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émanant des établissements d’enseignement et de
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WELL-POSEDNESS IN ENERGY SPACE FOR THE PERIODIC
MODIFIED BENJAMIN-ONO EQUATION

ZIHUA GUO1,2, YIQUAN LIN1,2, LUC MOLINET3

Abstract. We prove that the periodic modified Benjamin-Ono equation is locally
well-posed in the energy space H1/2. This ensures the global well-posedness in the
defocusing case. The proof is based on an Xs,b analysis of the system after gauge
transform.
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1. Introduction, main results and notations

In this paper, we study the Cauchy problem for the modified Benjamin-Ono equa-
tion on the torus that reads {

∂tu+H∂2
xu = ∓u2ux,

u(x, 0) = u0

(1.1)

where u(t, x) : R× T→ R, T = R/2πZ and H is the Hilbert transform

Ĥf(0) = 0, Ĥf(k) = −isgn(k)f̂(k), k ∈ Z∗.

This equation is called defocusing when there is a minus sign in front of the nonlinear
term u2ux and focusing when it is a plus sign.
The Benjamin-Ono equation with the quadratic nonlinear term

∂tu+H∂2
xu =uux (1.2)

1
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was derived by Benjamin [2] and Ono [25] as a model for one-dimensional waves in
deep water. On the other hand, the cubic nonlinearity is also of much interest for
long wave models [1, 13].

There are at least the three following quantities preserved under the flow of the
real-valued mBO equation (1.1)1∫

T
u(t, x)dx =

∫
T
u0(x)dx, (1.3)∫

T
u(t, x)2dx =

∫
T
u0(x)2dx, (1.4)∫

T

1

2
uHux ∓

1

12
|u(t, x)|4dx =

∫
T

1

2
u0Hu0,x ∓

1

12
|u0(x)|4dx . (1.5)

These conservation laws provide a priori bounds on the solution. For instance, in
the defocusing case we get from (1.4) and (1.5) that the H1/2 norm of the solution
remains bounded for all times if the initial data belongs to H1/2. This is crucial in
order to prove the well-posedness result. On the other hand the mBO equation is
L2-critical (in the sense that the L2(R)-norm is preserved by the dilation symmetry
of the equation). Therefore, in the focusing case, one expects that a phenomenon of
blow-up in the energy space occurs2

The Cauchy problems for (1.1) and the Benjamin-Ono equation (1.2) have been
extensively studied. For instance, in both real-line and periodic case, the energy
method provides local well-posedness for BO and mBO in Hs for s > 3/2 [10]. In
the real-line case, this result was improved by combination of energy method and the
dispersive effects. For real-line BO equation, the result s ≥ 3/2 by Ponce [26] was
the first place of such combination as a consequence of the commutator estimates in
[11], was later improved to s > 5/4 in [17], and s > 9/8 in [12]. Tao [27] obtained
global well-posedness in Hs for s ≥ 1 by using a gauge transformation as for the
derivative Schrödinger equation and Strichartz estimates. This result was improved
to s ≥ 0 by Ionescu and Kenig [9], and to s ≥ 1/4 (local well-posedness) by Burq
and Planchon [4]. Their proof both used the Fourier restriction norm introduced in
[3]. Recently, Molinet and Pilod [18] gave a simplified proof for s ≥ 0 and obtained
unconditional uniqueness for s > 1/4.

For the real-line mBO, this was improved to s ≥ 1 by Kenig-Koenig [12] by the
enhanced energy methods. Molinet and Ribaud [20] obtained analytic local well-

posedness for the complex-valued mBO in Hs for s > 1/2 and B
1/2
2,1 with a small

L2 norm, improving the result of Kenig-Ponce-Vega [14] for s > 1. The smallness
condition of Hs(s > 1/2) results was later removed in [19] by using Tao’s gauge
transformation [27]. The result for s = 1/2 was obtained by Kenig and Takaoka
[15] by using frequency dyadically localized gauge transformation. Their result is
sharp in the sense that the solution map is not locally uniformly continuous in Hs for
s < 1/2 (The failure of C3 smoothness was obtained in [20]). Later, Guo [7] obtained
the same result without using gauge transform under a smallness condition on the
L2 norm.

1In (1.5) the + corresponds to the defocusing case whereas the − corresponds the the focusing
one.

2Progress in this direction can be found in [16] for the case on the real line.
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In the periodic case, there is no smoothing effect for the equation. However, to
overcome the loss of derivative, the gauge transform still applies. For the periodic
BO equation, global well-posedness in H1 was proved by Molinet and Ribaud [23],
was later improved by Molinet to H1/2 [22], and L2 [21]. Molinet [24] also proved
that the result in L2 is sharp in the sense that the solution map fails to be continuous
below L2. For the periodic mBO (1.1), local well-posedness in H1 was proved in
[23]. Their proof used the Strichartz norm and gauge transform.

The purpose of this paper is to improve the well-posedness results for (1.1) to the
energy space H1/2 and, as a by-product, to prove that the solutions can be extended
for all times in the defocusing case. The main result of this paper is

Theorem 1.1. Let s ≥ 1/2. For any intial data u0 ∈ Hs(T) there exists T =
T (‖u0‖H1/2) > 0 such that the mBO equation (1.1) admits a unique solution

u ∈ C([−T, T ];Hs(T)) with P+(eiF (u)) ∈ X
1
2
, 1
2

T .

Moreover, the solution-map u0 7→ u is continuous from the ball of H1/2(T) of radius
‖u0‖H1/2, equipped with the Hs(T)-topology, with values in C([−T, T ];Hs(T)).
Finally, in the defocusing case, the solution can be extended for all times and belongs
to C(R;Hs(T)) ∩ Cb(R;H1/2(T)).

A very similar equation to mBO (1.1) is the derivative nonlinear Schrödinger
equation {

i∂tu+ ∂2
xu = i(|u|2u)x, (t, x) ∈ R× T

u(0, x) = u0.
(1.6)

It has also attracted extensive attention. Local well-posedness for (1.6) in H1/2 was
proved by Herr [8]. There are several differences between (1.1) and (1.6). The first
one is the integrability: (1.6) is integrable while (1.1) is not. The second one is the
conservation laws: (1.1) has a conservation law at level H1/2, and hence GWP in
H1/2 is much easier. The last one is the action of the gauge transform: let v be
the function after gauge transform, (1.6) can be reduced to a clean equation which
involves only v, while (1.1) can only reduce to a system that involves both u and v,
and hence the gauge for (1.1) brings more technical difficulties.

We discuss now the ingredients in the proof of Theorem 1.1. Let u be a smooth
solution to (1.1), define

w = T (u) :=
1√
2
u(t, x−

∫ t

0

1

2π

∫
u2(s, x)dxds). (1.7)

Then w solves the ”Wicked order” mBO equation:{
∂tu+H∂2

xu = 2P 6=c(u
2)ux,

u(x, 0) = u0,
(1.8)

where P 6=cf = f − 1
2π

∫
T fdx. It is easy to see that T and its inverse T−1 are both

continuous maps from C((−T, T ) : Hs) to C((−T, T ) : Hs) for s ≥ 0. Therefore we
will consider (1.8) instead of (1.1). Now, in order to overcome the loss of derivative,
we will apply the method of gauge transform as in [23, 21, 22], which was first
developed for BO equation by Tao [27]. As noticed above the equation satisfied
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by this gauge transform v involves terms with both u and v. One of the main
difficulties is that the solution u does not share the same regularity in Bourgain’space
as the gauge transform v. The main new ingredient is the use of the Marcinkiewicz
multiplier theorem that enables us to treat the multiplication by u in Bourgain’space
in a simple way.

1.1. Notations. For A,B > 0, A . B means that there exists c > 0 such that
A ≤ cB. When c is a small constant we use A� B. We write A ∼ B to denote the
statement that A . B . A.

We denote the sum on Z by integral form
∫
a(ξ)dξ :=

∑
ξ∈Z a(ξ). For a 2π-periodic

function φ, we define its Fourier transform on Z by

φ̂(ξ) :=

∫
R/2πZ

e−iξxφ(x)dx, ∀ ξ ∈ Z.

We denote by W (·) the unitary group W (t)u0 := F−1
x e−it|ξ|ξFxu0(ξ).

For a function u(t, x) on R×R/(2π)Z, we define its space-time Fourier transform
as follows, ∀ (τ, ξ) ∈ R× Z

û(τ, ξ) := Ft,x(u)(τ, ξ) := F(u)(τ, ξ) =

∫
R

∫
R/(2π)Z

e−i(τt+ξx)u(t, x)dxdt.

Then define the Sobolev spaces Hs for (2π)-periodic function by

‖φ‖Hs := ‖〈ξ〉sφ̂‖l2ξ = ‖Jsxφ(x)‖L2
x
,

where 〈ξ〉 := (1 + |ξ|2)
1
2 and Ĵsxφ(ξ) := 〈ξ〉sφ̂(ξ). For 2 < q < ∞ we define also the

Sobolev type spaces Hs
q by

‖φ‖Hs
q

:= ‖Jxs φ‖Lq .
We will use the following Bourgain-type spaces denoted by Xs,b, Zs,b and Y s of
(2π)-periodic (in x) functions respectively endowed with the norm

‖u‖Xs,b :=‖〈ξ〉s〈τ + |ξ|ξ〉bû(τ, ξ)‖L2
τ,ξ
,

‖u‖Zs,b :=‖〈ξ〉s〈τ + |ξ|ξ〉bû(τ, ξ)‖L2
ξL

1
τ
,

and

‖u‖Y s := ‖u‖
Xs, 12

+ ‖u‖Zs,0 . (1.9)

One can easily check that u 7→ u an isometry in Xs,b and Zs,b and that Y s ↪→
Zs,0 ↪→ C(R;Hs). We will also use the space-time Lebesgue spaces denoted by
LptL

q
x of (2π)-periodic (in x) functions endowed with the norm

‖u‖LptLqx :=
(∫

R
‖u(t, ·)‖p

Lqx
dt
)1/p

,

with the obvious modification for p =∞. For any space-time function space B and
any T > 0, we denote by BT the corresponding restriction in time space endowed
with the norm

‖u‖BT := inf
v∈B
{‖v‖B, v(·) ≡ u(·) on (0, T )}.

Let η0 : R → [0, 1] denote an even smooth function supported in [−8/5, 8/5]
and equal to 1 in [−5/4, 5/4]. For k ∈ N∗ let χk(ξ) = η0(ξ/2k−1) − η0(ξ/2k−2),
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η≤k = η0(ξ/2k−1), and then let P2k and P≤2k denote the operators on L2(T) defined
by

P̂1u(ξ) = η0(2ξ), P̂2ku(ξ) = χk(ξ)û(ξ) , k ∈ N∗, and P̂≤2ku(ξ) = η≤k(ξ)u(ξ) .

By a slight abuse of notation we define the operators P2k , P≤2k on L2(R × T) by
the formulas F(P2ku)(τ, ξ) = χk(ξ)F(u)(τ, ξ), F(P≤2ku)(τ, ξ) = η≤k(ξ)F(u)(τ, ξ).
We also define the projection operators P±f = F−11±ξ>0Ff , Pcf = 1

2π

∫
T fdx,

P 6=c = I − Pc, and P+
2k

= P+P2k , P
+
≤2k

= P+P≤2k .
To simplify the notation, we use capitalized variables to describes the dyadic

number, i.e. any capitalized variables such as N range over the dyadic number 2N.
Finally, for any 1 ≤ p ≤ ∞ and any function space B we define the space-time

function space L̃ptB by

‖u‖gLptB :=
( ∞∑
k=0

‖P2ku‖2
LptB

) 1
2
.

It is worth noticing that Littlewood-Paley square function theorem ensures that

L̃ptL
p
x ↪→ LptL

p
x for 2 ≤ p <∞.

2. Gauge transform

In this section, we introduce the gauge transform. Let u ∈ C([−T, T ] : H∞(T))
be a smooth solution to (1.8). Define the periodic primitive of u2 − 1

2π
‖u(t)‖2

2 with
zero mean by

F = F (u) = ∂−1
x P 6=c(u

2) =
1

2π

∫ 2π

0

∫ x

θ

u2(t, y)− 1

2π
‖u(t)‖2

L2dydθ.

Let

v = G(u) := P+(e−iFu), (2.1)

then we look for the equation that v solves. It holds

vt =P+[e−iF (−iFtu+ ut)],

vxx =P+[e−iF (−F 2
xu− iFxux − i(Fxu)x + uxx)] ,

and thus

vt − ivxx =P+[e−iF (−iFtu+ i(Fx)
2u− Fxxu)]

+ P+[e−iF (ut − iuxx − 2Fxux)] := I + II.

Using equation (1.8) we easily get

II =P+[e−iF (ut +Huxx − 2iP−uxx − 2Fxux)] = −2iP+[e−iFP−uxx].
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Next we compute I. Using again (1.8) and the conservation of the L2-norm for
smooth solutions, we have

Ft =∂t∂
−1
x (P 6=cu

2) = ∂−1
x ∂t(u

2 − Pcu2) = ∂−1
x ∂tu

2

=2∂−1
x

(
−uHuxx + 2P 6=c?u

2)uux

)
=2∂−1

x

(
−∂x(uHux) + uxHux + P 6=c(u

2)∂xP 6=c(u
2)
)

=P 6=c

(
(P 6=cu

2)2
)
− 2uHux + 2Pc?uHux) + 2∂−1

x (uxHux) . (2.2)

Noticing that Fx = P 6=c(u
2) we infer that

−iuP 6=c
(

(P 6=cu
2)2
)

+ iu(Fx)
2 = iuPc

(
(P 6=cu

2)2
)

and noticing that Fxx = 2uux,

2iuP 6=c

(
uH∂xu

)
− Fxxu = −4u2P−ux?2iuPc(uHux) .

Moreover, following [19], we will use the symmetry of the term ∂−1
x (uxHux). Indeed,

it is easy to check that ∂−1
x (uxHux) = −i∂−1

x (P+ux)
2 + i∂−1

x (P−ux)
2 and thus setting

B(u, v) = −i∂−1
x (P+uxP+vx) + i∂−1

x (P−uxP−vx) , (2.3)

we infer that ∂−1
x (uxHux) = B(u, u). We thus finally get

I = P+

[
e−iF

(
−4u2P−ux − 2iuB(u, u) + 2iuPc(uHux)− iuPc

(
(P 6=cu

2)2
)]

which leads to

vt − ivxx =P+

[
e−iF

(
−4u2P−ux − 2iP−uxx − 2iuB(u, u)

− 2iuPc(uHux) + iuPc

(
(P 6=cu

2)2
))]

. (2.4)

Due to the projector P+, P−, we see formally that in the system (2.1)-(2.4) there is
no high-low interaction of the form

Plowu
2 · ∂xPhighu.

Note that u→ G(u) can be ”inverted” in Lebesgue space. This is the strategy used
in [23] to prove well-posedness in H1. To go below to H1/2, we intend to use Xs,b

spaces. But u→ G(u) can not be well ”inverted” in Bourgain’spaces and thus u will
not have the same regularity as G(u) in these spaces. To handle this former difficulty,
we will insert the ”inverse” into some of the terms in (2.4). We first observe that

−2iP+

(
e−iFP−uxx

)
=− 2i∂xP+(e−iFP−ux) + 2P+(e−iFP 6=c(u

2)P−ux)

=− 2∂xP+(∂−1
x P+(e−iFP 6=c(u

2))P−ux)

+ 2P+(e−iFu2P−ux)− 2Pc(u
2)P+(e−iFP−ux)

and thus the sum of the first two terms of the right-hand side of (2.4) can be
rewritten as

− 2P+(e−iFu2P−ux)− 2∂xP+(∂−1
x P+(e−iFu2)P−ux)

+ 2Pc(u
2)
(
∂xP+(∂−1

x P+e
−iFP−ux)− P+(e−iFP−ux)

)
. (2.5)
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Now, let us denote

R(u) := [P+, e
−iF ]u = P+(e−iFu)− e−iFP+u

= P+(e−iFP−u) + P+(e−iFPcu)− P−(e−iFP+u)− Pc(e−iFP+u) . (2.6)

Formally, R(u) is a commutator, and has one order higher regularity than Fx =
P 6=cu

2 (see Lemma 3.6). Then we get

v = e−iFP+u+R(u), (2.7)

and thus P+u = eiFv − eiF [P+, e
−iF ]u. Since u is real-valued, this leads to

P−u = P−(e−iFv)− P−(e−iFR(u)) . (2.8)

Substituting P−u by the expression (2.8) in the two first terms of (2.5) we eventually
get the following equation satisfied by v :

vt − ivxx =2N0(u, v) + 2N1(u, v)− 2iP+(e−iFuB(u, u)) +G(u) (2.9)

where

N ν(u, v) := −∂νxP+(∂−νx P+(e−iFu2)∂xP−(e−iFv)), ν = 0, 1.

and

G(u) :=P+

(
e−iF

(
−2iuPc(uHux) + uPc((P 6=cu

2)2) + 2u2∂xP−(e−iFR(u))
))

− 2∂xP+

(
∂−1
x P+(e−iF )P−ux

)
+ 2i∂xP+

(
(e−iF∂xP−(e−iFR(u))

)
+ 2Pc(u

2)
(
−P+(e−iFP−ux) + ∂xP+

(
∂−1
x P+(e−iF )P−ux)

))
. (2.10)

We will see that the worst terms of the right-hand side of (2.9) are the first two
terms. Actually the use of Bourgain’s spaces will be necessary to handle the first

three terms of (2.9). On the other hand, G(u) is a nice term that belongs to L2
tH

1/2
x

as soon as u ∈ L∞t H1/2.

3. The main estimates and proof of Theorem 1.1

In this section, we present the main estimates. By combining all these estimates,
we finish the proof of Theorem 1.1.

3.1. Linear Estimates. We list some linear estimates in this subsection. The first
ones are the standard estimates for the linear solution, see [3] and [5].

Lemma 3.1. Let s ∈ R. There exists C > 0 such that for all f ∈ Xs,− 1
2

+ and all
u0 ∈ Hs we have

‖W (t)u0‖Y sT ≤C‖u0‖Hs (3.1)∥∥∥∥∫ t

0

W (t− τ)f(τ)dτ

∥∥∥∥
Y sT

≤C‖f‖
X
s,− 1

2+

T

. (3.2)

Next, we need some embedding properties of the space Y s. The first one is the
well-known estimate due to Bourgain [3]

‖v‖L4
t,x
.‖v‖gL4

t,x
. ‖v‖X0,3/8 (3.3)
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where the first inequality above follows from the Littlewood-Paley square function
theorem. Note that (3.1) combined with (3.3) ensures that for 0 ≤ T ≤ 1,

‖W (t)u0‖L4
tx
. ‖u0‖L2 . (3.4)

3.2. Main Non-linear Estimates.

Proposition 3.2 (Estimates of u). Let T ∈]0, 1[, s ∈ [1
2
, 1] and (ui, vi) ∈

(
C0
TH

s ∩

L̃4
TH

s
4

)
× Y s

T , i = 1, 2, satisfying (1.8) and (2.1) on ] − T, T [ with initial data ui,0.

Then for u = ui

‖u‖
L̃4
TH

s
4

. (1 + ‖u‖4

L∞T H
1
2
)‖v‖Y sT + T

1
4 (1 + ‖u‖8

L∞T H
1
2
)‖u‖

L∞T H
1
2
, (3.5)

and for large N ∈ N, we have

‖u‖L∞T Hs.‖u0‖Hs + TN2‖u‖3
L∞T H

1/2 + ‖v‖Y sT
+N−

1
4 (‖u‖

L∞T H
1
2

+ ‖v‖Y sT )(1 + ‖u‖8

L∞T H
1
2
). (3.6)

Moreover, we have

‖u1 − u2‖ ˜
L4
TH

1/2
4

.(1 + ‖u‖4
L∞T H

1/2)‖v1 − v2‖
Y

1
2
T

+ ‖u1 − u2‖L∞T H1/2‖v1‖
Y

1
2
T

2∏
i=1

(1 + ‖ui‖L∞T H
1
2
)3

+ T 1/4‖u1 − u2‖L∞T H
1
2

2∏
i=1

(1 + ‖ui‖L∞T H
1
2
)8 (3.7)

and

‖u1 − u2‖L∞T H1/2.‖u1,0 − u2,0‖H1/2 +
2∏
i=1

(1 + ‖ui‖L∞T H
1
2

+ ‖vi‖Y 1/2
T

)8

×
(
‖v1 − v2‖Y 1/2

T
+ (TN2 +N−1/4)‖u1 − u2‖L∞T H

1
2

)
. (3.8)

Proposition 3.3 (Estimates of v). Let 0 < T < 1, s ∈ [1
2
, 1] and (ui, vi) ∈

(
C0
tH

s ∩

L̃4
TH

s
4

)
× Y s

T satisfying (1.8), (2.1) and (2.9) on ]− T, T [. Then for (u, v) = (ui, vi)

there exists ν > 0 and q ∈ N∗ such that

‖v‖Y sT.(1 + ‖u0‖4

H
1
2
)‖u0‖Hs + T ν

(
(1 + ‖u‖q+1

L∞T H
1
2∩L̃4H

1/2
4

)‖v‖Xs,1/2

+ (1 + ‖u‖q
L∞T H

1
2∩L̃4H

1/2
4

)‖v‖X1/2,1/2‖u‖
L∞T H

s∩L̃4Hs
4

)
. (3.9)
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and

‖v1 − v2‖
Y

1
2
T

.(1 + ‖u0‖4

H
1
2
)‖u1,0 − u2,0‖Hs (3.10)

+ T ν
[(

1 +
2∑
i=1

‖ui‖q+1

L∞T H
1
2 ∩L̃4H

1/2
4

)
‖v1 − v2‖Xs,1/2

+
(

1 +
2∑
i=1

‖ui‖q
L∞T H

1
2∩L̃4H

1/2
4

)
(

2∑
i=1

‖vi‖X1/2,1/2)‖u1 − u2‖L∞T Hs∩L̃4Hs
4

]
.

(3.11)

The rest of this subsection is devoted to proving Proposition 3.2, while the proof
of Proposition 3.3 will be given in the next section.

3.3. Proof of Proposition 3.2. We start with recalling some technical lemmas
that will be needed hereafter. We first recall the Sobolev multiplication laws.

Lemma 3.4. (a) Assume one of the following condition

s1 + s2 ≥ 0, s ≤ s1, s2, s < s1 + s2 −
1

2
,

or s1 + s2 > 0, s < s1, s2, s ≤ s1 + s2 −
1

2
.

Then
‖fg‖Hs.‖f‖Hs1‖g‖Hs2 .

(b) For any s ≥ 0, we have

‖fg‖Hs.‖f‖Hs‖g‖L∞ + ‖g‖Hs‖f‖L∞ .

Second, we state the classical fractional Leibniz rule estimate derived by Kenig,
Ponce and Vega (See Theorems A.8 and A.12 in [14]).

Lemma 3.5. Let 0 < α < 1, p, p1, p2 ∈ (1,+∞) with 1
p1

+ 1
p2

= 1
p

and α1, α2 ∈ [0, α]

with α = α1 + α2. Then,∥∥Dα
x (fg)− fDα

xg − gDα
xf
∥∥
Lp
. ‖Dα1

x g‖Lp1‖Dα2
x f‖Lp2 . (3.12)

Moreover, for α1 = 0, the value p1 = +∞ is allowed.

The next estimate is a frequency localized version of estimate (3.12) in the same
spirit as Lemma 3.2 in [27]. It allows to share most of the fractional derivative in
the first term on the right-hand side of (3.13).

Lemma 3.6. Let α, β ≥ 0 and 1 < q <∞. Then,∥∥Dα
xP∓

(
fP±D

β
xg
)∥∥

Lq
. ‖Dα1

x f‖Lq1‖Dα2
x g‖Lq2 , (3.13)

with 1 < qi <∞, 1
q1

+ 1
q2

= 1
q

and α1 ≥ α, α2 ≥ 0 and α1 + α2 = α + β.

Proof. See Lemma 3.2 in [21]. �

Finally we state the two following lemmas. The first one is a direct consequence of

the continuous embeddings Hs+1/4 ↪→ H
1/2
4 ↪→ L∞ whereas the proof of the second

one (in the real line case) can be found in [[19], Lemma 6.1].
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Lemma 3.7. Let s ∈ [1/2, 1], z ∈ L∞T Hs+ 1
4 and v ∈ L̃4

TH
s
4 then

‖zv‖
L̃4
TH

s
4

. ‖z‖
L∞T H

s+1
4+‖v‖L̃4

TH
s
4

(3.14)

Lemma 3.8. Let v1, v2 ∈ L̃4H
1/2
4 then

‖B(v1, v2)‖L2 . ‖D1/2
x v1‖L4‖D1/2

x v2‖L4 (3.15)

Let k ∈ Z∗ with |k| ≤ 10. A direct computation gives

∂x(e
ikF ) = kieikF (u2 − Pc(u2)), (3.16)

Next by gathering the obvious estimates ‖eikF‖L∞T L2
x
.1 and ‖∂x(eikF )‖L∞T L2

x
.Pc(u2)+

‖u‖2
L∞T L

4
x
, we get

‖eikF‖L∞T H1.1 + ‖u‖2

L∞T H
1
2
. (3.17)

On the other hand, by Lemma 3.4, we have for any s ∈ [1/2, 1],

‖∂x(eikF )‖L∞T Hs−.‖eikF‖L∞T H1‖u2 − Pc(u2)‖L∞T Hs−.(1 + ‖u‖2

L∞T H
1
2
)‖u‖

L∞T H
1
2
‖u‖L∞T Hs .

Gathering the above estimates leads for any s ∈ [1/2, 1] to

‖eikF‖L∞T Hs+1−.(1 + ‖u‖2

L∞T H
1
2
)
(

1 + ‖u‖
L∞T H

1
2
‖u‖L∞T Hs

)
(3.18)

and, in view of (2.6) and Lemma 3.6, it holds

‖R(u)‖
L∞T H

5
4+ . ‖eiF‖

L∞T H
5
4+

2+

‖u‖L∞T L∞−x (3.19)

. ‖e−iF‖
L∞T H

3
2−
‖u‖

L∞T H
1
2

. (1 + ‖u‖4

L∞T H
1
2
)‖u‖

L∞T H
1
2
. (3.20)

Now, for s ∈ [1/2, 1], according to (2.7), (3.18)-(3.20) and Lemma 3.7?we easily get

‖P+u‖
L̃4
TH

s
4

. ‖eiFv‖
L̃4
TH

s
4

+ ‖eiFR(u)‖
L̃4
TH

s
4

. ‖eiF‖L∞t H3/2−‖v‖
L̃4
TH

s
4

+ T
1
4‖eiF‖L∞t H3/2−‖R(u)‖

L∞t H
5
4+

. (1 + ‖u‖4

L∞T H
1
2
)
(
‖v‖Y sT + T

1
4 (1 + ‖u‖4

L∞T H
1
2
)‖u‖

L∞T H
1
2

)
Estimate (3.5) follows by using that u is real valued and the conservation of the
mean-value by (1.8).
Next, in order to get a better estimate of ‖u‖L∞T Hs , s ∈ [1

2
, 1], we split u into a low

frequency and a high frequency part. For low frequency, we use the equation for u,
while for high frequency, we use P+u = eiFv − eiFR(u). For any N = 2k ∈ N, and
s ∈ [1

2
, 1], we have

‖u‖L∞T Hs . ‖P≤ku‖L∞T Hs + 2‖P+
≥ku‖L∞T Hs .

By the equation of u, we have

P≤ku = W (t)P≤ku0 +
1

3

∫ t

0

W (t− τ)P≤k∂x(u
3)(τ)dτ,
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that leads to

‖P≤ku‖L∞T Hs.‖u0‖Hs + T22k‖u‖3
L∞T H

1/2 .

To estimate the term ‖P+
≥ku‖L∞T Hs , we use P+u = eiFv − eiFR(u). By (3.17)

-(3.20) we have

‖P+
≥k[e

iFR(u)]‖L∞T Hs . N−1/4‖e−iFR(u)‖L∞T H5/4

. N−
1
4 (1 + ‖u‖8

L∞T H
1
2
)‖u‖L∞T H1/2 .

It remains to estimate ‖P+
≥k[e

iFv]‖Hs . By Lemma 3.4 we have

‖P+
≥k[e

iFv]‖L∞t Hs.‖P+
≥k[P≤k−5(eiF )v]‖L∞t Hs + ‖P+

≥k[P>k−5(eiF )v]‖L∞t Hs

.‖eiF‖L∞T L∞x ‖v‖L∞t Hs + ‖v‖L∞t Hs‖P≥k−5(eiF )‖L∞t H1

.‖v‖L∞t Hs

(
1 +N−1/4(1 + ‖u‖4

L∞T H
1
2
)
)
.

Then (3.6) holds. For the difference estimates (3.7)-(3.8), the proofs are similar.
We only need to observe that by the mean-value theorem, |eikF (u1) − eikF (u2)| ≤
|k(P 6=c(u

2
1 − u2

2)| and thus

‖eikF (u1) − eikF (u2)‖L∞T L2
x
.‖u1 − u2‖L∞T H1/2(‖u1‖L∞T H1/2 + ‖u2‖L∞T H1/2) (3.21)

and

‖∂x(eikF (u1) − eikF (u2))‖L∞T L2
x
.‖u1 − u2‖L∞T H1/2(‖u1‖L∞T H1/2 + ‖u2‖L∞T H1/2)

+ ‖P 6=c(u2
1)(eikF (u1) − eikF (u2))‖L∞T L2

x

.‖u1 − u2‖L∞T H1/2(‖u1‖L∞T H1/2 + ‖u2‖L∞T H1/2)3 . (3.22)

3.4. Proof of Theorem 1.1. In this subsection, we prove Theorem 1.1. We will
rely on the results obtained in [23]:

Lemma 3.9 ([23]). The mBO equation (1.1) is locally well-posed in Hs for s ≥ 1.
Moreover, the minimal length of the interval of existence is determined by ‖u0‖H1 .

Now, fixing any u0 ∈ H1/2(T), we choose {u0,n} ⊂ C∞(T), real-valued, such that
u0,n → u0 in H1/2. We denote by un the solution of mBO emanating from u0,n given
by Lemma 3.9 and vn = P+(e−iF (un)un).

Step 1. A priori estimate: we show that there exists T = T (‖u0‖H1/2) > 0 such
that un exists on (−T, T ).

It suffices to show that there exists a T = T (‖u0‖H1/2) > 0, such that for any
n ∈ N, if |t| ≤ T and un(t) exists, then

‖un(t)‖Hs ≤ C(‖u0,n‖Hs), 1/2 ≤ s ≤ 1. (3.23)

First we show (3.23) for s = 1/2. We may assume ‖u0,n‖H1/2 ≤ 2‖u0‖H1/2 , ∀n ∈ N.
Define the quantity ‖(u, v)‖F sT by

‖(u, v)‖F sT := ‖u‖L∞T Hs + ‖v‖
X
s, 12
T

.
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Applying Proposition 3.2-3.3 to un, vn (taking s = 1/2), we get

‖(un, vn)‖
F

1/2
T
.(1 + ‖u0‖8

H1/2)‖u0‖H1/2 + (T 1/4N2 +N−1/4)‖(un, vn)‖9

F
1/2
T

+ T ν
(

1 + ‖(un, vn)‖k
F

1/2
T

)
‖(un, vn)‖

F
1/2
T

,

for some ν > 0 and k ∈ N∗ and for any N ≥ 1 and 0 < T < 1. Therefore taking N
large enough, we infer that there exits T = T (‖u0‖H1/2) > 0 such that (3.23) holds
for s = 1/2. Now, for 1/2 < s ≤ 1, we have

‖(un, vn)‖F sT.(1 + ‖u0‖8
H1/2)‖u0,n‖Hs + (T 1/4N2 +N−1/4)‖(un, vn)‖8

F
1/2
T

‖(un, vn)‖F sT

+ T ν
(

1 + ‖(un, vn)‖k
F

1/2
T

)
‖(un, vn)‖F sT ,

which yields (3.23) for some T = T (‖u0‖H1/2) > 0 smaller if necessarily. This
completes the Step 1.

Step 2. Next, we will show that un is a Cauchy sequence in C([−T, T ];H1/2).
Applying the difference estimates in Proposition 3.2-3.3 to (un, vn), arguing as in

Step 1, we get

‖(un − um, vn − vm)‖
F

1/2
T
.‖u0,n − u0,m‖H 1

2
. (3.24)

Thus, (un, vn) is a Cauchy sequence, and there exists u ∈ C([−T, T ];H1/2) such that
‖un−u‖L∞T H

1
2
→ 0, n→∞. By classical compactness arguments, it is easy to check

that u solves the mBO equation. Moreover, in view of (3.24) it is the only solution

in the class u ∈ L∞T H
1/2 with P+(eiF (u)) ∈ X

1
2
, 1
2

T and the solution-map u0 7→ u is

continuous from H
1
2 (T) into C([−T, T ];H1/2). At last, in the defocusing case using

the conservation of H
1
2 norm of u, we get that u is global in time.

4. Proof of the estimates on v

In this section, we prove Proposition 3.3. We will work on the equation (2.9). By

Lemma 3.1 and the trivial embedding L2
TH

s ↪→ X
s,− 1

2
+

T , we infer that

‖v‖Y sT.‖v(0)‖Hs + T ν
(
‖G(u)‖L2

TH
s + ‖N0(u, v)‖

X
s,− 1

2+

T

+ ‖N1(u, v)‖
X
s,− 1

2+

T

+ ‖P+[−2ie−iFuB(u, u)]‖
X
s,− 1

2+

T

)
(4.1)

for some ν > 0. Then to prove Proposition 3.3, we will estimate the terms of the
right-hand side one by one.

4.1. Estimate on G(u).

Lemma 4.1. Let 1/2 ≤ s ≤ 1, 0 < T ≤ 1 and ui ∈ C([−T, T ] : Hs)∩ L̃4
TH

s
4 , i = 1, 2,

be two solutions to (1.8) with initial data ui,0. Then for u = ui we have

‖G(ui,0)‖Hs.(1 + ‖ui,0‖4
H1/2)‖ui,0‖Hs

‖G(ui)‖L2
TH

s.(1 + ‖ui‖12

L∞T H
1/2∩L4

TH
1/2
4

)‖ui‖L∞T Hs∩L4
TH

s
4
.
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Moreover, it holds

‖G(v1,0)− G(v2,0)‖H1/2.‖u1,0 − u2,0‖H1/2

2∏
i=1

(1 + ‖ui,0‖4
H1/2)

‖G(u1)−G(u2)‖L2
TH

1/2.‖u1 − u2‖L∞T H1/2∩L4
TH

1/2
4

2∏
i=1

(1 + ‖ui‖12

L∞T H
1/2∩L4

TH
1/2
4

).

where the gauge transformation G and the function G are defined respectively in
(2.1) and (2.10).

Proof. The estimates on vi,0 = G(ui,0) and its difference are similar to the estimates
of u in the proof of Proposition 3.2. The estimates on G follow from the definition
(2.10) of G(u), Lemma 3.4 and Lemma 3.6. For instance we have

‖e−iFP+(u2∂xP−(e−iFR(u))‖Hs .‖e−iF‖
H

3
2−
‖u2‖Hs

4
‖∂xP−(e−iFR(u))‖H0+

4

.‖e−iF‖2

H
3
2−
‖u‖Hs

4
‖u‖

H
1
2
4

‖R(u)‖
H

5
4+

.‖u‖Hs
4
‖u‖

H
1
2
4

‖u‖
H

1
2
(1 + ‖u‖4

H1/2)
3

and ∥∥∥∂xP+

(
∂−1
x P+(e−iF )P−ux

)∥∥∥
Hs
. ‖e−iF‖H1

4
‖u‖Hs

4
. (1 + ‖u‖4

H1/2)‖u‖Hs
4

�

4.2. Estimates on suitable extensions of u and e−iF (u) . Before proving the
main multilinear estimates, we need to prove estimates on suitable extensions of u
and e−iF (u).

Lemma 4.2. Let 1/2 ≤ s ≤ 1, 0 < T ≤ 1 and u1, u2 ∈ C([−T, T ] : Hs) ∩ L̃4
TH

s
4 be

two solutions to (1.8). Then for i = 1, 2

‖ui‖
(Xs−1,1∩L∞t Hs∩L̃4

tH
s
4)T
≤ (1 + ‖ui‖2

L∞T H
1
2
x

)‖ui‖
L∞T H

s∩L̃4
TH

s
4

. (4.2)

Moreover, we have

‖u1 − u2‖
(X−

1
2 ,1∩L∞t H

1
2∩

˜
L4
tH

1
2
4 )T

.‖u1 − u2‖
L∞T H

1/2∩ ˜
L4
TH

1/2
4

2∏
i=1

(1 + ‖ui‖2

L∞T H
1/2∩L4

TH
1/2
4

).

(4.3)

Proof. We consider w(t) = W (−t)u(t) on the time interval [−T, T ] and extend w on
(−2, 2) by setting ∂tw = 0 on [−2,−2]\ [−T, T ]. Then it is clear that for any θ ∈ R,

‖∂tw‖L2((−2,2):Hθ) = ‖∂tw‖L2
TH

θ , ‖w‖L2((−2,2):Hθ).‖w‖L∞T Hθ

Now we define ũ(t) = η(t)W (t)w(t). ũ is clearly an extension of u outside (−T, T )
and it suffices to prove (4.2) with the Xs−1,1, L∞t H

s and L4
tH

s
4-norms of ũ in the
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left-hand side. First, using that ∂tw = 2W (−t)(P 6=c(u2)ux), we get

‖ũ‖Xs−1,1 .‖w‖L2((−2,2):Hs−1) + ‖∂tw‖L2((−2,2):Hs−1)

.‖u‖L2((−2,2):Hs−1) + ‖Ds
x(u

3)‖L2
Tx

+ ‖u‖2
L∞T L

2
x
‖Ds

xu‖L2
Tx

.‖u‖L2((−2,2):Hs−1) + ‖Ds
xu‖L4

Tx∩L
∞
T L

2
x
‖u‖2

L∞T H
1
2
x

where in the last step we used Lemma 3.5 together with L∞t H
1/2
x ↪→ L8

tx. Second,

‖ũ‖L∞t Hs . ‖η(t)W (t)w(t)‖L∞t Hs? . ‖w‖L∞T Hs . ‖u‖L∞T Hs .

Third, we notice that

‖ũ‖
L̃4
tH

s
4

. ‖u‖ ˜L4(]−T,T [;Hs
4)

+ ‖W (t)w(t)‖ ˜L4(]−2,2[/]−T,T [;Hs
4)

with w(t) = w(T ) for all t ∈]T, 2[ and w(t) = W (−T ) for all t ∈]−2,−T [. Therefore,
in view of (3.4),

‖W (t)w(t)‖ ˜L4(]T,2[;Hs
4)

= ‖W (t)w(T )‖ ˜L4(]T,2[;Hs
4)
. ‖w(T )‖Hs = ‖u(T )‖Hs . ‖u‖L∞T Hs .

This completes the proof of (4.2). Finally the estimates for the difference is similar
and thus will be omitted. �

Next, we prove the properties of the factor eikF .

Lemma 4.3. Let 1/2 ≤ s ≤ 1, 0 < T ≤ 1 and u1, u2 ∈ C([−T, T ] : Hs) ∩ L̃4
TH

s
4 be

two solutions to (1.8). Then for i = 1, 2

‖e−iF (ui)‖
(L∞t H

s+1−∩X−
1
2−,1)T

.1 + (1 + ‖ui‖6

L∞T H
1
2∩L4

TH
1
2
4

)‖ui‖L∞T Hs∩L4
TH

s
4
. (4.4)

Moreover,

‖e−iF (u1) − e−iF (u2)‖
(L∞t H

3
2−∩L4

tH
3
2 ∩X−

1
2−,1)T

.‖u1 − u2‖
L∞T H

1
2∩L4

TH
1
2
4

2∏
i=1

(1 + ‖u‖6

L∞T H
1
2∩L4

TH
1
2
4

) . (4.5)

Proof. We set z(t) = W (−t)e−iF on ]−T, T [ and than extend z on ]−2, 2[ by setting
∂tz = 0 on [−2,−2]\ [−T, T ]. Then w̃ = η(t)W (t)z(t) is an extension of e−iF outside
(−T, T ). As in the previous lemma, for any θ ∈ R, it holds

‖w̃‖L∞t Hθ . ‖e−iF‖L∞T Hθ?

which together with (3.17)-(3.18) gives the estimate for the first term on the left-
hand side of (4.4). Moreover,

‖w̃‖
X−

1
2−,1
. ‖e−iF‖

L2
TH
− 1

2−
+ ‖(∂t +H∂2

x)e
−iF‖

L2
TH
− 1

2−

.
with

(∂t +H∂2
x)e
−iF = −ie−iFFt − iH

(
e−iF

(
2uux − i(P 6=c(u2))2

))
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According to the expression (2.2) of Ft, Lemma 3.4 and Lemma 3.8 , it holds

‖Ft‖L2
TH
− 1

2−
+
∥∥∥2uux + ik(P 6=c(u

2))2
∥∥∥
L2
TH
− 1

2−
. ‖u‖4

L∞T H
1/2 + ‖u‖2

L4
TH

1/2
4

which yields the desired result by using (3.17) and again Lemma 3.4.
For the difference estimate (4.5), the proof is similar by using (3.21)-(3.22). The
details are omitted. �

4.3. Multilinear estimates. With Lemmas 4.2-4.3 in hand, the following propo-
sition enables us to treat the worst term of (4.1), that is N ν(u, v) with ν ∈ {0, 1}.

Proposition 4.4. Let 1/2 ≤ s ≤ 1, w1, w4 ∈ X−1/2−,1 ∩ L∞t Hs+1−
x , u2, u3 ∈ Xs−1,1 ∩

L∞t H
s
x ∩ L̃4

tH
s
4 and v5 ∈ X1/2,1/2 with compact support in time. Then it holds

∥∥∥∂νxP+

(
∂−νx P+

(
w1u2u3

)
∂xP−(w4v5)

)∥∥∥
Xs,− 1

2+

. ‖w1‖L∞t Hs+1−‖w4‖L∞T H1/2
x
‖v5‖X1/2,1/2

3∏
i=2

‖ui‖L∞t H1/2
x

+ ‖v5‖X1/2,1/2

∏
i=1,4

(
‖wi‖X−1/2−,1∩L∞t H

3/2−
x

)
×

∑
2≤i 6=j≤3

(
‖ui‖

X−1/2,1∩L∞t H
1/2
x ∩L̃4

tH
1/2
x

)(
‖uj‖

Xs−1,1∩L∞t Hs
x∩L̃4

tH
s
4

)
. (4.6)

Proof. We want to prove that

I :=
∥∥∥∂νxP+

(
∂−νx P+

(
w1u2u3

)
∂xP−(w4v5)

)∥∥∥
Xs,− 1

2+

=
∥∥∥ ∑
N≥2,N123≥N,N45≤N123

∑
Ni, 1≤i≤5

∂νxPNP+

(
∂−νx PN123

(
PN1w1PN2u2PN3u3

)
∂xPN45P−(PN4w4PN5v5)

)∥∥∥
Xs,−1/2+

.

By the triangle inequality we can separate this sum in different sums on disjoint
subset of (2N)8. By symmetry we can assume that N2 ≤ N3.



16 Z. GUO, Y. LIN, L. MOLINET

1. N4 ≥ 2−8N5. Then N45 . N4 and we can write by almost orthogonality

I .
[∑
N123

(∑
N4

∑
N5.N4

∑
2≤N≤N123

∑
N45.N4∥∥∥∂νxPNP+

(
PN123∂

−ν
x

(
w1u2u3

)
∂xPN45P−(PN4w4PN5v5)

)∥∥∥
Xs,−1/2+

)2]1/2

.
[∑
N123

(∑
N4,N5

∑
2≤N≤N123

∑
N45.N4

N s
∥∥∥∂νxPNP+

(
PN123∂

−ν
x

(
w1u2u3

)
·∂xPN45P−(PN4w4PN5v5)

)∥∥∥
L

4/3
tx

)2]1/2

.
[∑
N123

(
N s

123‖PN123(w1u2u3)‖L2
tx

∑
N≤N123

(
N

N123

)s
)2]1/2

∑
N4,N5,N45

N0−
45 N

1+
4 N0−

5 ‖PN4w4‖L8
tx
‖PN5v5‖L8

tx

. ‖Jsx(w1u2u3)‖L2
tx
‖w4‖

L∞t H
3
2−
x

‖v5‖L8
tx

. (‖Jsxw1‖L4
tx

+ ‖Jsxu2‖L4
tx

+ ‖Jsxu3‖L4
tx

)(‖w1‖L8
tx

+ ‖u2‖L8
tx

+ ‖u3‖L8
tx

)2

‖w4‖L∞t H3/2−
x
‖v5‖X1/2,1/2

. (‖w1‖L∞t H
3
2−

+ ‖u2‖L4
tH

s
4

+ ‖u3‖L4
tH

s
4
)(‖w1‖L8

tx
+ ‖u2‖L8

tx
+ ‖u3‖L8

tx
)2

‖w4‖L∞t H3/2−
x
‖v5‖X1/2,1/2

where in the second to the last step we used Lemma 3.12 .
2. N4 < 2−8N5. Then N45 ∼ N5 so that we can drop the summation over N45

by replacing PN45 by P̃N5 . Note that in this region the frequency projections force
N5 . N123.
2.1. N4 ≥ 2−8N . By almost orthogonality it yields

I .
[∑
N123

( ∑
N5.N123

∑
N4.N5

∑
2≤N≤N4

N s
∥∥∥∂νxPNP+

(
PN123∂

−ν
x

(
w1u2u3

)
·∂xP̃N5P−(PN4w4PN5v5)

)∥∥∥
L

4/3
tx

)2]1/2

.
[∑
N123

(
N s

123‖PN123(w1u2u3)‖L2
tx

∑
N5.N123

(
N5

N123

)1/2‖D1/2
x PN5v5‖L4

tx

)2]1/2

∑
N4,N

N0−N
1
2

+

4 ‖PN4w4‖L∞tx

. ‖Jsx(w1u2u3)‖L2
tx
‖w4‖L∞t H3/2−

x
‖D1/2

x v5‖L4
tx

. (‖w1‖L∞t H
3
2−

+ ‖u2‖L4
tH

s
4

+ ‖u3‖L4
tH

s
4
)(‖w1‖L8

tx
+ ‖u2‖L8

tx
+ ‖u3‖L8

tx
)2

‖w4‖L∞t H3/2−
x
‖v5‖X1/2,1/2
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2.2. N4 < 2−8N .
2.2.1. N1 ≥ 2−8N123. Then we get

I .
∑
N≥2

N s+ν
∑

N123≥N

N−ν123

∑
N1&N123

∑
N2,N3,N4,N5.N1

‖PN1w1PN2u2PN3u3‖L2
tx

·N1/2
5 ‖D1/2

x v5‖L4
tx
‖PN4w4‖L∞tx

.
∑
N≥2

N0−
∑

N123≥N

N0−
123

∑
N1

N
s+ 1

2
+

1 ‖PN1w1‖L4
tx

(
∑
N4

N0−
4 ‖w4‖L∞tx)

(
∑
N5

N0−
5 ‖D1/2

x v5‖L4
tx

)
) 3∏
i=2

(∑
Ni

N0−
i ‖PNiui‖L8

tx

)
. ‖w1‖L∞t Hs+1−‖w4‖L∞T H1/2

x
‖v5‖X1/2,1/2

3∏
i=2

‖u‖
L∞t H

1/2
x

2.2.2 N1 < 2−8N123. Then we have N3 ∼ N123 ∼ Nmax. Since in this case it always
hods 2−3 ≤ N3/N123 ≤ 23, by a slight abuse of notation we can drop the summation
over N123 by replacing PN123 by P̃N3 .
2.2.2.1 N1 ≥ 2−5N5. Then by almost orthogonality we get

I .
[∑
N3≥2

( ∑
2≤N.N3

N s+νN−ν3

∑
N1,N2

‖PN1w1PN2u2PN3u3‖
L

8
3
tx

·
∑
N5.N1

N5‖v5‖L8
tx

∑
N4

‖PN4w4‖L∞tx
)2]1/2

.
[∑
N3≥2

(
N s

3‖PN3u3‖L4
tx

∑
N.N3

(
N

N3

)s+ν
)2]1/2∑

N1

N1+
1 ‖PN1w1‖L4

tx∑
N3

N0−
2 ‖D0+

x PN2u2‖L8
tx

∑
N4

N0−
4 ‖D0+

x PN4w4‖L∞tx
∑
N5

N0−
5 ‖D0+

x PN5v5‖L8
tx

. ‖w1‖L∞t H3/2−‖u3‖
L̃4
tH

s
4

‖u2‖L∞t H1/2‖w4‖L∞t H1/2‖v5‖X1/2,1/2

2.2.2.2. N1 < 2−5N5 and N1 ≥ 2−5N . Then it holds

I .
∑
N2

‖PN2u2‖L4
tx

∑
N1

N
1
2

+

1 ‖PN1w1‖L∞tx
∑
N3

N s−
3 ‖PN3u3‖L4

tx∑
N4

‖PN4w4‖L∞tx
∑
N5

N
1/2−
5 ‖PN5v5‖L4

tx

. ‖w1‖L∞t H3/2−
x
‖u2‖L∞t H1/2‖u3‖

L̃4
tH

s
4

‖v5‖X1/2,1/2‖w4‖L∞t H3/2−
x

.
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2..2.2.3 N1 < 2−5(N5 ∧N) and N2 ≥ 2−5(N5 ∧N).
2.2.2.3.1 N2 ≥ 2−7N . Then either N3 ∼ N and then N3 ∼ N ∼ N2 which leads to

I .
[∑
N3≥2

( ∑
N2∼N3

∑
Ni.N2
i∈{1,4,5}

∥∥∥∂νxP̃N3P+

(
P̃N3∂

−ν
x

(
PN1w1PN2u2PN3u3

)

· ∂xP̃N5P−(PN4w4PN5v5)
)∥∥∥

Xs,−1/2

)2]1/2

.
[∑
N3

( ∑
N2∼N3

∑
Ni.N2
i∈{1,4,5}

N s
3

∥∥∥PN1w1PN2u2PN3u3

∥∥∥
L2
tx

N5‖PN4w4PN5v5‖L4
tx

)2]1/2

.
[∑
N3

N2s
3 ‖PN3u3‖2

L4
tx

(∑
N1,N4

‖PN1w1‖L∞tx‖PN4w4‖L∞tx
∑
N2∼N3

∑
N5.N3

(N3

N2

)1/2(N5

N3

)1/2

‖D1/2
x PN2u2‖L4

tx
‖PN5D

1/2
x v5‖L4

)2]1/2

.‖u3‖
L̃4
tH

s
4

‖D1/2
x u2‖L4

tx
‖D1/2

x v5‖L4
tx
‖w1‖L∞t H3/2−‖w4‖L∞t H3/2−

or N3 ∼ N5 and then we get

I .
[∑
N

( ∑
N2&N

∑
N3&N

∑
Ni,i∈{1,4}

N s+νN
1/2−ν
3 ‖PN1w1‖L∞tx‖PN2u2‖L4

tx

‖PN3u3‖L4
tx
‖PN4w4‖L∞tx‖PN3D

1/2
x v5‖L4

tx

)2]1/2

. ‖w1‖L∞t H1/2
x
‖w4‖L∞t H1/2

x

∑
N3

N s
3‖PN3u3‖L4

tx
‖PN3D

1/2
x v5‖L4

tx[∑
N

( ∑
N2&N

( N
N2

)1/2

N
1/2
2 ‖PN2u2‖L4

tx

)2]1/2

. ‖u3‖
L̃4
tH

s
4

‖u2‖
L̃4
tH

1/2
4

‖D1/2
x v5‖L̃4

tx
‖w1‖L∞t H3/2−‖w4‖L∞t H3/2−

where, in the last step, we used Cauchy-Schwarz in N3 and that by discrete Young
inequality

∥∥∥∑
k∈Z

(2k−k2)1/2χ{k−k2≤5}‖J1/2
x P2k2u2‖L4

∥∥∥
l2(N)
. ‖J1/2

x u2‖L̃4
tx
.
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2.2.2.3.2. N2 < 2−7N . Then N2 ≥ 2−5N5 since we must have N5 ≤ 2−3N3. This
forces N3 ∼ N so that we get

I .
[∑
N3

(∑
N2

∑
N5.N2

∑
N1,N4

N s
3

∥∥∥PN1w1PN2u2PN3u3

∥∥∥
L2
tx

N5‖PN4w4PN5v5‖L4
tx

)2]1/2

. ‖w1‖L∞t H1/2
x
‖w4‖L∞t H1/2

x

[∑
N3

N2s
3 ‖PN3u3‖2

L4
tx

]1/2

∑
N2

∑
N5.N2

(N5

N2

)1/2

‖J1/2
x PN2u2‖L4

tx
‖PN5D

1/2
x v5‖L4

. ‖u3‖
L̃4
tH

s
4

‖u2‖
L̃4
tH

1/2
4

‖D1/2
x v5‖L̃4

tx
‖w1‖L∞t H3/2−‖w4‖L∞t H3/2−

where in the last step we used the discrete Young inequality.
2.2.2.4. (N1 ∨ N2) < 2−5(N ∧ N5). Here it is worth noticing that we can assume
that (N ∧ N5) ≥ 24 and the result follows directly from the lemma below and the
proof of the proposition is completed. �

Lemma 4.5. Under the same hypotheses on ui as in Proposition, it holds

J :=
[ ∑
N≥24

( ∑
(Ni)1≤i≤5∈ΛN

∥∥∥∂νxPNP+

(
∂−νx P̃N3

(
PN1w1PN2u2PN3u3

)

· ∂xP̃N5P−(PN4w4PN5v5)
)∥∥∥

Xs,−1/2+

)2]1/2

.
3∏
i=1

‖ui‖Z

where

ΛN :=
{

(N1, N2, N3, N4, N5) ∈ (2N ∪ {0})5, N3 ≥ 2−3N,

24 < N5 ≤ 4N3, (N1 ∨N2 ∨N4) < 2−5(N ∧N5)
}
.

Proof. It is worth noticing that, thanks to the frequency projections, N3 ∼ Nmax

and the resonance relation yields

|σmax| & |ξξ5| ≥ 2−2NN5 & (N ∧N5)N3 (4.7)

for all the contributions in J . First we can easily treat the contribution of the region
{(τ, ξ), 〈τ − ξ|ξ|〉 ≥ 2−2NN5}. Indeed, we then get

J .
∑
N≥24

∑
(N1,N2,N3,N4,N5)∈ΛN

(NN5)−
1
2

+N
1/2
5 N s+νN−s−ν3

‖PN3D
s
xu3‖L4

tx
‖D1/2

x PN5v5‖L4
tx
‖PN2u2‖L∞tx

∏
i=1,4

‖PNiwi‖L∞tx

.
∑
N≥24

N−
1
2

+‖u3‖L4
tH

s
4
‖D1/2

x v5‖L4
tx
‖u2‖L∞t H1/2

x
‖w1‖L∞t H1/2

x
‖w4‖L∞t H1/2

x

which is acceptable. Therefore in the sequel we can assume that 〈τ − ξ|ξ|〉 <
2−2NN5}. Now, for any fixed couple (N,N5) ∈ (2N)2, we split any function z ∈ L2

tx

into two parts related to the value of σ by setting

z = F−1
(
η2−4NN5

(τ − ξ|ξ|)ẑ
)

+ F−1
(

(1− η2−4NN5
(τ − ξ|ξ|))ẑ

)
:= z̃ + ˜̃z .
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1. Contribution of ˜̃v5. We now control the contribution of ˜̃v5 to J in the following
way : either N ∼ N3 ∼ Nmax and we write

J .
∑
N≥24

∑
N3∼N

∑
Ni≤25N3
i=1,3,4,5

N s(NN5)−1/2N
1/2
5 N−s3

‖PN5
˜̃v5‖X1/2,1/2‖PN3D

s
xu3‖L4

tx
‖PN2u2‖L∞tx

∏
i=1,4

‖PNiwi‖L∞tx

.(
∑
N

N−
1
2

+)‖˜̃v5‖X1/2,1/2‖u3‖L4
tH

s
4
‖u2‖L∞t H1/2

x

∏
i=1,4

‖wi‖L∞t H1/2
x

or N5 ∼ N3 ∼ Nmax and we write

J .
∑
N≥24

∑
N3

∑
N5∼N3

∑
Ni≤2−5N
i=1,2,4

N s(NN5)−1/2N
1/2
5 N−s3

‖PN5
˜̃v5‖X1/2,1/2‖PN3D

s
xu3‖L4

tx
‖PN2u2‖L∞tx

∏
i=1,4

‖PNiwi‖L∞tx

.(
∑
N

N−
1
2

+)‖v5‖X1/2,1/2‖u3‖
L̃4
tH

s
4

‖u2‖L∞t H1/2
x

∏
i=1,4

‖wi‖L∞t H1/2
x

where we apply Cauchy-Schwarz in N3 ∼ N5 in the last step.
2. Contribution of ṽ5.
2.1 Contribution of ˜̃w1. We easily get

J .
∑
N

∑
(N1,N2,N3,N4,N5)∈ΛN

((N ∧N5)N3)−1N
1
2

+

1 N1−s
5 N s

‖PN1
˜̃w1‖X−1/2−,1‖PN3u3‖L∞tx‖PN5D

s
xṽ5‖L4

tx
‖PN2u2‖L∞tx‖PN4w4‖L∞tx

.
∑
N

N−
1
2

+‖w1‖X−1/2−,1‖u3‖
L∞t H

1
2
x

‖v5‖Xs,1/2‖u2‖L∞t H1/2
x
‖w4‖L∞t H1/2

x

which is acceptable.
2.2 Contribution of w̃1. To treat this contribution we will extensively use the fol-
lowing lemma which is a direct application of the Marcinkiewicz multiplier theorem.

Lemma 4.6. For any p ∈]1,+∞[ there exists Cp > 0 such that for all N ≥ 1 and all
L ≥ N2,∥∥∥F−1

tx

(
φN(ξ)ηL(τ ∓ ξ2)f(τ, ξ)

)∥∥∥
Lptx

≤ Cp ‖f‖Lptx , ∀f ∈ Lp(R2) . (4.8)

Proof. By Marcinkiewicz multiplier theorem (see for instance ([6],Corollary 5.2.5
page 361)), it suffices to check that∣∣∣∂(α1,α2)

τ,ξ

(
φN(ξ)ηL(τ ∓ ξ2)

)∣∣∣ . |ξ|α1|τ |α2 for |α| ≤ 2.

But this follows directly from the fact that for N2 ≤ L ,

d

dξ

(
φN(ξ)ηL(τ ∓ ξ2)

)
= O(N−1) and

d

dτ

(
φN(ξ)ηL(τ ∓ ξ2)

)
= O(L−1) .

�
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It is worth noticing that on ΛN , with N ≥ 24, it holds N2
i ≤ 2−2NN5 for i ∈

{1, 2, 4}. Hence, in view of (4.8), for any 1 < p <∞, setting (z1, z2, z4) = (w1, u2, w4)
it holds

‖PNiP∓z̃‖Lptx ≤ Cp ‖PNiP∓z‖Lptx .

and thus by the continuity of the Hilbert transform in Lp, 1 < p <∞,

‖PNi z̃‖Lptx ≤ C̃p ‖PNiz‖Lptx . (4.9)

We separate the contribution of w̃1 in different sub-contributions.
2.2.1 Contribution of ˜̃u2. Then we write

J .
∑
N

∑
(N1,N2,N3,N4,N5)∈ΛN

((N ∧N5)N3)−1N
1
2

+

2 N5N
sN
−s+1/6
3

‖PN2
˜̃u2‖X−1/2−,1‖PN3D

s−1/6
x u3‖L6

tx
‖PN5 ṽ5‖L24

tx
‖PN1w̃1‖L24

tx
‖PN2u2‖L∞tx‖PN4w4‖L∞tx

.
∑
N

N−
1
6‖w1‖L24

tx
‖Ds

xu3‖L6
tL

3
x
‖v5‖X1/2,1/2‖u2‖X−1/2−,1‖w4‖L∞t H1/2

x

.‖w1‖L∞t H1/2
x
‖u3‖L∞t Hs∩L4

tH
s
4
‖v5‖X1/2,1/2‖u2‖X−1/2−,1‖w4‖L∞t H1/2

x

where we used Sobolev inequalities and (4.9) in the last to the last step.
2.2.2 Contribution of ũ2.
2.2.2.1 Contribution of ˜̃w4. This subcontribution can be estimated in the same way
by

J .
∑
N

∑
(N1,N2,N3,N4,N5)∈ΛN

((N ∧N5)N3)−1N
1
2

+

4 N5N
sN
−s+1/6
3

‖PN2
˜̃w4‖X−1/2−,1‖PN3D

s−1/6
x u3‖L6

tx
‖PN5 ṽ5‖L36

tx
‖PN1w̃1‖L36

tx
‖PN2ũ2‖L36

tx

.‖w1‖L∞t H1/2
x
‖u3‖L∞t Hs∩L4

tH
s
4
‖v5‖X1/2,1/2‖u2‖L∞t H1/2

x
‖w4‖X−1/2−,1

2.2.2.2 Contribution of w̃4. Since max(|σi|) < 2−2NN5, we only have to consider
˜̃u3 in this contribution. Either N ∼ N3 and then

J2 .
∑
N3

( ∑
(N1,N2,N3,N4,N5)∈ΛN3

N s
3 (N3N5)−1N

2/3
5 N1−s

3

‖PN3
˜̃u3‖Xs−1,1‖PN5D

1/3
x ṽ5‖L6

tx
‖PN2ũ2‖L36

tx

∏
i=1,4

‖PNiw̃i‖L36
tx

)2

.
(∑
N3

‖PN3u3‖Xs−1,1

)2

‖v5‖2
X1/2,1/2‖u2‖2

L∞t H
1/2
x

∏
i=1,4

‖wi‖2

L∞t H
1/2
x

or N5 ∼ N3. In this last case we first notice that X0,3/8 ↪→ L4
tx and that for any

fixed 2 < p <∞, X
0,1/2−
T ↪→ LpTL

2
x. Therefore by interpolation, Sobolev inequalities
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and duality we infer that L
6
5
Tx ↪→ X

− 1
6
−,−1/2+

T . We thus get

J2 .
∑
N

(∑
N3

∑
(N∨N1∨N2∨N4).N3

N sN
1
6

+(NN3)−1N
1/2
3 N1−s

3

‖PN3
˜̃u3‖Xs−1,1‖PN3D

1/2
x ṽ5‖L4

tx
‖PN2ũ2‖L36

tx

∏
i=1,4

‖PNiw̃i‖L36
tx

)2

.
∑
N

N−
1
6

+
(∑
N3

‖PN3u3‖Xs−1,1‖PN3D
1/2
x ṽ5‖L4

tx

)2

‖u2‖2

L∞t H
1/2
x

∏
i=1,4

‖wi‖2

L∞t H
1/2
x

.‖u3‖2
Xs−1,1‖v5‖2

X1/2,1/2‖u2‖2

L∞t H
1/2
x

∏
i=1,4

‖wi‖2

L∞t H
1/2
x

where we apply Cauchy-Scwharz in N3 in the last step. �

Finally, this last proposition together with Lemmas 4.3 enables to treat the term
containing B(u, u) in (4.1).

Proposition 4.7. Let 1/2 ≤ s ≤ 1, w1 ∈ X−1/2−,1 ∩ L∞t Hs+1−
x , and ui ∈ Xs−1,1 ∩

L̃4
tH

s
4 ∩ L∞t Hs, i = 2, 3, 4. with compact support in time such that u2 and u3 are

real-valued. Then it holds∥∥∥w1u2B(u3, u4)
∥∥∥
Xs,− 1

2+
.‖w1‖X−1/2−,1‖u2‖L∞t H

1
2
‖u3‖L∞t H

1
2
‖u4‖L4

tH
s
4

+ ‖w1‖
L∞t H

3
2−
x

∑
(2≤i 6=j 6=q≤4)

‖ui‖
X−

1
2−,1∩

˜
L4
tH

1
2
4 ∩L∞t H

1
2

· ‖uj‖
X−

1
2 ,1∩

˜
L4
tH

1
2
4 ∩L∞t H

1
2

‖uq‖
Xs−1,1∩L̃4

tH
s
4∩L∞t Hs

. (4.10)

Proof. Recall that B(u, v) = −i∂−1
x (P+uxP+vx) + i∂−1

x (P−uxP−vx). By symmetry it
thus suffices to estimate

I :=
∥∥∥w1u2∂

−1
x (P+∂xu3P+∂xu4)

∥∥∥
Xs,− 1

2+

=
∥∥∥ ∑
N≥1,N1,N2,N3,N4,N34≥(N3∨N4)/2

PN

(
PN1w1PN2u2

· PN34∂
−1
x (P+∂xPN3u3P+∂xPN4u4)

)∥∥∥
Xs,− 1

2+
.

By symmetry we can assume that N3 ≤ N4 and thus we must have N34 ∼ N4. We
can thus drop the summation over N34 and replace PN34 by P̃N4 .

By the triangle inequality we can separate this sum in different sums on disjoint
subset of (2N)5.
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1. N1 ≥ 2−8N . Then we have

I .
∑
N

∑
N1≥2−8N

∑
N2,N3,N4

N s
∥∥∥PN(PN1w1PN2u2P̃N4∂

−1
x (P+∂xPN3u3P+∂xPN4u4)

)∥∥∥
L

4/3
tx

.
∑

N≤28N1

∑
N2,N3,N4

‖PN1w1‖L∞t Hs+
8
‖PN2u2‖L∞t L8

x
?

4∏
i=3

‖PNiui‖
L4
tH

1
2−
4

?

.‖w1‖
L∞t H

3
2−
x

‖u2‖
L∞t H

1
2
x

4∏
i=3

‖PNiui‖
L4
tH

1
2
4

? .

2. N1 < 2−8N and N1 ≥ 2−5N3. Then either N4 & N ∨N2 and it holds

I .
[∑
N

( ∑
N4&N

∑
N1<2−8N

∑
N3≤25N1

∑
N2

N s
∥∥∥PN(PN1w1PN2u2

· P̃N4∂
−1
x (P+∂xPN3u3P+∂xPN4u4)

)∥∥∥
L

4/3
tx

)2] 1
2

.
(∑

N

( ∑
N4&N

(
N

N4

)2s‖Jsxu4‖2
L4
tx

) 1
2
∑

N1,N2,N3

‖PN1w1‖L∞t H1
4
‖PN2u2‖L∞t L8

x
‖PN2u3‖L∞t L8

x
?

.‖w1‖
L∞t H

3
2−
x

‖u2‖
L∞t H

1
2
x

‖u3‖
L∞t H

1
2
x

‖u4‖
L̃4
tH

s
4

.

or N2 & N ∨N4 and it holds

I .
[∑
N

( ∑
N2&N

∑
N1<2−8N

∑
N3≤25N1

∑
N4

N s
∥∥∥PN(PN1w1PN2u2

· P̃N4∂
−1
x (P+∂xPN3u3P+∂xPN4u4)

)∥∥∥
L

4/3
tx

)2] 1
2

.
(∑

N

( ∑
N2&N

(
N

N2

)2s‖Jsxu2‖2
L4
tx

) 1
2
∑

N,N3,N4

‖PN1w1‖L∞t H1
4
?

4∏
i=3

‖PNivi‖L∞t L8
x
?

.‖w1‖
L∞t H

3
2−
x

‖u2‖
L̃4
tH

s
4

4∏
i=3

‖ui‖
L∞t H

1
2
x

.
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3. N1 < (2−8N ∧ 2−5N3).
3.1 N2 ≥ 2−8N . Then we have

I .
(∑

N

[ ∑
N2≥2−8N

∑
N3,N4

∑
N1

N s
∥∥∥PN(PN1w1PN2u2

· P̃N3∂
−1
x (P+∂xPN3u3P+∂xPN4u4)

)∥∥∥
L

4/3
tx

]2)1/2

.‖w1‖L∞t H1
x

(∑
N

[ ∑
N2≥2−8N

(
N

N2

)sN s
2‖PN2u2‖L4

tx

]2)1/2

·
∑
N4

N−1
4 ‖P̃N4(P+∂xPN3u3P+∂xPN4u4)‖L2

tx

.‖w1‖L∞t H1
x
‖u2‖

L̃4
tH

s
4

∑
N4

‖PN4D
1/2
x u4‖L4

tx

∑
N3≤N4

(
N3

N4

)1/2‖PN3D
1/2
x u3‖L4

tx

.‖w1‖L∞t H1
x
‖u2‖

L̃4
tH

s
4

‖D1/2
x u3‖L̃4

tx
‖D1/2

x u4‖L̃4
tx
.

where we use two times the discret Young inequality.
3.2 N2 < 2−8N and N2 ≥ 2−5N3. Then we must have N ∼ N4 and thus

I .
(∑
N4

[∑
N1,N3

∑
N2≥2−5N3

N
−1/2
2 N

1/2
3 ‖PN1w1‖L∞tx‖PN2J

1/2
x u2‖L4

tx

· ‖PN3D
1/2
x u3‖L4

tx
‖PN4D

s
xu4‖L4

tx

]2)1/2

.‖w1‖L∞t H1
x

(∑
N4

‖Ds
xPN4u4‖2

L4
tx

)1/2

·
∑
N2

‖PN2J
1/2
x u2‖L4

tx

∑
N3≤25N2

(
N3

N2

)1/2‖PN3D
1/2
x u3‖L4

tx

.‖w1‖L∞t H1
x
‖u2‖

L̃4
tH

1/2
4

‖u3‖
L̃4
tH

1/2
4

‖u4‖
L̃4
tH

s
4

.

3.3 N2 < (2−8N ∧ 2−5N3). Then N ∼ N4 and the resonance relation yields

|σmax| & |ξ3ξ4| ≥ 2−2N3N4 . (4.11)

First we can easily treat the contribution of the region {(τ, ξ), 〈τ−ξ|ξ|〉 ≥ 2−2N3N4}.
Indeed, we then get

I .
∑
N4

∑
N3.N4

∑
N1∨N2.N3

N
1/2
3 (N3N4)−1/2+‖w1‖L∞t H1

x
‖PN2u2‖L∞tx

· ‖PN3D
1/2
x u3‖L4

tx
‖PN4J

s
xu4‖L4

tx

.‖w1‖L∞t H1
x
‖D1/2

x u3‖L4
tx
‖u4‖L4

tH
s
4

∑
N2

N
−1/2+
2 ‖PN2u2‖L∞tx

.‖w1‖L∞t H1
x
‖u2‖L∞t H1/2

x
‖u3‖

L4
tH

1
2
4

‖u4‖L4
tH

s
4
.

which is acceptable. Therefore in the sequel we can assume that 〈τ − ξ|ξ|〉 <
2−2N3N4}. We now split v1, u2 and u3 into two parts related to the value of σi by
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setting

z = F−1
(
η2−4N3N4

(τ − ξ|ξ|)ẑ
)

+ F−1
(

(1− η2−4N3N4
(τ − ξ|ξ|))ẑ

)
:= z̃ + ˜̃z .

It is worth noticing that in this region N2
i << N3N4 for i = 1, 2, 3. Therefore

Lemma 4.8 holds for w̃1, ũ2 and ũ3.
3.3.1. Contribution of ˜̃w1. We first control the contribution of ˜̃w1 to I in the
following way :

I .
∑
N4

∑
N3.N4

∑
N1∨N2.N3

N
1/2+
1 N3(N3N4)−1‖PN1

˜̃w1‖X−1/2−,1

· ‖PN2u2‖L∞tx‖PN3u3‖L∞tx‖PN4J
s
xu4‖L4

tx

.‖w1‖X−1/2−,1‖u2‖L∞t H
1
2
‖u3‖L∞t H

1
2
‖u4‖L4

tH
s
4
.

3.3.2. Contribution of w̃1.
3.3.2.1 Contribution of ˜̃u2. In the same way, using Sobolev inequality, we have

I .
∑
N4

∑
N3.N4

∑
N1∨N2.N3

N
1/2+
1 N3(N3N4)−1N

1/6
4 ‖PN1w̃1‖L12

tx
‖PN2

˜̃u2‖X−1/2−,1

‖PN3u3‖L∞tx‖PN4J
s−1/6
x u4‖L6

tx

.‖w1‖L∞t H
1
2
‖u2‖X−1/2−,1‖u3‖L∞t H

1
2
‖u4‖L∞t Hs∩L4

tH
s
4
.

3.3.2.2 Contribution of ũ2.
3.2.2.2.1 Contribution of ˜̃u3.

I .
∑
N4

∑
N3.N4

∑
N1∨N2.N3

N
3/2
3 (N3N4)−1N

1/6
4 ‖PN1w̃1‖L24

tx

· ‖PN1ũ2‖L24
tx
‖PN3ũ3‖X−1/2,1‖PN4J

s−1/6
x u4‖L6

tx

.‖w1‖L∞t H
1
2
‖u2‖L∞t H

1
2
‖u3‖X−1/2,1‖u4‖L∞t Hs∩L4

tH
s
4
.

3.2.2.2.2 Contribution of ũ3. Since max(|σi|) ≥ 2−2N3N4, it remains to treat the
subcontribution of ˜̃u4. We easily obtain

I2 .
∑
N4

( ∑
N3.N4

∑
N1∨N2.N3

N
2/3
3 N4(N3N4)−1‖PN1w̃1‖L24

tx

· ‖PN1ũ2‖L24
tx
‖PN3D

1/3
x P+ũ3‖L6

tx
‖PN4

˜̃u4‖Xs−1,1

)2

.
(
‖w1‖L∞t H

1
2
‖u2‖L∞t H

1
2
‖u3‖

L∞t H
1
2∩L4

tH
1
2
4

‖u4‖Xs−1,1

)2

.

Therefore, we complete the proof. �
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