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Abstract: Graph edit distance is an error tolerant matching technique emerged as a powerful and flexible graph matching
paradigm that can be used to address different tasks in pattern recognition, machine learning and data mining; it
represents the minimum-cost sequence of basic edit operations to transform one graph into another by means
of insertion, deletion and substitution of vertices and/or edges. A widely used method for exact graph edit
distance computation is based on the A* algorithm. To overcome its high memory load while traversing the
search tree for storing pending solutions to be explored, we propose a depth-first graph edit distance algorithm
which requires less memory and searching time. An evaluation of all possible solutions is performed without
explicitly enumerating them all. Candidates are discarded using an upper and lower bounds strategy. A
solid experimental study is proposed; experiments on a publicly available database empirically demonstrated
that our approach is better than the A* graph edit distance computation in terms of speed, accuracy and
classification rate.

1 INTRODUCTION

The comparison between two objects is a crucial
operation in Pattern Recognition (PR). Representing
objects by graphs turns the problem of object compar-
ison into a graph matching one where an evaluation of
structural and attributed similarity of two graphs have
to be found (Vento, 2015). The similarity evaluation,
called matching, is based on mapping similar vertices
and similar edges of the two involved graphs.

The matching problems are all NP-complete ex-
cept for graph isomorphism, for which it has not
yet been demonstrated if it belongs to NP or not
(Vento, 2015). The graph matching methods can be
divided into two broad categories: exact graph match-
ing and error-tolerant graph matching. Exact graph
matching addresses the problem of detecting identi-
cal (sub)structures of two graphs g1 and g2 and their
corresponding attributes. This category assumes the
existence of only noise-free objects while in reality
objects are usually affected by noise and distortion.
Consequently, researchers in the PR domain often
shed light on the other category, i.e., inexact graph
matching, for which error-tolerance can be easily in-
tegrated into the graph matching process.

In the context of attributed graphs, the problem
of error tolerant graph matching presents a higher

complexity than exact graph matching as it takes dis-
tortion and noise into account during the matching
process. Indeed, the exact algorithms dedicated to
solving error-tolerant graph matching are computa-
tionally complex (Vento, 2015); and (M. Neuhaus
and Bunke., 2006)). Consequently, lots of works
have been employed to approximately solve the error-
tolerant graph matching problem. Such methods are
often called heuristics or approximate methods. Ap-
proximate methods for the error-tolerant graph match-
ing problem have been investigated based on genetic
algorithm (Cross et al., 1997), probabilistic relaxation
(Christmas et al., 1995), EM algorithm (Andrew D.
J. Cross, 1998); (Finch et al., 1998) and neural net-
works (Kuner and Ueberreiter, 1988). The aforemen-
tioned techniques are expected to present a polyno-
mial run-time. However, they cannot ensure the qual-
ity of their solutions and are likely to output subopti-
mal solutions.

Another error tolerant matching approach is
achieved by a set of graph edit operations (e.g., node
insertion, node deletion, etc.). The cheapest sequence
of operations needed to transform one of the two
graphs into another is computed. This approach is
referred to in the literature as graph edit distance. In
this paper, we propose a novel graph edit distance al-
gorithm for PR problems. Our contribution is two-



fold: a depth-first graph edit distance algorithm and
the choice of meaningful optimization. This proposed
algorithm is supported by a solid experimental study.

The rest of the paper is organized as follows. Sec-
tion 2 is devoted to the presentation of some notations
and the state-of-the-art approaches for graph edit dis-
tance. Section 3 describes the phases of our approach
including a new tree search exploration and a pruning
strategy for exploring less number of nodes. Section
4 defines the protocol for our extensive experiments.
Section 5 presents the obtained results and provides
some key remarks. Finally, conclusions are drawn and
future perspectives are discussed in Section 6.

2 RELATED WORKS

In this section we first define our basic notations
and then introduce graph edit distance and its compu-
tation.

Definition 1. (Attributed Graph)
An attributed graph (AG) is represented by a four-
tuple, AG = (V,E,µ,ζ), such that:

• V is a set of vertices.
• E is a set of edges such as E ⊆V ×V .
• µ : V → LV is a vertex labeling function which as-

sociates label lV to vertex vi.
• ζ : E→ LE is an edge labeling function which as-

sociates label lE to edge ei.
• LV and LE are vertex and edge attributes sets,

respectively. These attributes can be given by
a set of integers L = {1;2;3}, a vector space
L = RN and/or a finite set of symbolic attributes
L = {x;y;z}, these sets can differ in their dimen-
sions.

Definition 1 allows to handle arbitrarily structured
graphs with unconstrained labeling functions. LV and
LE can be represented by numeric (e.g., 2D/3D points
and the distances between them) and/or symbolic at-
tributes (e.g., object Oi is on top of object O j).

2.1 Graph Edit Distance

Graph edit distance (GED) is a graph matching ap-
proach whose concept was first reported in (Sanfeliu
and Fu, 1983). The basic idea of GED is to find the
best set of transformations that can transform graph g1
into graph g2 by means of edit operations on graph g1.
The allowed operations are inserting, deleting and/or
substituting vertices and their corresponding edges.

Definition 2. (Graph Edit Distance)
Let g1 = (V1,E1,µ1,ζ1) and g2 = (V2,E2,µ2,ζ2) be

two graphs, the graph edit distance between g1 and g2
is defined as:

GED(g1,g2) = min
e1,··· ,ek∈γ(g1,g2)

k

∑
i=1

c(ei) (1)

Where c denotes the cost function measuring the
strength c(ei) of an edit operation ei and γ(g1,g2) de-
notes the set of edit paths transforming g1 into g2.

A standard set of edit operations is given by inser-
tions, deletions and substitutions of both vertices and
edges. We denote the substitution of two vertices u
and v by (u→ v), the deletion of node u by (u→ ε)
and the insertion of node v by (ε→ v). For edges (e.g.,
w and z), we use the same notations as vertices. An
example of an edit path between two graphs g1 and g2
is shown in Figure 1, the following operations have
been applied in order to transform g1 into g2: three
edge deletions, one node deletion, one node insertion,
one edge insertions and three node substitutions.

u->ϵ 
3 edge deletions 

u->ϵ 
Node deletion 

ϵ -> v 
Node insertion 

ϵ -> v 
Edge insertion 

g1 
g2 

Figure 1: Transforming g1 into g2 by means of edit opera-
tions. Note that vertices attributes are represented in differ-
ent gray scales.

Many fast heuristic methods have been proposed
in the literature such as (Christmas et al., 1995);
(Zeng et al., 2009); (Fankhauser et al., 2012); and
(Andreas Fischer, 2013). However, these heuristic
algorithms can only find unbounded suboptimal val-
ues. On the other hand, only few exact approaches
have been proposed to postpone the graph size restric-
tion (Tsai and Fu, 1979); (Justice and Hero, 2006);
and (Riesen et al., 2007). Lots of exact branch and
bound graph matching algorithms have been proposed
in the literature. However, to the best knowledge
of the authors, these works have not addressed the
GED problem and cannot be easily extended to solve
such a problem. For instance, a branch and bound
algorithm dedicated to solving GED was proposed in
(Tsai and Fu, 1979) but it was restricted to graphs that
are structurally isomorphic. Afterwards, this work
has been extended in (Tsai and Fu, 1983) that has
taken into account insertion and deletion of nodes and
edges. However, the proposed algorithm was devoted
to error-correcting subgraph isomorphism.

2.2 Exact Graph Edit Distance
Computation

A widely used method for exact GED computation
is based on the A* algorithm (Riesen et al., 2007),



this algorithm, referred to as A*GED, is considered
as a foundation work for solving GED. A*GED ex-
plores the space of all possible mappings between two
graphs by means of an ordered tree. Such a search
tree is constructed dynamically at run time by itera-
tively creating successor nodes linked by edges to the
currently considered node in the search tree.

Algorithm 1 Astar GED algorithm (A*GED)
Input: Non-empty attributed graphs g1 =
(V1,E1,µ1,v1) and g2 = (V2,E2,µ2,v2) where V1
= {u1, ...,u|v1|} and V2 = {u2, ...,u|v2|}
Output: A minimum cost edit path (pmin) from g1 to
g2 e.g., {u1→ v3, u2→ ε , ε→ v2}

1: OPEN←{φ}, pmin← φ

2: For each node w ∈V2, OPEN← OPEN∪{u1→
w}

3: OPEN← OPEN∪{u1→ ε}
4: while true do
5: pmin← argmin{g(p)+ lb(p)} s.t. p ∈ OPEN
6: OPEN← OPEN \ pmin
7: if pmin is a complete edit path then
8: Return pmin as a solution (i.e., the minimum

cost edit distance from g1 to g2)
9: else

10: Let pmin←{u1→ vi1, ...,uk→ vik}
11: if k < |V1| then
12: For each w ∈ V2 \ {vi1, ...,vik}, OPEN ←

OPEN∪{pmin∪{uk+1→ w}}
13: pnew← pmin∪{uk+1→ ε}
14: OPEN← OPEN∪{pnew}
15: else
16: pnew← pmin∪

⋃
w∈V 2\{vi1,...,vik}{ε→ w}

17: OPEN← OPEN∪{pnew}
18: end if
19: end if
20: end while

Algorithm 1 depicts the A*GED computation. In
order to determine the node which is used for further
expansion of the actual mapping in the next iteration,
a heuristic function added to the actual partial path
cost is usually used. Formally, for a node p in the
search tree, g(p) represents the cost of the partial edit
path accumulated so far, lb(p) denotes the estimated
costs from p to a leaf node, lb(p) must not underesti-
mate the remaining cost in order to guarantee the op-
timality of the final solution. Also, it should be done
in a faster way than the exact computation and return
a good approximation of the true future cost. The sum
g(p)+ lb(p) depicts the total cost assigned to an open
node in the search tree. Obviously, the partial edit
path p that minimizes g(p)+ lb(p) is chosen next for
further expansion. Note that the smaller the differ-

ence between lb and the real future cost, the fewer the
expanded nodes. The choice of lb is a crucial param-
eter and many lower bounds have been proposed in
the literature. To the best of the authors’ knowledge,
the best lower bound has been presented in (Riesen
and Bunke, 2009). In A*GED, lb(p) is computed us-
ing an assignment algorithm on unmapped vertices
and edges yet to estimate the future costs. This is
performed by an assignment algorithm (Riesen and
Bunke, 2009) whose complexity is O(max{n1,n2}3).
The estimated cost certainly constitutes a lower bound
of the optimal cost as this bound represents an invalid
way to edit the remaining part of g1 into the remaining
part of g2.

2.3 Deadlocks to be Released

A*GED is a best-first search algorithm and so the list
of candidate solutions, called OPEN, grows quickly.
Such a fact leads to high memory consumption and
thus is considered as a bottleneck of A*GED. In this
paper, we outperform A*GED by getting rid of high
memory consumption and the re-computation of ver-
tices and nodes matching costs. We propose a novel
algorithm that reduces the used memory space using a
different exploration strategy (i.e., depth-first instead
of best-first). This approach also reduces the com-
putation time as the unfruitful nodes are pruned by
the lower and upper bounds strategy. A preprocessing
strategy is included. First, edges and vertices costs
matrices are constructed to get rid of re-computation
when exploring nodes in the search tree. Second, the
list V1 is sorted to speed up the search for the best edit
path to be explored.

3 OUR PROPOSAL

In order to get rid of the high memory consump-
tion and to converge faster to the optimal solution, we
propose a depth-first GED (DF-GED). The elements
of the algorithm are described in Sections 3.1 to 3.6.
Moreover, a pseudo-code is presented in Section 3.7.

3.1 Structure of Search-Tree Nodes

From now on, we will refer to the search-subtree
rooted in node p as Partial Edit Path (p). Figure 2
illustrates an example of a partial edit path.

Each p is then identified by the following ele-
ments:
• matched-vertices(p) and matched-edges(p): the

elements contained in these sets are vertices and
edges that have been matched so far in both g1



a 

b c d 

e f 

g(a)=0 
lb(a)=4 
f(a)=4 

g(d)=4 
lb(d)=4 
f(d)=8 

g(c)=2 
lb(c)=1 
f(c)=3 

g(b)=2 
lb(b)=2 
f(b)=4 

g(e)=5 
lb(e)=1 
F(e)=6 

g(f)=4 
lb(f)=1 
f(f)=5 

Figure 2: An example of a partial edit path p whose ex-
plored nodes so far are a, c and f . f (∗) = g(∗)+ lb(∗).

and g2. These sets can contain substitution (u→
v), deletion (u→ ε) and/or insertion (ε→ v) of
vertices and edges, correspondingly.

• pending-verticesi(p) and pending-edgesi(p):
these sets represent vertices and edges of both
g1 and g2 (i.e., V1, V2, E1 and E2) that are
not substituted, deleted or inserted yet where
pending-vertices1(p) and pending-vertices2(p)
represent pending V1 and pending V2, respectively
whereas pending-edges1(p) and pending-
edges2(p) represent pending E1 and pending E2,
respectively.

• parent(p): the parent of p.

• children(p): for any node p, the exploration is
achieved by choosing the next most promising
vertex ui of pending-vertices1(p) and matching it
with all the elements of pending-vertices2(p) in
addition to the deletion of this node (i.e., ui→ ε).
All these matchings are referred to as children(p).

• lb(p): the lower bound, lb, of the estimated future
cost from node p does not underestimate the com-
plete solution. The calculation of the lower bound
is described in Section 3.5.

• g(p): the cost of matched-vertices(p) and
matched-edges(p). Both lb and g depend on the
attributes as well as the structure of the involved
sub-trees. The cost functions involved with each
PR dataset permit to calculate insertions, dele-
tions and substitutions of vertices and/or edges.

3.2 Preprocessing

Preprocessing is applied before the branch and bound
procedure starts in order to speed up the tree search
exploration. First, vertices and edges cost matri-
ces are constructed. Second, vertices-sorting is con-
ducted.

3.2.1 Cost Matrices

The vertices and edges cost matrices (Cv and Ce) are
constructed, respectively. This step aims at speeding

up branch and bound by getting rid of re-calculating
the assigned costs when matching vertices and edges
of g1 and g2.

Let g1 = (V1,E1,µ1,ξ1) and g2 = (V2,E2,µ2,ξ2)
be two graphs with V1 = (u1, ...,un) and V 2 =
(v1, ...,vm). A vertices cost matrix Cv, whose dimen-
sion is (n+2) X (m+2), is constructed as follows:

Cv =

c1,1 ... ... c1,m c1←ε c1→ε

... ... ... ... ... ...

... ... ... ... ... ...
cn,1 ... ... cn,m cn←ε cn→ε

cε→1 ... ... cε→m ∞ ∞

cε←1 ... ... cε←m ∞ ∞

where n is the number of vertices of g1 and m is
the number of vertices of g2 .

Each element ci, j in the matrix Cv corresponds to
the cost of assigning the ith vertex of the graph g1 to
the jth vertex of the graph g2. The left upper corner
of the matrix contains all possible node substitutions
while the right upper corner represents the cost of all
possible vertices insertions and deletions of vertices
of g1, respectively. The left bottom corner contains
all possible vertices insertions and deletions of ver-
tices of g2, respectively whereas the bottom right cor-
ner elements cost is set to infinity which concerns the
substitution of ε− ε.

Ce contains all the possible substitutions, deletions
and insertions of edges of g1 and g2. Ce is constructed
in the very same way as Cv.

3.2.2 Vertices-Sorting Strategy

As GED aims at transforming g1 into g2 so it is impor-
tant to sort V1 in order to start with the most promis-
ing vertices that will speed up the exploration of the
search tree while searching for the optimal solution.
The aforementioned Cv is used as an input of the
vertices-sorting phase. To sort V1, Munkres’ algo-
rithm is applied. From now on, we will refer to the
set of sorted vertices as sorted-V1.

3.3 Branching Strategy

A systematic evaluation of all possible solutions is
performed without explicitly evaluating all of them.
The solution space is organized as an ordered tree
which is explored in a depth-first way. In depth-first
search, each node is visited just before its children.
In other words, when traversing the search tree, one
should travel as deep as possible from node i to node
j before backtracking.

The root r of the search-tree is the node with
matched-vertices(r) = {φ}, matched-edges(r) = {φ},



pending-vertices1,2(r) = V1∪V2, pending-edges1,2(r)
= E1 ∪E2, g(r) = ∞ and lb(r) = ∞. Initially r is the
only node in the set OPEN i.e., the set of the edit
paths, found so far. The exploration starts with the
first most promising vertex u1 in sorted-V1 in order to
generate the root’s children children(r). Then, chil-
dren(r) is added to OPEN. Consequently, a minimum
edit path (pmin) is chosen to be explored by select-
ing the minimum cost node (i.e., min(g(p)+ lb(p)))
among children(r) and so on. We backtrack to con-
tinue the search for a good edit path by revoking pmin
(if pmin equals φ) and trying out the next child in the
set of children(r) and so on.

3.4 Reduction Strategy

As in A*GED, pruning, or bounding, is achieved
thanks to lb(p), g(p) and a global upper bound UB
obtained at node leaves. Formally, for a node p in
the search tree, the sum g(p)+ lb(p) is taken into ac-
count and compared with UB. That is, if g(p)+ lb(p)
is less than UB then p can be explored. Otherwise, the
encountered p will be pruned from OPEN and a back-
tracking is done looking for the next promising node
and so on until finding the best UB that represents
the optimal solution of DF-GED. This algorithms dif-
fers from A*GED as at any time t, in the worst case,
OPEN contains approximately |V1|.|V2| elements and
hence the memory consumption is not exhausted.

3.5 Lower Bound

The lower bound lb(p), adapted to DF-GED, is the
one used in section A*GED, see Section 2.2.

3.6 Upper Bound

The very first upper bound (UB) is computed by
Munkres’ algorithm as it provides reasonable results,
see (Riesen and Bunke, 2009) for more details. Af-
terwards and while traversing the search tree, UB is
replaced by the best UB found so far (i.e., a complete
path whose cost is less than the current UB). After fin-
ishing the traversal of the search tree (i.e., when pmin
equals φ and its parent is r), the best UB is outputted
as an optimal solution of DF-GED. Encountering up-
per bounds when performing a depth-first traversal
efficiently prunes the search space and thus helps at
finding the optimal solution faster than A*GED.

3.7 Pseudo Code

As depicted in Algorithm 2, DF-GED starts by a pre-
processing step (line 2), then an upper bound UB

is calculated by Munkres’ algorithm (line 3). The
traversal of the search tree starts by selecting a first
vertex u1 ∈ sorted-V1 where u1 substituted with all
vertex w in graph g2 as well as the deletion case
(u1 → ε) are inserted into OPEN (lines 4 and 5).
A branching step is performed in line 8 where the
best child pmin is selected, the backtracking is done
when there is no more children to explore in the se-
lected branch and the parent node (parenttmp) is not
the root (lines 9 to 12). pmin is explored by substi-
tuting the next promising node uk+1 with pending-
vertices2(pmin) and also deleting uk+1, respectively
(lines 18 to 24). Similar to A*GED, if pending-
vertices1(pmin) equals φ, pending-vertices2(pmin) will
be inserted (line 26). UB and Best-Edit-Path are up-
dated whenever a better UB is encountered (line 28).
Each time the next parent to be explored will be re-
placed by pmin (line32). This algorithm guarantees to
find the optimal solution of GED(g1,g2). Note that
edges operations are taken into account in the match-
ing process when substituting, deleting or inserting
their corresponding vertices.

4 EXPERIMENTS

4.1 Environment

Evaluations are conducted on a 4-core Intel i7 proces-
sor 3.07GHz and 8 GB of memory.

4.2 Compared Methods

We compare A*GED with DF-GED. Both methods
return a node to node matching.

4.3 Database in Use

To the best of our knowledge, few publicly avail-
able graphs databases are dedicated to graph match-
ing tasks. However, most of these datasets consist
of synthetic graphs that are not representative of PR
problems concerning graph matching under noise and
distortion. We shed light on the IAM graph repository
which is a widely used repository dedicated to a wide
spectrum of tasks in pattern recognition and machine
learning (Riesen and Bunke, 2008). Moreover, it con-
tains graphs of both symbolic and numeric attributes
which is not often the case of other datasets.

The GREC database used in our experiments is a
dataset in IAM which consists of a subset of the sym-
bol database underlying the GREC2005 competition
(Dosch and Valveny, 2006). The images of GREC
represent symbols from architecture, electronics, and



Algorithm 2 Depth-first GED algorithm (DF-GED)
Input: Non-empty attributed graphs g1 =
(V1,E1,µ1,v1) and g2 = (V2,E2,µ2,v2) where V1
= {u1, ...,u|v1|} and V2 = {u2, ...,u|v2|}
Output: A distance UB and a minimum cost edit path
(Best-Edit-Path) from g1 to g2 e.g.,{u1→ v3, u2→ ε

, ε→ v2}
1: OPEN←{φ}, Best-Edit-Path← φ

2: Generate Cv, Ce and sorted-V1
3: UB←Munkres(g1,g2)
4: For each node w ∈V2, OPEN← OPEN∪{u1→

w} s.t. u1 ∈ sorted-V1
5: OPEN← OPEN∪{u1→ ε}
6: pmin← φ, r← parent(u1), parenttmp← r
7: while true do
8: pmin← bestChild(parenttmp)
9: while pmin == φ and parenttmp! = r do

10: parenttmp← backtrack(parenttmp)
11: pmin← bestChild(parenttmp)
12: end while
13: if pmin == φ and parenttmp == r then
14: Return UB, Best-Edit-Path
15: end if
16: OPEN← OPEN \ pmin
17: if g(pmin)+ lb(pmin)<UB then
18: if pending-vertices1(pmin)!= {φ} then
19: for w ∈ pending-vertices2(pmin) do
20: p← pmin∪{uk+1→ w}
21: If g(p) + lb(p) < UB then OPEN ←

OPEN∪{p}
22: end for
23: p← pmin∪{uk+1→ ε}
24: If g(p) + lb(p) < UB then OPEN ←

OPEN∪{p}
25: else
26: Generate a complete solution p← pmin∪⋃

w∈pending−vertices2(p){ε→ w}
27: if g(p)+ lb(p)<UB then
28: UB← g(p), Best-Edit-Path← p
29: end if
30: end if
31: end if
32: parenttmp← pmin
33: end while

other technical fields. Distortion operators are applied
to the original images in order to simulate handwrit-
ten symbols. To this end, the primitive lines of the
symbols are divided into subparts. The ending points
of these subparts are then randomly shifted within a
certain distance, maintaining connectivity. Each node
represents a subpart of a line and is attributed with
its relative length (ratio of the length of the actual

line to the length of the longest line in the symbol).
Connection points of lines are represented by edges
attributed with the angle between the corresponding
lines. The dataset consists of 6 classes and 30 in-
stances per class. This dataset is useful as both ver-
tices and edges are labeled with numeric attributes.
In addition, it holds graphs whose sizes vary from 5
to 25 vertices.

Cost Function: The vertices of graphs from GREC
dataset are labeled with (x, y) coordinates and a type
(ending point, corner, intersection or circle). The
same accounts for the edges where two types (line,
arc) are employed. The Euclidean cost model is
adopted accordingly. That is, for node substitutions
the type of the involved vertices is compared first.
For identically typed vertices, the Euclidean distance
is used as node substitution cost. In case of non-
identical types on the vertices, the substitution cost
is set to 2τnode, which reflects the intuition that ver-
tices with different type label cannot be substituted
but have to be deleted and inserted, respectively. For
edge substitutions, the dissimilarity of two types is
measured with a Dirac function returning 0 if the two
types are equal, and 2τedge otherwise. Both τnode and
τedge are non-negative parameters. To control whether
the edit operation cost on the vertices or on the edges
is more important another parameter α is integrated.
In our experiments we have set τnode, τedge and α to
90, 15 and 0.5, respectively. These meta parameters’
values are taken from (Riesen and Bunke, 2010). This
dataset consists of 1,100 graphs where graphs are uni-
formly distributed between 22 symbols. The resulting
dataset is split into a training and a validation set of
size 286 each, and a test set of size 528.

GREC Decomposition: We decompose the
database into subsets, each of which contains graphs
that have the same size. We focus on the following
subsets: (GREC5, GREC10, GREC15 and GREC20)
aiming at evaluating the two methods when increas-
ing the size of the involved graphs (i.e., the number
of vertices). Due to the large number of matchings
considered and the exponential complexity of the
tested algorithms, we select 10 graphs of the train set
of each subset of GREC. The train set is representa-
tive of all graph distortions and the selection of only
10 graphs per subset ends up having 100 pairwise
comparisons which is significant for such a kind of
experiments. Furthermore, we add another subset
GREC-mix that contains different number of vertices
(i.e., 10 graphs with different number of vertices).



4.4 Protocol and Quality Measures

Our Protocol is two-fold. First, calculating the dis-
tance matrix under small and big time constraints.
Second, Classification test under a reasonable time
constraint.

Let S be a graph dataset consisting of m graphs,
S = {g1,g2, ...,gm}. Let P = {A*GED, DF-GED}
be the set the compared methods. Given a method
p ∈ P , we computed the square distance matrix
Mp ∈ M m(R+), that holds every pairwise compar-
ison Mp

i, j = dp(gi,g j), where the distance dp(gi,g j)
is the value returned by the method p on the graph
pair (gi,g j) within a certain time and memory limits.
Hence, MA*GED and MDF-GED denote distance matri-
ces of A*GED and DF-GED methods, respectively.

Let GT ∈M m(R+) be the reference matrix that
holds the best found distance for each pair of graphs.
We aim at comparing the errors committed by the
two methods as well as their running time under a
time constraint CT and a memory constraint CM when
graphs’ sizes increase (i.e., on GRECk) and also on
GREC-mix. To this objective, we test the accuracy of
P when CT is small, e.g., CT = 350 milliseconds (ms),
and when CT is big (e.g., CT = 5 minutes). CM is set to
1GB during all the experiments. We expect A*GED
to violate CM specially when graphs get larger.

In the following, we define the measurements used
for evaluating our protocol:

Deviation: We evaluate the error committed by a
method p over the reference distances. To this end,
we measure an indicator called deviation and defined
by the following equation:

deviation(i, j)p =
|Mp

i, j−GTi, j|
GTi, j

, ∀(i, j) ∈ J1,mK2

(2)
Where GTi, j is the smallest distance among all dis-

tances generated by p when matching gi and g j.
Running Time: We measure the running time

in milliseconds for each comparison d(gi;g j). This
value reflects the overall time for GED computation
including all the inherits costs computations (i.e.,
g(p); lb(p); and UB).

For the classification test, we are interested in the
average computation time (t) which corresponds to
the average time elapsed when classifying all the test
graphs of GREC and the classification accuracy (AC)
which defines the error made when classifying the test
graphs of GREC. Both measurements are achieved
when CT = 500ms and CM = 1GB. The classification
stage is performed by a 1-NN classifier. Each test
graph gt is compared to the entire training set. The
nearest neighbor’s label is assigned to gt .

5 RESULTS AND DISCUSSION

Figure 3 shows the deviation results under 350 ms
and 5 minutes respectively. We observe that DF-GED
always outperforms A*GED under the same time con-
straint. For all GED computations, DF-GED gives
the best distance (i.e., GTi, j) and so its deviation is
always 0%. In contrast with DF-GED, the deviation
of A*GED decreases when CT = 5 minutes. How-
ever, when the size of graphs increase (e.g., GREC15
and GREC20), the deviation starts to converge due to
memory saturation where the best recently known so-
lution is outputted before halting.
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Figure 3: Deviation: Left (350 ms), Right (5 minutes).

Figure 4 demonstrates the running time of both
A*GED and DF-GED. When CT = 350 ms both
running times are relatively equal on GREC15 and
GREC20 and that is because non of them is able to
find an optimal solution before exceeding CT . When
CT increases, DF-GED becomes faster as it explores
the search tree in a depth-first way (i.e., not stopped
by CM) while pruning the search tree thanks to its up-
per and lower bounds as well as the preprocessing
step, see Section 3.2. On the other hand, A*GED does
not continue for further exploration on GREC15 and
GREC20 because of the size of the involved graphs
where available memory is exhausted and so the best
recently known solution is given before halting.
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Figure 4: Running Time: Left (350 ms), Right (5 minutes).

For the classification experiment, 151008 compar-
isons are performed on 286 training graphs and 528
test graphs of the GREC dataset. As depicted in Table
1, results show that the classification accuracy AC of
DF-GED is 2.3 times higher under the same CT where
CT =500 ms. Moreover, DF-GED is 1.9 times faster as



the average time t is smaller.

Algorithms t AC
A*GED 119491.5 ms 42.23%

DF-GED 60468.7 ms 98.48 %
Table 1: Classifying graphs of GREC (CT = 500 ms).

6 CONCLUSION AND
PERSPECTIVES

In the present paper, we have considered the prob-
lem of GED computation for PR. Graph edit distance
is a powerful and flexible paradigm that has been
used in different applications in PR. The exact algo-
rithm, A*GED, presented in the literature suffers from
high memory consumption and thus is too costly to
match large graphs. In this paper, we propose another
exact GED algorithm, DF-GED, which is based on
depth-first search. This algorithm speeds up the com-
putations of graph edit distance thanks to its upper
and lower bounds pruning strategy and its preprocess-
ing step. Moreover, this algorithm does not exhaust
memory as the number of pending edit paths that are
stored in the set OPEN is relatively small thanks to
the depth-first search where the number of pending
nodes is |V 1|.|V 2| in the worst case.

In the experimental section, we have proposed to
evaluate sub-optimally both exact methods: A*GED
and DF-GED under some memory and time con-
straints. Experiments on the GREC database em-
pirically demonstrated that DF-GED outperforms
A*GED in terms of precision, speed and classification
rate. In future work, we aim at proposing a bench-
mark to measure the quality of the solutions found by
approximate methods. Both exact and approximate
graph edit distance computations will be evaluated on
different PR databases.
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