)^{\frac{1}{p-1}} \quad \forall i
$$

we deduce that

$$
\begin{aligned}
u(0) & \geq-c_{11}+c_{13} \sum_{i=4}^{\infty}\left(\frac{1}{\max \left(1,2^{\frac{2-p}{p-1}}\right)}\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i-1}\right)\right)^{\frac{1}{p-1}}-\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i}\right)\right)^{\frac{1}{p-1}}\right) r_{i}^{-\frac{N-p}{p-1}} \\
& \geq-c_{11}+c_{13}\left(\frac{2^{\frac{N-p}{p-1}}}{\max \left(1,2^{\frac{2-p}{p-1}}\right)}-1\right) \sum_{i=4}^{\infty}\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i}\right)\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} \\
& \geq-c_{14}+c_{15} \int_{0}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{t}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} .
\end{aligned}
$$

Since U_{1} is the maximal solution in K^{c}, u satisfies the same equation in $B \backslash K$ and $U_{1} \geq u=0$ on ∂B, it follows that U_{1} dominates u in $B \backslash K$. Then $U_{1}(0) \geq u(0)$ and we obtain (3.4). 2. By [1, Theorem 2.5.3], there exists $\mu_{j} \in \mathfrak{M}^{+}\left(\mathbb{R}^{N}\right)$ such that $\operatorname{supp}\left(\mu_{j}\right) \subset K \cap S_{j}$ and

$$
\mu_{j}\left(K \cap S_{j}\right)=\int_{\mathbb{R}^{N}}\left(G_{p}\left[\mu_{j}\right](x)\right)^{\frac{q_{1}}{p-1}} d x=C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap S_{j}\right)
$$

By Jensen's inequality, we have for any $a_{k} \geq 0$,

$$
\left(\sum_{k=0}^{\infty} a_{k}\right)^{s} \leq \sum_{k=0}^{\infty} \theta_{k, s} a_{k}^{s}
$$

where $\theta_{k, r}$ has the following expression with $\theta>0$,

$$
\theta_{k, s}= \begin{cases}1 & \text { if } s \in(0,1] \\ \left(\frac{\theta+1}{\theta}\right)^{s-1}(\theta+1)^{k(s-1)} & \text { if } s>1\end{cases}
$$

Thus,

$$
\begin{aligned}
\int_{B_{1}}\left(\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right](x)\right)^{q_{1}} d x & \leq \int_{B_{1}}\left(\sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}} \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right)^{q_{1}} d x \\
& \leq \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} \int_{B_{1}}\left(\mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right)^{q_{1}} d x \\
& \leq c_{16} \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} \int_{\mathbb{R}^{N}}\left(G_{p} * \mu_{k}(x)\right)^{\frac{q_{1}}{p-1}} d x \\
& =c_{16} \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap S_{k}\right) \\
& \left.\leq c_{17} \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} 2^{-k\left(N-\frac{p q_{1}}{q_{1}-p+1}\right.}\right) \\
& \leq c_{18}
\end{aligned}
$$

for θ small enough. Here the third inequality follows from [2, Theorem 2.3] and the constant c_{18} does not depend on J. Hence,

$$
\begin{equation*}
\left\|\left(\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right]\right)^{q}\right\|_{\mathcal{M}^{\frac{q_{1}}{q}}\left(B_{1}\right)} \leq c_{19}\left\|\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right]\right\|_{L^{q_{1}}\left(B_{1}\right)}^{q} \leq c_{20} \tag{3.11}
\end{equation*}
$$

where c_{20} is independent of J. Take $B=B_{\frac{1}{4}}$. Since $\sum_{j=3}^{J} \mu_{j}$ is absolutely continuous with respect to the capacity $C_{p, \frac{q}{q+1-p}}$ malized solution u to equation

$$
\begin{aligned}
-\Delta_{p} u+u^{q} & =\sum_{j=3}^{J} \mu_{j} & & \text { in } B, \\
u & =0 & & \text { on } \partial B .
\end{aligned}
$$

satisfying (2.3) with $\mu=\sum_{j=3}^{J} \mu_{j}$. Thus, from Corollary 2.6 and estimate (3.11), we have

$$
u(0) \geq-c_{21}+c_{22} \mathbf{W}_{1, p}^{\frac{1}{4}}\left[\sum_{j=3}^{J} \mu_{j}\right](0)
$$

As above, we also get that

$$
u(0) \geq-c_{23}+c_{24} \int_{0}^{1}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} .
$$

After we also have $U_{2}(0) \geq u(0)$. Therefore, we obtain(3.5).

4 Proof of the main results

First, we prove theorem 1 in the case case $p=N$. To do this we consider the function

$$
x \mapsto U(x)=U(|x|)=\log \left(\frac{N-1}{2^{N+1}} \frac{1}{R^{N}}\left(\frac{R}{|x|}+1\right)\right) \quad \text { in } \quad B_{R}(0) \backslash\{0\} .
$$

One has

$$
U^{\prime}(|x|)=\frac{1}{R+|x|}-\frac{1}{|x|} \quad \text { and } \quad U^{\prime \prime}(|x|)=-\frac{1}{(R+|x|)^{2}}+\frac{1}{|x|^{2}}
$$

thus, for any $0<|x|<R$,

$$
\begin{aligned}
-\Delta_{N} U+e^{U}-1 & =-(N-1)\left|U^{\prime}(|x|)\right|^{N-2}\left(U^{\prime \prime}(|x|)+\frac{1}{|x|} U^{\prime}(|x|)\right)+e^{U}-1 \\
& =-\frac{(N-1) R^{N-1}}{(R+|x|)^{N}|x|^{N-1}}+\frac{N-1}{2^{N+1}} \frac{1}{R^{N}}\left(\frac{R}{|x|}+1\right)-1 \\
& \leq-\frac{(N-1) R^{N-1}}{(2 R)^{N}|x|^{N-1}}+\frac{N-1}{2^{N+1}} \frac{1}{R^{N}} \frac{2 R}{|x|} \\
& \leq-1
\end{aligned}
$$

Hence, if $u \in C^{1}(\Omega)$ is the maximal solution of

$$
-\Delta_{N} u+e^{u}-1=0 \text { in } \Omega
$$

and $R=2 \operatorname{diam}(\Omega)$, then $u(x) \geq U(|x-y|)$ for any $x \in \Omega$ and $y \in \partial \Omega$. Therefore, u is a large solution and satisfies

$$
u(x) \geq \log \left(\frac{N-1}{2^{N+1}} \frac{1}{R^{N}}\left(\frac{R}{\rho(x)}+1\right)\right) \quad \forall x \in \Omega .
$$

Now, we prove Theorem 1 in the case $p<N$ and Theorem 2. Let $u, v \in C^{1}(\Omega)$ be the maximal solutions of

$$
\begin{array}{lll}
(i) & -\Delta_{p} u+e^{u}-1=0 & \text { in } \Omega, \\
(i i) & -\Delta_{p} v+v^{q}=0 & \text { in } \Omega .
\end{array}
$$

Fix $x_{0} \in \partial \Omega$. We can assume that $x_{0}=0$. Let $\delta \in(0,1 / 12)$. For $z_{0} \in \bar{B}_{\delta} \cap \Omega$. Set $K=\Omega^{c} \cap \overline{B_{1 / 4}\left(z_{0}\right)}$. Let $U_{1}, U_{2} \in C^{1}\left(K^{c}\right)$ be the maximal solutions of (3.2) and (3.3) respectively. We have $u \geq U_{1}$ and $v \geq U_{2}$ in Ω. By Theorem 3.1,

$$
\begin{aligned}
U_{1}\left(z_{0}\right) & \geq-c_{1}+c_{2} \int_{\delta}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\left(z_{0}\right)\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \\
& \left.\geq-c_{1}+c_{2} \int_{\delta}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r-\left|z_{0}\right|}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \quad\left(\text { since } B_{r-\left|z_{0}\right|} \subset B_{r}\left(z_{0}\right)\right)\right) \\
& \geq-c_{1}+c_{2} \int_{2 \delta}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{\frac{r}{2}}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \\
& \geq-c_{1}+c_{3} \int_{\delta}^{1 / 2}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} .
\end{aligned}
$$

We deduce

$$
\inf _{B_{\delta} \cap \Omega} u \geq \inf _{B_{\delta} \cap \Omega} U_{1} \geq-c_{1}+c_{3} \int_{\delta}^{1 / 2}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \rightarrow \infty \quad \text { as } \delta \rightarrow 0
$$

Similarly, we also obtain

$$
\inf _{B_{\delta} \cap \Omega} v \geq-c_{4}+c_{5} \int_{\delta}^{1 / 2}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap B_{r}\right)}{r^{N-2}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \rightarrow \infty \quad \text { as } \delta \rightarrow 0
$$

Therefore, u and v satisfy (1.10) and (1.12) respectively. This completes the proof.

5 Large solutions of quasilinear Hamilton-Jacobi equations

Let Ω be a bounded open subset of \mathbb{R}^{N} with $N \geq 2$. In this section we use our previous results to give sufficient conditions for existence of solutions to the problem

$$
\begin{align*}
-\Delta_{p} u+a|\nabla u|^{q}+b u^{s} & =0 \quad \text { in } \Omega, \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty, \tag{5.1}
\end{align*}
$$

where $a>0, b>0$ and $1 \leq q<p \leq 2, q>p-1, s \geq p-1$.
First we have the result of existence solutions to equation (5.1).
Proposition 5.1 Let $a>0, b>0$ and $q>p-1, s \geq p-1,1 \leq q \leq p$ and $1<p \leq 2$. There exists a maximal nonnegative solution $u \in C^{1}(\Omega)$ to equation

$$
\begin{equation*}
-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0 \quad \text { in } \Omega \tag{5.2}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
u(x) \leq c(N, p, s) b^{-\frac{1}{s-p+1}} d(x, \partial \Omega)^{-\frac{p}{s-p+1}} \quad \forall x \in \Omega \tag{5.3}
\end{equation*}
$$

if $s>p-1$,

$$
\begin{equation*}
u(x) \leq c(N, p, q)\left(a^{-\frac{1}{q-p+1}} d(x, \partial \Omega)^{-\frac{p-q}{q-p+1}}+a^{-\frac{1}{q-p+1}} b^{-\frac{1}{p-1}} d(x, \partial \Omega)^{-\frac{q}{(p-1)(q-p+1)}}\right) \quad \forall x \in \Omega \tag{5.4}
\end{equation*}
$$

if $p-1<q<p$ and $s=p-1$, and

$$
\begin{equation*}
u(x) \leq c(N, p) a^{-1} b^{-\frac{1}{p-1}} d(x, \partial \Omega)^{-\frac{p}{p-1}} \quad \forall x \in \Omega \tag{5.5}
\end{equation*}
$$

if $q=p$ and $s=p-1$.
Proof. Case $s=p-1$ and $p-1<q<p$. We consider

$$
U_{1}(x)=U_{1}(|x|)=c_{1}\left(\frac{R^{p^{\prime}}-|x|^{p^{\prime}}}{p^{\prime} R^{p^{\prime}-1}}\right)^{-\frac{p-q}{q-p+1}}+c_{2} \in C^{1}\left(B_{R}(0)\right)
$$

with $p^{\prime}=\frac{p}{p-1}$ and $c_{1}, c_{2}>0$. We have

$$
\begin{aligned}
U_{1}^{\prime}(|x|)= & \frac{c_{1}(p-q)}{q-p+1} \frac{|x|^{p^{\prime}-1}}{R^{p^{\prime}-1}}\left(\frac{R^{p^{\prime}}-|x|^{p^{\prime}}}{p^{\prime} R^{p^{\prime}-1}}\right)^{-\frac{1}{q-p+1}} \\
U_{1}^{\prime \prime}(|x|)= & \frac{c_{1}(p-q)\left(p^{\prime}-1\right)}{q-p+1} \frac{|x|^{p^{\prime}-2}}{R^{p^{\prime}-1}}\left(\frac{R^{p^{\prime}}-|x|^{p^{\prime}}}{p^{\prime} R^{p^{\prime}-1}}\right)^{-\frac{1}{q-p+1}} \\
& \quad+\frac{c_{1}(p-q)}{(q-p+1)^{2}}\left(\frac{|x|^{p^{\prime}-1}}{R^{p^{\prime}-1}}\right)^{2}\left(\frac{R^{p^{\prime}}-|x|^{p^{\prime}}}{p^{\prime} R^{p^{\prime}-1}}\right)^{-\frac{1}{q-p+1}-1}
\end{aligned}
$$

and

$$
A=-\Delta_{p} U_{1}+a\left|\nabla U_{1}\right|^{q}+b U_{1}^{p-1} \geq-\Delta_{p} U_{1}+a\left|\nabla U_{1}\right|^{q}+b c_{2}^{p-1}
$$

Thus, for all $x \in B_{R}(0)$

$$
\begin{aligned}
A \geq & -(p-1)\left|U_{1}^{\prime}(|x|)\right|^{p-2} U_{1}^{\prime \prime}(|x|)-\frac{N-1}{|x|}\left|U_{1}^{\prime}(|x|)\right|^{p-2} U_{1}^{\prime}(|x|)+a\left|U_{1}^{\prime}(|x|)\right|^{q}+b c_{1}^{p-1} \\
= & \left(\frac{c_{1}(p-q)\left(p^{\prime}-1\right)}{q-p+1}\right)^{p-1}\left(\frac{R^{p^{\prime}}-|x|^{p^{\prime}}}{p^{\prime} R^{p^{\prime}-1}}\right)^{-\frac{q}{q-p+1}}\left\{-(p-1) \frac{p^{\prime}-1}{p^{\prime}}\left(1-\left(\frac{|x|}{R}\right)^{p^{\prime}}\right)\right. \\
& \quad-\frac{1}{q-p+1}\left(\frac{|x|}{R}\right)^{p^{\prime}}-\frac{N-1}{p^{\prime}}\left(\frac{|x|}{R}\right)^{p^{\prime}}\left(1-\left(\frac{|x|}{R}\right)^{p^{\prime}}\right) \\
& \left.\quad+a\left(\frac{c_{1}(p-q)}{q-p+1}\right)^{q-p+1}\left(\frac{|x|}{R}\right)^{\frac{q}{q-p+1}}\right\}+b c_{2}^{p-1} \\
\geq & \left(\frac{c_{1}(p-q)\left(p^{\prime}-1\right)}{q-p+1}\right)^{p-1}\left(\frac{R^{p^{\prime}}-|x|^{p^{\prime}}}{p^{\prime} R^{p^{\prime}-1}}\right)^{-\frac{q}{q-p+1}} \\
& \times\left\{-\frac{N(p-1)}{p}-\frac{1}{q-p+1}+a\left(\frac{c_{1}(p-q)}{q-p+1}\right)^{q-p+1}\left(\frac{|x|}{R}\right)^{\frac{q}{q-p+1}}\right\}+b c_{2}^{p-1} .
\end{aligned}
$$

Clearly, one can find $c_{1}=c_{2}(N, p, q) a^{-\frac{1}{q-p+1}}>0$ and $c_{3}=c_{3}(N, p, q)>0$ such that

$$
A \geq-c_{3} a^{-\frac{p-1}{q-p+1}} R^{-\frac{q}{q-p+1}}+b c_{2}^{p-1}
$$

Choosing $c_{2}=c_{3}^{\frac{1}{p-1}} a^{-\frac{1}{q-p+1}} b^{-\frac{1}{p-1}} R^{-\frac{q}{(p-1)(q-p+1)}}$, we get

$$
\begin{equation*}
-\Delta_{p} U_{1}+a\left|\nabla U_{1}\right|^{q}+b U_{1}^{p-1} \geq 0 \text { in } B_{R}(0) \tag{5.6}
\end{equation*}
$$

Likewise, we can verify that the function U_{2} below

$$
U_{2}(x)=c_{4} a^{-1} \log \left(\frac{R^{p^{\prime}}}{R^{p^{\prime}}-|x|^{p^{\prime}}}\right)+c_{4} a^{-1} b^{-\frac{1}{p-1}} R^{-\frac{p}{p-1}}
$$

belongs to $C_{+}^{1}\left(B_{R}(0)\right)$ and satisfies

$$
\begin{equation*}
-\Delta_{p} U_{2}+a\left|\nabla U_{2}\right|^{p}+b U_{2}^{p-1} \geq 0 \text { in } B_{R}(0) \tag{5.7}
\end{equation*}
$$

While, if $s>p-1$,

$$
U_{3}(x)=c_{5} b^{-\frac{1}{s-p+1}}\left(\frac{R^{\beta}-|x|^{\beta}}{\beta R^{\beta-1}}\right)^{-\frac{p}{s-p+1}}
$$

belongs to $C^{1}\left(B_{R}(0)\right)$ and verifies

$$
\begin{equation*}
-\Delta_{p} U_{3}+b U_{3}^{s} \geq 0 \text { in } B_{R}(0) \tag{5.8}
\end{equation*}
$$

for some positive constants $c_{4}=c_{4}(N, p, q), c_{5}=c_{5}(N, p, s)$ and $\beta=\beta(N, p, q)>1$.
We emphasize the fact that with the condition $1<p \leq 2$ and $q \geq 1$, equation (5.2) satisfies a comparison principle, see [17, Theorem 3.5.1, corollary 3.5.2]. Take a sequence of smooth domains Ω_{n} satisfying $\Omega_{n} \subset \bar{\Omega}_{n} \subset \Omega_{n+1}$ for all n and $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega$. For each $n, k \in \mathbb{N}^{*}$, there exist nonnegative solution $u_{n, k}=u \in W_{k}^{1, p}\left(\Omega_{n}\right):=W_{0}^{1, p}\left(\Omega_{n}\right)+k$ of equation (5.2) in Ω_{n}.
Since $-\Delta_{p} u_{k, n} \leq 0$ in Ω_{n}, so using the maximum principle we get $u_{n, k} \leq k$ in Ω_{n} for all n. Thus, by standard regularity (see [4] and [11]), $u_{n, k} \in C^{1, \alpha}\left(\overline{\Omega_{n}}\right)$ for some $\bar{\alpha} \in(0,1)$. It follows from the comparison principle and (5.6)-(5.8), that

$$
u_{n, k} \leq u_{n, k+1} \quad \text { in } \Omega_{n}
$$

and (5.3)-(5.5) are satisfied with $u_{n, k}$ and Ω_{n} in place of u and Ω respectively. From this, we derive uniform local bounds for $\left\{u_{n, k}\right\}_{k}$, and by standard interior regularity (see [4]) we obtain uniform local bounds for $\left\{u_{n, k}\right\}_{k}$ in $C_{l o c}^{1, \eta}\left(\Omega_{n}\right)$. It implies that the sequence $\left\{u_{n, k}\right\}_{k}$ is pre-compact in C^{1}. Therefore, up to a subsequence, $u_{n, k} \rightarrow u_{n}$ in $C^{1}\left(\Omega_{n}\right)$. Hence, we can verify that u_{n} is a solution of (5.2) and satisfies (5.3)-(5.5) with u_{n} and Ω_{n} replacing u and Ω and $u_{n}(x) \rightarrow \infty$ as $d\left(x, \Omega_{n}\right) \rightarrow 0$.
Next, since $u_{n, k} \geq u_{n+1, k}$ in Ω_{n} there holds $u_{n} \geq u_{n+1}$ in Ω_{n}. In particular, $\left\{u_{n}\right\}$ is uniformly locally bounded in Ω. Arguing as above, we obtain $u_{n} \rightarrow u$ in $C^{1}(\Omega)$, thus u is a solution of (5.2) in Ω and satisfies (5.3)-(5.5). Clearly, u is the maximal solution of (5.2).

Theorem 5.2 Let $q_{1}>p-1$ and $1<p \leq 2$. Assume that equation (1.12) admits a solution with $q=q_{1}$. Then for any $a>0, b>0$ and $q \in\left(p-1, \frac{p q_{1}}{q_{1}+1}\right), s \in\left[p-1, q_{1}\right)$ equation (5.2) has a large solution satisfying (5.3) and (5.4).

Proof. Assume that equation (1.12) admits a solution v with $q=q_{1}$ and set $v=\beta w^{\sigma}$ with $\beta>0, \sigma \in(0,1)$, then $w>0$ and

$$
-\Delta_{p} w+(-\sigma+1)(p-1) \frac{|\nabla w|^{p}}{w}+\beta^{q_{1}-p+1} \sigma^{-p+1} w^{\sigma\left(q_{1}-p+1\right)+p-1}=0 \text { in } \Omega .
$$

If we impose $\max \left\{\frac{s-p+1}{q_{1}-p+1},\left(\frac{q}{p-q}-p+1\right) \frac{1}{q_{1}-p+1}\right\}<\sigma<1$, we can see that

$$
(-\sigma+1)(p-1) \frac{|\nabla w|^{p}}{w}+\beta^{q_{1}-p+1} \sigma^{-p+1} w^{\sigma\left(q_{1}-p+1\right)+p-1} \geq a|\nabla w|^{q}+b w^{s} \quad \text { in } \quad\{x: w(x) \geq M\}
$$

where a positive constant M depends on p, q_{1}, q, s, a, b. Therefore

$$
-\Delta_{p} w+a|\nabla w|^{q}+b w^{s} \leq 0 \quad \text { in } \quad\{x: w(x) \geq M\}
$$

Now we take an open subset Ω^{\prime} of Ω with $\overline{\Omega^{\prime}} \subset \Omega$ such that the set $\{x: w(x) \geq M\}$ contains $\Omega \backslash \overline{\Omega^{\prime}}$. So w is a subsolution of $-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0$ in $\Omega \backslash \overline{\Omega^{\prime}}$ and the same property holds with $w_{\varepsilon}:=\varepsilon w$ for any $\varepsilon \in(0,1)$. Let u be as in Proposition 5.1. Set $\min \left\{u(x): x \in \partial \Omega^{\prime}\right\}=\theta_{1}>0$ and $\max \left\{w(x): x \in \partial \Omega^{\prime}\right\}=\theta_{2} \geq M$. Thus $w_{\varepsilon}<u$ on $\partial \Omega^{\prime}$ with $\varepsilon<\min \left\{\frac{\theta_{1}}{\theta_{2}}, 1\right\}$. Hence, from the construction of u in the proof of Proposition 5.1 and the comparison principle, we obtain $w_{\varepsilon} \leq u$ in $\Omega \backslash \overline{\Omega^{\prime}}$. This implies the result.

Remark 5.3 From the proof of above Theorem, we can show that under the assumption as in Proposition 5.1, equation (5.2) has a large solution in Ω if and only if equation (5.2) has a large solution in $\Omega \backslash K$ for some a compact set $K \subset \Omega$ with smooth boundary.

Now we deal with (5.1) in the case $q=p$.
Theorem 5.4 Assume that equation (5.2) has a large solution in Ω for some $a, b>0, s>p-1$ and $q=p>1$. Then for any $a_{1}, b_{1}>0$ and $q_{1}>p-1, s_{1} \geq p-1,1 \leq q_{1} \leq p \leq 2$, equation (5.2) also has a large solution u in Ω with parameters $a_{1}, b_{1}, q_{1}, s_{1}$ in place of a, b, q, s respectively, and it satisfies (5.3)-(5.5).

Proof. For $\sigma>0$ we set $u=v^{\sigma}$ thus

$$
-\Delta_{p} v-(\sigma-1)(p-1) \frac{|\nabla v|^{p}}{v}+a \sigma v^{\sigma-1}|\nabla v|^{p}+b \sigma^{-p+1} v^{(s-p+1) \sigma+p-1}=0
$$

Choose $\sigma=\frac{s_{1}-p+1}{s-p+1}+2$, it is easy to see that

$$
-\Delta_{p} v+a_{1}|\nabla v|^{q_{1}}+b_{2} v^{s_{1}} \leq 0 \text { in }\{x: v(x) \geq M\}
$$

for some a positive constant M only depending on $p, s, a, b, a_{1}, b_{1}, q_{1}, s_{1}$. Similarly as in the proof of Theorem 5.2, we get the result as desired.
Remark 5.5 If we set $u=e^{v}$ then v satisfies

$$
-\Delta_{p} v+b e^{(s-p+1) v}=|\nabla v|^{p}\left(p-1-a e^{v}\right) \quad \text { in } \Omega .
$$

From this, we can construct a large solution of

$$
-\Delta_{p} u+b e^{(s-p+1) u}=0 \quad \text { in } \Omega \backslash K
$$

for any a compact set $K \subset \Omega$ with smooth boundary such that $v \geq \ln \left(\frac{p-1}{a}\right)$ in $\Omega \backslash K$. In case $p=2$, It would be interesting to see what Wiener type criterion is implied by the existence as such a large solution. We conjecture that this condition must be

$$
\int_{0}^{1} \frac{\mathcal{H}_{1}^{N-2}\left(B_{r}(x) \cap \Omega^{c}\right)}{r^{N-2}} \frac{d r}{r}=\infty \quad \forall x \in \partial \Omega .
$$

We now consider the function

$$
U_{4}(x)=c\left(\frac{R^{\beta}-|x|^{\beta}}{\beta R^{\beta-1}}\right)^{\frac{p}{\gamma+p-1}} \quad \text { in } B_{R}(0), \gamma>0
$$

As in the proof of proposition 5.1, it is easy to check that there exist positive constants β large enough and c small enough so that inequality $\Delta_{p} U_{4}+U_{4}^{-\gamma} \geq 0$ holds.
From this, we get the existence of minimal solution to equation

$$
\begin{equation*}
\Delta_{p} u+u^{-\gamma}=0 \quad \text { in } \Omega . \tag{5.9}
\end{equation*}
$$

Proposition 5.6 Assume $\gamma>0$. Then there exists a minimal solution $u \in C^{1}(\Omega)$ to equation (5.9) and it satisfies $u(x) \geq C d(x, \partial \Omega)^{\frac{p}{\gamma+p-1}}$ in Ω.

We can verify that if the boundary of Ω is satisfied (1.3), then above minimal solution u belongs to $C(\bar{\Omega})$, vanishes on $\partial \Omega$ and it is therefore a solution to the quenching problem

$$
\begin{align*}
\Delta_{p} u+u^{-\gamma}=0 & \text { in } \Omega, \tag{5.10}\\
u=0 & \text { in } \partial \Omega .
\end{align*}
$$

Theorem 5.7 Let $\gamma>0$. Assume that there exists a solution $u \in C(\bar{\Omega})$ to problem (5.10). Then, for any $a, b>0$ and $q>p-1, s \geq p-1,1 \leq q \leq p \leq 2$, equation (5.2) admits a large solution in Ω and it satisfies (5.3)-(5.5).

Proof. We set $u=e^{-\frac{a}{p-1} v}$, then v is a large solution of

$$
-\Delta_{p} v+a|\nabla v|^{p}+\left(\frac{p-1}{a}\right)^{p-1} e^{\frac{a}{p-1}(\gamma+p-1) v}=0 \quad \text { in } \Omega .
$$

So

$$
-\Delta_{p} v+a|\nabla v|^{q}+b v^{s} \leq 0 \quad \text { in }\{x: v(x) \geq M\},
$$

for some a positive constant M only depending on p, q, s, a, b, γ. Similarly to the proof of Theorem 5.2, we get the result as desired.

References

[1] D. R. Adams, L. I. Hedberg: Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996. xii+366 pp.
[2] M.F. Bidaut-Véron, H. Nguyen Quoc, L. Véron: Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl. 102, 315-337 (2014).
[3] G. Dal Maso, F. Murat, L. Orsina, A. Prignet: Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Sup. Pisa 28, 741-808 (1999).
[4] E. DiBenedetto: $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis 7, 827-850 (1983).
[5] A. Friedman, L. Véron: Singular Solutions of Some Quasilinear Elliptic Equations, Arch. Rat. Mech. Anal. 96, 259-287 (1986).
[6] P. Honzik, B. Jaye: On the good- λ inequality for nonlinear potentials, Proc. Amer. Math. Soc. 140, 4167-4180 (2012).
[7] T. Kilpelainen, J. Malý: The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172, 137-161 (1994).
[8] J. B. Keller: On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10, 503-510 (1957).
[9] D. Labutin: Wiener regularity for large solutions of nonlinear equations, Ark. Mat. 41, 307-39 (2003).
[10] J.M. Lasry and P.L. Lions: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints: 1. The Model problem, Math. Ann. 283, 583630(1989).
[11] G.M. Lieberman: Boundary regularity for solution of degenerate elliptic equations, Nonlinear Analysis 12, 1203-1219 (1988).
[12] J. Maly, W.P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential Equations, A.M.S (1997).
[13] M. Marcus and L. Véron, Nonlinear second order elliptic equations involving measures, Series in Nonlinear Analysis and Applications 21, De Gruyter, Berlin/Boston (2013).
[14] M. Marcus, L. Véron: Maximal solutions for $-\Delta u+u^{q}=0$ in open and finely open sets, J. Math. Pures Appl. 91, 256-295 (2009).
[15] V. Maz'ya: On the continuity at a boundary point of solutions of quasilinear equations, Vestnik Leningrad Univ. Math. 3, 225-242 (1976).
[16] R. Osserman: On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7, 1641-1647 (1957)
[17] P. Pucci, J. Serrin: The Maximum Principle, Progress in Nonlinear Differential Equations and Their Applications, 2007.
[18] B. O. Turesson: Nonlinear Potential Theory and Sobolev Spaces, Lecture Notes in Mathematics 1736, Springer-Verlag Berlin, Heidelberg (2000).
[19] J. L. Vazquez: An a priori interior estimate for the solution of a nonlinear problem representing weak diffusion, Nonlinear Anal. T. M. A. 5, 95-103 (1981).
[20] J. L. Vazquez, L. Véron: Removable singularities of some strongly nonlinear elliptic equations, Manuscripta Math. 33, 129-144 (1980).
[21] L. Véron: On the equation $-\Delta u+e^{u}-1=0$ with measures as boundary data, Math. Z. 273, 1-17 (2013).
[22] N. Wiener: The Dirichlet problem, J. Math. Phys. 3, 127-146 (1924).
[23] W. Ziemer: Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, Berlin (1989).

[^0]: *E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
 ${ }^{\dagger}$ E-mail address: Laurent.Veron@lmpt.univ-tours.fr

