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ABSTRACT

To characterize a dynamical system, a number of descriptors

or invariants can be used. Here we proposed to review and

generalize the analysis of recurrence by introducing the con-

cept of similarity. In this study, we showed that it was possible

to distinguish the fetal heart rate of healthy from suffering fe-

tus using the similarities of a time series, while the analysis

of recurrence does not allowed it.

Index Terms— dynamical system, recurrence plot, simi-

larity plot, RQA parameters, fetal heart rate

1. INTRODUCTION

Most of the nonlinear dynamical systems are characterized by

differential equations. These equations usually are not known

and the only available information is often the output signal of

the system. The lack of knowledge of differential equations

leads to two strategies to characterize the system.

The first strategy is to calculate parameters using directly

the output signal of the system. In this case, several param-

eters such as Lyapunov exponents, dimensions and entropies

[1, 2, 3, 4] have been calculated to describe the different op-

erating modes (periodic, random or chaotic) of the nonlinear

system. Among them, the entropies count identical patterns

of length m in the signal. The identical patterns are the pat-

terns identical within a tolerance r.

The second strategy is to use the output signal to obtain

the phase space of the system and then to calculate parame-

ters. Although the real phase space can not be reconstructed

without the knowledge of the differential equations, it is pos-

sible to construct an equivalent phase space (m-dimensional)

[5]. In this equivalent phase space the topological properties

of the attractor are preserved.

To characterize the phase space Eckman [6] introduced

the recurrence plot (RP) method. The RP has enabled a two

dimensional (matrix) representation of the recurrent informa-

tion in the D-dimensional equivalent phase space. An ele-

ment of the recurrence matrix is 1 if two points belonging to

the trajectories in this space are recurrent (are confined within

a sphere of radius r).

Different structures such as isolated points or lines, char-

acterize the recurrence matrix [7]. To quantify these struc-

tures Zbilut and Webber [8, 9] proposed different parameters

known as recurrence quantification analysis (RQA) parame-

ters.

The analysis of the RQA parameters is important because

the parameters change according to the periodic, random or

chaotic regime of the system.

Because a pattern of m consecutive non-constant samples

reflects a local variation of the signal, looking for recurrences

involves to search in the signal only those variations with al-

most the same amplitudes. The disadvantage of this definition

is that it removes identical variations of the signal located at

different levels.

To quantify all similar variations regardless the signal

level, we proposed a new approach based on similarity pat-

terns. This approach that generalized the notion of recurrence

to that of similarity was novel and simple to implement, since

it applied directly to the output of a dynamical system.

The paper is structured as follows: section 2 presents the

recurrence and modified similarity matrices together with the

RQA parameter. The results obtained applying the RQA pa-

rameter in the two cases were presented in section 3, while in

section 4 we discuss them. Finally, we conclude our study in

section 5.

2. METHODS

In this section we presented the steps to obtain the recurrence

and the similarity matrices. The steps to find the recurrence

matrix, noted in this paper RP
D
m, are described in section

2.1, while the steps corresponding to similarity matrix, noted

SP
D
m, are presented in section 2.2. At the end of this section

we present the parameters used to distinguish between healthy

and suffering fetus.

2.1. Recurrence plot matrix

The recurrence matrix was constructed by using patterns

(noted Xi) composed from m consecutive samples of the

time series of length N . Thus we considered a phase space

of dimension D = 1. Mathematically, the recurrence matrix

computed in case of patterns of size m can be expressed as:

RP
1

m(r, i, j) = Θ(r − ‖Xi −Xj‖), Xi,Xj ∈ Rm, (1)



where Θ(·) is the Heaviside function, ‖ · ‖ is the L∞ norm, r

is a fixed tolerance and i, j = 1, . . . , N −m+1. This matrix

is a binary matrix. To fill this matrix we made:

1. for each i = 1, . . . , N −m+ 1 we formed the vectors;

Xi = [x(i), x(i+ 1), . . . , x(i+m− 1)], (2)

where x(i) was the ith sample of the signal, and Xi was

the pattern composed of m samples.

2. we computed the maximum value of the m-dimensional

absolute difference vector;

d(Xi,Xj) = max(|Xi −Xj |), (3)

3. using a tolerance r, we assigned for each pair (i, j),
i, j = 1, . . . , N ;

RP
1

m(r, i, j) =

{

1, d(Xi,Xj) ≤ r,

0, d(Xi,Xj) > r,
(4)

2.2. Similarity plot matrix

The key idea to obtain the similarity matrix was to remove the

distance between the means of the compared patterns.

1. for each i = 1, . . . , N −m+ 1 we formed the vectors;

Xi = [x(i), x(i+ 1), . . . , x(i+m− 1)], (5)

where x(i) was the ith sample of the signal, and Xi was

the pattern composed of m samples.

2. we computed

X
′

i = Xi −M, (6)

where M was the mean of the vector Xi

3. we computed the maximum value of the m-dimensional

absolute difference vector;

d(X
′

i,X
′

j) = max(|X
′

i −X
′

j |), (7)

4. using a tolerance r, we assigned for each pair (i, j),
i, j = 1, . . . , N ;

SP
1

m(r, i, j) =

{

1, d(X
′

i,X
′

j) ≤ r,

0, d(X
′

i,X
′

j) > r,
(8)

To quantify the similarities present in the similarity matrix

we introduced the notion of similarity quantification analysis

(SQA).

2.3. SQA and RQA parameters

One of the parameter proposed by Zbilut [8] was the recur-

rence rate. This parameter was nothing else that the number

of recurrent/similar points in the recurrence/similarity matrix.

We computed this parameter according with the relation

RR =
1

N2

N
∑

i,j=1

RP 1

m(r, i, j), (9)

for the RP
1

m matrix, and with the relation

SR =
1

N2

N
∑

i,j=1

SP 1

m(r, i, j) (10)

for the SP
1

m matrix. We called this parameter the similarity

rate.

3. RESULTS

In this section we exemplified in section 3.1 the difference be-

tween the recurrence and similarity matrix using a sine wave,

while in section 3.2 we present the results obtained on fetal

heart rate signals.

3.1. Recurrence and similarity matrices applied to the si-

nusoidal signal

Firstly we illustrated the difference between the two matrices

RP
1

m et SP1

m, calculated in the case of a sine wave. Towards

a better understanding of our approach we used for the sine

wave, shown in figure 1, a frequency of 10 Hz sampled at 250

Hz.

We remember that finding the recurrence patterns means

to find all patterns located at the same level of the signal. For

example, the recurrence patterns of the plus sign-pattern (m

= 2) in figure 1 appears at 26th (asterisk pattern), 51th and

76th sample. On the other hand, we can see in the same fig-

ure 1 that the pattern located at the origin of the signal (sign

Fig. 1: The sinusoidal signal. Example of a pattern m=2

placed at different levels in the signal.



(a)

(b)

(c)

Fig. 2: (a) The recurrence plot matrix using m = 1 (RP 1

1
);

(b) The recurrence plot matrix using m = 3 (RP 1

3
); ; (c) the

similarity plot matrix using m = 3 (SP 1

3
). The matrices were

constructed for a value of r equal to 0.1 from the standard

deviation of the sinusoidal signal.

plus-pattern) had a similar pattern (circle-pattern), which was

located at a different level in the signal.

We applied the equations 2-4 for two cases: m = 1, m =

3. The tolerance r was chosen equal to 0.1 from the value of

the standard deviation of the sinusoidal signal. To obtain a

better resolution of the figures that illustrated the recurrence

and similarity matrices we increased the sample frequency at

1000 Hz for the sinusoidal signal of 10 Hz.

As we can see in figure 2a the recurrence matrix for m

= 1 is formed by the diagonal and anti-diagonal lines struc-

tures. The main diagonal of the matrix indicates that a pattern

was identical (recurrent) with itself. The distance between the

lines that are parallel with the main diagonal line indicates the

frequency of the signal, which in our case was 100 samples.

Each column i of the matrix identified recurrences of the pat-

(a)

(b)

Fig. 3: The fetal heart rate: (a) of a healthy fetus; (b) of a

suffering fetus.

tern that started at ith sample.

We increased the size of the pattern and we used now m =

3 in the equations 2-4. We observed that when we computed

the recurrence matrix for the pattern with m = 3, the anti-

diagonal vanished.

Next step was to compute the similarity matrix using

equations 5-8 for m = 3 and the same values r. We illustrated

the similarity matrix in figure 2c. The similarity matrix has

more points coded in black, which means that the number of

similar patterns was larger (we found vertical lines for each

pattern) than the recurrent patterns from a sinusoidal signal.

3.2. Recurrence and similarity matrices applied to fetal

heart rate

We monitorized the cardiac rhythm of the fetuses over 30

minutes using the ultrasound Actifoetus device [10]. The

Doppler signals were acquired at CHRU ”Bretonneau” Tours,

France. The consent of each patient was obtained and the

study was approved by the ethics committee of the Clinical In-

vestigation Centre for Innovative Technology of Tours (CIC-

IT 806 CHRU of Tours). Patients were older than eighteen

years and pregnancy was singular. The recordings were made

during the twenty-fifth and fortieth gestational weeks. The fe-

tuses with congenitally malformations were not considered by



(a)

(b)

Fig. 4: (a) The recurrence rate RR and (b) the similarity rate

SR parameters computed for a pattern m = 3 in the case of a

healthy and suffering fetus.

the physicians in the group of suffering fetuses. In the group

of suffering fetuses were included all fetuses for which a re-

versed end diastolic flow velocity in the fetal umbilical artery

was present.

The figure 3 shows the heart rates of a healthy and suffer-

ing fetus, respectively. The rhythm was evaluated every 250

ms, obtaining 7200 values for a period of 30 minutes, let 240

values per minute.

We computed the recurrence and the similarity matrices

for the fetal heart rates series. However, before computing

the matrices a normalization of the heart rates was made, thus

both of them were converted into zero mean variables with

unity variances. Because the signal is non-stationary we ap-

plied a moving window technique by fixing a three minutes

value for the window size. The RP
1

3
and SR

1

3
were evalu-

ated for each window (720 values per window) together with

the recurrence rate (RR) and similarity rate (SR) parameters

(the equations 9 et 10).

The evolution in time of the RR parameter for both

healthy and suffering fetus was illustrated in figure 4a, while

(a)

(b)

Fig. 5: (a) The RR and (b) the SR parameters computed for

a pattern m = 3 in case of a healthy and suffering fetus.

the evolution of SR parameter in figure 4b. We used m = 3

for the pattern dimension and r = 0.1.

We can observe in figure 4a that the parameter RR ranged

in the interval 0.006-0.118 when it was evaluated for the

healthy and suffering fetus. The two curves could not be

separated in this case.

In contrast, when we evaluated the parameter SR from

the similarity matrix, the two curves shown in figure 4b in-

creased, but the increase was more pronounced in the case

of the healthy fetus and a clear separation between the two

curves was possible. We found that for the healthy fetus the

SR curve varied in the interval [0.37, 0.92], whereas in the

case of suffering fetus the curve varied in the interval [0.11,

0.35]. In this case we were able to separate the two fetus.

4. DISCUSSIONS

The RP
1

3
matrix quantified the percentage of “similar” pat-

terns in the signal that had the same variation. In compari-

son, the SP1

3
matrix quantified the percentage of patterns with

the same variation and modulated in amplitude according to

Groth [11]. In contrast to symbolic patterns considered by

Groth, the amplitude modulation of the similar patterns used

to compute the similar matrix is more restrictive. If the ap-

proach of Groth took into account only the sign of the vari-

ation between consecutive elements of the pattern, we also

considered the value of this variation (the value of the deriva-

tive).

The more pronounced increasing of the parameter SR in

the case of the healthy fetus means that the same kind of

variation (similar patterns) is more present comparing with



the case of the suffering fetus. The increased number of the

similar patterns in the case of healthy fetus was determined

by the increased number of different patterns and by the in-

creased probabilities of the similar patterns. A higher diver-

sity and probability of similar patterns is the characteristics of

a chaotic system.

On the other hand we observed, see in figure 5a-5b, that

the decreasing of the parameter SR in the case of suffering

fetus was the consequence of a loss or fragmentation of the

vertical lines in the matrix SP
1

3
. According to Marwan [7],

the vertical lines of the matrix characterize chaos-chaos tran-

sitions. The disappearance of the vertical lines can signify the

loss of the chaotic nature of the heart.

If the diversity of similar patterns decreases or there is

a too much diversity of very unlikely patterns, then we can

imagine that the operating mode of the fetal heart tends to a

random one. On the other hand, if diversity decreases but the

occurrence of the patterns is important, the operating mode of

the heart tends to a periodic regime.

In the end of this section we mention that the similarity

matrix could be applied only for patterns of length m ≥2. For

the pattern m=1 we could not applied this method because all

the patterns became similar after the subtraction of the mean.

5. CONCLUSIONS

We modified the definition of the recurrence of the patterns.

Using the new definition we calculated the similarity matrix.

From this matrix we were able to discriminate the heart rate

of a healthy from a suffering fetus while it was not possible

using the recurrence matrix. A loss of the chaotic nature of the

fetal heart, measurable by the similarity matrix, could explain

the discrimination.
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