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ON THE EXIT TIME FROM A CONE FOR RANDOM WALKS

WITH DRIFT

RODOLPHE GARBIT AND KILIAN RASCHEL

Abstract. We compute the exponential decay of the probability that a given multi-

dimensional random walk stays in a convex cone up to time n, as n goes to infinity. We

show that the latter equals the minimum, on the dual cone, of the Laplace transform of

the random walk increments. As an example, our results find applications in the counting

of walks in orthants, a classical domain in enumerative combinatorics.

1. Introduction and main results

1.1. General context. For general random processes in R
d, d > 1 (including in particular

Brownian motion and random walks), it is at once important and natural to study the
first exit times τK from certain domains K. Precisely, for discrete-time random processes

(Sn)n>0, τK is defined by

(1) τK := inf{n > 1 : Sn /∈ K}.
Indeed, these random times carry much valuable information on the process. As an

example, the fruitful theory of random walks fluctuations (see, e.g., Spitzer [22]) is based
on the analysis of the τK for compact domains K.

In a recent past (1990 to present), the case of cones K has arisen a great interest in

the mathematical community, due to interactions with many areas: First, certain random
walks in conical domains can be treated with representation theory [2, 3] (in that case, the
cones are Weyl chambers related to Lie algebras). Further, the exit times τK are crucial

to construct conditioned random walks in cones, which appear in the theory of quantum
random walks [2, 3], random matrices [13], non-colliding random walks [8, 14], etc. In
another direction, the probability

(2) P
x[τK > n]

admits a direct combinatorial interpretation in terms of the number of walks starting
from x and staying in the cone K up to time n. These counting numbers are particularly

important in enumerative combinatorics [6, 15, 19], and are the topic of many recent
studies.

For processes with no drift, the exit times τK from cones are now well studied in the

literature. The case of Brownian motion was solved by DeBlassie [7] (see also Bañuelos
and Smits [1]): He showed that the probability (2) satisfies a certain partial differential
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2 R. GARBIT AND K. RASCHEL

equation (the heat equation), and he solved it in terms of hypergeometric functions.
Concerning discrete-time random processes, in the one-dimensional case, the asymptotic

behavior of the non-exit probability (2) is well known, as well as that of

(3) P
x[Sn = y, τK > n]

(called a local limit theorem), thanks to the theory of fluctuations of random walks [22].

In higher dimension, some sporadic cases have first been analyzed: We may cite [11], for
which there exists a strong underlying algebraic structure (certain reflexion groups are
finite), or the case of Weyl chambers, which has been considered in [8, 14]. For more

general cones, but essentially for random walks with increments having a finite support,
Varopoulos [23] gave lower and upper bounds for the probability (2). The first author of
the present article showed in [16] that for general random walks, the probability (2) does

not decay exponentially fast. More recently, Denisov and Wachtel [9] provided the exact
asymptotics for both (2) and (3).

For processes with drift, much less is known. Concerning Brownian motion, one of

the first significant results is due to Biane, Bougerol and O’Connell [4], who derived the
asymptotics of the non-exit probability (2) in the case of Weyl chambers of type A, when
the drift is inside of the cone. Later on, by using different techniques, Pucha la and Rolski

[20] obtained (also in the context of Weyl chambers) the asymptotics of (2) without any
hypothesis on the drift. In [17] we gave, for Brownian motion with a given arbitrary drift,
the asymptotics of (2) for a large class of cones.

As for random walks (Sn)n>0 with increments having a common distribution µ, the
exponential decay of (3) is known: It equals the global minimum on R

d of the Laplace
transform of µ:

(4) Lµ(x) := Eµ[e〈x,Sn+1−Sn〉] =

∫

Rd

e〈x,y〉µ(dy).

This was first proved by Iglehart [18] for one-dimensional random walks. For more general
walks, this was shown and used by many authors (see, e.g., [9, 16]). Regarding now the

asymptotic behavior of the probability (2), the case d = 1 is known, see [10].

It is the aim of this paper to give, for a very broad class of random walks and

cones, in any dimension, the exponential decay of the non-exit probability
(2). We shall also relate its value to the Laplace transform, by proving that
it equals the minimum of this function on the dual cone; we give the exact

statement (Theorem 1) in Subsection 1.4.

Our main motivation comes from the possible applications to lattice path enumeration.
Indeed, our results provide the first unified treatment of the question of determining the

growth constant for the number of lattice paths confined to the positive orthant. They also
solve a conjecture on these numbers stated in [19]. However, we would like to emphasize
that our results are much more general (see Section 1.3).

Simultaneously and independently of us, Duraj [12] obtained in some particular case
the exact asymptotics of the non-exit probability (2) for lattice random walks. In the
following section we introduce our main ideas and tools, and we discuss the difference

between our results and his.
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1.2. Preliminary discussion. Let (Sn)n>0 = (S
(1)
n , . . . , S

(d)
n )n>0 be the canonical

random walk on R
d. Given any probability measure µ on R

d and x ∈ R
d, we denote

by P
x
µ the probability measure under which (Sn)n>0 is a random walk started at x whose

independent increments (Sn+1 − Sn)n>0 have common distribution µ.
The standard idea to handle the case of random walks with non-zero drift is to carry

out an exponential change of measure. More precisely, if z is a point in R
d such that Lµ(z)

is finite, then we can consider the new probability measure

µz(dy) =
e〈z,y〉

Lµ(z)
µ(dy).

It is theoretically possible to compare the behavior of the random walk under Pµ with its
behavior under Pµz thanks to Cramér’s formula (see Lemma 4). For example, for the local

probabilities, this formula gives

P
x
µ[Sn = y, τK > n] = Lµ(z)ne〈z,x−y〉

P
x
µz

[Sn = y, τK > n].

Since the asymptotic behavior of those probabilities are now well known when the random
walk has no drift (see [9]), the general problem can be solved if one can find a point z such

that the distribution µz is centered. It is also well known that this condition is fulfilled
if and only if z is a critical point for Lµ (under the assumption that Lµ be finite in a
neighborhood of z). By convexity of Lµ, this means that one has to find a local, hence

global minimum point z = x0 in R
d.

This approach is used by Duraj in [12] to analyze the non-exit probability (2). Indeed,

for a lattice random walk, one can sum the contribution of each y to eventually obtain
(below µ0 is an abbreviation for µx0

)

P
x
µ[τK > n] = Lµ(x0)n

∑

y∈K∩Zd

e〈x0,x−y〉
P
x
µ0

[Sn = y, τK > n].

But then, one needs to impose an additional condition on the position of the global

minimum point x0 with respect to K so as to ensure that the infinite sum of asymptotics
will be convergent as well. This technical assumption on x0 done in [12] happens to have a
very natural interpretation in the light of our analysis. Indeed, for the non-exit probability,

Cramér’s formula (applied with any z) gives

(5) P
x
µ[τK > n] = Lµ(z)ne〈z,x〉Ex

µ0
[e−〈z,Sn〉, τK > n],

and one sees that the main difficulty will arise because of the exponential term inside the
expectation.

Let K∗ denote the dual cone associated with K, that is, the closed convex cone defined
by

(6) K∗ := {z ∈ R
d : 〈x, z〉 > 0,∀x ∈ K},

where 〈x, z〉 denotes the standard inner product. If z belongs to K∗, it immediately follows

from (5) that

P
x
µ[τK > n] 6 Lµ(z)ne〈z,x〉.
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Hence, the infimum ρ of the Laplace transform on K∗ is always an upper bound of the
exponential rate, i.e.,

lim sup
n→∞

P
x
µ[τK > n]1/n 6 ρ := inf

K∗
Lµ.

Our main result shows that, in fact, when the infimum ρ is a minimum, it is also a lower
bound of the above quantity. Thus ρ is the value of the exponential decreasing rate of the

non-exit probability. It is now easily seen that assumptions 1 and 5 in [12] on the global
minimum x0 imply that it belongs to the interior (K∗)o of the dual cone (and in this case,
clearly, x0 = x∗). In [12] the author then obtains the precise asymptotics of the non-exit

probability (2) in this specific case.
The general philosophy of our work is different (and in a sense complementary). We

shall only focus on the exponential rate

ρx := lim sup
n→∞

P
x
µ[τK > n]1/n,

and we answer completely the question of determining its value under fairly broad

assumptions, regardless the position of the global minimum point x0.

1.3. Cones and random walks considered. In this work, we consider a closed convex

cone K with non-empty interior. Recall that we denote by K∗ its dual cone, which turns
out to be particularly relevant for our problem. It is the closed convex cone defined in (6).
We also set

Kδ := K + δv,

where δ ∈ R and v is some fixed vector in Ko, the interior of K.
Throughout this paper, we shall make the assumption that µ is truly d-dimensional in

the following sense:

(H1) The support of the probability measure µ is not included in any linear hyperplane.

For a square-integrable probability measure µ with mean m and variance-covariance matrix

Γ, it is well known that the minimal (with respect to inclusion) affine subspace A such that
µ(A) = 1 is m + (ker Γ)⊥. Hence, the condition in (H1) holds if and only if m + (ker Γ)⊥

is not included in any hyperplane (or equivalently, if and only if Γ is non-degenerate or

dim(ker Γ) = 1 and m /∈ (ker Γ)⊥). Notice that in the case where m = 0, the assumption
(H1) is equivalent to ker Γ = {0}, i.e., Γ is non-degenerate.

As pointed out in the preceding section, our analysis of the decreasing rate of the non-

exit probability requires the existence of a minimum point for the Laplace transform Lµ

on the dual cone. Thus we shall impose the following technical condition:

(H2) There exists a point x∗ ∈ K∗ and an open neighborhood V of x∗ in R
d such that

Lµ(x) is finite for all x ∈ V , and x∗ is a minimum point of Lµ restricted to K∗∩V .

It is worth noting that we do not assume the existence of moments of µ. Hypothesis

(H2) implies the existence of these moments only in the case where x∗ = 0.
In view of applications, we will prove in Subsection 2.3 that for random walks with all

exponential moments (i.e., Lµ(x) is finite for all x ∈ R
d), the condition (H2) is equivalent

to the more geometric-flavoured condition:
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(H2’) The support of µ is not included in any half-space u− := {x ∈ R
d : 〈u, x〉 6 0}

with u ∈ K∗ \ {0}.

1.4. Main results. We are now in position to state our main result:

Theorem 1. Suppose µ satisfies (H1) and (H2). Then,

lim
n→∞

P
x
µ[τK > n]1/n = Lµ(x∗),

for all x ∈ Kδ, for some constant δ > 0.

For a large class of random walks and cones, Theorem 1 gives the universal recipe
to compute the exponential decay of the non-exit probability. Notice that the latter is

independent of the starting point x. This is not the case when (H2) is not satisfied and we
shall illustrate this phenomenon in Section 4, with the walks in the quarter-plane having
transition probabilities as in Figure 1.

Let us point out that, in general, there is no explicit link between the position of the
drift m of the random walk (if it exists), the position of x∗ and the value Lµ(x∗) of the
decreasing rate, except in the case where m belongs to the cone K. As shown in the next

lemma, the fact that m ∈ K is a necessary and sufficient condition for having Lµ(x∗) = 1
(i.e., a non-exponential decay of the non-exit probability).

Lemma 2. Assume (H1) and (H2). Then Lµ(x∗) = 1 if and only if x∗ = 0. In addition,

if the drift m =
∫
Rd yµ(dy) exists (i.e., if µ admits a moment of order 1), then m belongs

to K if and only if x∗ = 0.

Theorem 1 in itself does not provide any explicit value for the constant δ, but such a
value can be found a posteriori thanks to the following:

Proposition 3. The statement in Theorem 1 holds for any δ > 0 for which there exists
n0 > 1 such that

P
0
µ[τK−δ

> n0, Sn0
∈ Ko] > 0.

Proofs of Theorem 1, Lemma 2 and Proposition 3 are postponed to Subsection 2.2.
In order to illustrate Theorem 1, it is interesting to compare its content with the

corresponding result known for Brownian motion with drift, in the light of the recent
paper [17]. It is proved there that, for Brownian motion (Bt)t>0 with drift a ∈ R

d, the
non-exit probability admits the asymptotics (in the continuous case, the exit time from

K is defined by τK := inf{t > 0 : Bt /∈ K})

(7) P
x[τK > t] = κh(x)t−αe−γt(1 + o(1)), t → ∞,

where γ := d(a,K)2/2. Therefore

lim
t→∞

P
x[τK > t]1/t = e−d(a,K)2/2.

Let us compare with the value given by Theorem 1 for the random walk (Bn)n>0. Its
distribution µ is Gaussian with mean a and identity variance-covariance matrix; therefore

Lµ(x) = e|x|
2/2+〈x,a〉.
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Figure 1. Random walks considered in Section 4 (p + 2q = 1, p, q > 0),

for different starting points x

The minimum on K∗ of |x|2/2 + 〈x, a〉 is obviously the minimum on the polar cone

K♯ = −K∗ of

|x|2/2 − 〈x, a〉 = |x− a|2/2 − |a|2/2.

It is reached at x = p⊥
K♯(a), the orthogonal projection of a on K♯, and an easy computation

shows that the minimum value is

|p⊥K♯(a) − a|2/2 − |a|2/2 = −|a− p⊥K(a)|2/2 = −d(a,K)2/2,

where we have used Moreau’s decomposition theorem which asserts that, for any convex
cone K, a is the orthogonal sum of p⊥K(a) and p⊥

K♯(a). We thus have

min
K∗

Lµ = e−d(a,K)2/2,

which means that the exponential decreasing rate is the same for Brownian motion (Bt)t>0

and for the “sampled” Brownian motion (Bn)n>0, as one could expect.

1.5. Plan of the paper. The rest of our article is organized as follows: In Section 2 we

prove Theorem 1. In Section 3 we present an important consequence of Theorem 1 in
the counting of walks in orthants (a topical domain in enumerative combinatorics), see
Corollaries 8 and 9. In Section 4 we consider the walks of Figure 1, for which we prove that
contrary to the walks satisfying hypothesis (H2), the exponential decay depends on the

starting point x. Finally, in Section 5 we prove the non-exponential decay of the non-exit
probability for random walks with drift in the cone (a refinement of a theorem of [16]),
which is needed for proving our main result.

2. Proof of the main results

This section is organized as follows: In Subsection 2.1, we review some elementary

properties of the Laplace transform and present Cramér’s formula. Then, we prove
Theorem 1, Lemma 2 and Proposition 3 in Subsection 2.2. In Subsection 2.3 we provide
a geometric interpretation of our main assumption on the random walk distribution.

2.1. Cramér’s formula. The Laplace transform of a probability distribution µ is the
function Lµ defined for x ∈ R

d by

Lµ(x) :=

∫

Rd

e〈x,y〉µ(dy).
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It is clearly a convex function. If Lµ is finite in a neighborhood of the origin, say B(0, r),

then it is well known that Lµ is (infinitely) differentiable in B(0, r), and that its partial
derivatives are given by

∂Lµ(x)

∂xi
=

∫

Rd

yie
〈x,y〉µ(dy), ∀i ∈ J1, dK.

Therefore, the expectation of µ is equal to the gradient of Lµ at the origin: E[µ] = ∇Lµ(0).
Notice that µ is centered if and only if 0 is a critical point of Lµ.

Suppose now that z is a point where Lµ is finite, and let µz denote the probability
measure defined by

(8) µz(dy) :=
e〈z,y〉

Lµ(z)
µ(dy).

The Laplace transform of µz is related to that of µ by the formula

Lµz(x) =
Lµ(z + x)

Lµ(z)
.

If in addition Lµ is finite in some ball B(z, r), then Lµz is finite in B(0, r). By consequence,
Lµz is differentiable in B(0, r) and

E[µz] = ∇Lµz(0) =
∇Lµ(z)

Lµ(z)
.

The distribution of the random walk under Pµz is linked to the initial distribution by
the following:

Lemma 4 (Cramér’s formula). For any measurable and positive function F : Rn → R,
we have

E
x
µ[F (S1, . . . , Sn)] = Lµ(z)ne〈z,x〉Ex

µz
[e−〈z,Sn〉F (S1, . . . , Sn)].

Proof. It follows directly from the definition (8) of µz that

µ⊗n(dy1, . . . ,dyn) = Lµ(z)ne−〈z,∑n
i=1

yi〉µ⊗n
z (dy1, . . . ,dyn).

The conclusion is then straightforward. �

Applied to the function F (s1, . . . , sn) = Πn
i=11K(si), Cramér’s formula reads

P
x
µ[τK > n] = Lµ(z)ne〈z,x〉Ex

µz
[e−〈z,Sn〉, τK > n],

and this implies that for all x ∈ R
d,

(9) lim sup
n→∞

P
x
µ[τK > n]1/n 6 inf

K∗
Lµ,

as already observed at the end of Subsection 1.2.
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2.2. Proofs of Theorem 1, Lemma 2 and Proposition 3. In order to obtain the
lower bound for the non-exit probability, we shall use Cramér’s formula at z = x∗. The

following lemma gives some useful information on the position of the drift of the random
walk under the measure changed at x∗.

Lemma 5. Suppose µ satisfies (H1) and (H2). Then, the gradient ∇Lµ(x∗) belongs to K

and is orthogonal to x∗.

Proof. We first notice that under (H2), the Laplace transform is finite, hence differentiable,

in some neighborhood of x∗. It is well known that the equality (K∗)∗ = K holds for any
closed convex cone, see [21, Theorem 14.1]. Hence ∇Lµ(x∗) belongs to K if and only if

〈∇Lµ(x∗), y〉 > 0, ∀y ∈ K∗.

So, let y ∈ K∗. Since K∗ is a convex cone and x∗ ∈ K∗, x∗ + ty also belongs to K∗ for all

t > 0. Hence, thanks to (H2), the function

t ∈ [0,∞) 7→ fy(t) := Lµ(x∗ + ty)

is differentiable in some neighborhood of t = 0 and reaches its minimum at t = 0. This
implies

〈∇Lµ(x∗), y〉 = f ′
y(0) > 0.

Now, if we take y = x∗, we have a stronger result since x∗ + tx∗ = (1 + t)x∗ belongs to K∗

for all t > −1: the function fx∗ is differentiable in some open neighborhood of t = 0 and
has a local minimum point on [−1,∞) at t = 0, hence

〈∇Lµ(x∗), x∗〉 = f ′
x∗(0) = 0.

The proof is completed. �

We are now in position to conclude the proof of Theorem 1.

Proof of Theorem 1. As already observed, Lµ(x∗) is an upper bound for the exponential
decreasing rate

lim sup
n→∞

P
x
µ[τK > n]1/n,

and it remains to prove that it is also the right lower bound. By performing the Cramér
transformation at x∗, we get

P
x
µ[τK > n] = ρne〈x

∗,x〉
E
x
µ∗

[e−〈x∗,Sn〉, τK > n]

> ρne〈x
∗,x〉e−α

√
n
P
x
µ∗

[|〈x∗, Sn〉| 6 α
√
n, τK > n],

where ρ = Lµ(x∗), µ∗(dy) = ρ−1e〈x
∗,y〉µ(dy), and α is any positive number. Notice that

µ∗ is truly d-dimensional, because µ has this property and both measures have the same
support. Note also that by assumption (H2), Lµ∗

(x) = ρ−1Lµ(x∗ + x) is finite in some
neighborhood of x = 0, and therefore µ∗ has all moments. Since the new drift

E[µ∗] = m∗ = ρ−1∇Lµ(x∗)
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belongs to K and is orthogonal to x∗ (by Lemma 5), it follows from Proposition 12 in
Section 5 that there exist α > 0 and δ > 0 such that

lim
n→∞

P
x
µ∗

[|〈x∗, Sn〉| 6 α
√
n, τK > n]1/n = 1, ∀x ∈ Kδ.

Hence, we reach the conclusion that

lim inf
n→∞

P
x
µ[τK > n]1/n > ρ

for all x ∈ Kδ , and the theorem is proved. �

We now give the proof of Lemma 2, which provides a necessary and sufficient condition

for having Lµ(x∗) = 1.

Proof of Lemma 2. Assume that Lµ(x∗) = 1 and at the same time x∗ 6= 0. It is well known
that Lµ is then finite on [0, x∗], thus strictly convex on that segment (see Subsection 2.3).
Since Lµ(0) = Lµ(x∗) = 1 it follows that Lµ(x) < 1 for all x ∈ (0, x∗). But this open
interval is a subset of K∗, hence this contradicts the hypothesis (H2) asserting that x∗ is

a local minimum point on K∗. Conversely, that x∗ = 0 implies Lµ(x∗) = 1 is trivial.
We now turn to the second part of the lemma. First, we know from Lemma 5 that

∇Lµ(x∗) belongs to K. So, if x∗ = 0, then m = ∇Lµ(0) belongs to K (here we do not need

to assume the existence of m: it exists because (H2) at x∗ = 0 ensures that Lµ is infinitely
differentiable in some neighborhood of 0, and therefore µ has all moments). Conversely,
assume that m exists and belongs to K and suppose that x∗ 6= 0. Consider the function

g(t) = Lµ(tx∗), which is finite on [0, 1]. Under the assumption
∫
|y|µ(dy) < ∞, it follows

by standard arguments that g(t) has a right derivative at t = 0 given by g′(0+) = 〈x∗,m〉.
Since m belongs to K and x∗ to K∗, this derivative is non-negative. So, g(t) must be

increasing since it is strictly convex. Thus Lµ(tx∗) = g(t) < g(1) = Lµ(x∗) for all t ∈ [0, 1),
and x∗ cannot be a local minimum. �

To conclude this section, we explain how to find a δ > 0 for which the statement of
Theorem 1 holds.

Proof of Proposition 3. Recall that v ∈ Ko is fixed and Kδ = K + δv. We assume that
there exist δ > 0 and k > 1 such that

P
0
µ[τK−δ

> k, Sk ∈ Ko] > 0.

Therefore, we can find ǫ > 0 such that

P
0
µ[τK−δ

> k, Sk ∈ Kǫ] = γ > 0,

and since K is a convex cone, it satisfies the relation K + K ⊂ K, thus

P
x
µ[τK > k, Sk − x ∈ Kǫ] > γ,

for all x ∈ Kδ (by inclusion of events). From this, we shall deduce by induction that

(10) pℓ := P
x
µ[τK > ℓk, Sℓk − x ∈ Kℓǫ] > γℓ,
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for all ℓ > 1 and x ∈ Kδ. Indeed, by the Markov property of the random walk,

pℓ+1 > E
x
µ[τK > ℓk, Sℓk − x ∈ Kℓǫ,P

Sℓk
µ [τK > k, Sk − x ∈ K(ℓ+1)ǫ]]

> pℓ · inf
y
P
y
µ[τK > k, Sk − x ∈ K(ℓ+1)ǫ],

where the infimum is taken over all y ∈ K such that y−x ∈ Kℓǫ. Noting that y−x ∈ Kℓǫ

and Sk − y ∈ Kǫ imply Sk − x ∈ K(ℓ+1)ǫ, we obtain

pℓ+1 > pℓ · inf
y
P
y
µ[τK > k, Sk − y ∈ Kǫ].

But x ∈ Kδ and y − x ∈ Kℓǫ ⊂ K imply y ∈ Kδ. Hence pℓ+1 > pℓ · γ and (10) is proved.
Now Theorem 1 asserts the existence of some δ0 > 0 such that

lim
n→∞

P
y
µ[τK > n]1/n = Lµ(x∗),

for all y ∈ Kδ0 , and we want to prove that the result also holds for x ∈ Kδ. To do this,

we shall simply use (10) in order to push the walk from Kδ to Kδ0 . More precisely, choose
ℓ > 1 such that δ + ℓǫ > δ0. Then for all x ∈ Kδ the inclusion x + Kℓǫ ⊂ Kδ0 holds, and
thanks to (10),

P
x
µ[τK > m,Sm ∈ Kδ0 ] > γℓ,

for m = kℓ. By the Markov property, for all n > m, we have

P
x
µ[τK > n] > E

x
µ[τK > m,Sm ∈ Kδ0 ,P

Sm
µ [τK > n−m]]

> γℓ · inf
y∈Kδ0

P
y
µ[τK > n−m]

> γℓ · Pδ0v
µ [τK > n−m],

where the last inequality follows by inclusion of events. This implies immediately

lim inf
n→∞

P
x
µ[τK > n]1/n > Lµ(x∗).

But since the inequality

lim sup
n→∞

P
x
µ[τK > n]1/n 6 Lµ(x∗)

holds for all x (see (9)), Proposition 3 is proved. �

2.3. Geometric interpretation of condition (H2). The aim of this subsection is to
give a geometric interpretation of condition (H2) under some additional condition on the

exponential moments. Throughout this section, we fix a closed convex cone C and assume
that µ has all C-exponential moments, that is,

Lµ(x) < ∞, ∀x ∈ C.

The strict convexity of the exponential function ensures that

(11) Lµ(ax1 + bx2) 6 aLµ(x1) + bLµ(x2),

for all x1 6= x2 ∈ C and a, b > 0 with a + b = 1, and that equality occurs if and only if

µ((x1 − x2)⊥) = 1,

where (x1 − x2)
⊥ denotes the hyperplane orthogonal to x1 − x2. Thus, if (H1) is satisfied,

the equality in (11) never occurs and Lµ is strictly convex on C.
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Let S
d−1 denote the unit sphere of Rd. Standard arguments involving the convexity of

Lµ and the compactness of C∩S
d−1 show that Lµ(x) goes to infinity as |x| → ∞ uniformly

on C if and only if

(12) lim
t→∞

Lµ(tu) = ∞, ∀u ∈ C ∩ S
d−1.

Hence, the condition (12) is sufficient for the existence of a global minimum on C. Indeed,
if it is satisfied, then there exists R > 0 such that Lµ(x) > 1 for all x ∈ C with |x| > R.

By continuity, Lµ reaches a minimum on B(0, R)∩C which is less than or equal to 1 (since
Lµ(0) = 1), thus it is a global minimum on C.

The next lemma gives some interesting information on the behavior at infinity of Lµ.

Recall that u− denotes the half-space {y ∈ R
d : 〈u, y〉 6 0}.

Lemma 6. Suppose that µ has all C-exponential moments. For every u ∈ C ∩ S
d−1, the

following dichotomy holds:

(1) If µ(u−) < 1, then

lim
t→∞

Lµ(x + tu) = ∞, ∀x ∈ C.

(2) If µ(u−) = 1, then

lim
t→∞

Lµ(x + tu) =

∫

u⊥

e〈x,y〉µ(dy), ∀x ∈ C.

Proof. If µ(u−) < 1, then we can find ǫ > 0 such that the set {y ∈ R
d : 〈u, y〉 > ǫ} has

positive measure, and the inequality

Lµ(x + tu) >

∫

{y∈Rd:〈u,y〉>ǫ}
e〈x,y〉etǫµ(dy) > cetǫ,

proves the first assertion of Lemma 6. Suppose now on the contrary that µ(u−) = 1. We

then may write

Lµ(x + tu) =

∫

u⊥

e〈x,y〉µ(dy) +

∫

{y∈Rd:〈u,y〉<0}
e〈x+tu,y〉µ(dy).

The second integral on the right-hand side of the above equation goes to zero as t goes

to infinity by the dominated convergence theorem, thus proving the second assertion of
Lemma 6. �

Lemma 7. Suppose that µ satisfies (H1) and has all C-exponential moments. Then the

Laplace transform Lµ has a global minimum on the closed convex cone C if and only if
there does not exist any u 6= 0 in C such that µ(u−) = 1.

Proof. If µ(u−) < 1 for all u 6= 0 in C, then limt→∞ Lµ(tu) = ∞ by Lemma 6, and
the function Lµ has a global minimum on C as explained earlier. Now, suppose on the
contrary that µ(u−) = 1 for some u 6= 0 in C. Then, by Lemma 6 again, the limit

h(x) := lim
t→∞

Lµ(x + tu)
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exists and is finite for all x. Since any convex cone is a semi-group, x + tu ∈ C for all
x ∈ C and t > 0, and consequently

h(x) > inf
C

Lµ, ∀x ∈ C.

But our assumption that µ satisfies (H1) implies that Lµ is strictly convex, so that
Lµ(x) > h(x) for all x ∈ C (for else the strictly convex function t 7→ Lµ(x + tu) on
[0,∞) would not have a finite limit). We thus reach the conclusion that Lµ(x) > infC Lµ

for all x ∈ C, thereby proving that Lµ has no global minimum on C. �

For random walks with all exponential moments, the equivalence between conditions

(H2) and (H2’) under (H1) is now an easy consequence of Lemma 7.

3. Application to lattice path enumeration

In this section we present an application of our main result (Theorem 1) in enumerative
combinatorics: Given a finite set S of allowed steps, a now classical problem is to study
S-walks in the orthant

Q := (R+)d = {x ∈ R
d : xi > 0,∀i ∈ J1, dK},

that is walks confined to Q, starting at a fixed point x (often the origin) and using steps
in S only. Denote by fS(x, y;n) the number of such walks that end at y and use exactly

n steps. Many properties of the counting numbers fS(x, y;n) have been recently analyzed
(the seminal work in this area is [6]). First, exact properties of them were derived, via the
study of their generating function (exact expression and algebraic nature). Such properties

are now well established for the case of small steps walks in the quarter-plane, meaning
that the step set S is included in {0,±1}2. More qualitative properties of the fS(x, y;n)
were also investigated, such as the asymptotic behavior, as n → ∞, of the number of

excursions fS(x, y;n) for fixed y, or that of the total number of walks,

(13) fS(x;n) :=
∑

y∈Q
fS(x, y;n).

Concerning the excursions, several small steps cases have been treated by Bousquet-Mélou
and Mishna [6] and by Fayolle and Raschel [15]. Later on, Denisov and Wachtel [9]
obtained the very precise asymptotics of the excursions, for a quite large class of step sets

and cones. As for the total number of walks (13), only very particular cases are solved, see
again [6, 15]. In a most recent work [19], Johnson, Mishna and Yeats obtained an upper
bound for the exponential growth constant, namely,

lim sup
n→∞

fS(x;n)1/n,

and proved by comparison with results of [15] that these bounds are tight for all small

steps models in the quarter-plane. In the present article, we find the exponential growth
constant of the total number of walks (13) in any dimension for any model such that:

(H1”) The step set S is not included in a linear hyperplane;

(H2”) The step set S is not included in a half-space u−, with u ∈ Q \ {0}.
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Our results provide the first unified treatment of this problem of determining the growth
constant for the number of lattice paths confined to the positive orthant. In the sequel we

shall say that a step set S is proper if it satisfies to (H1”) and (H2”). Note in particular
that the well-known 79 models of walks in the quarter-plane studied in [6, 15] (including
the so-called 5 singular walks) satisfy both hypotheses above.

Corollary 8. Let S be any proper step set. The Laplace transform of S,

LS(x) :=
∑

s∈S
e〈x,s〉,

reaches a global minimum on Q at a unique point x0, and there exists δ > 0 such that for
any starting point x ∈ Qδ,

lim
n→∞

fS(x;n)1/n = LS(x0).

Suppose that in addition:

(H3”) The step set allows a path staying in Q from the origin to some point in the interior
of Q.

Then it follows from Proposition 3 that the result in Corollary 8 holds with δ = 0, i.e., it

is valid for all x ∈ Q. Note that this assumption is not restrictive from a combinatorial
point of view, since if (H3”) is not satisfied, the counting problem is obvious.

Proof of Corollary 8. Consider a random walk (Sn)n>0 starting from x such that µ is the
uniform law on S. Let then τQ denote the first exit time from Q. The enumeration
problem is related to probabilities in a simple way:

(14) P
x
µ[τQ > n] =

fS(x;n)

|S|n .

Further, it is immediate from our definitions that LS(x) = |S|Lµ(x). Corollary 8 then

follows from Theorem 1 and from the fact that Q∗ = Q. �

As a consequence, we obtain the following result, which was conjectured in [19]:

Corollary 9. Let S ⊂ Z
d be a proper step set (hypotheses (H1”) and (H2”)), which

additionally satisfies (H3”), and let KS be the growth constant for the total number of
walks (13). Let P be the set of hyperplanes through the origin in R

d which do not meet

the interior of the first orthant. Given p ∈ P, let KS(p) be the growth constant of the
walks on S which are restricted to the side of p which includes the first orthant. Then
KS = minp∈P KS(p).

Proof. Let us first notice that P can be described as the set of hyperplanes u⊥ such that

u ∈ Q ∩ S
d−1, and that the side of p = u⊥ which includes the first orthant is then the

half-space u+ = {x ∈ R
d : 〈x, u〉 > 0}. By Theorem 1, the exponential rate for the random

walk associated to the step set S and confined to u+ is the minimum of LS/|S| on the dual

cone (u+)∗ = {tu : t > 0}. Therefore, the growth constant KS(p) equals mint>0 LS(tu),
and the equality

min
x∈Q

LS(x) = min
u∈Q∩Sd−1

min
t>0

LS(tu)
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Figure 2. Random walks considered in the proof of Proposition 10 on the

lines {(i, j) ∈ Q : i + j = 2N} for N > 0

immediately translates into

KS = min
p∈P

KS(p).

The proof of Corollary 9 is completed. �

4. An example of half-space walks

In this section we illustrate the following phenomenon: If the support of the random
walk is included in a certain half-space (chosen so as contradicting (H2)), such a universal
result as Theorem 1 does not hold; in particular, the exponential decay of the non-exit

probability may depend on the starting point.
Let (Sn)n>0 be the random walk on Q starting at x and with transition probabilities to

(1,−1), (−1, 1) and (−1,−1), with respective probabilities q, q and p, where p + 2q = 1

and p, q > 0, see Figures 1 and 2. Let τQ be the exit time (1) of this random walk from the
quarter-plane Q. Finally, define for fixed N the segment D2N = {(i, j) ∈ Q : i+ j = 2N}.

Proposition 10. For any N > 1 and any x ∈ D2N , we have

(15) lim
n→∞

P
x[τQ > n]1/n = 2q cos

(
π

2N + 2

)
.

We shall need the following result on the simple symmetric random walk on Z (the
proof can be easily derived from the identities in [22, page 243]):

Lemma 11 ([22]). For the simple symmetric random walk (S̃n)n>0 on Z (with jumps to
the left and to the right with equal probabilities 1/2), we have, for any x ∈ J0, 2NK,

lim
n→∞

P
x[S̃1, . . . , S̃n ∈ J0, 2NK]1/n = cos

(
π

2N + 2

)
.

Proof of Proposition 10. We shall prove Proposition 10 by induction over N > 1. For
N = 1, we have three choices for x (see Figure 2). We write the proof when x = (1, 1),
since the arguments for other values of x are quite similar. For this choice of x, the origin

(0, 0) can be reached only at odd times n, and in that event, the random walk gets out of
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Q at time n + 1. From this simple remark we deduce that (below, we note (Xk)k>1 the
increments of the random walk (Sn)n>0)

P
x[τQ > 2n] = P

x[τQ > 2n,Xk 6= (−1,−1),∀k ∈ J1, nK]

= P
x[τQ > 2n|Xk 6= (−1,−1),∀k ∈ J1, nK](2q)n.

Further, the random walk conditioned on never making the jump (−1,−1) is a simple

symmetric random walk on the segment D2. Therefore,

P
x[τQ > 2n] = P

1[S̃1, . . . , S̃n ∈ J0, 2K](2q)2n.

Using Lemma 11, we conclude that for x = (1, 1),

lim
n→∞

P
x[τQ > 2n]1/(2n) = 2q cos

(π
4

)
.

The fact that P
x[τ > n] is decreasing in n implies that the above equation holds with

2n + 1 instead of 2n. This achieves the proof of Proposition 10 for N = 1.
Let us now assume that equation (15) holds for a fixed value of N > 1. For x ∈ D2N+2,

introduce

H := inf{n > 0 : Sn ∈ D2N}
the hitting time of the set D2N , see Figure 2. We can write

(16) P
x[τQ > n] = P

x[τQ > n,H > n] +

n∑

k=1

P
x[τQ > n,H = k].

The first term in the right-hand side of (16) can be written as

P
x[τQ > n,H > n] = P

x[τQ > n|H > n](2q)n,

where (for the same reasons as for the case N = 1)

lim
n→∞

P
x[τQ > n|H > n]1/n = cos

(
π

2N + 4

)
.

As for the second term in the right-hand side of (16),

P
x[τQ > n,H = k] = E

x[τQ > k,H = k,PSk [τQ > n− k]]

6 C · Px[τQ > k,H = k]Px0 [τQ > n− k]

6 C · Px[τQ > k − 1,H > k − 1]Px0 [τQ > n− k]

:= Cakbn−k.

The first equality above comes from the strong Markov property. The first inequality
follows from the fact that for any fixed x0 ∈ D2N , there exists a constant C > 0 such that,
for any n > 0 and any y ∈ D2N , Py[τQ > n] 6 CP

x0 [τQ > n]. The second inequality is

obvious, and the last line has to be read as a definition.
Using on the one hand the same reasoning as for the case N = 1, and on the other hand

the induction hypothesis, we obtain

lim
n→∞

a1/nn = 2q cos

(
π

2N + 4

)
> 2q cos

(
π

2N + 2

)
= lim

n→∞
b1/nn .
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Standard properties of the Cauchy product then lead to

lim sup
n→∞

(
n∑

k=1

akbn−k

)1/n

6 2q cos

(
π

2N + 4

)
.

To summarize, with the help of (16) we have written P
x[τQ > n] = An + Bn, where

lim
n→∞

A1/n
n = 2q cos

(
π

2N + 4

)
, lim sup

n→∞
B1/n

n 6 2q cos

(
π

2N + 4

)
.

The formula (15) therefore holds for N + 1, and Proposition 10 is proved. �

5. The case of random walks with drift in the cone

In this section we refine a result announced in [16] concerning the non-exponential
decay of the non-exit probability (2) from a cone for a centered, square-integrable and

non-degenerate multidimensional random walk. We prove that the result in [16] still holds
if the random walk has a drift in the cone and if the hypothesis that its variance-covariance
matrix is non-degenerate is weakened to (H1). This result is one of the main ingredients

of the proof of Theorem 1. We would like to notice that the proof of (a weakened form of)
Proposition 12 below was only sketched in [16], so that the extended proof we shall give
here is new.

As before, we only assume that K is a closed convex cone with non-empty interior Ko.
We fix some v ∈ Ko and define Kδ = K + δv. In this setting, we shall prove the following:

Proposition 12. Assume that the distribution µ of the random walk increments is square-
integrable and truly d-dimensional (H1). Suppose in addition that the drift m = E

0[S1]
belongs to the cone K and that v is a vector orthogonal to m. Then there exists α > 0 and

δ > 0 such that, for all x ∈ Kδ,

lim
n→∞

P
x[τK > n, |〈v, Sn〉| 6 α

√
n]1/n = 1.

If m = 0, as we have already explained, (H1) is equivalent to the fact that the variance-
covariance matrix of the increments distribution is non-degenerate. Hence, we exactly
recover [16, Theorem]. However, if m 6= 0, Proposition 12 can not be derived from [16,

Theorem]. Indeed, under the hypothesis of Theorem 12, it is clear that

P
x[τK > n, |〈v, Sn〉| 6 α

√
n] > P

x[τK(S̃) > n, |〈v, S̃n〉| 6 α
√
n],

where (S̃n = Sn − nm)n>0 is the centered random walk associated with (Sn)n>0. But

the variance-covariance matrix of S̃1 is equal to that of S1 and might be degenerate, so

that [16, Theorem] would not apply to the walk (S̃n)n>0. This is for example the case when
(Sn)n>0 is the uniform two-dimensional random walk with step set S = {(0, 1), (1, 0)}.

In order to prove Theorem 12, we will need a series of lemmas. We begin with some
geometric considerations.

Lemma 13. Let m be a point in K and V be a linear subspace of Rd. If (m+V )∩Ko = ∅,
then m + V is included in a hyperplane.
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Proof. Clearly, dimV < d, for else m + V = R
d would intersect Ko. Since m + V is

included in the linear subspace generated by m and V , whose dimension is less or equal

to dimV + 1, the affine space m + V is always included in a hyperplane if dimV < d− 1.
Thus, it remains to consider the case where V is a hyperplane, that is,

V = u⊥ = {x ∈ R
d : 〈u, x〉 = 0}

for some u 6= 0. Assume m /∈ V . Possibly changing u to −u, we can assume in addition

that 〈m,u〉 > 0. Then,
⋃

λ>0

(λm + V ) =
⋃

λ>0

(λu + V ) = {x ∈ R
d : 〈u, x〉 > 0} =: u+∗ .

Further, by homogeneity of V and Ko, we have (λm+V )∩Ko = ∅ for every λ > 0. Hence,
Ko does not intersect u+∗ , and is therefore included in u− = {x ∈ R

d : 〈u, x〉 6 0}. This is a

contradiction since m ∈ K = (Ko) (this equality holds for any convex set with non-empty

interior) and 〈m,u〉 > 0. Thus m belongs to V and m + V = V is a hyperplane. �

Lemma 14. Let Y ∈ R
d be a random vector with Gaussian distribution N (m,Γ). If m

belongs to K and if m + (ker Γ)⊥ is not included in a hyperplane, then

P[Y ∈ Ko] > 0.

Proof. It is well known that the Gaussian distribution N (m,Γ) admits a positive density
with respect to Lebesgue measure on the affine space m + (ker Γ)⊥. Thus, it suffices to
show that (m + (ker Γ)⊥) ∩Ko is a non-empty open set in m + (ker Γ)⊥. But this follows

from Lemma 13 since m + (ker Γ)⊥ is not contained in a hyperplane. �

Lemma 15. Under the hypotheses of Theorem 12, there exist k > 1 and δ > 0 such that

P[τK−δ
> k, Sk ∈ Ko] > 0.

Proof. For n > 1 define Zn := (Sn−nm)/
√
n. The homogeneity and convexity properties

of K ensure that

{Sn ∈ Ko} = {Zn ∈ Ko −√
nm} ⊃ {Zn ∈ Ko −m}

Let Γ denote the variance-covariance matrix of µ. We notice that m + (ker Γ)⊥ is
not included in a hyperplane since µ satisfies (H1). The central limit theorem asserts
that (Zn)n>1 converges in distribution to a random vector Y with Gaussian distribution

N (0,Γ). Hence, applying the Portmanteau theorem [5, Theorem 2.1], we obtain the
inequality

lim inf
n→∞

P[Sn ∈ Ko] > P[Y ∈ Ko −m],

where the right-hand side is positive according to Lemma 14. Now, to conclude it suffices

to fix k so that P[Sk ∈ Ko] = 2ǫ > 0, and then choose δ so large that P[τK−δ
> k] > 1 − ǫ

(this is possible since K−δ ↑ R
d as δ ↑ ∞). �

Proof of Theorem 12. The proof follows the same kind of arguments as in [16]. We shall
first use Lemma 15 in order to push the random walk inside the cone at a distance

√
n

from the boundary, and then apply the functional central limit theorem.
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Recall that v ∈ Ko is fixed and that Kδ = K + δv. We know by Lemma 15 that there
exist δ > 0 and k > 1 such that

P[τK−δ
> k, Sk ∈ Ko] > 0.

Therefore, we can find a closed ball B := B(z, ǫ) ⊂ Ko, with center at z ∈ Ko and radius
ǫ > 0, such that

P[τK−δ
> k, Sk ∈ B] = γ > 0.

Since K is a convex cone, it satisfies the relation K + K ⊂ K, thus

P
x[τK > k, Sk − x ∈ B] > γ,

for all x ∈ Kδ (by inclusion of events). From this, we shall deduce by induction that

(17) pℓ := P
x[τK > ℓk, Sℓk − x ∈ ℓB] > γℓ,

for all ℓ > 1 and x ∈ Kδ. Indeed, by the Markov property of the random walk,

pℓ+1 > E
x[τK > ℓk, Sℓk − x ∈ ℓB,PSℓk [τK > k, Sk − x ∈ (ℓ + 1)B]]

> pℓ · inf
{y∈K:y−x∈ℓB}

P
y[τK > k, Sk − x ∈ (ℓ + 1)B].

Noticing that y − x ∈ ℓB and Sk − y ∈ B yields Sk − x ∈ (ℓ + 1)B, we obtain

pℓ+1 > pℓ · inf
{y∈K:y−x∈ℓB}

P
y[τK > k, Sk − y ∈ B].

But x ∈ Kδ and y − x ∈ ℓB ⊂ K imply y ∈ Kδ. Hence pℓ+1 > pℓ · γ and (17) is proved.
Now, for x ∈ Kδ, define

p̃n := P
x[τK > n, |〈v, Sn〉| 6 α

√
n],

where α > 0 will be fixed latter. Write ℓ = ⌊√n⌋ for the lower integer part of
√
n. Using

the Markov property at time ℓk and the estimate in (17) leads to

p̃n > P
x[τK > n,Sℓk − x ∈ ℓB, |〈v, Sn〉| 6 α

√
n]

> E
x[τK > ℓk, Sℓk − x ∈ ℓB,PSℓk [τK > n− ℓk, |〈v, Sn−ℓk〉| 6 α

√
n]]

> γℓ · inf
{y∈K:y−x∈ℓB}

P
y[τK > n− ℓk, |〈v, Sn−ℓk〉| 6 α

√
n].

Therefore, Proposition 12 will follow from the fact that

lim inf
n→∞

inf
{y∈K:y−x∈ℓB}

P
y[τK > n− ℓk, |〈v, Sn−ℓk〉| 6 α

√
n] > 0,

which we shall prove now. Since ℓk ≪ n does not play any significant role in the last
probability, we will neglect it in order to simplify notations. Also, for any ǫ′ > ǫ, we have

x + ℓB = ℓ
(x
ℓ

+ B(z, ǫ)
)
⊂ ℓB(z, ǫ′)

for all large enough n. Since an ǫ′ > ǫ can be found so that B(z, ǫ′) ⊂ Ko, we may replace

x + ℓB by ℓB without loss of generality. Finally, since ℓ 6
√
n, we may replace ℓB by√

nB. With these simplifications, it remains to consider

qn := inf
{y∈K:y∈√nB}

P
y[τK > n, |〈v, Sn〉| 6 α

√
n].



ON THE EXIT TIME FROM A CONE FOR RANDOM WALKS WITH DRIFT 19

By mapping y to y/
√
n, we may write

qn = inf
y∈B

qn(y),

where

qn(y) := P
0[τK(y

√
n + S) > n, |〈v, y√n + Sn〉| 6 α

√
n].

Let S̃ = (S̃n = Sn−nm)n>0 denote the centered random walk associated with S = (Sn)n>0.
By inclusion of events we get the lower bound

qn(y) > P
0[τK(y

√
n + S̃) > n, |〈v, y√n + S̃n〉| 6 α

√
n],

where we used the fact that m ∈ K and 〈v,m〉 = 0. Finally, let us denote by Zn = (Zn(t))t
the random process with continuous paths that coincides with S̃k/

√
n for t = k/n and

which is linearly interpolated elsewhere. By definition of Zn and convexity of K, the last

inequality immediately rewrites

qn(y) > P
0[τK(y + Zn(t)) > 1, |〈v, y + Zn(1)〉| 6 α].

The functional central limit theorem ensures that Zn converges in distribution to a
Brownian motion (b(t))t with variance-covariance matrix Γ. Suppose that the sequence
(yn)n>0 converges to some y ∈ B. Then (yn + Zn)n>0 converges in distribution to y + b,

and it follows from the Portmanteau theorem that

(18) lim inf
n→∞

qn(yn) > P
0[τKo(y + b(t)) > 1, |〈v, y + b(1)〉| < α].

Now, it is time to choose α. To do this, first recall that B = B(z, ǫ) ⊂ Ko. Choose η > ǫ

so that B(z, η) ⊂ Ko and set (notice that we could have done this at the very beginning
of the proof)

α = |v|(|z| + η).

If |b(t)| < η−ǫ for all t ∈ [0, 1], then y+b(t) ∈ B(z, η) ⊂ Ko for all t ∈ [0, 1]. Furthermore,

|〈v, y + b(1)〉| 6 |v|(|y| + |b(1)|) < |v|(|z| + ǫ + η − ǫ) = α.

Therefore, the probability in (18) is bounded from below by the probability

P

[
max
t∈[0,1]

|b(t)| < η − ǫ

]

that the Brownian motion (b(t))t stays near the origin for all t ∈ [0, 1], and this event
happens with positive probability, regardless Γ be positive definite or not.

To summarize, we have proved that

lim inf
n→∞

qn(yn) > 0,

for any sequence (yn)n>0 ∈ B that converges to some y. Thus, by standard compactness
arguments, we reach the conclusion that

lim inf
n→∞

qn = lim inf
n→∞

inf
y∈B

qn(y) > 0,

and Proposition 12 is proved. �
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