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Volume growth and rigidity of negatively

curved manifolds of finite volume

F. Dal’Bo, M. Peigné, J.C. Picaud & A. Sambusetti

March 12, 2015

Abstract

We study the asymptotic behaviour of the volume growth function of simply
connected, Riemannian manifolds X of strictly negative curvature admitting a non-
uniform lattice Γ. IfX is asymptotically 1/4-pinched, we prove that Γ is divergent, with
finite Bowen-Margulis measure, and that the volume growth of balls B(x,R) in X is
asymptotically equivalent to a purely exponential function c(x)eω(X)R , where ω(X) is
the volume entropy of X. This generalizes Margulis’ celebrated theorem for negatively
curved spaces with compact quotients. A crucial step for this is a finite-volume version
of the entropy-rigidity characterization of constant curvature spaces: any finite volume
n-manifold with sectional curvature −b2 ≤ k(X) ≤ −1 and volume entropy equal to
(n− 1) is hyperbolic. In contrast, we show that for spaces admitting lattices which are
not 1/4-pinched, depending on the critical exponent of the parabolic subgroups and on
the finiteness of the Bowen-Margulis measure, the growth function can be exponential,
lower-exponential or even upper-exponential.

1 Introduction

Let X be a complete, simply connected manifold with strictly negative curvature.
In the sixties, G. Margulis [22], using measure theory on the foliations of the Anosov
system defined by the geodesic flow, showed that if Γ is a uniform lattice of X (i.e.
a torsionless, discrete group of isometries such that X̄ = Γ\X is compact), then the
orbital function of Γ is asymptotically equivalent to a purely exponential function:

vΓ(x, y,R) = #{γ ∈ Γ | d(x, γy) < R} ∼ cΓ(x, y)e
δ(Γ)R

where δ(Γ) = limR→∞R−1vγ(x, x,R) is the critical exponent of Γ, and ∼ means that
the quotient tends to 1 when R→∞. By integration over fundamental domains, one
then obtains an asymptotic equivalence for the volume growth function of X:

vX(x,R) = volB(x,R) ∼ m(x)eδ(Γ)R .

It is well-known that the exponent δ(Γ) equals, for uniform lattices, the volume entropy
ω(X) = lim sup 1

R ln vX(x,R) of the manifold X; the function m(x), depending on the
center of the ball, is the Margulis function of X.
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Since then, this result has been generalized in different directions. Notably, G.
Knieper showed in [21] that the volume growth function of a Hadamard space X (a
complete, simply connected manifolds with nonpositive curvature) admitting uniform
lattices is purely exponential, provided that X has rank one, that is:

vX(x,R) ≍ eω(X)R

where f ≍ g means that 1/A < f(R)/g(R) < A for some positive A, when R ≫ 0.

In general, he showed that vX(x,R) ≍ R
d−1
2 eω(X)R for rank d manifolds; however,

as far as the authors are aware, it is still unknown whether there exists a Margulis
function for Hadamard manifolds of rank 1 with uniform lattices, i.e. a function m(x)
such that vX(x,R) ∼ m(x)eω(X)R, even in the case of surfaces. Another remarkable
case is that of asymptotically harmonic manifolds of strictly negative curvature, where
the strong asymptotic homogeneity implies the existence of a Margulis function, even
without compact quotients, cp. [9].

In another direction, it seems natural to ask what happens for a Hadamard
space X of negative curvature admitting nonuniform lattices Γ (i.e. vol(Γ\X) < ∞):
is vX purely exponential and, more precisely, does X admit a Margulis function?
Let us emphasize that if X also admits a uniform lattice then X is a symmetric space
of rank one (by [15], Corollary 9.2.2); therefore, we are interested in spaces which do
not have uniform lattices, i.e. the universal covering of finite volume, negatively curved
manifolds which are not locally symmetric.

It is worth to stress here that the orbital function of Γ is closely related to the vol-
ume growth function of X, but it generally has, even for lattices, a different asymptotic
behaviour than vX(x,R). The weak equivalence vΓ(x,R) ≍ eδ(Γ)R is known for convex-
cocompact discrete subgroups of isometries of Hn since [29], [24], by Patterson-Sullivan
theory. A precise asymptotic equivalence fo vΓ was proved by T. Roblin [26] in a very
general setting. Namely, he proved that for any nonelementary group of isometries Γ
of a CAT(-1) space X with non-arithmetic length spectrum1 and X̄ = Γ\X, one has:

(a) vΓ(x, y,R) ∼ cΓ(x, y)eδ(Γ)R if the Bowen-Margulis measure of UX̄ is finite;

(b) vΓ(x, y,R) = o(R)eδ(Γ)R, where o(R) is infinitesimal, otherwise.

Thus, the behaviour of vΓ(x,R) strongly depends on the finiteness of the Bowen-
Margulis measure µBM ; also, the asymptotic constant can be expressed in terms of

µBM and of the family of Patterson-Sullivan measures (µx) of Γ, as cΓ(x, y) =
‖µx‖ ‖µy‖
‖µBM‖ .

A useful criterion ensuring that µBM (UX̄) < ∞, hence a precise asymptotics for
vΓ(x,R), is the following (see [10])

Finiteness Criterion. Let Γ be a divergent, geometrically finite group, X̄ = Γ\X.
We have µBM (UX̄) <∞ if and only if for every maximal parabolic subgroup P of Γ

∑

p∈P

d(x, px)e−δ(Γ)d(x,px) < +∞. (1)

1This means that the additive subgroup of R generated by the length of closed geodesics in X̄ = Γ\X
is dense in R; it is the case, for instance, if dim(X) = 2, or when Γ is a lattice.
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On the other hand, any convergent group Γ exhibits a behaviour as in (b), since it cer-
tainly has infinite Bowen-Margulis measure (by Poincaré recurrence, µBM (UX̄) < ∞
implies that the geodesic flow is totally conservative, and this is equivalent to diver-
gence, by Hopf-Tsuji-Sullivan’s theorem). Notice that, whereas uniform lattices always
are divergent and with finite Bowen-Margulis measure, for nonuniform lattices Γ di-
vergence and condition (1) in general may fail. Namely, this can happen only in case
Γ has a “very large” parabolic subgroup P , that is such that δ(P ) = δ(Γ): we will call
exotic such a lattice Γ, and we will say that such a P is a dominant parabolic subgroup.
Convergent, exotic lattices are constructed by the authors in [14]; also, one can find
in [14] some original counting results for the orbital function of Γ in infinite Bowen-
Margulis measure, more precise than (b).

However, as we shall see, the volume growth function vX has a wilder behaviour
than vΓ. In [12] we proved that for nonuniform lattices in pinched, negatively curved
spaces X, the functions vΓ and vX can have different exponential growth rates, i.e.
ω(X) 6= δ(Γ). In the Example 6.2 we will see that the function vX might as well have
different superior and inferior exponential growth rates ω±(X) (notice, in contrast,
that δ(Γ) always is a true limit). Nevertheless, δ(Γ) still encodes a lot of information
on the manifold X even if Γ is non-uniform. The first result we prove in this paper is a
generalization of a volume-entropy characterization of constant curvature spaces, due
to G. Knieper when the quotient Γ\X is compact (cp. [20]; see also [3] for an analogue
in case of convex-cocompact lattices):

Theorem 1.1 Let X be a Hadamard manifold with curvature −b2 ≤ KX ≤ −a2 < 0
and Γ a nonuniform lattice of X. If δ(Γ) = (n−1)a, i.e. if it equals the volume entropy
of the space Hn

a with constant curvature −a2, then X has constant curvature −a2.
The volume-entropy characterization of constant curvature (and locally symmetric)
metrics has a long history and has been declined in many different ways so far, for
uniform lattices or convex-cocompact representations (beyond [20] and [3], see also [16],
[6], [19], [1], [2], [8]). To prove Theorem 1.1, we use the barycenter method initiated by
Besson-Courtois-Gallot in [1]-[2]. There exist finite-volume versions of [1]& [2], given
by Boland-Connell-Souto [5] and Storm [28]: these two works, together, imply that
if a Hadamard manifold X with curvature KX ≤ −1 has a quotient of finite volume
X̄ = Γ\X and ω(X) = n − 1, then it is hyperbolic, provided that one knows that
X̄ is homotopically equivalent to a finite-volume, hyperbolic manifold X̄0. In contrast,
notice that in Theorem 1.1 no supplementary topological assumption on the quotient
manifold X̄ is made. Also, notice that if we drop the assumption KX ≥ −b2, the
manifold X̄ might as well be of infinite type (i.e. with infinitely generated fundamental
group, or even without any cusp, see examples in [23]), hence not even homotopically
equivalent to a finite-volume, hyperbolic manifold.

The second result of the paper concerns the Bowen-Margulis measure and an
aymptote for the volume growth function of 1

4 -pinched spaces with lattices. This
strongly relies on the above characterization and on a Counting Formula (Proposi-
tion 3.1), which enables us to reduce the computation of vX to the analytic profile of
the cusps of X̄ and vΓ (so, in the last instance, to T.Roblin’s asymptotics (a)&(b)):
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Theorem 1.2 Let X be a Hadamard space with curvature −b2 ≤ KX ≤ −a2, and let
Γ be a nonuniform lattice of X. If X̄ = Γ\X has asymptotically 1/4-pinched curvature
(that is, for any ǫ > 0, the metric satisfies −k2+ ≤ KX ≤ −k2− with k2+ ≤ 4k2− + ǫ on
each cuspidal end outside some compact set C̄ǫ ⊂ X̄), then:

(i) Γ is divergent;

(ii) the Bowen-Margulis measure µBM of UX̄ is finite;

(iii) ω+(X) = ω−(X) = δ(Γ);

(iv) there exists a function m̄(x) ∈ L1(X̄) such that vX(x,R) ∼ m(x)eδ(Γ)R, where
m(x) is the lift of m̄ to X.

From the divergence of Γ, it then follows that the geodesic flow of any asymptotically
1
4-pinched, negatively curved manifold is ergodic and totally conservative w.r. to µBM ,
by the celebrated Hopf-Tsuji-Sullivan Theorem (see [29], [26]). Condition (iv) also
implies that volume equidistributes on large spheres, i.e. the volume v∆X(x,R) of annuli
in X of thickness ∆ satisfies the asymptotics v∆X(x,R) ∼ 2m(x) sinh(∆δ(Γ))eω(X)R .
Notice that the above theorem also covers the classical case of noncompact symmetric
spaces of rank one (where the proof of the divergence and the asymptotics is direct).

One may wonder about the meaning (and necessity) of the 1
4 -pinching condition.

This turns out to be an asymptotic, geometrical condition on the influence and wildness
of maximal parabolic subgroups of Γ associated to the cusps of X̄ = Γ\X. Parabolic
groups, being elementary, do not necessarily have a critical exponent which can be
interpreted as a true limit; rather, for a parabolic group of isometries P of X, one can
consider the limits

δ+(P ) = lim sup
R→∞

1

R
ln vP (x,R) δ−(P ) = lim inf

R→∞

1

R
ln vP (x,R)

and the critical exponent δ(P ) of the Poincaré series of P coincides with δ+(P ).
Accordingly, we say that a lattice Γ is sparse if it has a maximal parabolic subgroup
P such that δ+(P ) > 2δ−(P ) (conversely, we will say that Γ is parabolically 1

2-pinched
if it is not sparse). Such parabolic groups in Γ are precisely associated to cusps whose
growth can wildly change and this can globally influence the growth function of X.
Namely, we can prove:

Theorem 1.3 Let X be a Hadamard manifold with pinched, negative curvature
−b2 ≤ KX ≤ −a2 < 0. If X has a nonuniform lattice Γ which is neither exotic
nor sparse, then Γ is divergent and with finite Bowen-Margulis measure; moreover,
vX ≍ vΓ and X has a Margulis function m(x), whose projection is L1 on X̄ = Γ\X.

Theorem 1.2 is a particular case of Theorem 1.3, as (using the volume-entropy charac-
terization 1.1 of constant curvature spaces) we can show that any lattice in a negatively
curved, 1

4 -pinched space is neither exotic nor sparse.

The last part of the paper is devoted to studying sparse and exotic lattices, and the
following result shows that Theorem 1.3 is the best that we can expect for Hadamard
spaces with quotients of finite volume:
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Theorem 1.4 Let X be a Hadamard manifold with pinched negative curvature
−b2 ≤ KX ≤ −a2 < 0 admitting a nonuniform lattice Γ.

(i) If Γ is exotic and the dominant subgroups P satisfy δ(Γ) = δ+(P ) < 2δ−(P ), then
both vX and vΓ are purely exponential or lower-exponential, with the same exponential
growth rate ω(X) = δ(Γ). Namely

• either µBM <∞, and then vX is purely exponential and X has a Margulis function;

• or µBM =∞, and in this case vX is lower-esponential.

The two cases can actually occur, cp. Examples 6.3(a)&(b).

(ii) If Γ is exotic and a dominant subgroup P satisfies δ(Γ) = δ+(P ) = 2δ−(P ), then
ω(X) = δ(Γ) but in general vX 6≍ vΓ, and X does not admit a Margulis function.
Namely, there exist cases (Examples 6.4(a)&(b)) where:

• µBM <∞, with vΓ purely exponential and vX upper-exponential;

• µBM =∞, with vΓ lower-exponential and vX upper-exponential.

By lower- (respectively, upper-) exponential we mean a function f with exponential
growth rate ω = lim supR→∞

1
R ln f(R), but such that lim infR→∞ f(R)/eωR = 0 (resp.

lim supR→∞ f(R)/eωR = +∞).

We shall see that all these examples can be obtained as lattices in (14 − ǫ)-pinched
spaces, for arbitrary ǫ > 0, which shows the optimality of the 1

4 -pinching condition.

On the other hand, if Γ is sparse, one can even have ω+(X) > ω−(X) > δ(Γ), and the
Example 6.2 shows that virtually any asymptotic behaviour for vX can occur. Thus,
the case of exotic lattices with a parabolic subgroup such that δ+(P ) = 2δ−(P ) can be
seen as the critical threshold where a transition happens, from functions vΓ, vX with
same asymptotic behaviour to functions with even different exponential growth rate.

Notations.

Given two functions f, g : R+ → R+, we will systematically write f
C
≺ g for R > R0 (or g

C
≻ f) if

there exists C > 0 such that f(R) ≤ Cg(R) for these values of R. We say that f and g are weakly

asymptotically equivalent and write f
C
≍ g when g

C
≺ f

C
≺ g for R ≫ 0; we will simply write f ≍ g and

f ≺ g when the constants C and R0 are unessential. We say that f and g are asymptotically equivalent
and write f ∼ g when limR→+∞ f(R)/g(R) = 1.

We define the upper and lower exponential growth rates of a function f respectively as:

ω+(f) = lim sup
R→+∞

R−1 ln f(R) and ω−(f) = ω(f) = lim inf
R→+∞

R−1 ln f(R)

and we simply write ω(f) when the two limits coincide. Also, we will say that f is purely exponential

if f ≍ eω(f)R, and that f is lower-exponential (resp. upper-exponential) when lim infR→+∞
f(R))

eω(f)R = 0

(resp. lim supR→+∞
f(R)

eω(f)R = +∞).

Finally, if f and g are two real functions, we will use the notation f ∗∆ g for the discrete convolution

of f and g with gauge ∆, defined by (f ∗∆ g)(R) =

h+k=⌊R/∆⌋∑
h,k≥1

f(h∆)g(k∆). We notice here that, for

nondecreasing functions f and g, this is weakly equivalent to the usual convolution, namely

∆ · (f ∗∆ g) (R −∆) ≤ (f ∗ g) (R) =

∫ R

0

f(t)g(R− t)dt ≤ 2∆ · (f ∗∆ g) (R+ 2∆).
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2 Growth of parabolic subgroups and of lattices modulo

parabolic subgroups

Throughout all the paper, unless otherwise stated, X will be a Hadamard space of
dimension n, with pinched negative sectional curvature −b2 ≤ KX ≤ −a2 < 0.

For x, y ∈ X and ξ ∈ X(∞), we will denote [x, y] (resp. [x, ξ]) the geodesic segment
from x to y (resp. the ray from x to ξ). We will repeatedly make use of the following,
classical result in strictly negative curvature: there exists ǫ(a, ϑ) = 1

|a| log(
2

1−cosϑ) such

that any geodesic triangle xyz in X making angle ϑ = ∠z(x, y) at z satisfies:

d(x, y) ≥ d(x, z) + d(z, x) − ǫ(a, ϑ). (2)

Let bξ(x, y) = limz→ξ d(x, z) − d(z, y) be the Busemann function centered at ξ.
The level set ∂Hξ(x)={y | bξ(x, y)=0} (resp. the suplevel set Hξ(x)={y | bξ(x, y)≥0}
is the horosphere (resp. the horoball) with center ξ and passing through x.
From (2) we easily deduce the following:

Lemma 2.1 For any d > 0, there exists ǫ1 = ǫ1(a, d) ≥ ǫ(a, π2 ) with the following
property: given two disjoint horoballs H1,H2 at distance d = d(H1,H2) = d(z1, z2)
with zi ∈ ∂Hi, then for any x ∈ H1 and y ∈ H2 we have

d(x, z1) + d(z1, z2) + d(z2, y)− ǫ1(a, d) ≤ d(x, y) ≤ d(x, z1) + d(z1, z2) + d(z2, y).

Proof. As KX ≤ −a2 and horoballs are convex, for any y ∈ H2 the angle
ϑ(y) = ∠z1z2, y satisfies tan ϑ(y) ≤ 1

sinh(d/|a|) (cp. for instance [27], Prop.8). Then,

we have ∠z1x, y ≥ π
2 − ϑ(y) ≥ ϑ(d) with ϑ(d) > 0 for d 6= 0, hence, by (2),

d(x, y) ≥ d(x, z1) + d(z1y)− ǫ(a, ϑ(d)) ≥ d(x, z1) + d(z1, z2) + d(z2, y)− ǫ1(a, d)
for ǫ1(a, d) = ǫ(a, ϑ(d)) + ǫ(a, π2 ).2

Let dξ denote the horospherical distance between two points on a same horosphere
centered at ξ. If ψξ,t : X → X denotes the radial flow in the direction of ξ, we define:

tξ(x, y) =

{
inf{t > 0 |dξ(ψξ,t+∆(x), ψξ,t(y)) < 1} if bξ(x, y) = ∆ ≥ 0;
inf{t > 0 |dξ(ψξ,t(x), ψξ,t−∆(y)) < 1} if bξ(x, y) = ∆ < 0.

(3)

If y is closer to ξ than x, let x∆ = [x, ξ[∩∂Hξ(y): then, tξ(x, y) represents the minimal
time we need to apply the radial flow ψξ,t to the points x∆ and y until they are at
horospherical distance less than 1. Using (2) and the lower curvature boundKX ≥ −b2,
we obtain in [12] the following estimate, which is also crucial in our computations:

Approximation Lemma 2.2

There exists ǫ0 = ǫ0(a, b) ≥ ǫ(a, π2 ) such that for all x, y ∈ X and ξ ∈ X(∞) we have:

2tξ(x, y) + |bξ(x, y)| − ǫ0 ≤ d(x, y) ≤ 2tξ(x, y) + |bξ(x, y)| + ǫ0
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In this section we give estimates for the growth of annuli in a parabolic subgroup
and in quotients of a lattice by a parabolic subgroup, which will be used later. So, let
us fix some notations. We let A∆(x,R) = B

(
x,R + ∆

2

)
\B

(
x,R− ∆

2

)
be the annulus

of radius R and thickness ∆ around x. For G acting on X, we will consider the orbital
functions

vG(x, y,R) = # (B(x,R) ∩Gy) v∆G (x, y,R) = #
(
A∆(x,R) ∩Gy

)

and we set vG(x,R) = vG(x, x,R), v
∆
G (x,R) = v∆G (x, x,R) and v∆G (x,R) = ∅ for ∆ < 0.

We will also need to consider the growth function of coset spaces, endowed with the
natural quotient metric: if H < G, we define dx(g1H, g2H) := d(g1Hx, g2Hx) and

vG/H(x,R) := #{gH | |gH|x = dx(H, gH) < R}

v∆G/H(x,R) = vG/H

(
x,R+

∆

2

)
− vG/H

(
x,R − ∆

2

)
.

We will use analogous notations for the growth functions of balls and annuli in the
spaces of left and double cosets H\G, H\G/H with the metrics

dx(Hg1,Hg2) := d(Hg1x,Hg2x) = |g−1
1 Hg2|x

dx(Hg1H,Hg2H) := d(Hg1Hx,Hg2Hx) = |g−1
1 Hg2H|x .

The growth of the orbital function of a bounded parabolic group P is best ex-
pressed by introducing the horospherical area function. Let us recall the necessary
definitions:

Definitions 2.3 Let P be a bounded parabolic group of X fixing ξ ∈ X(∞): that is,
acting cocompactly on X(∞)−{ξ} (as well as on every horosphere ∂H centered at ξ).
Given x ∈ X, let D(P, x) be a Dirichlet domain centered at x for the action of P on X;
that is, a convex fundamental domain contained in the closed subset

D(P, x) = {y ∈ X | d(x, y) ≤ d(px, y) for all p ∈ P}

We set Sx = D(P, x) ∩ ∂Hξ(x) and Cx = D(P, x) ∩Hξ(x), and denote by Sx(∞) the
trace at infinity of D(P, x), minus ξ; these are, respectively, fundamental domains for
the actions of P on ∂Hξ(x),H(x) and X(∞)−{ξ}.
The horospherical area function of P is the function

AP (x,R) = vol [P\ψξ,R (∂Hξ(x))] = vol [ψξ,R (Sx)]

where the vol is the Riemannian measure of horospheres. We also define the cuspidal
function of P , which is the function

FP (x,R) = vol [B(x,R) ∩Hξ(x)]

that is, the volume of the intersection of a ball centered at x and the horoball centered
at ξ and passing through x. Notice that the functions AP (x,R),FP (x,R) only depend
on the choice of the initial horosphere ∂Hξ(x).
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Remark 2.4 Well-known estimates of the differential of the radial flow (cp. [18]) yield,
when −b2 ≤ KX ≤ −a2 < 0,

e−bt ‖v‖≤‖dψξ,t(v)‖≤ e−at ‖v‖ (4)

Therefore we deduce that, for any ∆ > 0,

e−(n−1)b∆ ≤ AP (x,R +∆)

AP (x,R)
≤ e−(n−1)a∆ (5)

The following Propositions show how the horospherical area AP and the cuspidal
function FP are related to the orbital function of P ; they refine and precise some
estimates given in [12] for vP (x,R).

Proposition 2.5 Let P be a bounded parabolic group of X fixing ξ, with diam(Sx) ≤ d.
There exist C = C(n, a, b, d) and C ′ = C ′(n, a, b, d;∆) such that:

vP (x, y,R)
C≍ A−1

P

(
x,
R+ bξ(x, y)

2

)
∀R ≥ bξ(x, y)+R0 (6)

v∆P (x, y,R)
C′

≍ A−1
P

(
x,
R+ bξ(x, y)

2

)
∀R ≥ bξ(x, y)+R0 and ∀∆ > ∆0 (7)

for explicit constants R0 and ∆0 only depending on n, a, b, d.

Proposition 2.6 Same assumptions as in Proposition 2.5. We have:

FP (x,R)
C≍
∫ R

0

AP (x, t)

AP

(
x, R+t

2

)dt ∀R ≥ R0 (8)

Remark 2.7 More precisely, we will prove (and use later) that:

(i) vP (x, y,R)
C≺ A−1

P

(
x,

R+bξ(x,y)
2

)
for all R > 0;

(ii) v∆P (x, y,R)
C′

≺ A−1
P

(
x,

R+bξ(x,y)
2

)
for all ∆, R>0;

(iv) FP (x,R)
C≺
∫ R

0

AP (x,t)

AP (x,R+t
2 )

dt for all R > 0.

As a direct consequence of (8) and (6) we have (see also Corollary 3.5 in [12]):

Corollary 2.8 Let P be a bounded parabolic group of X. Then:

δ−(P ) ≤ ω−(FP ) ≤ ω+(FP ) ≤ max{δ+(P ), 2(δ+(P )− δ−(P ))} (9)

Proof of Proposition 2.5.
Since vP (x, y,R) = vP (y, x,R) and AP (x,R) = AP (y,R − bξ(x, y)), we can assume
that t = bξ(x, y) ≥ 0. If z ∈ ∂Hξ(y) and d(x, z) = R, we know by Lemma 2.2 that

2tξ(x, z) + t− ǫ0 ≤ d(x, z) ≤ 2tξ(x, z) + t+ ǫ0
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so |tξ(x, z) − R−t
2 | ≤ ǫ0/2. We deduce that dξ

(
ψ
ξ,

R+t+ǫ0
2

(x), ψ
ξ,

R−t+ǫ0
2

(z)
)
≤ 1, so the

set ψ
ξ,

R−t+ǫ0
2

(B(x,R) ∩ ∂Hξ(y)) is contained in the unitary ball B+ of the horosphere

∂Hξ(x
+), centered at x+ = ψ

ξ,
R+t+ǫ0

2

(x). Similarly, if R > t + ǫ0 then tξ(x, z) > 0,

so dξ

(
ψ
ξ,

R+t−ǫ0
2

(x), ψ
ξ,

R−t−ǫ0
2

(z)
)
≥ 1, and the set ψ

ξ,
R−t−ǫ0

2

(B(x,R) ∩ ∂Hξ(y)) con-

tains the unitary ball B− of ∂Hξ(x
−), centered at the point x− = ψ

ξ,
R+t−ǫ0

2

(x).

We know that, by Gauss’ equation, the sectional curvature of horospheres of X is be-
tween a2 − b2 and 2b(b− a) (see, for instance, [4], §1.4); therefore, there exist positive
constants v− = v−(a, b) and v+ = v+(a, b) such that vol(B+) < v+ and vol(B−) > v−.
Now, let Sy = ψξ,t(Sx) be the fundamental domain for the action of P on ∂Hξ(y)
deduced from Sx. There are at least vP (x, y,R− d) distinct fundamental domains pSy
included in B(x,R) ∩ ∂Hξ(y); since the radial flow ψξ,t is equivariant with respect to
the action of P on the horospheres centered at ξ, there are also at least vP (x, y,R− d)
distinct fundamental domains ψ

ξ,
R−t+ǫ0

2

(pSy) included in ψ
ξ,

R−t+ǫ0
2

(B(x,R)∩∂Hξ(y)).

We deduce that vP (x, y,R−d)·AP (x,
R+t+ǫ0

2 ) < v+ and, by (5), this gives vP (x, y,R)
C≺

A−1
P (x, R+t

2 ) for all R ≥ 0. On the other hand, if R > t + ǫ0, we can cover the set
B(x,R)∩ ∂Hξ(y) with vP (x, y,R+ d) distinct fundamental domains pSy; then, again,
ψ
ξ,

R−t−ǫ0
2

(B(x,R) ∩ ∂Hξ(y)) can be covered by vP (x, y,R + d) fundamental domains

ψ
ξ,

R−t−ǫ0
2

(pSy) as well, hence we deduce that vP (x, y,R + d) · AP (x,
R+t−ǫ0

2 ) ≥ v−.

This implies that vP (x, y,R)
C≻ A−1

P (x, R+t
2 ) for all R > t+R0, for R0 = ǫ0 + d and a

constant C = C(n, a, b, d).

To prove the weak equivalence (7), we just write, for R+ ∆
2 > t+R0:

v∆P (x, y,R) = v∆P (x, y,R +∆/2)− v∆P (x, y,R−∆/2) ≥ C−1

AP
(
R+t+∆/2

2

) − C

AP
(
R+t−∆/2

2

)

≥ C−1e(n−1)a∆
4 − Ce−(n−1)a∆

4

AP
(
x, R+t

2

) = 2 sinh

[
1

4
(n− 1)a∆− lnC

]
· A−1

P

(
R + t

2

)

again by (5), if ∆ > ∆0 =
4 lnC
(n−1)a . Reciprocally, we have for all R,∆ > 0:

v∆P (x, y,R) ≤ vP (x, y,R+
∆

2
) ≤ C

AP
(
x, R+t+∆/2

2

) ≤ C′(n, a, b, d; ∆)

AP
(
x, R+t

2

) 2

Proof of Proposition 2.6.
We just integrate (6) over a fundamental domain Cx for the action of P on Hξ(x):

FP (x,R)=
∑

p∈P

vol[B(x,R) ∩ pCx]=
∫

Cx

∑

p∈P

1B(x,R)(pz) dz=

∫

Cx

vP (x, y,R) dy

so, integrating over each slice ψξ,t(Sx) by the coarea formula, we obtain
∫ R−R0

0

∫

ψξ,t(Sx)

A−1
P

(
x,
R+ t

2

)
dt

C≺ FP (x,R)
C≺
∫ R

0

∫

ψξ,t(Sx)

A−1
P

(
x,
R+ t

2

)
dt

(the left inequality holding for R > R0). By (5), both sides are weakly equivalent to

the integral

∫ R

0

AP (x, t)

AP (x,
R+t
2 )

dt, up to a multiplicative constant c = c(n, a, b, d).2

9



Remark 2.9 Thus, we see that the curvature bounds imply that v∆P (x,R) ≍ vP (x,R)
for ∆ and R large enough. This also holds in general for non-elementary groups Γ

with finite Bowen-Margulis measure, as in this case v∆Γ (x,R) ∼ 2‖µx‖2

‖µBM‖ sinh[
∆
2 δ(Γ)] by

Roblin’s asymptotics. On the other hand, it is unclear whether the weak equivalence
v∆Γ ≍ vΓ holds for non-elementary lattices Γ, when ‖µBM ‖=∞.

In the next section we will also need estimates for the growth of annuli in the spaces
of left and right cosets of a lattice Γ of X, modulo a bounded parabolic subgroup P .
Notice that, if P fixes ξ ∈ X(∞), the function vP\Γ(x,R) counts the number of points
γx ∈ Γx falling in the Dirichlet domain D(P, x) of P with d(x, γx) < R; on the
other hand, the function vΓ/P (x,R) counts the number of horoballs γHξ(x) at distance
(almost) less than R from x. It is remarkable that, even if these functions count ge-
ometrically distinct objects, they are weakly asymptotically equivalent, as the follow-
ing Proposition will show. Actually, let Hξ be a horoball centered at the parabolic
fixed point ξ of P < Γ; we call depth(Hξ) the minimal distance minΓ\{e} d(Hξ, γHξ).
Then, for Sx defined as in Definition 2.3 we have:

Proposition 2.10 Let Γ be a torsionless, non-elementary, discrete group of isometries
of X, let P a bounded parabolic subgroup of Γ, and let x ∈ X be fixed. Assume that
max{diam(Sx), 1/depth(Hξ(x))} ≤ d, and let ℓ be the minimal displacement d(x, γx) of
the elements γ ∈ Γ whose domains of attraction U±(γ, x) = {y | d(γ±1x, y) ≤ d(x, y)}
are included in the Dirichlet domain D(P, x).
There exists a constant δ0 = δ0(a, d) such that, for all ∆, R > 0:

(i) v∆−δ0
P\Γ (x,R) ≤ v∆Γ/P (x,R) ≤ v∆+δ0

P\Γ (x,R);

(ii) 1
2v

∆−2ℓ
Γ (x,R) ≤ v∆P\Γ(x,R) ≤ v∆Γ (x,R);

(iii) 1
2v

∆−δ0−2ℓ
Γ (x,R) ≤ v∆Γ/P (x,R) ≤ v∆+δ0

Γ (x,R);

(iv) 1
4v

∆−δ0−4ℓ
Γ (x,R) ≤ v∆P\Γ/P (x,R) ≤ v∆Γ (x,R).

Notice that (iv) strenghtens a result of S. Hersonsky and F. Paulin on the number
of rational lines with depth smaller than R (cp. [17] Theorem 1.2, where the authors
furthermore assume the condition δP < δΓ). Actually, let Hξ be the largest horosphere
centered at ξ non intersecting any other γHξ for γ 6= e, and recall that the depth
of a geodesic c = (ξ, γξ) is defined as the length of the maximal subsegment ĉ ⊂ c
outside ΓHξ. The double coset space P\ (Γ−P ) /P can be identified with the set of
oriented geodesics (ξ, γξ) of X with γ ∈ Γ−P . Then, if x ∈ ∂Hξ, the counting function
vP\(Γ−P )/P (x,R) corresponds to the number of geodesics of X̄ = Γ\X which travel
a time R outside the cusp C̄ = P\Hξ, before entering and definitely staying (in the
future and in the past) in C̄.

Proof. The right-hand inequalities in (ii), (iii), (iv) are trivial.
Let us prove (i). We first define two sections of the projections P\Γ← Γ→ Γ/P . Con-
sider the fundamental domain Sx(∞) for the action of P on X(∞)−{ξ} defined in 2.3,
and choose for each γ ∈ Γ, a representative γ̂ of γP which minimizes the distance to x.
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Then, we set
Γ̂ = {γ̂ | γP ∈ Γ/P}

Γ0 = {γ0 | γ0 ∈ Γ, γ0ξ ∈ Sx(∞)} ∪ {e}.
We have bijections Γ̂ ∼= Γ/P and Γ0

∼= P\Γ, as Sx(∞) is a fundamental domain.
Moreover, every γ0 ∈ Γ0 almost minimizes the distance to x in its right coset Pγ0.
Actually, for all γ ∈ Γ set z(γ) = (ξ, γξ)∩∂Hξ(x) and z

′(γ) = (ξ, γξ)∩ γ∂Hξ(x); then,
for all p ∈ P we have, by Lemma 2.1

d(x, pγ0x) ≥ d(x, pz(γ)) + d(pz(γ), pz′(γ)) + d(pz′(γ), pγ0x)− ǫ1(a, d) ≥ d(x, γ0x)− c
(10)

as d(Hξ(x), pγ0Hξ(x)) = d(pz(γ), pz′(γ)), for c = 2d+ ǫ1(a, d).
We will now define a bijection between pointed metric spaces i : (P\Γ, x0)→ (Γ/P, x0)
which almost-preserves the distance to their base point x0 = P (with respect to their
quotient distances | · |x = dx(P, ·) as seen at the beginning of the section), as follows.
For every γ ∈ Γ we can write γ = γ̂pγ , for uniquely determined γ̂ ∈ Γ̂ and pγ ∈ P ;
given a right coset Pγ, we take γ0 ∈ Γ0 representing Pγ and then set i(Pγ) := pγ0 γ̂0P .
The map i is surjective. Actually, given γP , we take p ∈ P such that pγξ ∈ Sx(∞),
so that Pγ = Pγ0, for γ0 = pγ ∈ Γ0; then, we write γ0 = γ̂0pγ0 , and we deduce that
i(Pγ) = i(Pγ0) = i(P γ̂0p

−1) = p−1γ̂0P = p−1γ0p
−1
γ0 P = γP .

We now check that i is injective. Given γ0 = γ̂0pγ0 and γ′0 = γ̂′0pγ′
0
in Γ0 representing

two right cosets Pγ and Pγ′, assume that pγ0 γ̂0P = pγ′
0
γ̂′0P . Then, γ̂0ξ = pγ̂′0ξ

for p = p−1
γ0 pγ′

0
∈ P , which yields pγ0 = pγ′

0
as γ̂0ξ, γ̂′0ξ ∈ Sx(∞) and Sx(∞) is a

fundamental domain for the left action of P ; so, γ̂0P = γ̂′0P , which implies that γ̂0 = γ̂′0
too (as Γ̂ is a section of Γ/P ). Therefore, Pγ = Pγ0 = P γ̂0pγ0 = P γ̂′0pγ′

0
= Pγ′0 = Pγ′.

To show that i almost preserves | |x, we notice that, given a class Pγ and writing its
representative in Γ0 as γ0 = γ̂0pγ0 , we have

|Pγ|x ≤ |γ0|x ≤ d(x, γ̂0x) + d(γ̂0x, γ̂0pγ0x) = |γ̂0|x + |pγ0 |x
while, by (10) and by Lemma 2.1

|Pγ|x ≥ |γ0|x − c ≥ d(x, z′(γ0)) + d(z′(γ0), γ̂0pγ0)− ǫ1(a, d) − c ≥ |γ̂0|x + |pγ0 |x − 2c

as d(z′(γ0), γ̂0x) < d. On the other hand

|i(Pγ)|x = |pγ0 γ̂0P |x ≤ d(x, pγ0x) + d(pγ0x, pγ0 γ̂0Px) = |pγ0 |x + |γ̂0|x

while, as z(pγ0 γ̂0) = pγ0z(γ̂0) and z
′(pγ0 γ̂0) = pγ0z

′(γ̂0), we get by Lemma 2.1

|i(Pγ)|x ≥ d(x, pγ0z(γ̂0)) + d(pγ0z(γ̂0), pγ0 γ̂0Px)− ǫ1(a, d) ≥ |pγ0 |x + |γ̂0|x − c.

This shows that |Pγ|x − c ≤ |i(Pγ)|x ≤ |Pγ|x + 2c. We then immediately deduce that
vP\Γ(x,R − 2c) ≤ vΓ/P (x,R) ≤ vP\Γ(x,R + c), as well as (i) for δ0 = 4c.

The proof of the left-hand inequality in (ii) is a variation for annuli of a trick due
to Roblin, cp. [26]. Actually, as LP ( LΓ, we can choose a γ̄ ∈ Γ with d(x, γ̄x) = ℓ
and such that the domains of attraction U±(γ̄, x) are included in the domain D(P, x).
Let vD(P,x)(x,R) be the number of points of the orbit Γx falling in D(P, x)∩B(x,R).
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We have:
v∆Γ (x,R) ≤ v∆D(P,x)(x,R) + v∆+2ℓ

D(P,x)(x,R) ≤ 2v∆+2ℓ
D(P,x)(x,R)

since, for γx ∈ A∆(x,R), either γx ∈ D(P, x), or γ̄γx ∈ D(P, x) and γ̄γx ∈ A∆+2ℓ(x,R).
As the points of P falling in D(P, x) minimize the distance to x modulo the left action
of P , we also have v∆+2ℓ

D(P,x)(x,R) = v∆+2ℓ
P\Γ (x,R), which proves (ii).

Assertion (iii) follows directly from (i) and (ii). To show (iv), we need to estimate
the number of classes γP modulo the left action of P , that is the elements of Γ̂ such
that γ̂x belongs to the fundamental domain D(P, x). We choose an element γ̄ ∈ Γ with
U±(γ̄, x) ⊂ D(P, x) as before, and apply again Roblin’s trick to the classes γP . The set
Γ̂x can be parted in two disjoint subsets: the subset Γ̂1 := Γ̂∩D(P, x), and the subset
Γ̂2 := Γ̂ ∩ D(P, x)c, whose elements γ̂ then satisfy γ̄γ̂ ∈ D(P, x) and |γ̄γ̂|x ≤ |γ̂|x + ℓ.
Then v∆Γ/P (x,R) = v∆

Γ̂1
(x,R) + v∆

Γ̂2
(x,R) ≤ 2v∆+2ℓ

P\Γ/P (x,R) and we conclude by (iii).2

3 Orbit-counting estimates for lattices

In this section we give estimates of the orbital function vΓ(x, y,R) and of vX(R) in
terms of the orbital function of the parabolic subgroups Pi and the associated cuspidal
functions FPi of Γ. These estimates will be used in §4 and §6; they stem from an
accurate dissection of large balls in compact and horospherical parts, assuming that
ambient space X admits a nonuniform lattice action.

Let Γ be a lattice of X. The quotient manifold X̄ = Γ\X is geometrically finite,
and we have the following classical results due to B. Bowditch [7] concerning the
structure of the limit set Γ and of X̄:

(a) L(Γ) = X(∞) and it is the disjoint union of the radial limit set Lrad(Γ) with
finitely many orbits LbpΓ = Γξ1 ∪ . . . ∪ Γξm of bounded parabolic fixed points; this
means that each ξi ∈ LbpG is the fixed point of some maximal bounded parabolic
subgroup Pi of Γ;

(b) (Margulis’ lemma) there exist closed horoballs Hξ1 , . . . ,Hξm centered respec-
tively at ξ1, . . . , ξm, such that gHξi ∩Hξj = ∅ for all 1 ≤ i, j ≤ m and all γ ∈ Γ− Pi;

(c) X̄ can be decomposed into a disjoint union of a compact set K̄ and finitely
many “cusps” C̄1, ..., C̄m: each C̄i is isometric to the quotient of Hξi by the maximal
bounded parabolic group Pi ⊂ Γ. We refer to K̄ and to C̄ = ∪iC̄i as to the compact
core and the cuspidal part of X̄ .

Throughout this section, we fix x ∈ X and we consider a Dirichlet domain D(Γ, x)
centered at x; this is a convex fundamental subset, and we may assume that D contains
the geodesic rays [x, ξi[. Accordingly, setting Si = D∩∂Hξi and Ci = D∩Hξi ≃ Si×R+,
the fundamental domain D can be decomposed into a disjoint union

D = K ∪ C1 ∪ · · · ∪ Cm
where K is a convex, relatively compact set containing x in its interior (projecting to
a subset K̄ in X̄), while Ci and Si are, respectively, connected fundamental domains
for the action of Pi on Hξi and ∂Hξi (projecting respectively to subsets C̄i, S̄i of X̄).
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Finally, as LPi = {ξi}, for every 1 ≤ i ≤ m we can find an element γi ∈ Γ, with
ℓi = d(x, γix), which is in Schottky position with Pi relatively to x, i.e. such that the
domains of attraction U±(γi) = {y | d(γ±1

i x, y) ≤ d(x, y)} are included in the Dirichlet
domain D(Pi, x), as in Proposition 2.10.

For the following, we will then set d = max{diam(K), diam(Si), 1/depth(Hξi ), ℓi} ≥ ǫ0.

Proposition 3.1 (Counting Formula)
Assume that x, y ∈ X project respectively to the compact core K̄ and to a cuspidal end
C̄i of X̄ = Γ\X. There exists C ′′ = C(n, a, b, d) such that:

[vΓ(x, ·) ∗vPi(x, y, ·)](R−D0)
C′′

≺ vΓ(x, y,R)
C′′

≺ [vΓ(x, ·) ∗vPi(x, y, ·)](R+D0) ∀R≥0

for a constant D0 only depending on n, a, b, d.

Proof. We will write, as usual, |γ|x = d(x, γx) and |γP |x = d(x, γPx), and
choose a constant ∆ > max{R0,∆0, 2δ0 + 4d}, where R0,∆0, δ0 are the constants of
Propositions 2.5 and 2.10. We first show that

B(x,R) ∩ Γy ⊂
N⋃

k = 1

⋃

γ̄ ∈ Γ, |γ̄| ≤ k∆

B (γ̄x, (N − k)∆) ∩ (γ̄Pi)y (11)

for N = ⌊R∆⌋ + 2. Actually, let γy ∈ B(x,R) ∩ γHξi and set ȳi = [x, γξ] ∩ γ∂Hξi .
By using the action of the group γPiγ

−1 on γHξi , we can find γ̄ = γp, with p ∈ Pi,
such that ȳi ∈ γ̄Ci. Since the angle ∠ȳi(x, γy) at ȳi is greater than

π
2 , we have:

d(x, γy) ≤ d(x, ȳi) + d(ȳi, γy) ≤ d(x, γy) + ǫ0 < R+ ǫ0

with |γ̄| ≤ d(x, ȳi) + d < R+ d+ ǫ0 ≤ N∆. Then, if k∆ ≤ |γ̄| < (k + 1)∆, we deduce

d(γ̄x, γy) ≤ d(ȳi, γy) + d ≤ R+ ǫ0 − d(x, γ̄x) + 2d < (N − k)∆

which shows that γy = γ̄p−1y ∈ B(γ̄x, (N−k)∆)∩(γ̄Pi)y = γ̄ [B(x, (N − k)∆) ∩ Piy].
Thus, we obtain:

vΓ(x, y,R) ≤
N∑

k=1

vΓ(x, k∆) · vPi(x, y, (N − k)∆) ≺ vΓ ∗ vPi(R+ 2∆)

This proves the right hand side of our inequality. The left hand is more delicate, as we
need to dissect the ball B(x,R) in disjoint annuli. So, consider the set Γ̂i of minimal
representatives of Γ/Pi as in the proof of Proposition 2.10. We have:

A4∆(x,R) ∩ Γy ⊃
N⊔

k=0

⊔

γ̂ ∈ Γ̂i

k∆− ∆
2

≤ |γ̂| < k∆+ ∆
2

A∆ (γ̂x, (N − k)∆) ∩ (γ̂Pi)y (12)

for N = ⌊R∆⌋ + 1. In fact, given γy = γ̂piy ∈ A∆(γ̂x, (N−k)∆) with γ̂x ∈ A∆(x, k∆)
we have again

N∆− 2∆ ≤ |γ̂|+ d(γ̂x, γy)− 2d− ǫ0 ≤ d(x, γy) ≤ |γ̂|+ d(γ̂x, γy) < N∆+∆
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as ∆ > 2d + ǫ0, hence γy ∈ A4∆(x,R). Notice that (12) is a disjoint union, as the
annuli with the same center do not intersect by definition, while for γ̂ 6= γ̂′ the orbits
γ̂Piy and γ̂

′Piy lie on different horospheres γ̂Hi 6= γ̂′Hi, which are disjoint by Margulis’
Lemma. From (12) and by Proposition 2.10 we deduce that for all R > 0 it holds:

v4∆Γ (x, y,R) ≥ 1

2

N∑

k=0

v
∆/2
Γ (x, k∆) · v∆Pi

(x, y, (N − k)∆) (13)

as ∆ > 2ℓi. Now, we set hi = bξi(x, y) and we sum (13) over annuli of radii Rn = n∆,
and we get:

vΓ(x, y,R) ≥
1

4

⌊R
∆ ⌋−2∑

n=0

v4∆Γ (x, y, n∆) ≻
⌊R
∆ ⌋−1∑

k=0



⌊R
∆ ⌋−1∑

n≥k

v
∆/2
Γ (x, (n− k)∆)


 · v∆Pi

(x, y, k∆) ≥

≥
⌊R
∆ ⌋−1∑

k≥
hi
∆ +1

vΓ (x,R− (k + 2)∆) · v∆Pi
(x, y, k∆)

C′

≻
⌊R
∆ ⌋−1∑

k=
hi
∆ +1

vΓ (x,R− (k + 2)∆)

APi

(
x, k∆+hi

2

) (14)

as v∆Pi
(x, y, k∆) ≻ A−1

Pi

(
x, k∆+hi

2

)
if k∆ ≥ hi +∆ > hi +R0 by Proposition 2.5.

Using again Proposition 2.5 and (5), it is easily verified that the expression in (14)
is greater than the continuous convolution vΓ(x, ·) ∗ vPi(x, y, ·) (R + 4∆), up to a
multiplicative constant CC ′∆. This ends the proof, by taking D0 = 4∆.2

The Counting Formula enables us to reduce the estimate of the growth function
vX to a group-theoretical calculus, that is to the estimate of a the convolution of vΓ
with the cuspidal functions FPi of maximal parabolic subgroups Pi of Γ:

Proposition 3.2 (Volume Formula)

There exists a constant C ′′′ = C ′′′(n, a, b, d, vol(K)), such that:[
vΓ(x, ·) ∗

∑

i

FPi(x, ·)
]
(R−2D0)

C′′′

≺ vX(x,R)
C′′′

≺
[
vΓ(x, ·)∗

∑

i

FPi(x, ·)
]
(R+2D0) ∀R≥0 (15)

for D0 = D0(n, a, b, d) as in Proposition 3.1.

Proof. Let hi = d(x,Hξi); we may assume that the constants R0,D0 of Propo-
sitions 2.5 and 3.1 satisfy D0 ≫ d ≥ diam(K) ≥ hi ≫ R0. Now call Si(h) = ψξi,h[Si];
integrating vΓ(x, y,R) over the fundamental domain D yields, by Proposition 3.1:

vX(x,R + 2D0) =

∫

D

vΓ(x, y,R+ 2D0)dy =

∫

K

vΓ(x, y,R + 2D0)dy +

m∑

i=1

∫

Ci

vΓ(x, y,R+ 2D0)dy

C′′

≻
m∑

i=1

∫ R+D0

2hi

vΓ (x,R + 2D0 − t)
[∫ t−hi

hi

∫

Si(h)

vPi (x, y, t) dy dh

]
dt

which then gives by Propositions 2.5 and 2.6, as h = bξi(x, y) ≤ t− hi < t−R0,

vX(x,R + 2D0)
C′′

≻
∫ R+D0

2hi

vΓ (x,R + 2D0 − t)
[
m∑

i=1

∫ t−hi

hi

APi (x, h)

APi

(
x, t+h2

)dh
]
dt

≥
∫ R+D0−2hi

0

vΓ (x,R − t)
[
m∑

i=1

∫ t

0

APi(x, s+ hi)

APi

(
x, t+s+3hi

2

)ds
]
dt ≻

∫ R

0

vΓ (x,R− t)
m∑

i=1

FPi(x, t)dt.
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Reciprocally, we have vΓ(x,R−D0) ≤ vΓ(x, y,R) ≤ vΓ(x,R+D0) so again by Propo-
sition 3.1 and Remarks 2.7 we obtain

vX(x,R − 2D0)
C′′

≺ vol(K) · vΓ(x,R−D0) +

m∑

i=1

∫

Ci

[∫ R−2D0

0

vΓ(x, t)vPi(x, y,R − t)dt
]
dy

C′′′

≺ vΓ(x,R −D0) +

∫ R−2D0

0

vΓ(x, t)

[
m∑

i=1

∫ R−t

0

APi(x, h)

APi

(
x, R−t+h

2

)dh
]
dt

as vPi(x, y,R − t) = 0 for R − t < bξi(x, y) = h. This proves the converse inequality,

since vΓ(x,R−D0) ≺ vΓ(x,R−D0)FPi(R0) ≤ 1
D0−R0

∫ R−R0

R−D0
vΓ(x, t)FPi(x,R− t)dt.2

As a consequence of the Volume Formula and of Corollary 2.8, we deduce2:

Corollary 3.3 If FPi are the cuspidal functions of the parabolic subgroups of Γ:

(i) ω+(X) = max{δ(Γ), ω+(FP1), ..., ω
+(FPm)}.

(ii) ω+(X) = ω−(X) = δ(Γ) if Γ is 1
2 -parabolically pinched.

4 Margulis function for regular lattices

In this section we assume that Γ is a lattice which is neither sparse nor exotic.
We need to recall a general criterion for the divergence of the Poincaré series of Γ,
which can be found in [10], [13]:

Divergence Criterion. Let Γ be a geometrically finite group: if δ+(P ) < δ(Γ) for
every parabolic subgroup P of Γ, then Γ is divergent.

Proof of Theorem 1.3.
Let Γ be a nonuniform lattice of X which is neither sparse nor exotic. As Γ is not
exotic, it satisfies the gap property δ(P ) < δ(Γ) for all parabolic subgroups; by the
Divergence and Finiteness Criterion we deduce that the group is divergent and that

µBM (UX̄) < ∞. Therefore vΓ(x,R)
cΓ(x)≍ eδ(Γ)R is purely exponential (for some cΓ(x)

depending on Γ, x). We will now show that X has a Margulis function.
Let D be the fundamental domain for Γ and Pi the maximal parabolic subgroups fixing
ξi as at the beginning of §3: we call w(x, y,R) = vX(x,R)e−δ(Γ)R , so that have

vX(x,R)

eδ(Γ)R
=

∫

D

vΓ(x, y,R)

eδ(Γ)R
dy =

∫

K

w(x, y,R)dy +

m∑

i=1

∫

Ci

w(x, y,R)dy (16)

We know that vΓ(x, y,R) ≤ vΓ(x,R + d) ≤ cΓ(x)e
δ(Γ)R for y ∈ K, so we can pass to

the limit for R → ∞ under the integral sign in the first term. For the integrals over
the cusps, we have:

w(x, y,R)
C′′

≺ [vΓ(x, ·) ∗ vPi(x, y, ·)](R+D0)

eδ(Γ)R
cΓ(x)≺

∫ ∞

bξi (x,y)

e−δ(Γ)t

APi

(
x,

bξi (x,y)+t

2

)dt = w(x, y)

2Part (i) of this corollary already appears in [12], where an upper estimate for vX is proved.
Notice that in [12] we erroneously stated that also ω−(X) = max{δ(Γ), ω−(FP1), ..., ω

−(FPm)}; an
explicit counterexample to this is given in Example 6.2.
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Notice that the dominating function w(x, y) is finite as δ+(Pi) < δ(Γ).
We will now show that w(x, y) ∈ L1(Ci). With the same notations hi = d(x,Hξi) and
Si(h) = ψξi,h(Si) as before, we have for all i:

∫

Ci

w(x, y)dy =

∫ ∞

hi

∫

y∈Si(h)



∫ ∞

bξi (x,y)

e−δ(Γ)t

APi

(
x,

bξi (x,y)+t

2

)dt


 dydh =

∫ ∞

hi

∫ ∞

h

e−δ(Γ)tAPi(h)

APi

(
x, h+t2

) dtdh

=

∫ ∞

hi

e−δ(Γ)t

[∫ t

hi

APi(h)

APi

(
x, h+t2

)dh
]
dt

C≺
∫ ∞

hi

e−δ(Γ)tFPi(t)dt (17)

which converges, as Γ is not sparse and so ω+(FPi) ≤ δ+(Pi) < δ(Γ), by Corollary 2.8.
We therefore obtain from (16), by dominated convergence, using Roblin’s asymptotics

lim
R→+∞

vX(x,R)

eδ(Γ)R
=
‖µx‖
‖µBM ‖

∫

D

‖µy ‖ dy =: m(x) < +∞.

Notice that m(x) defines an L1-function on X̄ = Γ\X, as its integral over D is finite.2

Proof of Theorem 1.4(i).
We assume now that X has a nonuniform lattice Γ which is exotic, with the dominant
parabolic subgroups Pi, for i = 1, ..., d, satisfying δ := δ(Γ) = δ+(Pi) ≤ 2(δ−(Pi)− ǫ),
for some ǫ > 0. When µBM (UX̄) < ∞, the same lines of the above proof apply:
vΓ(x,R) ≍ cΓ(x)e

δR is purely exponential, and for the same functions w(x, y,R),
w(x, y) we again obtain (17); but we need some more work to deduce that, for the dom-
inant cusps Pi, the integral of e

−δtFPi(t)dt converges. So, for every dominant subgroup
Pi, we write vPi(x, t) = oi(t)e

δt, for some subexponential functions oi(t); so, APi(x, t) ≍
e−2δt/oi(2t) for t ≥ R0. As Γ is exotic, the dominant parabolic subgroups Pi are con-
vergent: actually, for any divergent subgroup Γ0 < Γ with limit set LΓ0 ( LΓ one has
δ(Γ0) < δ(Γ) (see [11]). Therefore, the Poincaré series of Pi gives, for ∆ > ∆0 ≫ 0

∞ >
∑

p∈Pi

e−δd(x,px) ≻
∑

k≥1

v∆Pi
(x, k∆)

eδk
≍
∫ ∞

∆

oi(t)dt

by Proposition 2.5, so the functions oi(t) are integrable. This shows that

w(x, y) =

∫ ∞

bξi (x,y)

e−δt

APi

(
x,

bξi (x,y)+t

2

)dt = eδbξi (x,y)
∫ ∞

bξi (x,y)

oi(h+ t)dt <∞

Moreover, as every dominant Pi is strictly 1
2 -pinched, we have vPi(x, t) ≻ e

1
2
(δ+ǫ)t for

some ǫ > 0, that is APi(x, t) ≺ e−(δ+ǫ)t for all t > 0. Then Proposition 2.6 yields

FPi(R) ≍
∫ R

0

APi(s)

APi(
s+R
2 )

ds ≺ eδR
∫ R

0

e−ǫsoi(s+R)ds for R≫ 0 (18)

hence (17) gives in this case:

∫

Ci

w(x, y)dy
C≺
∫ ∞

hi

e−δ(Γ)tFPi(t)dt ≍
∫ ∞

hi

[∫ t

0

e−ǫsoi(s+ t)ds

]
dt ≤

∫ ∞

0

e−ǫs
[∫ ∞

s

oi(s+ t)dt

]
ds

which converges, since oi is integrable. We can therefore pass to the limit for R→∞
under the integral in (16), obtaining the asymptotics for vX(x,R) as before.
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On the other hand, if µBM (UX̄) =∞, then vΓ(x,R) = oΓ(R)e
δR is lower-exponential,

and by (18) we have FPi(x,R) = fi(R)e
δR with fi(R) =

∫ R
0 e−ǫsoi(s + R)ds for the

dominant cusps, and fi(R) ≺ e−ǫR, with ǫ > 0, for the others; in both cases, fi ∈ L1,
since the functions oi(t) are subexponential. Proposition 3.2 then gives, for any arbi-
trarily small ε′ > 0

vX(x,R)

eδR
≺ 1

eδR

∫ R

0

vΓ(x, t)
∑

i

FPi(R− t)dt ≺
∫ R

0

oΓ(t)
∑

i

fi(R− t)dt

≤
∑

i

‖fi ‖1 · sup
t>R

2

oΓ(t) + ‖oΓ ‖∞ ·
∑

i

∫ R

R/2

fi(t)dt ≤ ε′·
(
∑

i

‖fi ‖1 +‖oΓ ‖∞
)

provided that R≫ 0, since oΓ(t) is infinitesimal and the fi are integrable. This shows
that vX(x,R) is lower-exponential too.2

Remark 4.1 We have seen that, if µBM (UX̄) = ∞, then vΓ(x,R) = oΓ(R)e
δR and

vX(x,R) = oX(R)eδR, with oΓ, oX infinitesimal, and FPi(x,R)=fi(R)e
δR with fi ∈ L1;

so,

‖oΓ ‖1≺‖oX ‖1≤
∫ ∞

0

vX(x,R)

eδR
dR ≺

∫ ∞

0

∫ R

0

oΓ(t)
∑

i

fi(R− t)dtdR ≤‖oΓ ‖1 ·
∑

i

‖fi ‖1

and we can say that oΓ is L1 if and only if oX is.

5 Entropy rigidity and 1
4
-pinched manifolds

This section is devoted to the proof of the rigidity Theorem 1.1 and Theorem 1.2.
We prove it for a = 1, as the general case follows from this by applying an homothety.
The proof is through the method of barycenter, initiated by Besson-Courtois-Gallot
[1], [2], and follows the lines of [8] (Theorem 1.6, holding for compact quotients). The
main difficulty in the finite volume case is to show that the map produced by the
barycenter method is proper: we recall the main steps of the construction, referring
the reader to [8] for estimates which are now well established, and we focus on the new
estimates necessary to prove properness.

Let X̄ = Γ\X, fix a point x0 ∈ X and call for short bξ(x) = bξ(x, x0). The function
bξ is strictly convex if KX ≤ −1 < 0, since for every point y we have

Hessy bξ ≥ gy − (dbξ)y ⊗ (dbξ)y (19)

where g denotes the metric tensor of X; moreover, it is folklore that if the equality
holds in (19) at every point y and for every direction ξ, then the sectional curvature
is constant, and X is isometric to the hyperbolic space Hn. The idea of the proof is to
show that the condition δ(Γ) = n− 1 forces the equality in (19).
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Recall that, for every measure µ on X(∞) whose support is not reduced to one
point, we can consider its barycenter, denoted bar[µ], that is the unique point of
minimum of the function y 7→ Bµ(y) =

∫
X(∞) e

bξ(y)dµ(ξ) (which is C2 and strictly

convex function, as bξ(y) is). If supp(µ) is not a single point, it is easy to see that
limy→X(∞) Bµ(y) = +∞, cp. [8]. Consider now the map F : X → X defined by

F (x) = bar
[
e−bξ(x)µx

]
= argmin

[
y 7→

∫

X(∞)

ebξ(y,x)dµx(ξ)

]

where (µx) is the family of Patterson-Sullivan measures associated with the lattice Γ.

We briefly recall the main properties of the family (µx), cp. [29], [24]:

(i) they are absolutely continuous w.r. to each other, and dµx′

dµx
(ξ) = e−δ(Γ)bξ(x

′,x);

(ii) µx(γ
−1A) = µγx(A) for every isometry γ of X and every Borel set A ⊂ X(∞);

(iii) if Γ is a lattice, then the support of µx is the whole boundary X(∞).

In [8] it is proved that the map F satisfies the following properties:

a. F is equivariant with respect to the action of Γ, i.e. F (γx) = γF (x);

b. F is C2, with Jacobian

|JacxF | ≤
(
δ(Γ) + 1

n

)n
· det−1(kx) (20)

where kx(u, v) is the bilinear form on TxX defined as

kx(u, v) =

∫
X(∞)

ebξ(F (x),x))
[
(dbξ)

2
F (x) +HessF (x)bξ

]
(u, v) dµx(ξ)

∫
X(∞) e

bξ(F (x),x)) dµx(ξ)
(21)

Notice that the eigenvalues of kx are all greater or equal than 1, by (19).

Property (a) stems from the equivariance (i) of the family of Patterson-Sullivan mea-
sures with respect to the action of Γ, and from the cocycle formula for the Busemann
function: bξ(x0, x) + bξ(x, y) = bξ(x0, y).
Property (b) comes from the fact that the Busemann function is C2 on Hadamard
manifolds, and is proved by direct computation, which does not use cocompactness.
By equivariance, the map F defines a quotient map F̄ : X̄ → X̄ , which is homotopic
to the identity through the homotopy

F̄t(x) = bar
[
e−bξ(x) (tµx + (1 − t)λx)

]
mod Γ

where λx is the visual measure from x. Actually, the map Ft=bar
[
e−bξ(x) (tµx+(1−t)λx)

]

passes to the quotient since it is still Γ-equivariant; moreover, we have bar
[
e−bξ(x)λx

]
=x

as for all v ∈ TxX:
(
dB

e−bξ(x)λx

)
x
(v) =

∫

X(∞)

(dbξ)x(v)e
bξ(x)e−bξ(x)dλx(ξ) =

∫

UxX

gx(u, v)du = 0.

We now prove that:

Proposition 5.1 The homotopy map F̄t is proper.
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Assuming for a moment Proposition 5.1, the proof of Theorem 1.1 follows by the degree
formula: since F̄ is properly homotopic to the identity, it has degree one, so

vol(X̄) =

∫

X̄

F̄ ∗dvg ≤
∫

X̄

|JacxF̄ |dvg ≤
(
δ(Γ) + 1

n

)n
·
∫

X̄

det−1(kx)dvg ≤
(
δ(Γ) + 1

δ(Hn) + 1

)n
·vol(X̄)

as det(kx) ≥ 1 everywhere. So, if δ(Γ) = δ(Hn) = n − 1, we deduce that det(kx) = 1
everywhere and k = g, hence the equality in the equation (19) holds for every y = F (x)
and ξ. Since F is surjective, this shows that X has constant curvature −1.2

To show that the map F̄t is proper, we need some precise estimates on the
Patterson-Sullivan measures of a lattice. For x ∈ X and ζ ∈ X(∞), let xζ(t) be
the geodesic ray from x to ξ; we define the “spherical cap” Vζ(x,R) ⊂ X(∞) as the
set of points at infinity ξ whose projection on xζ falls between xζ(R) and ζ.
The following estimates are proved in [25]:

Lemma 5.2 Let Γ be a nonuniform lattice of X, with curvature kX ≤ −a2.
Let x0 ∈ X, and let D = K ∪ C1 ∪ · · · ∪ Cm a decomposition of the Dirichlet domain of
Γ centered at x0 as in Sect. §3, corresponding to maximal, bounded parabolic subgroups
P1, ..., Pm with fixed points ξ1, ..., ξm. There exists a constant c such that for every
ζ ∈ X(∞), if xR = x0ζ(R) ∈ γCi and r = bξi(x0, γ

−1xR) we have:

(a) µx0(Vζ(x0, R))
c≻ e−δ(Γ)(R−r) ·

∑

p ∈ Pi

d(x0, px0) > 2r + c′

e−δ(Γ)d(x0 ,px0), if γξi ∈ Vζ(x0, R)

(b) µx0(Vζ(x0, R))
c≻ e−δ(Γ)(R+r) · vPi(2r − c′) otherwise.

Proof of Proposition 5.1. We denote by z̄ the projection of points z∈X to X̄ .
Call δ = δ(Γ) and µtx = e−bξ(x) (tµx + (1− t)λx); we need to show that if tk → t0

and if x̄k → ∞ in X̄ , then ȳk = F̄tk(x̄k) = bar[µtkxk ] goes to infinity too. Assume by
contradiction that the points ȳk stay in a compact subset of X̄ : so (up to a subsequence)
x̄k, ȳk lift to points xk, yk such that yk → y0 ∈ X and d(y0, xk) = d(ȳ0, x̄k) = Rk →∞.
By the cocycle relation bξ(y, x) = bξ(y, y0)+bξ(y0, x) and by the density formula for

the Patterson-Sullivan measures dµx

dµy0
(ξ) = e−bξ(x,y0), we have

(dBµt
x
)y(v) =

∫

X(∞)

ebξ(y,x)(dbξ)y(v)dµ
t
x

= t

∫

X(∞)

ebξ(y,y0)e(δ+1)bξ(y0,x)(dbξ)y(v) dµy0 + (1 − t)
∫

X(∞)

ebξ(y,x)(dbξ)y(v) dλx (22)

We will now estimate the two terms in the above formula, and show that (dB
µ
tk
xk

)yk does

not vanish for Rk ≫ 0, a contradiction. So, let ζk be the endpoints of the geodesic rays
y0xk(t), and let vk = (∇bζk)yk . Also, consider the caps Vζk(y0, Rk) and Vζk(y0, Rk/2).
Let us first consider the contributions of the integrals in (22) over X \Vζk(y0, Rk/2). If
ξ ∈ X(∞) \ Vζk(y0, Rk/2), the projection P of ξ over y0ζk falls closer to y0 than to xk,
hence bξ(y0, xk) ≤ 2ǫ0 by (2); moreover, bξ(yk, y0) ≤ d(yk, y0)→ 0, so the first integral
on X \ Vζk(y0, Rk/2) for x = xk, y = yk and v = vk gives:
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∣∣∣∣∣

∫

X\Vζk
(y0,

Rk
2 )

ebξ(yk,y0)e(δ+1)bξ(y0,xk)(dbξ)yk(vk) dµy0

∣∣∣∣∣ < 2e2ǫ0(δ+1) ‖µy0 ‖

for k ≫ 0. Analogously, the second integral on X \ Vζk(y0, Rk/2) yields∣∣∣∣∣

∫

X\Vζk
(y0,

Rk
2 )

ebξ(yk,xk)(dbξ)yk(vk) dλxk

∣∣∣∣∣ < 2e2ǫ0 vol(Sn−1)

for k ≫ 0, since |bξ(yk, xk)−bξ(y0, xk)| < d(yk, y0). So, these contributions are bounded.
We now compute the contributions of the integrals over Vζk(y0, Rk/2) \ Vζk(y0, Rk).
For all ξ ∈ Vζk(y0, Rk/2) we have that (∇bξ)y0 · (∇bζk)y0 is close to 1, for Rk ≫ 0;

moreover, as |(∇bξ)yk·vk − (∇bξ)y0·(∇bζk)y0 |
n→0−→ 0, we deduce that (dbξ)yk(vk) >

1
2 on

Vζk(y0, Rk/2) for n≫ 0, hence these contributions are positive.
Finally, let us compute the contributions of these integrals on the caps Vζk(y0, Rk).
For ξ ∈ Vζk(y0, Rk), consider the ray y0ξ(t) from y0 to ξ, and the projection P (t) of
y0ξ(t) on the geodesic y0ζk. We have, again by Lemma (2)

bξ(y0, xk) ≥ lim
t→∞

[d(y0, P (t)) + d(P (t), ξ(t))] − [d(ξ(t), P (t)) + d(P (t), xk)]− 2ǫ0 ≥ Rk − 2ǫ0

therefore we deduce that, for k ≫ 0
∫

Vζk
(y0,Rk)

ebξ(yk,y0)e(δ+1)bξ(y0,xk)(dbξ)yk(vk) dµy0 ≥
1

2
tke

(δ+1)(Rk−2ǫ0)µy0(Vζk(y0, Rk)) (23)

∫

Vζk
(y0,Rk)

ebξ(yk,xk)(dbξ)yk(vk) dλxk
≥ 1

4
(1− tk)e(Rk−d(yk,y0)−2ǫ0) vol(Sn−1) (24)

It is clear that this last integral goes to infinity when Rk ≫ 0; we will now prove that
the right-hand side of (23) also diverges for Rk → ∞. This will conclude the proof,
as it will show that dB

µtk
xk

(vk), being a convex combination of two positive diverging

terms, does not vanish for k ≫ 0.
So, let D = K∪C1∪ · · · ∪ Cm be a decomposition of the Dirichlet domain of Γ centered
at y0 as in Sect. §3, corresponding to maximal, bounded parabolic subgroups P1, ..., Pm

with fixed points ξ1, ..., ξm. We know that x̄k belongs to some cusp of X̄ , so xk ∈ γCi,
for some γ, so let rk = bξi(y0, γ

−1xk) ≤ Rk.
If γξi falls in Vζk(y0, Rk) and ∆ ≫ 0, as KX ≥ −b2 we can use Lemma 5.2 and
Proposition 2.5 and deduce that there exist constants c, C ′ such that

e(δ+1)Rkµy0(Vζk (y0, Rk))
c≻ e(δ+1)Rke−δ(Rk−rk) ·

∑

h>
2rk
∆

v∆Pi
((h+ 1)∆)e−δh∆

C′

≻ eRk+δrk ·
∑

h>
2rk
∆

e(δ
−(Pi)−ǫ−δ)k∆ ≻ eRk · e(2δ−(Pi)−δ−2ǫ)rk

for arbitrarily small ǫ > 0. Since KX ≤ −1, we know that APi(y0, R) ≺ e−(n−1)R, so
δ−(Pi) ≥ n−1

2 by Proposition 2.5; as Rk ≥ rk the integral in (23) diverges in this case.
If, on the other hand, γξi 6∈ Vζk(y0, Rk), always by 5.2 and 2.5, we have:

e(δ+1)Rkµy0(Vζk(y0, Rk))
c≻ eRk−δrk · vP (y0, 2rk − c) ≻ eRk+(n−1−δ)rk

which also diverges as δ ≤ n−1. This concludes the proof that the map F̄t is proper.2
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We are now ready to prove Theorem 1.2 :

Proof of Theorem 1.2.
Assume that Γ is a nonuniform lattice in a 1

4 -pinched negatively curved manifold X,
i.e. −b2 ≤ KX ≤ −a2 with b2 ≤ 4a2. If X = Hn

a , then clearly vX(x,R) ≍ vΓ(x,R) is
purely exponential, X has a Margulis function, and Γ is divergent. Otherwise, let Pi

be the maximal parabolic subgroups of Γ, up to conjugacy. By the formulas (5), we
know that for all x ∈ X e−(n−1)bR ≺ APi(x,R) ≺ e−(n−1)aR, so by Proposition 2.5 we
have

a(n− 1)

2
≤ δ−(Pi) ≤ δ+(Pi) ≤

b(n − 1)

2

for all Pi. Thus, Γ is parabolically 1
2 -pinched. It follows from Corollary 3.3 that

ω+(X) = ω−(X) = δ(Γ). Moreover, for all Pi we have

δ+(Pi) ≤
b(n− 1)

2
≤ a(n − 1) < ω(X) = δ(Γ)

the strict inequality following by the rigidity Theorem 1.1, since X 6= Hn
a . The same

argument applies when X̄ is only asymptotically 1
4 -pinched, by replacing −a2,−b2 with

the bounds −k2+ − ǫ ≤ KX ≤ −k2− + ǫ on the cusps C̄i. Then, Γ is also non-exotic,
and we can conclude by Theorem 1.3 that Γ is divergent, with finite Bowen-Margulis
measure, vX ≍ vΓ and X has a L1 Margulis function m(x).2

6 Examples

In this section we show that all the cases presented in Theorem 1.4 do occurr, by
providing examples of spaces X with exotic or sparse lattices Γ which do not admit a
Margulis function, and with functions vΓ, vX having different behaviour.

If C̄ = P\Hξ(o) is a cusp of X̄=Γ\X, we write the metric of X in horospherical coor-
dinates on Hξ(o)∼=∂Hξ(o)×R+ as g = T (x, t)2dy2+ dt2, for x∈∂Hξ(o) and t=bξ(o, ·).
We call the function T (x, t) the analytic profile of the cusp C̄. The horospherical area
AP (x, t) is then obtained by integrating T n−1(x, t) over a compact fundamental domain
S for the action of P on ∂Hξ(o); thus, we have

AP (x, t)
c≍ T n−1(x, t) for all x ∈ C̄

(for a constant c depending on X and o). Also, notice that, in the particular case
where T (y, t) = T (t), for points x, y belonging to a same horosphere Hξ we have by
the Approximation Lemma 2.2

d(x, y) ∼ 2T−1

(
T (0)

dξ(x, y)

)
for R = d(x, y)→∞. (25)

We will repeatedly make use of the following lemma, which is a easy modification
of one proved in [12]:
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Lemma 6.1 Let b > a > 0, β > α > 0 and ǫ > 0 be given.
There exist D = D(a, b, α, β, ǫ) > 1 and D′ = D′(a, b, α, β) > 0 such that if [p, q], [r, s]
are disjoint intervals satisfying r ≥ Dq and p ≥ D′, then there exist C2, convex and
decreasing functions φǫ, ψǫ on [p, s] satisfying:




∀ t ∈ [p, q], φǫ(t) = tβe−bt

∀ t ∈ [r, s], φǫ(t) = tαe−at

∀ t ∈ [p, s], tβe−bt ≤ φǫ(t) ≤ tαe−at
∀ t ∈ [p, s], a2 − ǫ ≤ φ′′

ǫ (t)
φǫ(t)

≤ b2 + ǫ

and





∀ t ∈ [p, q], ψǫ(t) = tαe−at

∀ t ∈ [r, s], ψǫ(t) = tβe−bt

∀ t ∈ [p, s], tβe−bt ≤ ψǫ(t) ≤ tαe−at
∀ t ∈ [p, s], a2 − ǫ ≤ ψ′′

ǫ (t)
ψǫ(t)

≤ b2 + ǫ

Example 6.2 Sparse lattices.

Sparse lattices satisfying ω+(X) > δ(Γ) were constructed by the authors in [12]. Here,
we modify that construction to show that, for spaces X admitting sparse lattices, one
can have ω+(X) > ω−(X) > δ(Γ) (in contrast, notice that δ(Γ) always is a true limit);
this shows in pwrticular that sparse lattices generally do not have a Margulis function.
We start from a hyperbolic surface X̄0 = X0\Γ of finite volume, homeomorphic to
a 3-punctured sphere, and, for any arbitrary small ǫ > 0, we perturb the hyperbolic
metric g0 on one cusp C̄ = P\Hξ(x) into a metric gǫ by choosing an analytic profile Tǫ
obscillating, on infinitely many horospherical bands, from e−t to e−bt.
Namely, choose a = 1, b > 2 and ǫ > 0 arbitrarily small, and let D,D′ be the constants
given by Lemma 6.1. For M ≫ 1, we define a sequence of disjoint subintervals of
[M4n,M4n+1]:

[pn, qn] := [M4n, 2M4n], [rn, sn] :=

[
pn +M4n+1

2
,
qn +M4n+1

2

]

such that rn ≥ Dqn, pn+1 ≥ Dsn, p1 ≥ D′ (we can choose any M ≥ max{4D−1, 3
√
D}

in order that these conditions are satisfied). Notice that t+M4n+1

2 ∈ [rn, sn] for all
t ∈ [pn, qn]. Then, by Lemma 6.1, we consider a C2, decreasing function Tǫ(t) satisfying:

(i) Tǫ(t) = e−t for t ∈ [M4n−2,M4n] ∪ [pn, qn], and Tǫ(t) = e−bt for t ∈ [rn, sn];

(ii) e−bt ≤ Tǫ(t) ≤ e−t and −b2 − ǫ ≤ T ′′
ǫ (t)/Tǫ(t) ≤ −1 + ǫ.

Thus, the new analytic profile Tǫ(t) of C̄ coincides with the profile of a usual hyperbolic
cusp on [M4n−2, 2M4n], and with the profile of a cusp in curvature −b2 on the bands
[rn, sn] ⊂ [M4n,M4n+1]. We have, with respect to the metric gǫ:

a. δ+(P ) = b
2 and δ−(P ) = 1

2 , by (i) and (ii), because of Proposition 2.5;

b. ω+(FP ) ≥ b
2 + δ for δ = 1

M ( b2 − 1) > 0, because for R =M4n+1

FP (x,R) ≻
∫ R

0

Aǫ(x, t)
Aǫ(x, t+R2 )

dt ≥
∫ qn

pn

e−t

e−b(
t+R
2 )

dt ≻ e b
2R ·M4ne(

b
2−1)pn ≥ e b

2R ·e 1
M ( b

2−1)R (26)

as pn/R = 1
M ;

c. ω−(FP ) ≤ 1
2 if M > 2, as for R ∈ [M4n+3,M4n+4] we obtain:

FP (x,R) ≺
∫ R

0

e−t

e−( t+R
2 )

dt ≺ eR
2 (27)

since M4n+4 ≥ t+R
2 ≥ M4n+3

2 ≥M4n+2;

d. δ(Γ) is arbitrarily close to δ+(P ), let’s say δ(Γ) ≤ b
2+

δ
2 , if we perturb the hyperbolic

metric sufficiently far in the cusp C̄, i.e. if r1 ≫ 0 (this is Proposition 5.1 in [12]).
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It follows that ω−(X) > δ(Γ). Actually, assume that vΓ(x,R) ≻ e(δ(Γ)−η)R , for arbi-
trarily small η. By Proposition 3.2 and (26), for any R ≫ 0, if M4n+1 ≤ R < M4n+5

vX(x,R + 2D0) ≥ vΓ(x, ·) ∗ FP (x, ·) (x,R) ≻ e(δ(Γ)−η)(R−M4n+1 ) · e( b2+δ)M4n+1

by taking just the term vΓ(x,R−t)FP (x, t)) of the convolution with t closest toM4n+1,

where FP (t) ≻ e(
b
2
+δ)t; as M4n+1 ≥ R/M4 we get vX(x,R + 2∆) ≻ e(δ(Γ)−η+

δ/2+η

M4 )R

which gives ω−(X) ≥ δ(Γ) + δ
2M4 , η being arbitrary.

Finally, we show that ω+(X) > ω−(X). In fact, the cusps different from C̄ being
hyperbolic, we have, always by Proposition 3.2, that ω+(X) = ω+(FP ) ≥ b

2 + δ.

On the other hand, we know that ω+(FP ) ≤ max{δ+(P ), 2(δ+(P ) − δ−(P )} = b − 1,
by Corollary 2.8; thus, assuming FP (x, t) ≺ e(b−1+η)t, for arbitrarily small η, equation
(27) yields for R =M4n+4

vX(x,R − 2D0) ≤
∫ M4n+3

0

vΓ(x,R − t) · FP (x, t)dt +
∫ R

M4n+3

vΓ(x,R − t) · FP (x, t)dt

≺
∫ M4n+3

0

eδ(Γ)(R−t) · e(b−1+η)tdt+

∫ R

M4n+3

eδ(Γ)(R−t) · e 1
2 tdt

≺ eδ(Γ)R · e(b−1+η−δ(Γ))M4n+3 ≤ e(
b
2+

δ
2+

(b/2+η−1
M )R

being b
2 ≤ δ(Γ) ≤ b

2 + δ
2 and M4n+3 = R

M . Hence ω−(X) < b
2 + δ ≤ ω+(X), if M ≫ 0

and η small enough.

Examples 6.3 Exotic, strictly 1
2 -parabolically pinched lattices.

We say that a lattice Γ is strictly 1
2 -parabolically pinched when every parabolic sugroup

P < Γ satisfies the strict inequality δ+(P ) < 2δ−(P ). Let X̄ = Γ\X as before; we show
here that, for Γ exotic and strictly 1

2 -parabolically pinched, the following cases which
appear in Theorem 1.4 do occur:

(a) µBM (UX̄) =∞ and vX is lower-exponential;

(b) µBM (UX̄) <∞ and vX is purely exponential.

We start by an example of lattice satisfying (a).
In [14] the authors show how to construct convergent lattices, in pinched negative
curvature and any dimension n; we will take n = 2 here by the sake of simplicity.
In those examples, the metric is hyperbolic everywhere but one cusp C, which has
analytic profile T (t) = tβebt for t ≥ t0 ≫ 0, with β > 1 and b > 2. Therefore, there
is just one dominant maximal parabolic subgroup P , with AP (x, t) ≍ T (t) ≍ ebt, and
δ+(P ) = δ−(P ) = b

2 ; moreover, the subgroup P is convergent as
∑

p∈P

e−
b
2d(x,px) ≤

∑

k≥0

vP (x, k)e
− b

2 k ≍
∫ ∞

1

e−
b
2 t

AP (x, t2 )
dt ≍

∫ ∞

1

e−
b
2 t

(t)β · e−b t
2

dt ≍
∫ ∞

1

t−βdt <∞.

By decomposing the elements of Γ in geodesic segments which, alternatively, either go
very deep in the cusp or stay in the hyperbolic part of X, we show in [14] that Γ is con-
vergent too, provided that t0 ≫ 0. Then, Γ is exotic with infinite Bowen-Margulis mea-
sure, and vΓ(x,R) is lower-exponential by Roblin’s asymptotics. By Theorem 1.4(i),
the function vX is lower-exponential behaviour as well, with the same exponential
growth rate.
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We now give an example for (b).
This is more subtle, as we need to take a divergent, exotic lattice Γ: the existence of
such lattices is established, in dimension 2, in [14]. Again, the simplest example is
homeomorphic to a three-punctured sphere, with three cusps, and hyperbolic metric
outside one cusp C̄, which has analytic profile

T (t) =





e−t for t ≤ A
e−bt for t ∈ [A,A+B] +D
t3 · e−bt for t≫ D +A+B

with b > 2 and A,B,D ≫ 0. As before, we have one dominant and convergent maximal
parabolic subgroup P , with δ+(P ) = δ−(P ) = b

2 . In [14] it is proved that, according to
the values of A and B, the behaviour of the group Γ is very different: it is convergent
with critical exponent δ(Γ) = δ+(P ), for A ≫ 0 and B = 0, while it is divergent
with δ(Γ) > δ+(P ) if B ≫ A. By perturbation theory of transfer operators, it is then
proved that there exists a value of B for which Γ is divergent with δ(Γ) = δ+(P )
precisely. Thus, for this particular value of B, the lattice Γ we is exotic, and has finite
Bowen-Margulis measure by the Finiteness Criterion, as

∑

p∈P

d(x, px)e−δ(Γ)d(x,px) ≺
∫ ∞

1

te−
b
2 t

AP (x, t2 )
dt ≺

∫ ∞

1

te−
b
2 t

t3 · e−b t
2

dt ≍
∫ ∞

1

t−2dt <∞ (28)

It follows that vX ≍ vΓ is purely exponential, by Theorem 1.4(i).

Examples 6.4 Exotic, exactly 1
2-parabolically pinched lattices.

We say that a lattice Γ is exactly 1
2-parabolically pinched when it is 1

2 -parabolically
pinched and has a parabolic sugroup P < Γ satisfisfying the quality δ+(P ) = 2δ−(P ).
We show here that for an exotic and exactly 1

2 -parabolically pinched lattice Γ, the
following cases can occur:

(a) µBM (UX̄) <∞, with vΓ purely exponential and vX upper-exponential;

(b) µBM (UX̄) =∞, with vΓ lower-exponential and vX upper-exponential.

We start by (a). Consider a surface with three cusps as in the Examples 6.3, now
perturbing the hyperbolic metric on the cusp C̄ to an analytic profile defined as follows.
First, choose a sequence of disjoint subintervals of [M2n,M2n+1]

[pn, qn] := [M2n, µM2n+1], [rn, sn] :=

[
pn +M2n+1/2

2
,
qn +M2n+1

2

]
(29)

and then define, for b > 1 and 0 < γ < 1

T (t) =





e−t for t ≤ A
e−bt for t ∈ [A,A+B] +D

t · e− b
2 t for t ∈ [pn, qn]

t2+γ · e−bt for t ∈ [rn, sn]

with t2+γe−bt ≤ T (t) ≤ t · e− b
2
t for all t ≥ t0 ≫ 0 (in order that the conditions of

Lemma 6.1 are satisfied, it is enough to choose any 0 < µ < 1
4D and M > D).
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As before, the profile T gives a divergent, exotic lattice Γ for a suitable value of B
and A ≫ 0, with dominant parabolic subgroup P having δ+(P ) = b

2 = δ(Γ), and

δ−(P ) = b
4 . The Bowen-Margulis measure of Γ is finite, as (28) also holds in this case;

thus, vΓ is purely exponential. Let us now show that vX is upper exponential: for every
R =M2n+1 we have, by Proposition 3.2,

vX(x,R + 2D0) ≻ [vX(x, ·) ∗ FP (x, ·)] (R) ≍
∫ R

0

vΓ(x,R − t)
[∫ t

0

AP (x, s)
AP (x, s+t2 )

ds

]
dt

=

∫ R

0

AP (x, s)
[∫ R

s

vΓ(x,R − t)
AP (x, s+t2 )

dt

]
ds ≥

∫ qn

pn

AP (x, s)
[∫ R

R
2

vΓ(x,R − t)
AP (x, s+t2 )

dt

]
ds

since qn < R
2 . As

s+t
2 ∈ [rn, sn] if s ∈ [pn, qn] and t ∈ [R2 , R], by the definition of

T (t) ≍ AP (x, t) on [rn, sn], this yields

vX(x,R) ≻
∫ qn

pn

se−
b
2 s

[∫ R

R
2

e
b
2 (R−t)

e−b(
s+t
2 )(s+ t)2+γ

dt

]
ds ≻ e b

2R

∫ qn

pn

Rs

(s+R)2+γ
ds

with

∫ qn

pn

Rs

(s +R)2+γ
ds ≥

∫ µ

1
M

u

(1 + u)2+γ
du ≍ R1−γ , so vX is upper-exponential.

Producing examples for case (b) is more difficult; for this, we will need an exotic
lattice Γ whose orbital function satisfies vΓ(o,R) ≍ 1

Rγ e
δ(Γ)R. Lattices with lower-

exponential growth and infinite Bowen-Margulis measure are investigated in [14], where
a refined counting result is proved, according to the behaviour of the profile functions
of the cusps (the examples in [14] are, as far as we know, the only precise estimates of
the orbital function for groups with infinite Bowen-Margulis measure). Here we only
give the necessary analytic profiles of the cusps in order to have a function vX which
is exponential or upper-exponential, referring to [14] for the precise estimate of vΓ.

We again start from a hyperbolic surface X̄0 = X0\Γ with three cusps as in 6.3, and
perturb now the metric on two cusps. We choose b > 2 and 1 + γ < β < 2 + γ, and
define the profiles for C̄1 and C̄2 as

T1(t) =





e−t for t ≤ A
e−bt for t ∈ [A,A+B] +D

t · e− b
2 t for t ∈ [pn, qn]

tβ · e−bt for t ∈ [rn, sn]

and T2(t) =

{
e−t for t ≤ A
t1+γe−bt for t≫ A

for the same sequence of intervals [pn, qn], [rn, sn] as in (29).

If P1, P2 are the associated maximal parabolic subgroups, we have δ−(P1) = b
4 and

δ+(P1) =
b
2 , while δ

+(P2) = δ−(P2) =
b
2 by construction. It is easily verified that these

parabolic subgroups are convergent as γ > 0. Again, pushing the perturbation far in
the cusps (i.e. choosing A ≫ 0) and for a suitable value of B, the lattice Γ becomes
exotic and divergent; it has two dominant cusps, it is exactly 1

2 -parabolically pinched,
and has infinite Bowen-Margulis measure, because (as γ < 1)

∑

p∈P2

d(x, px)e−δ(Γ)d(x,px) ≺
∫ ∞

1

te−
b
2
t

t1+γ · e−b t
2

dt ≍
∫ ∞

1
t−γdt =∞.
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Accordingly, vΓ is lower-exponential. In [14] it is proved that the least convergent
dominant parabolic subgroup determines the asymptotics of vΓ; in this case, the
parabolic subgroup P1 converges faster than P2, and the chosen profile for C̄2 then
gives vΓ(o,R) ≍ 1

R1−γ e
δ(Γ)R, provided that γ ∈ (12 , 1), cp. [14].

Let us now estimate vX(x,R), for R =M2n+1. Writing T1(t) = τ+(t)e−bt = τ−(t)e−
b
2
t

so that τ+(t) = tβ on [rn, sn] and τ
−(t) = t on [pn, qn], we compute as in case (a):

vX(x,R + 2D0) ≻ (vΓ(x, ·) ∗ FP1(x, ·)) (R) =
∫ R

0

∫ t

0

AP1(x, s)

AP1(x,
t+s
2 )

vΓ(x,R − t)dtds

≍
∫ R

0

∫ t

0

τ−(s) · e− b
2 s · e b

2 (R−t)

τ+( t+s2 ) · (R− t)1−γ · e−b( t+s
2 )

dtds = e
b
2R

∫ R

0

τ−(s)

[∫ R

s

dt

τ+( t+s2 )(R − t)1−γ

]
ds

≻ e b
2R

∫ qn=µR

pn=
R
M

s

[∫ R

R
2

dt

Rβ(R − t)1−γ

]
ds ≻

(
µ− 1

M

)
R2+γ−βe

b
2R

which is upper-exponential as β < 2 + γ.

Remark 6.5 Notice that in all these examples b can be chosen arbitrarily close to
2a = 2. Thus, by the last condition in Lemma 6.1, the analytic profiles give metrics
with curvature −4a2 − ǫ ≤ KX ≤ −a2, for arbitrarily small ǫ > 0.
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