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1 Introduction

Anomalies in chiral matter lead to unusual transport effects in an impressive variety of

physical systems and energy scales. The Chiral Magnetic Effect (CME) generates a vector

(electric) current along an external magnetic field in a chirally imbalanced matter [1–3].

The Chiral Separation Effect (CSE) implies the existence of an axial (chiral) current along

the background magnetic field in dense chiral systems [4, 5]. In a rotating fluid or plasma

of chiral fermions the Chiral Vortical Effects (CVE) lead to the appearance of both vector

and axial currents along the axis of rotation [6–10]. Finally, both magnetic field and

global rotation of the chiral matter produce an energy flux parallel to the corresponding

axes [11, 12]. All these effects originate either from the chiral anomaly or from the mixed

gauge-gravitational anomaly.
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The anomalous transport phenomena are expected to be realized in the quark-gluon

plasma created in heavy-ion collisions [13–15], in liquid Helium 3He-A [16, 17], in Dirac [18–

20] and Weyl [21, 22] semimetals, in cold atomic gases [23], in Early Universe [24, 25], in

neutron stars and supernovae [26–28]. Recent reviews on anomalous transport phenomena

can be found in ref. [29–33].

In a stationary uniform background the anomalies generate steady time-independent

currents. However, the chiral matter is also known to support certain types of sound-like

density waves associated with anomalous transport because the anomalous transport laws

couple vector and axial charge densities and their currents to each other and force their

perturbations to be interrelated. As a result, the vector and axial charge densities may

propagate as a common vector-axial density wave.

In an external magnetic field the anomalous coupling between the vector and axial

sectors is given by the CME and CSE. The corresponding gapless excitation is called

the Chiral Magnetic Wave (CMW) [34, 35]. The CMW propagates along the axis of

magnetic field with the velocity which depends on the magnetic field strength. This wave,

which may exist even at zero fermion density, was suggested to reveal itself in heavy-ion

collisions via the electric quadrupole observables [36, 37]. Certain experimental signatures

consistent with possible existence of the CMW in quark-gluon plasma were indeed found

recently [38], although there are arguments suggesting that these signatures may have

another explanation [39].

If a finite-density chiral system is set into rotation then the vector and axial charge

densities are coupled to each other by the CVE. The associated gapless mode is called the

Chiral Vortical Wave (CVW) [40]. The CVW propagates along the axis of rotation and

it may in principle be observed in noncentral heavy ion collisions which create rotating

quark-gluon plasmas.

Another gapless excitation, the Chiral Alfvén Wave [41], corresponds to sound-like

oscillations of local velocity of a charged chiral fluid in the presence of an external magnetic

field. Despite the fluid oscillations are transverse with respect to the magnetic field axis,

the wave itself propagates along magnetic field lines in a close analogy with the usual Alfvén

modes that exist in various ion plasmas.

An external electric field may also lead to appearance of a gapless mode due to the so-

called Chiral Electric Separation Effect (CESE). The CESE generates the axial current in

a chirally imbalanced medium in the presence of an external electric field. The associated

sound mode should propagate along the axis of the electric field and may be potentially

observable in heavy-ion collisions [42].

In our paper we demonstrate the existence of a new gapless collective mode associated

with a coherent propagation of the (thermal) energy wave and the (chiral) axial density

wave in a globally rotating medium of relativistic chiral fermions. We call this collective

mode the Chiral Heat Wave (CHW).

The heat wave is substantially different from the magnetic and vortical waves.1 For

1We discuss three chiral waves with visually similar abbreviations (CMW, CVW, CHW) as well as various

coupled (CMW and/or CVW and/or CHW) waves. Thus, in order to avoid almost inevitable confusion,

we often use the terms “magnetic wave”, “vortical wave”, “heat wave”, “magnetic-vortical wave” etc.
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example, the heat wave may be realized in the absence of a magnetic field background

unlike the magnetic wave. Moreover, the heat wave may propagate in a zero density

system unlike the chiral vortical wave. Finally, as we mentioned, the pure Chiral Heat

Wave couples thermal energy waves with axial density waves, while the Chiral Magnetic

and and Chiral Vortical Waves — in their original formulation — correspond to a coherent

propagation of vector and axial density waves in the absence of thermal energy waves.

The structure of this paper is as follows. In section 2 we review in detail both the Chiral

Magnetic and the Chiral Vortical Waves. In section 3 we introduce the Chiral Heat Wave

and discuss its basic properties. As we show in section 4 these waves may mix in different

combinations and propagate as a common vector-axial-energy density wave. The properties

(velocity, direction, density content) depend on the concrete physical environment (density,

temperature, global rotation and magnetic field). A special case of zero-temperature energy

waves (basically, matter waves) is also discussed. In section 5 we describe a special class of

non-propagating diffusion modes which we call the Dense Hot Spots (DHS). These long-

wavelength configurations carry nonzero vector charge and energy density while their axial

charge is zero. They may only appear in rotating systems subjected to an external magnetic

field. Finally, section 6 is devoted to a summary of our results and discussion.

2 Chiral Magnetic Wave and Chiral Vortical Wave

2.1 Chiral Magnetic Wave

In this section we briefly review the Chiral Magnetic Wave (CMW) following ref. [35]. The

CMW is a collective gapless excitation in a system (fluid) of massless charged fermions

in the background of external magnetic field B. The CMW appears due to correlated

interplay of the CME and the CSE, which describe, respectively, the dissipationless transfer

of electric charge and chiral charge along the magnetic field [1, 4, 5]:

jV = σBV eB , (2.1)

jA = σBAeB , (2.2)

The CME (2.1) generates electric (vector) current of the fermions, jV ≡ j along the

direction of magnetic field, while the CSE (2.2) leads to appearance of the chiral (axial)

current jA ≡ j5 given, respectively, by a sum and a difference of the right-handed (jR)

and left-handed (jL) fermionic currents:

jV = jR + jL ,

jA = jR − jL .
(2.3)

The strength of these effects is controlled by the corresponding anomalous transport

coefficients in eqs. (2.1) and (2.2):

σBV =
µA
2π2

,

σBA =
µV
2π2

,
(2.4)
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where µV is the usual (vector) chemical potential which describes the total density of the

right-handed and left-handed fermions while µA is the axial (chiral) chemical potential

which describes the difference in their densities, respectively:

µV ≡ µ =
1

2
(µR + µL) ,

µA ≡ µ5 =
1

2
(µR − µL) .

(2.5)

The superscripts B in eq. (2.4) indicate that these transport coefficients correspond to the

background magnetic field B.

Let us consider small long-wave perturbations in the vector and axial charge densities,

ρV ≡ j0
V and ρA ≡ j0

A, respectively. These perturbations,

δρV (x) = χV V δµV (x) + χV AδµA(x) , (2.6)

δρA(x) = χAV δµV (x) + χAAδµA(x) , (2.7)

are related to the (local) deviations in the corresponding chemical potentials δµa = µa− µ̄a
via the susceptibilities χab with a, b = V,A. Here the bar over a quantity indicates a volume

mean of the corresponding quantity.2

Equations (2.1)–(2.6) should be supplemented with the conservation laws for the vector

and axial charges,

∂µj
µ
A ≡ ∂tρV + ∂jV = 0 , (2.8)

∂µj
µ
A ≡ ∂tρA + ∂jA = 0 , (2.9)

where jµV = (ρV , jV ) and jµA = (ρA, jA). Notice that, in general, the axial current jµA is not

conserved due to the chiral anomaly. However, the conservation law (2.9) is valid in the

absence of the external electric field which is the case considered in this paper.

For a totally neutral system of fermions, all chemical potential vanish on average:

µ̄V = 0 and µ̄A = 0. Then we notice that ρV and µV (ρA and µA) are the components of

true (axial) vectors and therefore the covariance of eqs. (2.6) and (2.7) under the P parity

transformation (V → −V and A → A) implies the absence of the off-diagonal terms in

the susceptibility matrix, χAV = χV A = 0. Since we consider a chirally unbroken phase

of the system, then the diagonal terms should be the same: χV V = χAA = χ, where the

susceptibility χ = χ(|B|) is a function of the magnetic field [35]. This statement should

also be true for µV 6= 0 provided that the chiral symmetry is unbroken. Therefore, for the

chirally symmetric system (with µA = 0) eqs. (2.6) and (2.7) are simplified:

δρV (x) = χδµV (x) ,

δρA(x) = χδµA(x) .
(2.10)

From eqs. (2.1), (2.2) and (2.4) we deduce that a perturbation in electric and chiral

charges leads to appearance of, respectively, perturbations in chiral and electric currents

2In order to avoid cluttering of our notations, hereafter we omit the bars over most of the mean quantities.
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along the magnetic field:

δjV (x) =
eB

2π2χ
δρA(x) , (2.11)

δjA(x) =
eB

2π2χ
δρV (x) , (2.12)

while the transverse (with respect to the magnetic field) components of these currents

are zero.

Let us now consider the uniform and constant magnetic field directed along the z

axis, B = Bez. Without loss of generality one can take eB > 0. Differentiating the

currents (2.11) and (2.12) over z and applying the corresponding conservation laws (2.8)

and (2.9),

∂tδρV + ∂zδj
z
V = 0 , ∂tδρA + ∂zδj

z
A = 0 , (2.13)

one gets the following system of linear differential equations which relates the perturbations

in electric and chiral charge densities:

∂tδρV (x) +
eB

2π2χ
∂zδρA(x) = 0 , (2.14)

∂tδρA(x) +
eB

2π2χ
∂zδρV (x) = 0 . (2.15)

This system can easily be diagonalized by differentiating the first (second) equation with

respect to z or t (with respect to t or z, respectively) and combining them together. One

obtains two gapless (massless) wave equations,(
∂2
t − v2

CMW∂
2
z

)
δρV (x) = 0 ,(

∂2
t − v2

CMW∂
2
z

)
δρA(x) = 0 ,

(2.16)

which describe a sound-like propagation of perturbations in electric and chiral charges (and

their currents) along the axis of magnetic field with the velocity

vCMW =
eB

2π2χ
. (2.17)

This gapless excitation is the Chiral Magnetic Wave (CMW).

The CMW is a coupled vector-axial density wave which propagates, qualitatively, as

follows [35]:

(i) due to the Chiral Magnetic Effect (2.11) a local fluctuation of a chiral (axial) charge

density generates a fluctuation in vector (electric) current in the direction of the

magnetic field;

(ii) in turn, the fluctuation in electric current leads, due to the electric charge conser-

vation (2.13), to a fluctuation of the electric charge density next point along the

magnetic-field axis;
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Chiral Magnetic Wave (right-handed)

v δρVδρA

δϵ

eB

�

��

δρ

Chiral Magnetic Wave (left-handed)
v δρV

δρA
δϵ

eB

�

��

δρ

Figure 1. Structure of the right-handed (the upper plot) and the left-handed (the lower plot)

Chiral Magnetic Waves in terms of the vector (the green thin solid line), axial (the red thick dashed

line) and energy (the thick solid orange line) densities for a zero-density (µV = 0) cold (T = 0)

nonrotating (Ω = 0) chiral medium in the magnetic field background B 6= 0. The vector v indicates

the direction of the wave propagation.

(iii) next, the Chiral Separation Effect (2.12) implies that the electric charge density

generates the axial current which is again directed along the magnetic field axis;

(iv) finally, due to the conservation of the axial charge (2.13) the fluctuation in the chiral

current creates a fluctuation in the chiral charge density next point along the direction

of magnetic field and then the whole processes repeats itself.

Thus the Chiral Magnetic Wave is a chain-like process which involves the vector (electric)

and axial (chiral) densities and their currents.

Summing (subtracting) eq. (2.15) with (from) eq. (2.14) and using eq. (2.3) we get two

equations which describe propagation of fluctuations with definite chirality:

(∂t ∓ vCMW∂z) δρL,R = 0 , (2.18)

where the upper (lower) sign corresponds to the left- (right-) handed fermions. There-

fore the fluctuations in the densities of the left-handed (right-handed) fermions propagate

opposite to (along) the direction of the magnetic field vector eB.

The structure of the CMW in terms of the individual density waves is schematically

illustrated in figure 1. The energy component of the CMW will be discussed in section 4.3.

Before proceeding further we would like to make two important remarks, which con-

cern both the Chiral Magnetic Wave discussed in this section and other chiral waves men-

tioned below.

First, we notice that similarly to the CME and the CSE, the CMW is emerging at any

strength of the magnetic field B since in the above derivation no assumption about the

value of B was made [35]. However, unlike the CME and the CSE, the CMW is a dissipative

– 6 –
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phenomenon. In the studied long-wave limit the dissipative terms should reveal themselves

in the dispersion relations in the quadratic order in the longitudinal momentum kz:

ωL,R(kz) = ∓vCMWkz − iD‖k2
z + . . . , (2.19)

where the first term describes the propagation of the CMW with velocity (2.17) while the

second term is responsible for its dissipation with a longitudinal diffusion constant D‖. In

eq. (2.19) the ellipsis stand for higher-order longitudinal terms and for transverse terms.

Dissipative properties of the CMW were discussed in details in effective hydrodynamics

and in holographic approaches [43] and in chiral kinetic theory [44].

Second, in our paper we consider the Chiral Magnetic Wave and other waves in the

absence of background flow of the chiral fluid. It is important to stress, however, that the

fluid velocity may contribute to vector, axial and energy currents and affect the results of

the paper if they are applied to realistic situations similar to the ones realized in quark-gluon

plasmas. Realistic implementation of the Chiral Magnetic wave in heavy-ion collisions was

considered in ref. [45].

2.2 Chiral Vortical Wave

In this section we briefly review the Chiral Vortical Wave (CVW) following ref. [40]. We

consider a rotating fluid of massless fermions in the absence of magnetic field. A global

rotation of the fluid can be expressed in terms of the vorticity Ω = 1
2∂ × v, where v is the

local velocity of the fluid flow. Similarly to the CME and the CSE, the rotation should

generate the vector and axial currents of the fermions along the axis of rotation [6–10]:

jV = σVV Ω , jA = σVAΩ , (2.20)

where the associated transport coefficients are a follows:

σVV =
µV µA
π2

, σVA =
T 2

6
+
µ2
V + µ2

A

2π2
, (2.21)

and T is the temperature of the fluid. Equations (2.20)–(2.21) describe the Chiral Vor-

tical Effects (CVEs) in the first order of the angular velocity Ω. Throughout this paper

we assume that the chiral fluid of relativistic fermions rotates slowly so that the linear

approximation (2.20) is valid.

According to eqs. (2.20) and (2.21), at finite temperature the rotating neutral fluid gen-

erates the axial current along the rotation axis jA = T 2Ω/6. However, unlike the transport

coefficients for the CME and the CSE (2.4), the CVE coefficients depend quadratically on

the chemical potentials and therefore in the neutral fluid an analogue of the CMW can-

not appear.

However, if at least one of the chemical potentials is nonzero, then eqs. (2.20) and (2.21)

indicate that fluctuation(s) δµA,V on top of the corresponding mean value(s) µA,V 6= 0

would couple linearly to the current(s) and may potentially lead to a wavelike excitation

in a manner of the CMW that was discussed in the previous section. However, µA cannot

be have a nonzero value in a realistic system in thermal equilibrium. Indeed, due to the

– 7 –
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existence of topological chirality-flipping processes the assumption of a nonzero value of

the chiral density in thermodynamic equilibrium is not physical. Therefore, in our paper

we always consider a system of chiral fermions with zero average chiral density (µA = 0).

The vector density may, however, be nonzero (µV 6= 0).

The CVE in a finite-density chirally-neutral rotating fluid generates a steady

axial current,

j̄A =

(
T 2

6
+
µ2
V

2π2

)
Ω . (2.22)

while the average vector current vanish, j̄V = 0. Expanding the CVE transport coeffi-

cients (2.21) to the linear order in the fluctuations of the chemical potentials δµV and δµA
at fixed temperature T , one gets the following expression for the current fluctuations (2.20):

δjV =
µV
π2
δµA Ω ≡ µV Ω

π2χ
δρA ,

δjA =
µV
π2
δµV Ω ≡ µV Ω

π2χ
δρV .

(2.23)

Here we have used eqs. (2.6) and (2.7) assuming — following the line of arguments for

case of the CMW — that the parity is unbroken in the fluid. In the above equations the

susceptibility is, in general, a function χ = χ(µV , |Ω|) of the chemical potential µV and

the angular frequency Ω.

Equations (2.23) demonstrate that in a rotating finite-density fluid, a fluctuation in

the axial (vector) charge couples to the vector (axial) current exactly in the same manner

as it happens in eqs. (2.11) and (2.12) which describe the CMW. Thus, the rotating fluid

should also support a gapless wave-like excitation similar to the CMW. This excitation

indeed exists and it is called the Chiral Vortical Wave (CVW) [40].

The CVW has the same basic features as the CMW. It propagates along the axis of

rotation Ω with the velocity.3

vCVW =
µV Ω

π2χ
, (2.24)

which can easily be derived from eq. (2.17) by noticing that eqs. (2.23) differ from eqs. (2.11)

and (2.12) by the simple substitution eB → 2µV Ω. Similarly to the magnetic wave, the

right-handed (left-handed) chiralities in the vortical wave propagate along (opposite to) to

the direction of the vorticity vector µV Ω.

The structure of the CVW in terms of the individual vector, axial and energy density

waves is schematically shown in figure 2. The energy density content of the CVW will be

discussed in section 4.2. At zero temperature the energy wave in the CVW is, basically,

the mass wave (4.22) propagating in a uniform finite-density background given by µV 6= 0.

The CVW is suggested to exist in the quark-gluon plasma and its signatures are ex-

pected to be found in heavy-ion collisions [40].

3Our definition (2.10) of the susceptibility χ differs from the one of the susceptibility χµ0 of ref. [40] by

the factor of two (χ ≡ 2χµ0) since the relations δρV/A = χδµV/A imply δρL/R = (χ/2)δµL/R ≡ χµ0δµL/R.
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v δρVδρA

δϵ

μVΩ

�
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δρ

Chiral Vortical Wave (left-handed)
v δρV

δρA

δϵ

μVΩ

�

��

δρ

Figure 2. Structure of the Chiral Vortical Wave in a dense (µV > 0) cold (T = 0) rotating (Ω 6= 0)

chiral medium at vanishing magnetic field (B = 0). If µV < 0 then the energy density and the

vector charge density have mutually opposite signs while the relative sign of the axial and vector

densities remains the same. The notations are the same as in figure 1.

3 Chiral Heat Wave

3.1 Nondissipative energy transfer

The energy may also be transferred in a nondissipative way due to a mixed gauge-

gravitational anomaly. The energy flux of a rotating fluid of massless fermions in a

magnetic-field background is [10, 11, 31]:

jE = σBEeB + σVEΩ , (3.1)

where the energy current is given by components of the energy momentum tensor Tµν ,

jiE ≡ T 0i =
i

2
ψ̄
(
γ0∂i + γi∂0

)
ψ , (3.2)

and the anomalous conductivities are expressed via both chemical potentials and

temperature:

σBE =
1

2π2
µV µA , (3.3)

σVE =
µA
3

[
1

π2

(
3µ2

V + µ2
A

)
+ T 2

]
. (3.4)

The nondissipative energy transfer may only take place in the presence of a chiral imbalance

(i.e., with µA 6= 0) because the energy current jE is a vector while both vorticity Ω and

the magnetic field B are pseudovectors. Thus, the energy current should only be related

to Ω and B by a coefficient which is linear in the pseudoscalar chemical potential µA.

The energy conservation implies

∂µT
0µ ≡ ∂tε+ ∂jE = 0 , (3.5)

where

ε ≡ T 00 , (3.6)

is the (thermal) energy density.
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3.2 Pure Chiral Heat Wave

The aim of this paper is to find a new gapless wave-like excitation related to the anomalous

energy transfer. In our context the energy waves should necessarily be related to local

temperature fluctuations. Let us consider first a small deviation of temperature δT (with

δT � T ) from its equilibrium value T . In a linear approximation the energy fluctuation

δε = ε(T + δT )− ε(T ) is

δε = cV δT , (3.7)

where cV ≡ cV (T ) is the specific heat capacity:

cV =

(
∂E

∂T

)
V

. (3.8)

In order to determine the nature of this wave, we notice that — similarly to the cases of

the CMW and the CVW — the chiral chemical potential in equilibrium is zero, µ̄A = 0, so

that a nonzero value of µA may be due to fluctuations only. Let us also assume for a moment

that the usual chemical potential is also zero, µ̄V = 0 similarly to the simplest case of the

CMW. Then we find that in the linear approximation the coupling of the dissipationless

energy current to the magnetic field (3.3) is quadratic in fluctuations so that the vector

current jA does not enter a linear wave equation that we search for. However, the coupling

of the energy flow to the vorticity (3.4) has a linear term, σVE = T 2δµA/3, which is sensitive

to the axial charge fluctuations. Thus, in a finite-temperature rotating fluid the energy

fluctuations should couple to the chiral charge fluctuations.

The fluctuations of the chiral charge may also couple to electric charge fluctuations in

rotating fluid at finite magnetic field via the CMW [35] and in rotating fluid at nonzero

chemical potential via CVW [40]. In order to demonstrate the existence of the new, energy-

chiral charge wave, we consider first the rotating (Ω 6= 0) finite-temperature (T 6= 0) system

in the absence of magnetic field, B = 0 (thus the CMW does not exist) and at zero density,

µV = 0 (thus the CVW does not exist either). In this environment only a pure energy-chiral

charge wave may exist.

According to the full system of equations (2.20), (2.21) and (3.1), the fluctuations obey

the following relations:

δjV = 0 , (3.9)

δjA =
TΩ

3
δT, (3.10)

δjE =
T 2Ω

3
δµA . (3.11)

We notice first that the new wave does not have the vector density component (3.9). Then,

using eqs. (2.10) and (3.7) we rewrite the system (3.10) and (3.11) in the following form:

δjA =
TΩ

3cV
δε,

δjE =
T 2Ω

3χ
δρA ,

(3.12)
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which clearly demonstrates the coupling of the chiral (energy) current to the energy (chiral)

density perturbations, similarly to the coupling of the usual and chiral charge currents and

their densities by the CMW in eqs. (2.11) and (2.12), and by the CVW in eq. (2.23).

Equations (3.12) indicate that, as the wave moves,

(i) a local perturbation in the thermal energy δε is converted into a perturbation in the

chiral current δjA;

(ii) the perturbation in the chiral current δjA leads to an excess in the chiral charge

density δρA the next point along the vector Ω;

(iii) the perturbation in the chiral charge density δρA in turn, induces a perturbation in

the energy current δjE ;

(iv) the energy current δjE generates immediately a fluctuation in the thermal energy δε

next point etc.

The process is very similar to the mutual cyclic conversion of the charge density and chiral

charge density waves in the CMW, apart from the fact that in our case the role of the

charge density wave is played by the thermal energy (or, heat) wave. Thus, we call this

new gapless excitation the Chiral Heat Wave (CHW).

The fluctuations of energy and chiral currents (3.12) propagate along the vorticity

vector Ω. Therefore we set for convenience Ω = Ωez, take Ω > 0 for the sake of definiteness,

and consider the currents directed along the z axis only. The conservation of the axial

charge (2.13) and energy (3.5) give us the relations

∂tδρA + ∂zδj
z
A = 0 ,

∂tδε+ ∂zδj
z
E = 0 ,

(3.13)

which can now be combined with eq. (3.12)

∂tδρA +
TΩ

3cV
∂zδε = 0 ,

∂tδε+
T 2Ω

3χ
∂zδρA = 0 .

(3.14)

The system of equations (3.14) describes a gapless propagation of the coupled energy and

chiral density perturbations along the axis of rotation. By combining these first-order

equations one gets that both the chiral charge density ρA and the energy density ρE ≡ ε

obey the second-order equations:(
∂2
t − v2

CHW∂
2
z

)
δρA(t, z) = 0 ,(

∂2
t − v2

CHW∂
2
z

)
δρE(t, z) = 0 ,

(3.15)

where

vCHW =

√
T 3

cV χ

Ω

3
, (3.16)
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Figure 3. Structure of the Chiral Heat Wave in a zero-density (µV = 0) hot (T > 0) rotating

(Ω 6= 0) chiral medium at vanishing magnetic field (B = 0). The notations follow figure 1.

is the velocity of the Chiral Heat Wave. Notice that in our derivation we have implicitly

assumed that the usual thermal diffusion and the axial charge relaxation are so slow so

that the wave propagates adiabatically.

Let us now discuss the structure of the CHW in terms of energy and chiral charge

densities. According to eq. (3.9) the usual charge density, ρV ≡ ρR+ρL, does not propagate

in this wave so that in the CHW the densities of the right-handed and left-handed fermions

are always opposite to each other: ρR = −ρL. A diagonalization of eqs. (3.14) indicates

that the linear combinations of the energy density and the chiral density,

δE±(t, z) = δε(t, z)±

√
cV T

χ
δρA(t, z) , (3.17)

obey, respectively, the following linear equations:

(∂t ± vCHW∂z) δE±(t, z) = 0 . (3.18)

The combinations E+ and E− represent the pure Chiral Heat Waves, in which the

energy and chiral charge densities have, respectively, the same and opposite mutual signs:

δε(t, z) = ±

√
cV T

χ
δρA(t, z) , (3.19)

and which propagate, correspondingly, along and against the direction of the vorticity

vector. As we have mentioned, the vector charge density component in the pure heat wave

is always zero. The structure of the Chiral Heat Wave is illustrated in figure 3.

According to eq. (3.19), as temperature T becomes higher the fraction of the thermal

energy component increases compared to the chiral component. Any combination of δε

and δρA perturbations can be expanded into the individual Chiral Heat Waves δE± which

are propagating in opposite directions.
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The dispersion relations for the CHWs in the long-wavelength limit reads as follows:

ω±CHW(kz) = ±vCHWkz − iDk2
z + . . . , (3.20)

where upper and lower signs correspond to E± modes (3.19). Here we have also included

the dissipative term which was not captured by our linearized analysis (higher-order terms

are denoted by the ellipsis).

In conclusion of this section we notice that the chiral heat wave bear (due to its thermal

nature) a very distant similarity to the “temperature wave” (the “second sound”) of the

superfluid Helium. We would like also to notice that all three discussed gapless modes

propagate, in general, with different velocities given by eqs. (2.17), (2.24) and (3.16) for

magnetic, vortical and heat waves, respectively.

4 Mixed waves

4.1 Chiral Magnetic-Vortical wave

In this section we point out that the CMW and the CVW should naturally mix with each

other and constitute a common wave provided the conditions necessary for simultaneous

existence of both these waves (B 6= 0, Ω 6= 0 and µV 6= 0), are satisfied. In this section we

consider the cold medium (T = 0) in order to exclude the presence of the Chiral Heat Wave.

In the magnetic field background B the vector and axial currents of the rotating fluid

are given by the linear combination of the CME (2.1), the CSE (2.2) and the CVE (2.20):

jV = σBV eB + σVV Ω , (4.1)

jA = σBAeB + σVAΩ . (4.2)

Since the corresponding relations between the fluctuations of the charge densities and

currents are linear, we combine eqs. (2.11) and (2.12) with (2.23) and get

δjV =
1

2π2χ
(eB + 2µV Ω) δρA ≡

eBBΩ

2π2χ
δρA ,

δjA =
1

2π2χ
(eB + 2µV Ω) δρV ≡

eBBΩ

2π2χ
δρV ,

(4.3)

which can again be reduced to eqs. (2.11) and (2.12) with the substitution B → BBΩ

where the effective magnetic field is:

eBBΩ = eB + 2µV Ω . (4.4)

From eq. (4.3) we see that the CMW and CVW couple to each other and constitute

one common wave which propagates with the velocity

vMV =
eBBΩ

2π2χ
=
|eB + 2µV Ω|

2π2χ
≡
√
v2
CMW + v2

CVW + 2vCMWvCVW cosϕ(B,Ω) , (4.5)
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along the axis given by the direction of the vector BBΩ. The velocity of the common wave

depends on the angle ϕ(B,Ω) between the magnetic field and the axis of rotation. The sub-

script “MV” in eq. (2.24) refers to the mixing of the Chiral Magnetic and Vortical Waves.

Thus, the mix of the magnetic and vortical waves leads to the change of the propagation

direction of the common mixed wave as compared to the directions of the individual waves.

Indeed, the individual CMW wave in the absence of the CVW would propagate along the

magnetic field B while the individual CVW in the absence of the CMW would propagate

along the rotation velocity Ω. In the a rotating dense system subjected to magnetic field

the CMW and CVW always mix and form a common wave which propagates only along

the common vector (4.4).

The velocity of the common wave is also changed (2.24) compared to the velocities

of the pure CMW (2.17) and CVW (2.24). The charge-density structure of the waves

remain, however, the same: the right-handed modes (with the same vector and axial den-

sities) propagate along the effective magnetic field (4.4) while the left-handed modes (with

opposite vector and axial densities) propagate opposite to this field.

The energy density component of the mixed magnetic-vortical wave can be easily found

from eqs. (3.1), (3.3) and (3.4):

δjE = µV
eBBΩ

2π2χ
δρA ≡ µV δjV , (4.6)

where we have also used the first relation in eq. (4.3). Equation (4.6) demonstrates that the

energy component of the common magnetic-vortical wave is, basically, the a mass “slave”

wave which is tightly bound to the vector charge density wave. In particular, δε(t,x) =

µV δρV (t,x). Thus, the qualitative structure of the mixed Chiral Magnetic/Vortical Wave

is the same as the structure of the Chiral Vortical Wave (shown in figure 2) with the

reservation that the direction of the mixed wave propagation is collinear to the axis of the

effective field (4.4).

One of the possible environments where both CMW and CVW may realize is a noncen-

tral heavy-ion collision. The created fireball of quark-gluon plasma is, basically, a rotating

fluid of light fermions in a background of strong magnetic field (the latter is created by the

ion constituents and by the products of their collision). In this case the vectors Ω and B

are co-aligned with each other and the velocity of the common Magnetic-Vortical wave is

a sum of the velocities of the individual CMW and CVW (4.5):

vMV = vCMW ± vCVW for B‖Ω , (4.7)

where the upper (lower) sign corresponds to parallel (antiparallel) orientation of eB

and µV Ω.4

Notice that for the specific relation between the magnetic field and the angular velocity,

B = −2µV
e

Ω , (4.8)

4Here we have explicitly included the prefactors e and µV since they may take negative values.
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the chiral waves do not propagate in the system at all. Indeed, in the considered environ-

ment (B 6= 0, Ω 6= 0 and µV 6= 0) the pure CMW and the pure CVW do not exist alone

so that the vector and axial density waves propagate only in the form of the mixed Chiral

Magnetic/Vortical Wave. For the strength of magnetic field (4.8) the velocity of the mixed

wave is zero, so that no wave propagation occurs.

4.2 Chiral Vortical-Heat Wave

4.2.1 Three solutions for dispersions

In the previous section we have shown that the Chiral Heat Wave emerges in a rotating

finite-temperature fluid at zero chemical potential in the absence of magnetic field. Let us

lift a bit our restrictions and consider the same fluid but with a small nonzero chemical

potential, µV 6= 0.5 We already know that the Chiral Vortical Wave should appear in this

environment as a gapless excitation. These two waves should mix with each other because

the CHW propagates as the coupled energy and axial (chiral) charge density wave, while

the CVW couples the vector and axial charge densities. Since the CHW and CVW have

one common axial channel they should inevitably mix at a finite density.

Following our previous tactics we use the full system of equations (4.1), (4.2) and (3.1)

along with eqs. (2.10) and (3.7) to derive relations between the fluctuations of currents J

and densities J0 ≡ Q:

δ~J = ΩM̂δ ~J 0 , (4.9)

where we used the vector notations in the charge, axial charge and energy space:

~Jµ ≡ ( ~Q, ~J) =

 jµV

jµA

jµE

 , (4.10)

with the matrix

M̂ =

 0 µV
π2χ

0
µV
π2χ

0 T
3cV

0 T 2

3χ +
µ2V
π2χ

0

Ω. (4.11)

Using the vector form for the conservation laws of vector and axial charges (2.13) and

that for the energy (3.5),

∂µδJ
µ = 0 , (4.12)

one gets from eq. (4.9): (
1l ∂t + M̂∂z

)
δ ~Q(t, z) = 0 . (4.13)

5To keep our analysis simple, we consider slowly rotating system at small chemical potential (Ω �
T, µV � T ), so that O(Ω2) and O(µ2

V ) terms in energy density (3.6) can be neglected.
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It is convenient to use the plane-wave ansatz in eq. (4.13),

~Q(t, z) = ~C0e
−iωt+ikxz . (4.14)

It appears that there are three solutions for the dispersion relation:

ω±VH(k) = ±vVHkz , (4.15)

and

ω(k) = 0 . (4.16)

In eq. (4.15) the subscript “VH” stands for the mixed Chiral Vortical–Heat Wave.

Below we discuss the linear dispersion laws (4.15) corresponding to the mixing between

heat and vortical waves. The special (non propagating) zero-frequency solution (4.16) is

discussed in section 5.1.

4.2.2 Propagating mode: vector-axial-energy wave at T 6= 0

The dispersion (4.15) corresponds to the velocity of the common, Chiral Vortical and Chiral

Heat, gapless mode:

vVH = Ω

√
µ2
V

π4χ2
+

T

3cV χ

(
T 2

3
+
µ2
V

π2

)
≡

√
v2
CVW +

[
1 + 3

(µV
πT

)2
]
v2
CHW . (4.17)

Thus, in the rotating dense hot fluid the CVW and the CHW form one vortical-heat wave

propagating with velocity (4.17) along the vorticity vector Ω. Notice that the velocity of

the mixed CVW/CHW excitation (4.17) is higher compared to the individual velocities of

the pure CVW (2.24) and CHW (3.16).

The vector, axial and energy densities inside the mixed CVW/CHW are interrelated:

δρA(t, z) = ± vVH

vCVW

δρV (t, z) , (4.18)

δε(t, z) =

(
µV +

π2T 2

3µV

)
δρV (t, z) , (4.19)

where the upper and lower signs correspond to those of eq. (4.15), the common vortical-

heat wave velocity vVH is given in eq. (4.17) and the pure CVW velocity vCVW velocity can

be found in eq. (2.24). Equations (4.18) and (4.19) correspond to the eigenvectors (4.14) of

eq. (4.13) with the dispersion relations (4.15). As expected, the mixed heat/vortical wave

is composed of all three vector, axial and energy waves (shown in figure 4).

The relation between the vector and axial charges in the mixed wave (4.18) can also

be rewritten as follows:

δρA(t, z) = ±

√
1 +

π2χT

3cV

(
1 +

π2T 2

3µ2
V

)
δρV (t, z) . (4.20)

Thus, in the mixed wave the axial charge density is always larger than the vector (usual)

charge density.
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Figure 4. Structure of the mixed Chiral Vortical/Heat Wave in a finite-density (µV > 0) hot

(T > 0) rotating (Ω 6= 0) chiral medium at vanishing magnetic field (B = 0). The notations and

the µV < 0 case are described in the caption of figure 2.

The ω+ modes — which are primarily composed of the right-handed density wave

with admixture of the left-handed wave — are propagating along with the direction of

the rotational velocity (vorticity) Ω, while the ω− modes are predominantly left-handed

densities which propagate opposite to Ω. Both these modes are coherent with energy

density waves which have the same sign as the charge density (4.19) as it is shown in

figure 4.

4.2.3 Zero temperature: chiral vortical and mass waves

In the low-temperature limit T → 0 the pure CHW does not propagate (3.16) as its

velocity vanishes, vCHW(T = 0) = 0. In this limit the ω+ and ω− mixed modes (4.15)

become, respectively, the pure right-handed and pure left-handed modes carried by the

CVW. Notice that even in this limit — when the Chiral Heat Wave is absent — the energy

density in the CVW is nonzero due to the presence of the chemical potential µV 6= 0.

Basically, the Chiral Vortical Wave induces a mass wave in the cold matter (4.19). The

mass wave is propagating without mass transfer, at least in the linear approximation.

Moreover, according to eq. (4.17), the emerging mass waves are not affecting the velocity of

propagation of the CVW provided the temperature is sufficiently low, so that the following

conditions are both satisfied:

T �
(
cV µ

2
V

π2χ

) 1
3

, T � cV
πχ

. (4.21)

The charge and energy density content inside the CMW can be easily read from

eqs. (4.18) and (4.19):

δρA = ±δρV , δε = µV δρV . (4.22)
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We recover the result of ref. [40] which shows the existence of the pure right-handed and

left-handed waves which are propagating in opposite directions. In addition, we have

found that each of these density waves induces the mass wave which is proportional to the

chemical potential µV :

L :


vL = −vCVW ,

δρL 6= 0 ,

δρR = 0 ,

δε = µV δρL ,

R :


vR = +vCVW ,

δρL = 0 ,

δρR 6= 0 ,

δε = µV δρR .

(4.23)

Summarizing, at sufficiently low temperatures (4.21), neither the chirality nor the

velocity of the CVWs is affected by the presence of the energy wave induced by the mixed

gauge-gravitational anomaly. However, at higher temperatures the propagating CVW is

always accompanied by the thermal (“heat”) energy density wave (4.19). The velocity of

the mixed vortical-heat wave is higher compared to the velocity of the original vortical wave.

Moreover, the mixed chiral vortical-heat wave is neither right-handed or left-handed (4.18)

contrary to the pure CVW.

4.3 Chiral Magnetic-Heat Wave

Now let us consider the case of rotating (Ω 6= 0) finite-temperature (T 6= 0) neutral

(µV = 0) fluid in external magnetic field (B 6= 0). Since the chemical potential is ab-

sent then the chiral vortical wave does not exist. The propagation of the chiral magnetic

and heat waves is described by the following relation between the charge and density

fluctuations:

δjV =
eB

2π2χ
δρA , (4.24)

δjA =
eB

2π2χ
δρV +

TΩ

3cV
δε , (4.25)

δjE =
T 2Ω

3χ
δρA . (4.26)

With the help of the conservation laws (2.8), (2.9) and (3.5), these equations may be cast

into the system of linear equations:(
1l ∂t + (M̂ · ∂)

)
δ ~Q(t, z) = 0 , (4.27)

where the charge vector ~Q is given in eq. (4.10) and

M̂ =

 0 eB
2π2χ

0
eB

2π2χ
0 TΩ

3cV

0 T 2Ω
3χ 0

 . (4.28)

The dispersion relation for the density waves in the system reads as follows:(
Vijk

ikj − ω2
)
ω = 0 , (4.29)
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where the matrix in the momentum space

Vij(B,Ω) = v2
CMW(B) eBi e

B
j + v2

CHW(Ω) eΩ
i e

Ω
j , (4.30)

depends on two unit vectors directed along the magnetic field and the angular velocity,

respectively:

eB =
B

B
, eΩ =

Ω

Ω
. (4.31)

In eq. (4.30) the velocities of the pure magnetic and pure heat waves are given in eqs. (2.17)

and (3.16), respectively.

There are three branches of solutions of eq. (4.29) for the dispersion relations:

ω = ±
√
Vijkikj , (4.32)

and

ω = 0 . (4.33)

The trivial solution (4.33) is considered in section 5.2 below.

In order to deal with the nontrivial dispersion relation (4.32) we simplify (without loss

of generality) our calculations by setting the rotation vector Ω along the z-axis and turning

the vector of magnetic field B in the xz-plane:

B = (B sinϕ, 0, B cosϕ) , Ω = (0, 0,Ω) , (4.34)

where ϕ ≡ ϕ(B,Ω) is the angle between the magnetic field B and the rotation axis Ω.

The eigensystem of the matrix (4.30) is was follows:

V̂ ea = λaea , a = ±, y , (4.35)

where the trivial eigenvalue λy = 0 corresponds to the (unit-length) eigenvector ey along

the y axis, which is orthogonal to both Ω and B. The nonzero eigenvalues, λ± ≡ v2
MH,±,

can be expressed via the following quantities:

v2
MH,± =

1

2

(
v2
CMW + v2

CHW ±
√

(v2
CMW + v2

CHW)2 − 4v2
CMWv

2
CHW sin2 ϕ

)
. (4.36)

As we will see below vMH,± are two principal velocities of the coupled Chiral Magnetic and

Chiral Heat Waves (denoted by the subscript “MH”).

The eigenvectors corresponding to the eigenvalues (4.36) are located in the xz plane,

e+ = (sin θ, 0, cos θ) ,

e− = (− cos θ, 0, sin θ) ,
(4.37)

where the angle θ depends on the strength and mutual orientation of the magnetic field

and the rotation velocity:

θ(B,Ω) = arctan

[(
1− v2

CHW(Ω)

v2
MH,+(B,Ω)

)
tanϕ(B,Ω)

]
. (4.38)
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The eigenvectors ey and e± form the orthonormal system, eaeb = δab with a, b = ±, y.

It is convenient to re-express the momentum vector k in the orthogonal basis

(e+, e−, ey),

k =
∑
a=±,z

kaea , (4.39)

where

k+ = kx sin θ + kz cos θ ,

k− = −kx cos θ + kz sin θ ,
(4.40)

and the momentum component ky remains unrotated. Then one gets the following disper-

sion relation from eq. (4.29)

ω(k) = ±
√
v2
MH,+k

2
+ + v2

MH,−k
2
− , (4.41)

where the velocities vMH,± are defined in eq. (4.36).

The velocity of the wave propagation is

v(k) ≡ ∂ω(k)

∂k
=

1

ω
V̂ k , (4.42)

where the matrix V̂ , which operates in the coordinate space, is defined in eq. (4.30). One

gets explicitly:

v =
v2
MH,+k+e+ + v2

MH,−k−e−√
v2
MH,+k

2
+ + v2

MH,−k
2
−

. (4.43)

First, we conclude from eq. (4.43) that for non-collinear Ω and B, the propagation of

the mixed magnetic/heat wave is not constrained to a singe vector contrary to the cases of

the pure magnetic wave or pure heat wave. The mixed wave may propagate in the whole

xz plane spanned on the vectors Ω and B. Second, eq. (4.43) indicates that the wave

vector k and the velocity vector v, if even they are constrained to belong to the common

xz plane, are not parallel unless

(i) The wave vector k is directed along one of the eigenvectors e± (so that either k+

or k− is zero). Then the wave propagates along the vectors e+ and e− with the

velocities vMH,+ and vMH,− [given in eq. (4.36)], respectively;

(ii) One of the vMH,± velocities vanishes (so that sinϕ = 0, implying that the rotation

axis and the magnetic field are collinear to each other, Ω‖B);

(iii ) If vMH,+ = vMH,−. This is possible if two conditions are satisfied (4.36): the rotation

axis and the magnetic field should be perpendicular to each other Ω ⊥ B, so that

ϕ = ±π/2, and the both CMW and CHW velocities should be equal, vCMW = vCHW.

– 20 –



J
H
E
P
0
1
(
2
0
1
6
)
1
0
0

z

x

Ω B k vϕ ϑ

Figure 5. Illustration of the anisotropic propagation of the mixed Chiral Magnetic/Heat Wave in

the plane spanned on the vectors of the magnetic field B and the rotation axis Ω. If B and Ω are

not collinear, then the direction of the wave vector k and the direction of the wave velocity v may

not coincide with each other. The angles ϕ and ϑ are defined in eqs. (4.34) and (4.46), respectively.

Thus, in general, the direction of the phase velocity, given by the wave vector k and

the direction of the group velocity, given by the vector v do not coincide with each other,

which is not unexpected given the anisotropic nature of the medium. In order to illustrate

this anisotropy, let us consider the the wave vector k directed along the axis of rotation

Ω so that k‖Ω‖ez. Then from eqs. (4.36). (4.38) and (4.43) we conclude that the mixed

wave propagates with the following velocity

v0 = v0(sinϑ, 0, cosϑ) , (4.44)

where

v0 =

√
(v2

CHW + v2
CMW cos2 ϕ)2 + 1

4v
4
CMW sin2 2ϕ

v2
CHW + v2

CMW cos2 ϕ
, (4.45)

ϑ = arctan
v2
CMW sinϕ cosϕ

v2
CHW + v2

CMW cos2 ϕ
. (4.46)

For example, if the angle between the magnetic field and the rotation axis is ϕ = π/4 =

45◦, and the parameters of the gas are chosen in such a way that the velocities for the pure

chiral magnetic (2.17) and heat (3.16) waves are the same, v = vCMW = vCHW, then the angle

between the phase and group velocity is ϑ ≈ 0.32 ≈ 18◦ while the velocity of the mixed

wave is greater than the velocities of any of its pure constituents: v
‖
MH =

√
5/3v ≈ 1.3v.

We visualize this anisotropic effect in figure 5.

The coupled chiral magnetic-heat wave carries the vector, charge and energy densities

similarly to the coupled vortex-heat wave.

Let us consider the case when the magnetic field and angular velocity are collinear

to each other, B‖Ω‖ez. This case is relevant to noncentral heavy-ion collisions. Setting

ϕ = 0 in eq. (4.36) we obtain the velocity of the coupled CMW/CHW excitation:

v
‖
MH =

√
v2
CMW + v2

CHW ≡

√
e2B2

4π4χ2
+
T 3Ω2

9cV χ
, (4.47)
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where we have used eqs. (2.17) and (3.16). In this simple case the mixed wave propagates

along the common axis of B and Ω, and the directions of the wave and velocity vectors

are collinear to each other, B‖Ω‖k‖v.

Finally, we mention that in the low-temperature limit the CHW ceases to exist while

the CMW wave remains unaffected. The fluctuations in thermal energy decouple from the

vector and axial fluctuations according to eqs. (4.24), (4.25) and (4.26). Thus, the mixed

magnetic-heat wave becomes the pure Chiral Magnetic Wave at T → 0.

4.4 Chiral Magnetic-Vortical-Heat Wave

Finally, let us assume that all discussed ingredients are present: we consider hot (T 6= 0)

rotating (Ω 6= 0) finite-density (µV 6= 0) fluid subjected to the external magnetic field

B 6= 0. The fluctuations of currents δja and the densities δρa (with a = V,A,E) are now

related as follows:

δjV =
δρA
2π2χ

eB +
µV δρA
π2χ

Ω , (4.48)

δjA =
δρV
2π2χ

eB +

(
Tδε

3cV
+
µV δρV
π2χ

)
Ω , (4.49)

δjE =
µV δρA
2π2χ

eB +
δρA
χ

(
µ2
V

π2
+
T 2

3

)
Ω , (4.50)

where we have used eqs. (2.1), (2.2), (2.3), (2.20), (2.21), (3.1), (3.3) and (3.4). Then the

conservation laws (2.8), (2.9) and (3.5) give us the familiar relation (4.27) with, however,

the following new matrix:

M̂ =

 0 eB+2µVΩ
2π2χ

0
eB+2µVΩ

2π2χ
0 TΩ

3cV

0 (eB+2µVΩ)µV
2π2χ

+ T 2Ω
3χ 0

 . (4.51)

The magnetic field enters eq. (4.51) only via its linear combination BBΩ with the angular

velocity vector (4.4). As we have seen, this is a feature of the CMW/CVW mixing. More-

over, the structure of the matrix (4.51) coincides with the matrix (4.28) which describes

the mixing of the chiral magnetic and chiral heat waves.

Exploring this analogy further, we notice that the excitation spectrum consists of the

trivial branch ω ≡ 0 and two gapless waves (4.32) with

Vij = v2
MVe

BΩ
i eBΩ

j + v2
CHWe

Ω
i e

Ω
j + γvMVvCHW

(
eBΩ
i eΩ

j + eΩ
i e

BΩ
j

)
. (4.52)

Here vMV is the velocity of the mixed Chiral Magnetic/Vortex Wave (4.5), eΩ is defined in

eq. (4.31), eBΩ is the unit vector in the direction of the effective magnetic field (4.4):

eBΩ =
BBΩ

|BBΩ|
≡ eB + 2µV Ω

|eB + 2µV Ω|
, (4.53)

and

γ =
1

2

vCHW

vCVW

(µV
πT

)2
≡ µV

6

√
χ

TcV
. (4.54)

– 22 –



J
H
E
P
0
1
(
2
0
1
6
)
1
0
0

The case of the trivial dispersion relation (ω ≡ 0) is considered in details in section 5.3.

Due to the apparent analogy of the full (magnetic/vortex/heat) wave mixing with the

simpler case of the magnetic/heat wave mixing, the analysis of the full mixing can be easily

done. Following section 4.3, we find that the eigensystem of the velocity matrix (4.52)

gives us the principal velocities (squared) v2
MVH,± ≡ λ± and the principal vectors (4.37)

determined by the angle θ:

v2
MVH,± =

1

2

(
v2
MV + v2

CHW + 2γvMVvCHW cosβ

±
√

(v2
MV + v2

CHW + 2γvMVvCHW cosβ)2 − 4(1− γ2)v2
MVv

2
CHW sin2 β

)
, (4.55)

θ(B,Ω) = arctan

[(
1− (1− γ2)v2

CHW(Ω)

v2
MVH,+(B,Ω)

)
vMV(B,Ω) sinϕ(B,Ω)

γvCHW(Ω) + vMV(B,Ω) cosϕ(B,Ω)

]
. (4.56)

where β is an angle between the effective magnetic field BBΩ, eq. (4.4), and the angular

velocity Ω, and the factor γ is given in eq. (4.54). The mixed waves propagate with

velocities vMVH,± along the principal vectors (4.37) and (4.56). Here the subscript “MVH”

stands for the mixing of the Chiral Magnetic-Vortical-Heat Wave.

All equations of the end of section 4.3 can now be applied to the full-wave mixing by

making the substitution B → BBΩ where the effective field BBΩ is given in eq. (4.4). In

particular, we conclude that the direction of the wave vector k of the mixed wave and the

direction of its velocity v do not generally coincide with each other.

If the vectors B and Ω are collinear, then the mixed wave propagates along these

vectors with (the absolute value of) the velocity

v
‖,±
MVH =

{
(vCVW ± vCMW)2 +

[
1 +

(
µV
πT

)2(
1± vCMW

vCVW

)]
v2
CHW

} 1
2

, (4.57)

where upper (lower) sign corresponds to parallel (antiparallel) orientation of the vectors

eB and µV Ω, and pure magnetic, vortical and heat velocities are given in eqs. (2.17), (2.24)

and (3.16), respectively.

Notice that if the magnetic field takes a very specific value (4.8) then the Chiral

Magnetic and Chiral Vortical Waves disappear completely and the Chiral Heat Wave re-

mains the only gapless collective mode in the system. Indeed, at this strength (4.8) the

effective magnetic field BBΩ vanishes (4.4), and the matrix M̂ — which determines the

propagations of fluctuations (4.51) — gets drastically simplified as it has now only two

elements corresponding to the Chiral Heat Wave (3.14). Basically, for this value of the

magnetic field (4.8), the magnetic and vortical waves exactly cancel each other implying

vCVW = ∓vCMW and, consequently, v
‖,±
MVH ≡ vCHW in eq. (4.57). The remaining heat wave

propagates with the standard heat velocity (3.16), which is affected neither by the presence

of the magnetic field B nor by the rotation Ω.

At the end of this section let us consider briefly the behavior the of mixed magnetic-

vortical-heat wave in two specific cases.
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The fate of the mixed magnetic-vortical-heat wave in the low-temperature limit can

easily be seen from the structure of matrix (4.51) which describes the generation of the

anomalous currents by charge (energy) density fluctuations. At low temperature the heat

wave disappears while the magnetic and vortical waves still exist and remain coupled to

each other. The energy current is replaced by the mass current along the direction of the

effective magnetic field (4.4). The associated mass wave does not, however, influence the

velocity of the coupled magnetic-vortical wave because in this limit the magnetic-vortical-

heat velocity (4.55) reduces to the magnetic-vortical velocity (4.5).

If one keeps temperature nonzero but stops rotation (Ω = 0) then both the vortical and

heat waves formally disappear leaving the CMW alone with the matter wave. According to

the form of the mixing matrix (4.51), the mass wave is generated by the axial component

δρA of the CMW. The mass wave influences neither the velocity nor the chiral content of

the CMW neither at zero temperature nor at finite temperature.

5 Non-propagating diffusive modes: dense hot spots

So far we discussed sound-like collective modes which correspond to coherent propagation

of the vector charge density, axial charge density and/or energy density waves along the

axis of magnetic field and/or angular velocity vector (or the combinations of the latter

two). In the lowest, linear order in momentum these waves possess the linear dispersion

relations, ω = ±vkz, with the corresponding velocities v. However, in certain environments

we have also found the presence of zero-frequency solutions, ω = 0. In this section we dis-

cuss these solutions and demonstrate that they describe certain non-propagating diffusive

configurations of energy and vector charge densities. These solutions exist due to interplay

between axial and mixed gauge-gravitational anomalies in the system.

5.1 Rotating hot dense fluid in the absence of magnetic field

In section 4.2 we have demonstrated that the vortical wave mixes with the heat wave in

a rotating finite-density fluid at finite temperature in the absence of magnetic field. In

addition, we have observed a new branch of solutions corresponding to the identically zero

dispersion (4.16) in the linear order of the wave vector k. This new mode is obviously a

non-propagating object since its velocity is identically zero in the reference frame defined

by the chemical potential µV :

vDHS(k) =
∂ω(k)

∂k
≡ 0 . (5.1)

We call this diffusive mode “the Dense Hot Spot” (DHS) because this mode has an excess

both in the vector charge density and in the thermal energy density. According to eqs. (4.11)

and (4.13) the density fluctuations in DHS are related to each other:

δε(z) = −3cV µV
π2Tχ

δρV (z) , δρA(z) = 0 . (5.2)

The fluctuations in energy and the vector charge densities have mutually opposite signs

while the fluctuation in the axial charge density is identically zero in the DHS.
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The mentioned example of the DHS corresponds to fluctuations in vector and energy

densities (5.2) which (in the linear order in k) do not generate fluctuations of currents:

δjV = δjV = δjE = 0 . (5.3)

Therefore, the DHS is not a propagating diffusive mode. We would like to stress that the

DHS is not a standing wave which could be composed from two counter-propagating pure

vortex and heat waves.

Anticipating the inevitable dissipation of the vector charge and thermal diffusion, we

expect that the dispersion relation of the Dense Hot Spots should contain, to the lowest

order in momenta, the dissipative term only:

ωDHS(kz) = −iD‖k2
z + . . . . (5.4)

Once this fluctuation is created it would diffuse without propagation. The shape of the

DHS is not determined by the linear anomalous relations, so that for small densities it can

be an arbitrary function of the longitudinal coordinate z.

Thus we arrive to the following convenient definition for the Dense Hot Spot:

(i) The DHS consists of non-propagating diffusive lumps in the energy and vector charge

densities which are related to each other;

(iii) The axial charge density in the DHS is identically zero;

(ii) The DHS does not generate vector, axial and thermal energy currents via anomalous

transport laws (5.3).

5.2 Rotating hot zero-density fluid in magnetic field

Now let us consider the case of rotating (Ω 6= 0) finite-temperature (T 6= 0) neutral

(µV = 0) fluid subjected to an external magnetic field (B 6= 0). This setup is relevant to

the quark-gluon plasma created in noncentral heavy-ion collisions as the plasma is set into

rotation due to noncentrality of the collision, while the charged nature of the colliding ions

exposes the plasma to the external magnetic field. Geometrically, both the axis magnetic

field B and the the angular velocity vector Ω are co-aligned in noncentral collisions. How-

ever, for the sake of generality, we will first consider below the case of arbitrary orientation

of the vectors B and Ω.

As we have already discussed in section 4.3, in this environment (T 6= 0, µV = 0,

B 6= 0, Ω 6= 0) both chiral magnetic and heat waves emerge and they mix with each

other. In addition to the coupled chiral magnetic-heat wave we have also found a branch

of the spectrum with the zero dispersion relation (4.33). This is yet another example of a

non-propagating diffusive mode, the Dense Hot Spot.

The charge and energy content of the DHS can be found from eqs. (3.9), (3.10) and

(3.11). Since the spot should generate no anomalous currents, we find from eqs. (3.9)

and (3.11) that the axial density in the spot is zero, δρA = 0. Equation (3.10) implies
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Figure 6. Illustration of the Dense Hot Spots in rotating hot fluid in a background magnetic field.

Each plot shows the vector density fluctuation δρV (z-axis magnitude) and the thermal energy

fluctuation δε (shown by colors from red/hot to blue/cold) in coordinate space. The axial density is

identically zero, δρA ≡ 0. The blue dashed (red solid) arrow points to the direction of the magnetic

field B (the angular velocity Ω).

the following relation between charge and energy fluctuations valid in the linear order of

momentum k:

e(B · k)

2π2χ
δρV,k(x) +

T (Ω · k)

3cV
δεk(x) = 0 . (5.5)

The relation (5.5) between the energy density εk and the vector charge density ρV,k
depends on the mutual orientation of the magnetic field B, the angular velocity Ω and the

wave vector k of the DHS. In eq. (5.5) the subscript k indicates that the energy density

fluctuation δεk(x) = Ck cos
(
(k ·x) +αk

)
, and similarly the vector density δρV,k, is defined

for certain wave vector k. Illustrations of the diffusive Dense Hot Spots for a set of mutual

orientations of the angular velocity and the magnetic field are shown in figure 6.

5.3 Rotating hot dense fluid in magnetic field

Finally, let us consider the most general situation, when the density, temperature, magnetic

field and angular velocity are all nonzero. The analysis of the DHS can be done similarly

to the analysis of the previous section. According to eqs. (4.48), (4.49) and (4.50) one

arrives to a density-energy constraint similar to eq. (5.5), in which the magnetic field B is

replaced by the effective magnetic field (4.4): eBBΩ ≡ eB + 2µV Ω. Thus, we come to a

conclusion that the vector density fluctuations and the energy density fluctuations in the

DHSs of rotating hot fluids in the background of magnetic field are qualitatively the same

(up to the redefinition of the magnetic field, B → BBΩ) for the cases of zero (µV = 0) and

nonzero (µV 6= 0) background densities.

In addition of the DHS-like fluctuations, the rotating dense system of chiral fermions

may host a “classical” non-propagating DHS mode, in which the magnitudes of vector

charge and energy densities are not limited to small values. Such “giant” spots are realized

in a special case, when the magnetic field and angular velocities are collinear to each other:

B‖Ω. At zero axial chemical potential, µA = 0, the anomalous vector current (2.1), (2.4),

(2.20), (2.21) and the anomalous energy current (3.1), (3.3), (3.4) are both zero so that

the non-propagation condition for these quantities is satisfied automatically. As for the

anomalous axial current, it is given by eqs. (2.2), (2.4), (2.20) and (2.21):

jA =
µV
2π2

eB +

(
T 2

6
+
µ2
V

2π2

)
Ω . (5.6)
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Taking B = Bez and Ω = Ωez along the same axis, one finds that the axial current (5.6)

vanishes in the DHS if the local temperature and local value of the chemical potential

satisfy the following relation:

3µV (x)eB + 3µ2
V (x)Ω + π2T 2(x)Ω = 0 . (5.7)

Similarly to equations for the chiral waves, this relation for the chiral diffusive spot is

applicable only in the long-wavelength limit.

Notice that according to eq. (5.7) the “giant DHS” at zero temperature is realized at

the particular value of the chemical potential:

µV = −eB
Ω
. (5.8)

Summarizing this section we conclude that the Dense Hot Spots are static diffusive

modes which appear due to interplay of the axial and gauge-gravitational anomalies in the

environment that couples the heat wave either to the vortex wave (section 5.1), or to the

magnetic wave (section 5.2) or to the common magnetic-vortex wave (section 5.3). The

DHS may only exist in the rotating chiral medium subjected to an external magnetic field.

6 Summary and conclusions

We have demonstrated that a hot rotating fluid/plasma of chiral fermions possesses a new

gapless collective excitation, the Chiral Heat Wave, which is associated with the coherent

propagation of thermal energy density and chiral charge density waves along the axis of

rotation. The heat wave propagation is a cyclic process: the mixed gauge-gravitational

anomaly converts a perturbation in the axial charge density into energy current directed

along the axis of rotation. Then the energy current heats the chiral medium which generates

an excess of the axial current along the same axis. Finally, the axial current leads again

to an excess in the axial charge density further along the rotation axis and the processes

repeats again.

At finite density a rotating fluid supports also the Chiral Vortical Wave [40] which

mixes with the Chiral Heat Wave at nonzero temperature. Moreover, in the presence

of an external magnetic field the system may also host the Chiral Magnetic Wave [35]

which, in a rotating fluid, should couple to the heat wave and which may also mix with

the vortical wave. Since the mentioned vortical and magnetic waves are propagating due

to similar cyclic conversion of the vector and axial densities, the mixed vortical-heat and

magnetic-heat waves involve fluctuations of all three (vector, axial and energy) currents

and their densities, which appear in different proportions depending on external conditions

(temperature, density, rotation and magnetic field).

It is important to stress that the mixed waves have, in general, different velocities

compared to the velocities of the individual constituent waves. For example, if the magnetic

field B and the angular velocity Ω are pointing to the same direction (and assuming

for simplicity that the electric charge e and vector chemical potential µV are both non-

negative), then the velocities of the mixed magnetic-vortical (4.5), magnetic-heat (4.47),

– 27 –



J
H
E
P
0
1
(
2
0
1
6
)
1
0
0

T 6= 0

Ω = 0 Ω 6= 0

B = 0 B 6= 0 B = 0 B 6= 0

µV = 0 — M (2.17) H (3.16) M+H (4.36), A, DHS

µV 6= 0 — M+µ (2.17) V+H (4.17), DHS M+V+H (4.55), A, DHS

T = 0

Ω = 0 Ω 6= 0

B = 0 B 6= 0 B = 0 B 6= 0

µV = 0 — M (2.17) — M (2.17)

µV 6= 0 — M+µ (2.17) V+µ (2.24) M+V+µ (4.5), DHS

Table 1. Physical conditions required for existence of the Chiral Magnetic (M), Vortical (V), Heat

(H) and Mass (µ) Waves, various mixings of these waves and the Dense Hot Spots (DHS) at finite

temperature T 6= 0 (the upper table) and zero temperature T = 0 (the lower table). The numbers in

round brackets point out to expressions for the corresponding velocities. The pure Chiral Magnetic

Wave and Chiral Heat Wave exist at zero density only. Strictly speaking, the Chiral Vortical Wave

does not exist alone as it is always coupled either to the Chiral Heat Wave at finite temperature

or to the mass wave at zero temperature. The admixture of the mass (µ) wave to any other (M,

V, H) wave does not influence the velocity of the mixed wave propagation. The label A indicates

that the Chiral Magnetic-Heat Wave propagates anisotropically as its phase and group velocities

are pointing out, generally, to different directions.

vortical-heat (4.17) and magnetic-vortical-heat (4.57) waves are, respectively, as follows:

v
‖
MV = vCMW + vCVW ,

v
‖
MH =

√
v2
CMW + v2

CHW ,

v
‖
VH =

√
v2
CVW +

[
1 + 3

(µV
πT

)2
]
v2
CHW , (6.1)

v
‖
MVH =

{[
1 +

(µV
πT

)2
(

1 +
vCMW

vCVW

)]
v2
CHW + (vCMW + vCVW)2

} 1
2

,

where

vCMW =
eB

2π2χ
, vCVW =

µV Ω

π2χ
, vCHW =

√
T 3

cV χ

Ω

3
, (6.2)

are the velocities of the “pure” Chiral Magnetic (2.17), Chiral Vortical (2.24) and Chiral

Heat (3.16) Waves, respectively. In eq. (6.1) the superscript “‖” indicates that the velocities

are shown for the special case when the magnetic field and the angular velocity are parallel

to each other, B‖Ω. We consider slowly rotating system at small chemical potential

(Ω� T, µV � T ), so that O(Ω2) and O(µ2
V ) terms in energy density (3.6) were neglected.
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Equations (6.1) indicate that the mixing of the Chiral Magnetic Wave with the Chiral

Heat Wave makes the velocity of the original CMW higher. In other words, the magnetic

wave (which appears as a result of the axial anomaly) propagates faster at finite tempera-

ture due to the presence of the mixed gauge-gravitational anomaly. The same is true for the

mix of the Chiral Vortical Wave and the Heat Wave: the coupling to the energy density

wave makes the vortical wave faster. Notice that, strictly speaking, the Chiral Vortical

Wave never exists alone: it is always coupled either to the Chiral Heat Wave (at finite tem-

perature) or to the mass wave (at zero temperature). Due to this inevitable coupling the

velocity of the Chiral Vortical Wave at finite temperature (4.17) is always higher compared

to the zero-temperature expression or to idealized formula for a pure Chiral Vortical Wave

given by the second formula in eq. (6.2)].

As for the mix of the magnetic and vortical waves, the result of the coupling between

these waves depends on the relative signs of the magnetic field and the angular velocity.

The mixed wave may propagate faster, slower or even stop propagating at all. The latter

happens if the the magnetic field and the angular frequency obey eq. (4.8).

There are also other effects of the wave mixing. If the angular velocity of the chiral

fluid is not collinear to the axis of magnetic field, then there exists a mixed Heat-Magnetic

wave which propagates anisotropically: its phase and group velocities are, in general, not

parallel to each other (in other words, the wave vector k and the velocity v of the mixed

wave are not collinear as it is illustrated in figure 5 of section 4.3). The same is true for

the triple, Heat-Magnetic-Vortical wave mixing discussed in section 4.4. As for the Heat-

Vortical wave (section 4.2) and the Magnetic-Vortical wave (section 4.1), their phase and

group velocities are always parallel to each other.

A mixing of the heat wave either with the magnetic wave or with the vortical wave or

with both these waves leads also to appearance of the diffusive modes, the Dense Hot Spots

which are non-propagating thermal fluctuations with zero chiral charge density but with

nonzero vector charge density. In the first, linear order in momentum, the DHSs possess

identically zero dispersion law (ω = 0) so that the corresponding phase and group velocities

are identically zero. The fluctuations in energy density and in vector charge density of a

DHS are related to each other in such a way that they generate no anomalous vector, axial

and energy currents.

In table 1 we briefly summarize the physical conditions at which the pure Chiral

Magnetic/Vortical/Heat Waves, the corresponding inter-wave mixings and the diffusive

Dense Hot Spots may appear.

We expect that our results should be relevant to noncentral heavy-ion collisions which

create rotating fireballs of hot quark-gluon plasma subjected to a strong magnetic field. In

this environment all discussed sound-like modes, namely the Chiral Magnetic, Chiral Vorti-

cal and Chiral Heat Waves should exist. We expect that these waves should inevitably mix

with each other and form a single collective wave which could be either Chiral Magnetic-

Heat or Vortical-Heat or Magnetic-Vortical-Heat Wave, depending on the baryon density,

the strength of magnetic field and the angular velocity of the fireball (cf. table 1). The

common collective wave propagates as a coherent excitation in vector, axial and thermal

energy densities. Since in a typical noncentral heavy-ion collision the axis of the magnetic
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field is co-aligned with the angular velocity, the group and phase velocities of the common

collective wave should coincide.
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of our paper, was confirmed in a kinetic theory. In particular, our eq. (4.5) for the velocity

of the Magnetic-Vortical wave was re-derived.
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