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Abstract – Doppler ultrasound is widely used in medical applications to extract the blood Doppler flow 

velocity in the arteries via spectral analysis. 

The spectral analysis of non-stationary signals and particularly Doppler signals requires adequate tools 

that should present both good time and frequency resolutions. It is well-known that the most commonly used 

time-windowed Fourier transform, which provides a time-frequency representation, is limited by the intrinsic 

trade-off between time and frequency resolutions. Parametric methods have then been introduced as an 

alternative to overcome this resolution problem. However, the performances of those methods deteriorate when 

high non-stationarities are present in the Doppler signal. For the purpose of accurately estimating the Doppler 

frequency shift, even when the temporal flow velocity is rapid (high non-stationarity), we propose to combine 

the use of the time-varying auto-regressive method and the (dominant) pole frequency. This proposed method 

performs well in the context where non-stationarities are very high. A comparative evaluation has been made 

between classical (FFT based) and auto-regressive (both block and recursive) algorithms. Among recursive 

algorithms we test an adaptive recursive method as well as a time-varying recursive method. 

Finally, the superiority of the time-varying parametric approach in terms of frequencies tracking and of 

delay on the frequency estimate is illustrated on both simulated and in vivo Doppler signals. 
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1. Introduction 
Doppler ultrasound provides a noninvasive 

assessment of the hemodynamic flow condition within 

blood vessels and cardiac cavities. Diagnostic 

information is extracted from the Doppler blood flow 

signal, which results from backscaterring of the 

ultrasound beam by moving red blood cells. Because of 

the random spatial distribution of red blood cells and 

the dynamics of the cardiovascular system, the Doppler 

signal is a time-varying random signal. The time-

frequency distribution (TFD) of the Doppler blood flow 

signal is most often computed using time-windowed 

Fourier transform, and the resulting TFD is called the 

spectrogram. The spectrogram is computed on the 

assumption that the signal to be analyzed is stationary 

during a short time interval. It has the advantages of fast 

computation, but it has the main shortcoming of the 

trade-off between time and frequency resolutions. To 

increase the frequency resolution, a longer time interval 

is required. Thus, the stationary assumption may not be 

valid. In addition, the spectral components occurring in 

a large interval will be smeared in the time domain, 

resulting in a decreased time resolution. To partly solve 

this problem, autoregressive (AR) modeling has 

been used as an alternative technique [1], [2]. In 

fact, the frequency resolution can be enhanced, 

since model-based methods implicitly extrapolate 

the data outside the window under consideration. 

The problem is then shifted to that of the model 

identification; in particular, the order and the 

parameters of an AR process that best describes the 

limited duration of the Doppler signal must be 

estimated. 

 

2. Parametric modeling  

Following the principle of the time-

windowed Fourier transform (spectrogram), the 

power spectral density (PSD) at any given time can 

be also obtained by applying classical 

autoregressive (AR) modeling. 

 

2.1 Nonstationary Autoregressive modeling 

The AR method consists of modeling the 

Doppler signal as the output of a linear filter driven 

by a white noise. This filter, referred to as AR, is a 

linear combination of the previous samples 

(Regressive) of the output itself (Auto). For 
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examples, one can refer to [1], [2] and [3]. Equation of 

a classical AR complex process, in a nonstationary 

context, is given by: 

 x (n)   a
i
(n )x (n  i)  u(n)

i 1

p

          (1) 

 where ai(n) are AR complex parameters, p is the AR 

order (or the number of AR parameters), u(n) is a white 

complex noise and n is the sample time. 

Depending on the type of nonstationaries present 

in the signal, two cases can be envisaged for modeling 

the Doppler signal. First, when the nonstationaries of 

x(n) are low, the AR parameters can be reached  by 

using an algorithm applied directly to the parameters 

ai(n) of expression (1). This method is referred to as the 

adaptive algorithm. Secondly, when the 

nonstationarities are strong, we can describe the AR 

parameters a(n) by using  deterministic functions; the 

parameter estimation algorithm is not applied directly to 

the parameters but to the coefficients of the 

deterministic functions. This method  is called the time-

varying algorithm. 

 

2.2 Time-varying autoregressive modeling 

Now, suppose that the time-varying parameters 

are linear combinations of a set of deterministic basis 

time-varying functions Fg(n). Time-varying AR 

parameters are expressed by: 

 a
i
( n)  a

i, g
F
g
( n)

g  0

m

                      (2) 

 where ai,g are AR constant complex coefficients and m 

is the dimension of the time functions basis Fg(n). Thus, 

a time-varying AR model for a nonstationary sample 

signal x(n) is [4], [5], [6]: 

x( n)   a
i,g
F
g
(n  i )x(n  i )  u(n )

g 0

m


i1

p

  (3 ) 

The number of unknowns is multiplied by (m+1), 

but this seems a small price to pay compared to the 

benefit of keeping the problem linear. 

Several base functions [4] have been used in different 

fields, for example in speech signal processing and in 

tissue characterization [6]. Here we use one of the most 

common basis: the power of time functions [4]: 

F
g
(n ) 

1

g!

n

N







g

                     (4) 

where F0(n)=1 and N is the sample number in the 

analyzed signal. 

 

2.3 Parameters estimation 

Many algorithms can be used to compute AR 

parameters required for the spectrum estimation. We 

can use either batch (block) or recursive (sequential) 

techniques. Here, we focus on the most popular ones: 

the adaptive Recursive Least-Squares (RLS) and the 

weighted time-varying RLS algorithms [3], [6]. The 

expression of both the weighted time-varying RLS 

algorithm and adaptive RLS algorithm are given, by 

rewriting equation (1), by: 

x (n)  
n 1

H



 u( n)                   (5) 

  

where the superscript H denotes the hermitian 

transpose operator and the hat denotes the estimate 

values. 

The recursively estimated, the AR parameters are 

given by: 




n  


n1  P
n


n

*

n
                 (10) 


n
 x

n
 

n

H



n 1                    (11) 

P
n

1


P
n 1


P
n 1


n

*

n

H
P
n 1

  
n

H
P
n 1


n

*









            (12) 

where 


 is the estimated parameters vector, 

Pn the gain and n the prediction error. The 

superscript * denotes the conjugation, n is the 

observation vector and   the forgetting factor . 

Note that the so-called forgetting factor  is used to 

give more weight to the recent data than the past 

data during the estimation process. It is chosen such 

as 0<<1. 

In the adaptive case, the observation vector 

and the AR parameters become : 


n
 

n
  x( n  1), ...,  x (n  p ) 

T




 a


1 , ..., a


p








T










      (6) 

where  T denotes the transpose operator. 

In the time-varying case, the observation 

vector and the AR parameters become : 


n 1

H
 

n 1

H
V

V  F
0, n 1

,..., F
m ,n  p 

T




 a


1 ,0 ... a


1 ,p ... a


m ,0 ... a


m , p








T














            (7) 

Due to the recursive nature of this algorithm, 

first a transient region appears and secondly an 

initialization of the gain Pn and AR parameters is 

required. A standard initialization value of the gain 

is P0 = I (I is an identity matrix) and 10.  

In practice, the difference (called the 

prediction error) between the measured signal and 

its model is weighted by an exponential window 

that moves with the data: this results both in a better 
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estimate of the model parameters and in the capability 

to track varying signals. This algorithm updates the 

parameters vector upon acquisition of a new sample 

without inverting a matrix. Note that the performances 

of such algorithms depend strongly upon the choice of 

the forgetting factor , which controls the length of the 

prediction error and therefore the amount of memory in 

the system [3]. 

Since the main purpose of our study is to extract 

a piece of information which resumes the temporal 

evolution of the Doppler frequency, we use a low AR 

order. This approach is slightly different from those 

based on a singular value decomposition (SVD) as 

proposed in [7] and [8]. For example, in a complex 

case, a first order AR model can efficiently estimate the 

frequency which corresponds to the pole of the Doppler 

signal. This is possible in the particular case of high 

signal-to-noise ratio as encountered in continuous 

Doppler. 

In this way, it is possible to calculate either an 

instantaneous spectrum or a single pole frequency, 

hence to study the spectral characteristics of Doppler 

signals even in non-stationary conditions. 

 

3. Spectral estimation 

From known AR parameters, a standard approach 

to evaluate an instantaneous frequency consists of 

computing first the whole spectrum, then estimating a 

particular frequency (the centroid frequency or the 

maximum energy frequency). Accordingly, the power 

spectral density Sxx(f,n) of a time-varying AR process 

(see eq. (1)) is given at each time n by: 

S xx (f , n ) 
 u
2
( n)

1  a i (n )e
 j2 if

i 1

p



2
             (13) 

S xx (f , n ) 
 u
2
( n)

( z(n )  z i (n ))

i1

p


z e

2 j f

2
       (14) 

where f is the normalized frequency –0.5  f  0.5, u
2
 

is the noise power at time n and zi are poles that 

correspond to AR parameters. 

The centroid frequency  is given by : 

f
c
(n ) 

fS
xx
( f , n )df







S
xx
( f , n)df







                (15) 

As it can be seen in equation (15), an estimation of the 

centroid frequency implies the computation of the 

whole spectrum. This is not appropriated for a real time 

application. 

An interesting alternative is to evaluate 

directly a single frequency (having the same 

variation as the centroid frequency) in which is 

concentrated the time-frequency contents. In this 

case, only one frequency has to be estimated instead 

of the whole spectrum. This provides an important 

reduction of the computing time, thus allowing real 

time estimation. This frequency, which corresponds 

to the pole argument, is given by: 

f
k
(n ) 

f
s

2
arg z

k
(n )                        (16) 

with arg(zi(n))  ]-, [ and where fs is the 

sampling frequency. In our study we only consider 

a low AR order, i.e. p=1. 

 

 
Figure 1 : Doppler frequency estimation of an artificial signal by AR 

methods during a 3 seconds time span. Real part of the simulated 
Doppler signal a). Spectrogram of the Doppler signal b). Evaluation of 

the Doppler frequency by combining the use of the pole frequency 

estimator and parametric algorithms (batch, adaptive RLS and weighted 

time-varying RLS), =0.98, and centroid frequency evaluated from the 

spectrogram c). 

 
4. Comparison 

In this part, we compare the centroid 

frequency computed by using the FFT to the 

dominant pole frequency obtained by AR methods. 

Three kinds of pole frequency are evaluated, each 

one correspond to the batch [1], the adaptive RLS 

[3] and the weighted time-varying RLS approaches 

[4], [6]. 

In figure (1), we present the Doppler 

frequency estimation, of an artificial Doppler 

signal, proposed by Wendling [9], evaluated by all 

the presented methods. These curves show that all 

AR algorithms give a good Doppler frequency 

estimation, but an advantage is in favor of the 

adaptive RLS and the weighted time-varying RLS 

approaches in terms of estimation delay and 

accuracy. 

In order to show the typical performances of 

the adaptive and the time-varying methods, we 
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compute an unrealistic simulated Doppler signal (see 

figure (2)). Though the simulated Doppler signal in 

figure (2) does not correspond to a true one 

(unrealistic), it permits to highlight some typical 

behaviors that cannot be easily observed in realistic 

simulated Doppler signals. In figure (2) a time delay 

between the estimated Doppler frequency (by adaptive 

and time-varying algorithms) and the theoretical values 

can be observed. This delay is more pronounced for the 

adaptive RLS algorithm. Note that the forgetting factor 

 for the adaptive and the weighted time-varying 

algorithms is the same and equal to 0.995. This value of 

 seems a good trade-off between the estimation 

fluctuations and the tracking of the frequency. 

 

 
Figure 2 : Doppler frequency estimation of an unrealistic artificial signal by 

AR methods during a 3 seconds time span. Real part of the simulated 
Doppler signal a). Spectrogram of the Doppler signal b). Evaluation of the 

Doppler frequency by the joint use of the pole frequency estimator and AR 

algorithms with a forgetting factor equal to 0.995 for the two algorithms c); 
theoretical curve (dashed line), adaptive approach (gray solid line) and time-

varying approach (dark solid line). 

 

With in vivo Doppler signal, figure (3) shows 

that the Doppler frequency evaluated by the centroid 

estimator computed from the spectrogram has more 

fluctuations than the one  evaluated by combining the 

use of the time-varying algorithm and the pole 

frequency estimator. This is partly due to the 

smoothness nature of the AR spectrum. 

 

5. Conclusion 
In this paper we have presented parametric methods 

which permit to evaluate a pole frequency. The 

computation time of this method is by far shorter than 

the one concerning the centroid frequency since it 

requires the evaluation of the whole spectrum. 

Moreover, we have compared a new parametric time-

varying method to classical parametric methods.  We 

have shown that this method provides an estimation 

delay lower than classical methods. This method can be 

used when very high nonstationarities are 

encountered in Doppler signals. 

 
Figure 3 : Doppler frequency estimation of an in vivo femoral artery 

Doppler signal by the time-varying AR method; and by the joint use of 

the centroid frequency estimator and the spectrogram during a 3 
seconds time span. Real part of the simulated Doppler signal a). 

Spectrogram of a real Doppler signal and its centroid frequency b). 

Evaluation of the Doppler frequency by the joint use of the pole 
frequency estimator and the time-varying AR algorithm with a 

forgetting factor equal to 0.98 c); spectrogram (gray solid line) and 

time-varying approach (dark solid line). 
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