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WELL-POSEDNESS IN ENERGY SPACE FOR THE PERIODIC
MODIFIED BENJAMIN-ONO EQUATION

ZIHUA GUO™2, YIQUAN LIN'2, LUC MOLINET?

ABSTRACT. We prove that the periodic modified Benjamin-Ono equation is locally
well-posed in the energy space H'/2. This ensures the global well-posedness in the
defocusing case. The proof is based on an X*° analysis of the system after gauge
transform.
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1. INTRODUCTION, MAIN RESULTS AND NOTATIONS

In this paper, we study the Cauchy problem for the modified Benjamin-Ono equa-
tion on the torus that reads
Opu + HO*u = Fulu,,
u(z,0) = ug

(1.1)

where u(t,z) : R x T — R, T = R/27Z and H is the Hilbert transform

~

HF(0) =0, Hf(k)=—isgn(k)f(k), k € Z".
This equation is called defocusing when there is a minus sign in front of the nonlinear
term u?u, and focusing when it is a plus sign.
The Benjamin-Ono equation with the quadratic nonlinear term
dyu + HO>u =uu, (1.2)
1
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was derived by Benjamin [2] and Ono [25] as a model for one-dimensional waves in
deep water. On the other hand, the cubic nonlinearity is also of much interest for
long wave models [1, 13].

There are at least the three following quantities preserved under the flow of the
real-valued mBO equation (1.1)!

/Tu(t,x)dx - /Tuo(x)dx, (1.3)

/Tu(t,x)zdx = /Tuo(x)zdx, (1.4)

1 1 1 1
/1I§UH% F E|u(t,x)|4dx = /TQUOHUO"” ¥ E|u0(x)|4dx . (1.5)

These conservation laws provide a priori bounds on the solution. For instance, in
the defocusing case we get from (1.4) and (1.5) that the H'/2 norm of the solution
remains bounded for all times if the initial data belongs to H'/2. This is crucial in
order to prove the well-posedness result. On the other hand the mBO equation is
L2-critical (in the sense that the L?*(R)-norm is preserved by the dilation symmetry
of the equation). Therefore, in the focusing case, one expects that a phenomenon of
blow-up in the energy space occurs?

The Cauchy problems for (1.1) and the Benjamin-Ono equation (1.2) have been
extensively studied. For instance, in both real-line and periodic case, the energy
method provides local well-posedness for BO and mBO in H® for s > 3/2 [10]. In
the real-line case, this result was improved by combination of energy method and the
dispersive effects. For real-line BO equation, the result s > 3/2 by Ponce [26] was
the first place of such combination as a consequence of the commutator estimates in
[11], was later improved to s > 5/4 in [17], and s > 9/8 in [12]. Tao [27] obtained
global well-posedness in H*® for s > 1 by using a gauge transformation as for the
derivative Schrodinger equation and Strichartz estimates. This result was improved
to s > 0 by Ionescu and Kenig [9], and to s > 1/4 (local well-posedness) by Burq
and Planchon [4]. Their proof both used the Fourier restriction norm introduced in
[3]. Recently, Molinet and Pilod [18] gave a simplified proof for s > 0 and obtained
unconditional uniqueness for s > 1/4.

For the real-line mBO, this was improved to s > 1 by Kenig-Koenig [12] by the
enhanced energy methods. Molinet and Ribaud [20] obtained analytic local well-
posedness for the complex-valued mBO in H*® for s > 1/2 and 357/12 with a small
L? norm, improving the result of Kenig-Ponce-Vega [14] for s > 1. The smallness
condition of H*(s > 1/2) results was later removed in [19] by using Tao’s gauge
transformation [27]. The result for s = 1/2 was obtained by Kenig and Takaoka
[15] by using frequency dyadically localized gauge transformation. Their result is
sharp in the sense that the solution map is not locally uniformly continuous in H*® for
s < 1/2 (The failure of C* smoothness was obtained in [20]). Later, Guo [7] obtained
the same result without using gauge transform under a smallness condition on the
L? norm.

n (1.5) the + corresponds to the defocusing case whereas the — corresponds the the focusing
one.
2Progress in this direction can be found in [16] for the case on the real line.
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In the periodic case, there is no smoothing effect for the equation. However, to
overcome the loss of derivative, the gauge transform still applies. For the periodic
BO equation, global well-posedness in H! was proved by Molinet and Ribaud [23],
was later improved by Molinet to H'/? [22], and L? [21]. Molinet [24] also proved
that the result in L? is sharp in the sense that the solution map fails to be continuous
below L?. For the periodic mBO (1.1), local well-posedness in H' was proved in
[23]. Their proof used the Strichartz norm and gauge transform.

The purpose of this paper is to improve the well-posedness results for (1.1) to the
energy space H'/? and, as a by-product, to prove that the solutions can be extended
for all times in the defocusing case. The main result of this paper is

Theorem 1.1. Let s > 1/2. For any intial data ug € H*(T) there exists T =
T(||ug||g1/2) > 0 such that the mBO equation (1.1) admits a unique solution

we C(~T,T): H¥(T)) with Py(eF®) e x27 .

Moreover, the solution-map ug — u is continuous from the ball of H'/?(T) of radius
llwol| zr1/2, equipped with the H*(T)-topology, with values in C([=T,T]; H*(T)).
Finally, in the defocusing case, the solution can be extended for all times and belongs

to C(R; H*(T)) N Cy(R; HY2(T)).

A very similar equation to mBO (1.1) is the derivative nonlinear Schrédinger
equation

‘ 2, (]2
{z@tu + 0tu = i(Jul*u),, (t,x) eRxT (1.6)

u(0, ) = ug.

It has also attracted extensive attention. Local well-posedness for (1.6) in H'/? was
proved by Herr [8]. There are several differences between (1.1) and (1.6). The first
one is the integrability: (1.6) is integrable while (1.1) is not. The second one is the
conservation laws: (1.1) has a conservation law at level H'/2, and hence GWP in
H'? is much easier. The last one is the action of the gauge transform: let v be
the function after gauge transform, (1.6) can be reduced to a clean equation which
involves only v, while (1.1) can only reduce to a system that involves both u and v,
and hence the gauge for (1.1) brings more technical difficulties.

We discuss now the ingredients in the proof of Theorem 1.1. Let u be a smooth
solution to (1.1), define

1 "1
w="T(u) = —ul(t,z — — [ u?(s, z)dxzds). 1.7
() = Jsulta— [ o= [ (s.a)dads) (1.7
Then w solves the ”Wicked order” mBO equation:
{atu + HOPu = 2P, (u?)u,,

u(z,0) = uo, (18)

where Py f = f — % fT fdx. It is easy to see that T" and its inverse T~! are both
continuous maps from C((—=7,T) : H*) to C((—=T,T) : H*) for s > 0. Therefore we
will consider (1.8) instead of (1.1). Now, in order to overcome the loss of derivative,
we will apply the method of gauge transform as in [23, 21, 22|, which was first
developed for BO equation by Tao [27]. As noticed above the equation satisfied
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by this gauge transform v involves terms with both u and v. One of the main
difficulties is that the solution u does not share the same regularity in Bourgain’space
as the gauge transform v. The main new ingredient is the use of the Marcinkiewicz
multiplier theorem that enables us to treat the multiplication by w in Bourgain’space
in a simple way.

1.1. Notations. For A, B > 0, A < B means that there exists ¢ > 0 such that
A < ¢B. When c is a small constant we use A < B. We write A ~ B to denote the
statement that A < B < A.

We denote the sum on Z by integral form [ a(§)d€ := 3", a(§). For a 2r-periodic
function ¢, we define its Fourier transform on Z by

o(¢) 3:/ e % p(x)dx, V¥ € € 7.
R/27Z

We denote by W () the unitary group W (t)ug := F, e I F ug(€).
For a function u(t,z) on R x R/(27)Z, we define its space-time Fourier transform
as follows, V (7,§) e R X Z

(7, &) = Fra(u)(1,§) == F(u)(1,§) = // —UTRER) gy (¢, x) dadt.
R/(2m)Z
Then define the Sobolev spaces H*® for (2m)-periodic function by
19ll= = 14€)*Slliz = 136 (2) |2,

where (£) := (1 + [¢]?)2 and j;?b(f) = (£)5¢(€). For 2 < q < oo we define also the
Sobolev type spaces H; by

o = 1Tl za -

We will use the following Bourgain-type spaces denoted by X*°? Z%° and Y* of
(2m)-periodic (in x) functions respectively endowed with the norm

lull s ==11E)° (7 + 1€16)"ar )2
lull oo =€) (7 + 1€1€) T, €)1z
and
[l - wo T llullzeo. (1.9)

One can easily check that u +— % an isometry in X** and Z*® and that Y* —
759 — CO(R; H*). We will also use the space-time Lebesgue spaces denoted by
LYLY of (2m)-periodic (in ) functions endowed with the norm

p
lallzpg = / Ju(t.)lgt) "

with the obvious modification for p = co. For any space—time function space B and
any 7' > 0, we denote by B the corresponding restriction in time space endowed
with the norm

lullsz = f{[|v]ls, v(-) = u() on (0, 1)}

Let 179 : R — [0,1] denote an even smooth function supported in [—8/5,8/5]
and equal to 1 in [=5/4,5/4]. For k € N* let (&) = no(&/2%71) — no(£/2572),
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n<r = 1n0(£/2F71), and then let Py and Py denote the operators on L*(T) defined
by

Prul€) = mo(2€), Ppu(€) = xi(€)a(€) , k € N*, and Poyeu(€) = neg(€)u€) .

By a slight abuse of notation we define the operators Py, P<ox on L*(R x T) by

the formulas F(Pyu)(7,€) = xu(&)F (u)(7,€), F(Peypt)(7,€) = n<i(€)F (u)(7,€).
We also define the projection operators Puf = F 'lienoFf, Pof = 5= [ fd,
P#C—I P ande—P+P2k P2k—P+P<2k

<
To snnphfy the notation, we use capitalized variables to describes the dyadic

number, i.e. any capitalized variables such as N range over the dyadic number 2.
Finally, for any 1 < p < oo and any function space B we define the space-time

function space LYB by

lull 7, = @]@wwg

It is worth noticing that Littlewood-Paley square function theorem ensures that

—~—

LYLE — LVLE for 2 < p < 0.

2. GAUGE TRANSFORM

In this section, we introduce the gauge transform. Let u € C([ T,T] : H>*(T))
be a smooth solution to (1.8). Define the periodic primitive of u® — 5-|ju(t)]|3 with
zero mean by

27
F=F(u) =0, Patut) = 5 [ ["(t9) = 5 lute) Fadyat,
Let
v =G(u) := Py(e " u), (2.1)
then we look for the equation that v solves. It holds

vy =P,le ﬂ'F(—’iFtu +uy)],
wr =Py le” T (= F2u — iFyu, — i(Fou)y + tae)]

and thus

Uy — Uy =Py e _iF(—iFtu +i(Fy)?u — Fyou)]
+ Pyle ™ (uy — iugy — 2F,u,)] := 1 + I1.

Using equation (1.8) we easily get

11 =P [e7F (up + Hutge — 20P_tpy — 2F,u,)] = —2i Py [e ™ P ug,].
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Next we compute I. Using again (1.8) and the conservation of the L?-norm for
smooth solutions, we have

I :8t8;1(P¢cu2) = 8;16t(u2 — Pa?) = 8;18tu2
=20" (—uHum + 2P¢c?u2)uux)
=20 " (—&(uHuz) + u, Hu, + Pic(UZ)f)xP#C(uQ»
=P, ((P¢Cu2)2> — 2uHu, + 2P, 2uHu,) + 20, (ugHuy,) . (2.2)
Noticing that F, = P,.(u?) we infer that
—iuPpe((Pacti®)?) + iu(Fy)? = iub((Ppe®)?)

and noticing that F,, = 2uu,,

2iuPs, (uH@xu) —Fu= —4u2P_ux?2iuPc(uHux

)
Moreover, following [19], we will use the symmetry of the term 9, ! (u,Hu,). Indeed,
it is easy to check that 9, ' (u,Hu,) = —i0; ' (Pyuy)* +10, ' (P_u,)?* and thus setting

B(u,v) = —i0, * (Pyuy Prv,) +i0; Y(P_u,P_v,) , (2.3)
we infer that 9, ' (u, Hu,) = B(u,u). We thus finally get
I=P, [e”'F <—4u2P,ux — 2iuB(u, u) + 2iuP.(uHu,) — z’uPc((P#ch)Z)]
which leads to
Vp — Wyp =Py [e_iF (—ZLuQP_ugC — 2P gy — 2iuB(u, u)

— QiuP(uHuy,) + iuPC<(P¢Cu2)2>)} . (2.4)
Due to the projector P, , P_, we see formally that in the system (2.1)-(2.4) there is
no high-low interaction of the form
Plowu2 : azphighu'

Note that © — G(u) can be ”inverted” in Lebesgue space. This is the strategy used
in [23] to prove well-posedness in H'. To go below to H'/2, we intend to use X**
spaces. But u — G(u) can not be well ”inverted” in Bourgain’spaces and thus u will
not have the same regularity as G(u) in these spaces. To handle this former difficulty,
we will insert the ”inverse” into some of the terms in (2.4). We first observe that

—2iP, <e_iFP_um> = — 2i0, P (""" P_u,) + 2P, (e " Pyo(u*) P_u,)
= — 20, P (0, ' Py (e " Pye(u?)) P_uy,)
+ 2P (e "Fu?P_uy,) — 2P.(u*) Py (e" ¥ P_u,)

and thus the sum of the first two terms of the right-hand side of (2.4) can be
rewritten as

— 2P, (e "Fu?P_uy,) — 20, P (9, ' Py (e T u?) P uy,)
+ 2P, (u?) (azﬂ(a;l&e—mp_%) - P+(e_iFP_u$)) . (2.5)
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Now, let us denote
R(u) =[Py, e Flu= P (eFu) — e PLu
=P (e Pu)+ P (e ¥ Pu) — P_(e " Pru) — P.(e " Pou) . (2.6)

Formally, R(u) is a commutator, and has one order higher regularity than F, =
P,.u? (see Lemma 3.6). Then we get

v=e"FPu+ R(u), (2.7)
and thus Pyu = ef'v — '[Py e~ ]u. Since u is real-valued, this leads to
Pu=P_ () - P (e R(u)) . (2.8)

Substituting P_u by the expression (2.8) in the two first terms of (2.5) we eventually
get the following equation satisfied by v :

v — e =2N°(u,v) + 2N (u,v) — 2i P (e FuB(u,u)) + G (u) (2.9)
where
N”(u,v) := —0“P,(9;" Py (e Fu?)0,P_(e ")), v=0,1.
and

G(u) =P, (e—iF (—2iuPc(uHux) +uP((Pat)?) + 2u28xP_(e_iFm)>>
~20,P, (8;1P+(e’iF)P,ux> +2i0, Py <(e*iF3xP,(e*iFTu))>
+ 2P, (u?) (—P+(e_iFP_u$) +O,P, <8;1P+(e_iF)P_u$)>> . (2.10)

We will see that the worst terms of the right-hand side of (2.9) are the first two
terms. Actually the use of Bourgain’s spaces will be necessary to handle the first

three terms of (2.9). On the other hand, G(u) is a nice term that belongs to LfH;/Q
as soon as u € L H'/?2,

3. THE MAIN ESTIMATES AND PROOF OF THEOREM 1.1

In this section, we present the main estimates. By combining all these estimates,
we finish the proof of Theorem 1.1.

3.1. Linear Estimates. We list some linear estimates in this subsection. The first
ones are the standard estimates for the linear solution, see [3] and [5].

Lemma 3.1. Let s € R. There exists C' > 0 such that for all f € X*2F and all
ug € H* we have

IW ()uollvz <Clluoll s (3.1)

[ we-nsr| <cif oy 32)
0 Ys T

T

Next, we need some embedding properties of the space Y*®. The first one is the
well-known estimate due to Bourgain [3]

lvllze, Sllvll - S ollxoss (3.3)
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where the first inequality above follows from the Littlewood-Paley square function
theorem. Note that (3.1) combined with (3.3) ensures that for 0 <7 < 1,

W (E)uollzs, S lluollze - (3-4)

3.2. Main Non-linear Estimates.

Proposition 3.2 (Estimates of u). Let T €]0,1[, s € [3,1] and (u;,v;) € (C%HS N

L4THZ> x Y7, i = 1,2, satisfying (1.8) and (2.1) on | — 7, 7| with initial data wu;y.
Then for u = u;

1
v+ TRl Dl

lull gy S A Nl )0 (3.5)

L4Hs ~

and for large N € N, we have

1+ TN?[|ull7 o g/ + 0]

||U||L%°‘HS§||U0| Vs

L+l

+ N~ + ||v|

). (3.6)

(HUHLW

Moreover, we have

Jur — U2HL4 H1/2N<1 + HUHLOOHl/Q)Hvl va|

1
Y. 2
T4 T

2
3
+ [Juy — U2||L%°H1/2||Ul||YT% H(l + ||ui||L%oH%)
2
TY4 |y — 14 ||uy 3.7
+ [|us uQHL%oH%H( ||UI|LOOH§) (3.7)

i=1
and

2

lur — wall e vz Sllno — uzoll v + [ (1 + [l
=1

LOOHQ 1+ HU'LHY1/2>8

2 —1/4
(o = vl + (T Ny =l ). 39

Proposition 3.3 (Estimates of v). Let 0 < T' < 1, s € [$,1] and (u;,v;) € <C’tOHS N

L‘%Hj) x Y3 satisfying (1.8), (2.1) and (2.9) on | — T, T'[. Then for (u,v) = (u;, v;)
there exists v > 0 and ¢ € N* such that

ol S+ luoll o llms + T (L fwll ™ — oo
L HZNL

4Hi/2

q ——
F(1+ ”“”L%OH%OL;{/Q”””X”*”"’”“”L%oﬂmwz)' (3.9)
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and

S+ HUOH4 llure = uzollme (3.10)

2
" [(1 + Z [ || 41 1 ”‘ﬁ2> |lv1 — va| xs1/2
i1 L H2NLAH,
2 2
|19 —
Dl ) el o = el
=1 T =1 (3 11)

[vr — va| ya~
T

The rest of this subsection is devoted to proving Proposition 3.2, while the proof
of Proposition 3.3 will be given in the next section.

3.3. Proof of Proposition 3.2. We start with recalling some technical lemmas
that will be needed hereafter. We first recall the Sobolev multiplication laws.

Lemma 3.4. (a) Assume one of the following condition

1

81+ S2 20;5§51;52,5<51+52—§7
1
or Si+ S >0,S<81782,8§81+82—§.

Then
£ gllzs SNl o (| g 2o
(b) For any s > 0, we have
[ fgll s SN N rsllgllzoe + gl ers [ £l poe-

Second, we state the classical fractional Leibniz rule estimate derived by Kenig,
Ponce and Vega (See Theorems A.8 and A.12 in [14]).

Lemma 3.5. Let 0 < o < 1, p, p1, p2 € (1,400) with pil—i-p%z = % and aq, a3 € [0, o
with a = a1 + . Then,

|D2(f9) — FD3g — gD f| o S 1D gll oo 1 DZ2 Fl oo (3.12)

Moreover, for a; = 0, the value p; = 400 is allowed.

The next estimate is a frequency localized version of estimate (3.12) in the same
spirit as Lemma 3.2 in [27]. It allows to share most of the fractional derivative in
the first term on the right-hand side of (3.13).

Lemma 3.6. Let o, 3 > 0 and 1 < ¢ < co. Then,

| Dg Px (fP:DJg)|| 0 S 1D fllon |1 D2 gl oo, (3.13)
with 1 < ¢; < o0, q—l—l-——aandqua, as >0 and ag + s = a+ .
Proof. See Lemma 3.2 in [21]. O

Finally we state the two following lemmas. The first one is a direct consequence of

the continuous embeddings H*+1/4 — H i/ ? < L™ whereas the proof of the second
one (in the real line case) can be found in [[19], Lemma 6.1].
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Lemma 3.7. Let s € [1/2,1], z € L H* 1 and v € L4 H; then

vl 7z S 120 g ot 100l 7257 (3.14)
Lemma 3.8. Let vy, v9 € L4Hi/2 then
IB(v1,v2) |22 < (DY v || e | Dy *va| 4 (3.15)
Let k € Z* with |k| < 10. A direct computation gives
0p (1) = kie™ (u* — P,(u?)), (3.16)

Next by gathering the obvious estimates ||”*"[| Lo 2 ST and ||, ()| Lo 2 SPe(u?)+
||u||%%°L;1cv we get

ik F o < 2
I a1+l (3.17)
On the other hand, by Lemma 3.4, we have for any s € [1/2,1],
10 (™ g - Slle™ Nl g llu® — Pe(@?) [l g0 - S(1 + ||U||2 i)l lull e s
Gathering the above estimates leads for any s € [1/2,1] to
€ - Sl ) (14 Nl Nl ) (3.18)
and, in view of (2.6) and Lemma 3.6, it holds
IR g S 1671 Tl (3.19)
—iF
S e - lull e g
S W+l - (320)

Now, for s € [1/2, 1], according to (2.7), (3.18)-(3.20) and Lemma 3.77we easily get

1Peull e < lle™ vll 7y + lle™ R(u)

L4 Hs ~ HL4 Hs

S el o s ol gz + T3 || o o | R(w)

S+l (v
T

Estimate (3.5) follows by using that u is real valued and the conservation of the
mean-value by (1.8).

Next, in order to get a better estimate of |[ul[zeoms, s € [%, 1], we split u into a low
frequency and a high frequency part. For low frequency, we use the equation for wu,
while for high frequency, we use P u = ¢f'v — e R(u). For any N = 2¥ € N, and
s € [3,1], we have

L4HS

v H Tl Dllel ey )

ull e mrs S | Perul poerrs + 2| PLull Lo ars

By the equation of u, we have

1 t
ngu = W(t)PSkUO + g / W(t — T)ngax(ug)(T)dT,
0
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that leads to

[ Perull g s Slluoll s + T22k||u||?i;9H1/2-

To estimate the term ||P3ullrspms, we use Pyu = e'v — ¢ R(u). By (3.17)
-(3.20) we have

1P3 [ R(u)lllgers S N7l R(w)ll oo
<

_1
N+l ) e

s. By Lemma 3.4 we have

1P e o]l ge e SIPL [P—s (€Yol Lgors + | PE[Pon—s(e™)0]ll e s

Sl s ree vl oo s + J0l| Lo e

It remains to estimate || PJ, [e'"v]

Pops(€") |z m

ol (L4 N ully ).

Then (3.6) holds. For the difference estimates (3.7)-(3.8), the proofs are similar.
We only need to observe that by the mean-value theorem, |e?*F(u1) — eikFuz)| <
|k(Pe(u? — u3)| and thus

||6’Lk‘F(U1) _ ’Lk‘F(UQ)HLT a:NHul — u2||LooHl/2(||u1||LooHl/2 + ||U2||LO0H1/2) (321)

and

10, (™) — ™) | e pa Sllur — wall pgo e ([unll e e + izl e r1/2)

+ | Prc(uf) (™) — ) | oo g

Sllun — U2HL%°H1/2(HU1HL%°H1/2 + Hu2HL§S’H1/2)3 - (3.22)

3.4. Proof of Theorem 1.1. In this subsection, we prove Theorem 1.1. We will
rely on the results obtained in [23]:

Lemma 3.9 (]23]). The mBO equation (1.1) is locally well-posed in H® for s > 1.
Moreover, the minimal length of the interval of existence is determined by ||ug||g:.

Now, fixing any uy € HY/%(T), we choose {ug,} C C*(T), real-valued, such that
Up,, — ug in H/2. We denote by u,, the solution of mBO emanating from g, given
by Lemma 3.9 and v, = P, (e~Ftn)y,).

Step 1. A priori estimate: we show that there exists 7' = T'(||ugl| g1/2) > 0 such
that w,, exists on (=7,T).

It suffices to show that there exists a T' = T'(||ug||g1/2) > 0, such that for any
n €N, if [t| < T and w,(t) exists, then

[un ()| zzs < C(fJuon

First we show (3.23) for s = 1/2. We may assume ||ug| 12 < 2[|uo|| g1/2, Vn € N.
Define the quantity ||(u,v)||rs by

), 1/2<s<1. (3.23)

1w, )z = Nl pge s + 0]l -
T
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Applying Proposition 3.2-3.3 to u,, v, (taking s = 1/2), we get
ety vl 172 S+ ol gy llwoll e + (THEN? + N7V (i, on)[

v k
(14 s 0l ) s )

for some v > 0 and k € N* and for any N > 1 and 0 < T < 1. Therefore taking N
large enough, we infer that there exits T' = T'(||ug|| 1/2) > 0 such that (3.23) holds
for s = 1/2. Now, for 1/2 < s < 1, we have

Hs + (T1/4N2 + N_1/4)||(um Un)“i’%ﬂ”(um Un)'

Fe S(L A [Juo | 3/2) o0 |

(14 [t v) ) it )

[ (wns vn)| Fs

Fi >

which yields (3.23) for some T = T'(||uo| g1/2) > 0 smaller if necessarily. This
completes the Step 1.
Step 2. Next, we will show that u, is a Cauchy sequence in C([-T,T]; H'/?).
Applying the difference estimates in Proposition 3.2-3.3 to (u,, v, ), arguing as in
Step 1, we get

| (tn, = U, V5 — Um)”F%NSHUO,n - UO,mHH%' (3.24)

Thus, (un, vy) is a Cauchy sequence, and there exists u € C([—T, T]; H'/?) such that
[un—ull, ;5 — 0, n — oo. By classical compactness arguments, it is easy to check
that u solves the mBO equation. Moreover, in view of (3.24) it is the only solution
in the class u € L¥HY? with P, (e’f®) € XT%J% and the solution-map ug — wu is
continuous from Hz(T) into C([—T,T]; H/2). At last, in the defocusing case using
the conservation of H2 norm of u, we get that v is global in time.

4. PROOF OF THE ESTIMATES ON v

In this section, we prove Proposition 3.3. We will work on the equation (2.9). By

1
Lemma 3.1 and the trivial embedding L2 H*® — X;’ 2+, we infer that

[olly; SN (0) [ + T”(HG(U)HL%Hs +[IN?(u, v)|

X;’_%-‘— + HNl(UﬁU)‘ X;’_%-‘—

+ 1P =25 FuB(u, )]l . ) (4.1)
T

for some v > 0. Then to prove Proposition 3.3, we will estimate the terms of the
right-hand side one by one.

4.1. Estimate on G(u).

Lemma 4.1. Let 1/2<s<1,0<T <landw; € C([-T,T): H*)N L3 Hj, i = 1,2,
be two solutions to (1.8) with initial data u; . Then for u = u; we have

Hg(ui,0)| s S+ ||Ui,o||£}{1/2)’|ui,o|

||G(ui)||L%H55(1 + [l IL;Hl/gﬂLz;THim)||Ui||L%°HsmL4TH4S .

Hs
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Moreover, it holds

2

1G(v1,0) = G(v2,0)ll /2 Slluro — uzoll s H(

i=1

)

2

HG(ul) - G(“'?)HLZTHl/QrSHul - uQ”LocHl/2mL4 H1/2 H( + Hul‘ L HY/2NLA, H1/2)
=1

where the gauge transformation G and the function G are defined respectively in
(2.1) and (2.10).

Proof. The estimates on v; 0 = G(u; o) and its difference are similar to the estimates
of u in the proof of Proposition 3.2. The estimates on G follow from the definition
(2.10) of G(u), Lemma 3.4 and Lemma 3.6. For instance we have

le™" P (u?0: P-(e™ R(u) [+ Slle™ N - 1 g |0 P (e R(w)) | 10+
Slle™ 1% 5 Nullagllull SR

Hj it

Sl

aflull 1IIUII (1+IIUI|H1/2)

and

(0 Pee™™)Pows) | S e gl S (1 Nl el

OJ

4.2. Estimates on suitable extensions of u and e ¥ . Before proving the

main multilinear estimates, we need to prove estimates on suitable extensions of u
and e~*F(w,

Lemma 4.2. Let 1/2 < s<1,0< T <1 and uy,uy € C([-T,T] : H¥) N L}.Hj be
two solutions to (1.8). Then for i = 1,2

2
sy < O Il Wl e (42
Moreover, we have
2
_ —— <y — H 1
[|ua U2||(X*% mL°°H2mL4H2) Sl u2||L°°H1/20L4 HY/? 11( + ||uz||LooH1/2mL4 H1/2)
(4.3)

Proof. We consider w(t) = W (—t)u(t) on the time interval [—7, 7] and extend w on
(—2,2) by setting dyw = 0 on [—2, —2]\ [=T,T]. Then it is clear that for any 0 € R,

||atw||L2((—2,2):H9) = ||atw||L2TH9a ||w||L2((—2,2):H9)§||w||L$H9

Now we define a(t) = n(t)W (t)w(t). @ is clearly an extension of u outside (=7, 7T)
and it suffices to prove (4.2) with the X1 L®H*® and L}Hj-norms of @ in the
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left-hand side. First, using that dyw = 2W (—¢)(Pee(u?)us), we get

||1~L| Xs-1.1 A<J||w||L2((—2,2):HH) + ||atw||L2((—2,2):HS*1)
Sllullpz(—2.2):ms-1) + ”D;(US)HL%I + ||U||%;OL§||D§U||L2TI

Sllullze2.2):m-1) + ”DZUHL‘;ZOL"T"L% Hu”i%on%

where in the last step we used Lemma 3.5 together with LfoHi/ 2 L3%.. Second,
@l e rrs S In@OW @Qwt)||Leens? S Nwllzgns S llullgers -

Third, we notice that

+ W (t)w(t)

with w(t) = w(T) for all t €]T,2[ and w(t) = W(=T) for all t €]—2, —T. Therefore,
in view of (3.4),

W @OwO s sy = W OWD gz S N0 = [lu(T)]

This completes the proof of (4.2). Finally the estimates for the difference is similar
and thus will be omitted. O

@l

i S Mol g a2 siirimy

e S ullpgems -

Next, we prove the properties of the factor e?**".

—_~—

Lemma 4.3. Let 1/2 < s<1,0<T <1 and u,uy € C([-T,T] : H*) N L3 Hj be
two solutions to (1.8). Then for i = 1,2

I e evne 3oy SUH Ol DWlamong - (44
Moreover,
—iF(u1) _ —iF(u2)
le Ve ’ H(L;XJH%—mL?H%mX‘%"l)T
2
<y — 11 6 : :
St =l IO+ 09

Proof. We set 2(t) = W(—t)e ™ on | —T,T[ and than extend z on | — 2, 2[ by setting
Oz = 0 on [—2, =2]\ [T, T]. Then @ = n(t)W (t)z(t) is an extension of e~ outside
(=T,T). As in the previous lemma, for any 6 € R, it holds

[0l oo < le™ || Lgero?

which together with (3.17)-(3.18) gives the estimate for the first term on the left-
hand side of (4.4). Moreover,

e L e o (R CHL P

with
(00 + HOR)e™" = —ie™ T F = it (7" (20 — i(Pau?)?))
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According to the expression (2.2) of F;, Lemma 3.4 and Lemma 3.8 , it holds

1Pl -3 + [[20t0 + ik (Pac(u®)?|

yo S lullige e + llul

1/2
-
LEZH™2

2
1
-5 4
L2H™2 L4 H,

which yields the desired result by using (3.17) and again Lemma 3.4.
For the difference estimate (4.5), the proof is similar by using (3.21)-(3.22). The
details are omitted. 0J

4.3. Multilinear estimates. With Lemmas 4.2-4.3 in hand, the following propo-
sition enables us to treat the worst term of (4.1), that is N¥(u, v) with v € {0, 1}.

Proposition 4.4. Let 1/2 < s <1, wy,ws € X V2 A LRH uy,uz € X570 N0
L H: N L{H; and vs € X/2Y/2 with compact support in time. Then it holds
HXS**%Jr

3
< leHLtooHsH— Hw4HL%°H;/2”U5HX1/2’1/2 H HUiHL?oH;M
i=2

P, (8;”P+ <w1u2u5~,) 0, P (w4v5)>

+ sl e T (Ilwi||X_1/2_,1mL;ng/2—> 8

i=1,4
) (L Y [ TR ) B CE)

2<i#j<3 * *

Proof. We want to prove that

I::‘

Oy Py (a;”PJr (w1u2“3> On - (w4v5)) H

g D PR

N2>2,N123>N,Ng5<Ni23 N;, 1<i<5

X&*%Jr

8ZPNP+ (8;VPN123 (PlelPN2u2PN3u3>8$PN45P_(PN4w4PN5v5)>‘

Xs—1/24

By the triangle inequality we can separate this sum in different sums on disjoint
subset of (2Y)%. By symmetry we can assume that No < Nj.
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1. N, > 278N5. Then Ny5 < N, and we can write by almost orthogonality
EXEY Y%
Ni2s  Na N5<SNg 2<N<Ni23 Nys SNy
211/2
| PP (P (wiiaus ) 0 P P-(PrywsPaes) )| Y]

(N X % wlenr (o ()
Ni2s Ny,N5 2<N<Ni23 Nys <Ny
271/2
'8xPN45P—(PN4w4PN5/U5)>‘ L4/3) :|
. N 5 291/2
[ (Wil Pz, 3 o))

Nias N<Nja3

Z NEEszll+NE?7HPN4w4”L§ZHPN5U5HL§I

N4,N5,Ny5

Sz (wrugus) ||z lwall g [lvslzs,
t T

< (1wl + 1 T3usllcg, + 1 5usle) (ol g, + g, + lusl g, )2
ol oo 05 0207
S Ul g+ ol sty + Nesslamg) Qlnllzs, + o, + sz, )?

el e o sl

where in the second to the last step we used Lemma 3.12 .

2. Ny < 278N;. Then Ny ~ Nj so that we can drop the summation over Nys
by replacing Py, by ]5N5. Note that in this region the frequency projections force
N5 S Nios.

2.1. Ny > 278N. By almost orthogonality it yields

(X X X

Ni23 N5SN123 N45N5 2<N<Ny

6;’PNP+ <PN12383?V <'UJ1U2'LL3)

i 211/2
-8$PN5P_(PN4IU4PN5U5)>) L4/3> ]
N 271/2

< [Z<N1823||PN123(wlugu;z,)Hng Z (_NS )1/2||Di/2PNsv5||L§z> }

Ni23 N5 SNizs w

1
> NN P
Nyg,N

SN (wrugus) [ g, llwal oo gra- 1 Dy vs | 1,
Slwill s + luall oy + sl e (lwrllzs, + lluzllzg, + lusllzy,)’

||w4||Ltong/2— [vs ]| x1/2./2
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2.2. N, < 275N,
2.2.1. N; > 278Nj53. Then we get

ISJZNS-&-V Z N1_2£V5 Z Z ||PN1w1PN2’LL2PN3U3”sz

N>2 Ni23>N N12N123 N2,N3,N4,N5 SNy

1/2
N3 DY?vs]| || Pywal oo

_ _ s+i+ —
,SZNO Z N{)23ZN1 ’ ||PN17~U1||L§Z(ZN£ ||w4||L?§)

N2>2 N123>N Ny Ny
3
(> NIDY sl )) TT(DS M- lPwuillss,)
N5 1=2 N;
3
Sl sl e gy oslLxvmne TT Nl e e
=2

2.2.2 N; < 278N93. Then we have N3 ~ Nig3 ~ Nyae. Since in this case it always
hods 273 < N3/Nio3 < 23, by a slight abuse of notation we can drop the summation

over Nya3 by replacing Ppy,,, by Phy,.
2.2.2.1 N; > 275N;5. Then by almost orthogonality we get

]5 |:Z ( Z NS+VN Z ||PN1UJ1PN2U2PNBU3||

N3>2 2<N<N3 N1,No
2 Mol 3 1Pl )]
N5<N;
N
S [Z <N§||PN3U3||L§Z Z (F>S+y> ] ZNIHHPNﬂUlHL?z
N3>2 NSNg 3 Ny

S NS DY Pryuslps Y NITIIDS Prywallnze Y NETIIDY* Pyvs| s,

N3 Ny Ns

S il pge gave-[lusll sy lluell Lge vellwall e e |vs || 17272

L}H;

2.2.2.2. N; < 27°N; and N; > 275N. Then it holds

ISZHPNQUQHL4 ZN 1Pxywi e > N3~ || Pyl

N3

ZHPMWHL ZN“*HPNS%HH

U5HX1/2,1/2 H’LU4HL§OH2/27 .

S leHLme HquLoonHusHLW
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2..2.2.3 N; < 275(N5 AN N) and Ny > 275(N5 AN N)
2.2.2.3.1 N, > 27"N. Then either N3 ~ N and then N3 ~ N ~ N, which leads to

HE(Y 2

N3>2 Nz~Ns N;SNp

P+ <}3N38;” (Ple1PN2U2pN3U3)

) 291/2
: 8xPN5P—(PN4w4PN5U5)> ‘ X *1/2> }

5[2( Z Z Ny HPleleQUQPNgus‘ 12,

N3 Na~Nsz N;SNa
i€{1,4,5}

. N3\ 1/2 f N5\ 1/2
<o NPl (3 IPvwn sl Pl 32 30 () ()

N3 N1,Ny No~Nj3 N5<N3

211/2
NPy Prvsllng, ) |

1/2 1/2 212
| D Pt g | P DY 05114 ) |
Sl

| D3 o g 103205 | e vl e ove-

or N3 ~ Ny and then we get

I's [Z(Z Yoo D NN Pawn |l nge || Py all s,

N N2>N N3>N N;ie{l,4}
12 1/2
P, | P55l P, D013, )|

Sz le”L?oH;/QHw‘lHLtooH;/Q Z N;HPNSu?)HL?x HPNSD;}:/2U5”L§QC

N3
N2 271/2
(X (5) W IPmuley,) |
N Ny>N 2
S lusll 7 2HL4H1/2HD1/2U5HL4 [[wi ][ pgo rsre- l[wall Lo gra/2-

where, in the last step, we used Cauchy-Schwarz in N3 and that by discrete Young
inequality

< ||J1/2U2|| 4 .

[l

HZ(Qk_kQ)I/QX{k—kzgs}||Ji/2pzkz us | 14
kEZ

12(N)
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2.2.2.3.2. Ny < 277N . Then N, > 275Nj since we must have N5 < 273Nj. This
forces N3 ~ N so that we get

[Z(Z Z Z w1PN2u2PN3u3‘L2

291/2
N5||PN4w4PN5U5HL§I) ]
N3 N2 N5<N2 N1,Ny tx

1/2
Sl e grrzlsll e grrm | D N3 Py 2,

N3
Ns
> 5 (52) I Pl 1P DY)
N2 N5<N2
< sl D2 2 g ool e
4

where in the last step we used the discrete Young inequality.

2.2.2.4. (N; V Ny) < 273(N A N3). Here it is worth noticing that we can assume
that (N A N;) > 2* and the result follows directly from the lemma below and the
proof of the proposition is completed. O

Lemma 4.5. Under the same hypotheses on u; as in Proposition, it holds

J —[ Z ( Z ’ (a;VPNg, <Ple1PNQU2PN3U3>

N>2%  (Nj)i<i<s€EAN

211/2 O
0Py P-(PyonPas) )| ) S T iz
=1

where
Ay = {(Nl,NQ, N3, Ny, Ns) € (2¥ U {0})°, N3 > 273N,
2% < Ny < 4AN3, (N1 V Na v Ny) < 273(N A N5)}.
Proof. 1t is worth noticing that, thanks to the frequency projections, N3 ~ N4z
and the resonance relation yields
|Omas| 2 1€€5| = 272N N5 2 (N A N5)Ns (4.7)

for all the contributions in J. First we can easily treat the contribution of the region
{(7,€), (1 —&|¢]) > 272N N5}. Indeed, we then get

-1 STV —S—V
PEY Y e
N224 (Nl,NQ,Ng,N4,N5)EAN

| P, Dius|| pa || DY Pryvs | s || Prytia]| oo H | P wil | zge
i=1,4

1
Z N 2+||U3||L;11ﬁ

N>24

D;/2U5HL§$ ||u2||LocH1/2||w1||LooH1/2||w4||LooH1/2
t xT t x t x

which is acceptable. Therefore in the sequel we can assume that (7 — £[¢]) <
272N Ns}. Now, for any fixed couple (N, N5) € (2V)2, we split any function z € L2,
into two parts related to the value of o by setting

2= F (w7 = €JEDZ) + F (1= mawws (7 — €J€N)E) == 24+ 2.
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1. Contribution of v5. We now control the contribution of @5 to J in the following
way : either N ~ N3 ~ N,,., and we write

TSI D D NUNN NG

N>24 N3~N N;<25N3
i=1,3,4,5

| Py 05 | xa/22 | Py Dius | s || Pvyizlzee T 1P, will e

i=1,4

UQHLOOHI/Z H HwZ”LooHl/Q
i=1,4

ZN sl x1/2/2lus g

or N5 ~ N3 ~ N,,.. and we write

JEXY Y Y wn e

N>24 N3 Ns~N3 N;<275N
1=1,2,4

| P05 | x1 /22 | Py Dis | s || Pvstizl e T 11w, will e
i=1,4

UQHLOOH1/2 H HwZHLOOHl/Q
i=1,4

Z N=2F)|vs vz sl 7oz

where we apply Cauchy-Schwarz in N3 ~ Ny in the last step.
2. Contribution of vs.
2.1 Contribution of w;. We easily get

TS ST (N ANs)Ng) NN
N (N1,N2,N3,N4,N5)EAN

|| Py i || xc—1/2-a [| Py us || e | Py D35 | .|| Paytiz| oe || Paywal| oe

SN sy s
N

3 l[vs]

Leom} XS1/2Hu2HLtooH;/2”w4HLtOOH;/2

which is acceptable.
2.2 Contribution of w;. To treat this contribution we will extensively use the fol-
lowing lemma which is a direct application of the Marcinkiewicz multiplier theorem.

Lemma 4.6. For any p €]1,4o00[ there exists C, > 0 such that for all N > 1 and all
L > N2,

|72 (ox@mir 5 9579

<Gl VELM®).  (48)

Proof. By Marcinkiewicz multiplier theorem (see for instance ([6],Corollary 5.2.5
page 361)), it suffices to check that

2 (on(©me(r F€9)| S g™ |7 for Ja] < 2.

But this follows directly from the fact that for N? < L |

 (ox(©melr =€) = OV ) and  (on(Epm(r £ €)) = 0L

dé
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It is worth noticing that on Ay, with N > 2% it holds N? < 272N Nj for i €
{1,2,4}. Hence, in view of (4.8), for any 1 < p < oo, setting (21, 22, 24) = (w1, Uz, wy)
it holds

1Pn, Pzl rr, < Cp [P, Pr2|l1s, -
and thus by the continuity of the Hilbert transform in LP, 1 < p < oo,
1Pn.Z e, < Cp |l Prvi2lle, - (4.9)

We separate the contribution of w; in different sub-contributions.
2.2.1 Contribution of #s. Then we write

J < ((N A N5)N3) " "N2 "Ny N N; =T/
3
N

(N1,N2,N3,N4,N5)EAN

| Pavy il x—1/2- | Py D3~ Ous|| o || Py s | 20 || Povy 1 || 24| Povy || e | Povwal| e

T

_1

S N e will el Dyl g vsll o [zl 1o lwal e 12
N

SlenLtooH;/? HU3HL§°HSHL§H5 [vs || x1/2.1/2 ][ uz]| x-1/2-1 Hw4||LtooH;/2

where we used Sobolev inequalities and (4.9) in the last to the last step.

2.2.2 Contribution of .

2.2.2.1 Contribution of w,. This subcontribution can be estimated in the same way
by

1
ISy > ((N A N5)N3) ' N2 NN Ny /6

N (N1,N2,N3,N4,N5)EAN
Pl el Pg D3, | Pl g | P el Pl

Slwill e vz llusll e mrenzsr 10sll xar202 [[uall o e llwal | x-172-

2.2.2.2 Contribution of w,. Since max(|o;|) < 272N Nj, we only have to consider
U3 in this contribution. Either N ~ N3 and then

2y ( 3 N3 (NyN5) ' N2/ N
N3 (N1,N2,N3,Na,N5)EAN,
~ 2
1P s o1 | Pay D05 g, 1 P izl s ] | ||PNZ-@¢HL§3)

1=1,4
S 1Pl ) N Besss e TT Ml
~ Lt HI Lt Hz
N3 i=1,4

or N5 ~ N3. In this last case we first notice that X%3/8 «— L% and that for any

fixed 2 < p < o0, X%l/ ST LE.L2. Therefore by interpolation, Sobolev inequalities
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—1/2+

6
and duality we infer that L3 < X, o . We thus get

= Z(Z D NUNST(VN) NN

N3 (N\/N1VN2VN4)<N3

- 2
1Py s o1 | Povy D35 | || Proy izl e | | ||PN@:'||L§§>
i=1,4
<ZN*E+(Z Pl P DY 0l ) sl e T sl
i=1,4
Slluslxe-allvsl e llually o e [T Will oo 112
i=1,4

where we apply Cauchy-Scwharz in N3 in the last step. O

Finally, this last proposition together with Lemmas 4.3 enables to treat the term
containing B(u,u) in (4.1).

Proposition 4.7. Let 1/2 < s < 1, w; € X Y2 N LPH " and u; € X701 N

L{H; N LPH®, i = 2,3,4. with compact support in time such that us and usz are
real-valued. Then it holds

|orwaBlus,un)| -y Sl sl gy sl Tl

S R DR A
t

2 oy X_Q_’lﬁL‘lHjﬁL“H%
(2<i#j#9<4) 4
’ Hu]”X 1 lm[;_;{_jnLOOH ” QHXS 11mL4HsmLooH5 : (410)

Proof. Recall that B(u,v) = —id, '(Pyu, Prv,) 410, 1 (P_u, P_v,). By symmetry it
thus suffices to estimate

o —1
I .—le’Uan (P+0xu3p+8x1L4)H 1
X31 §+
:H E Py (PN1w1PN2U2
N>1,N1,No,N3,Ny, N34>(N3\/N4)/

. Pry 02 Y (Py 8y Py, Py 8, Py, 1) )H .

-3t

By symmetry we can assume that N3 < Ny and thus we must have N3y ~ N;. We
can thus drop the summation over N34 and replace Py,, by Py,.

By the triangle inequality we can separate this sum in different sums on disjoint
subset of (2M)5.
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1. N; > 278N. Then we have

Py (PleleQUQPMax (P8, Py, us Py, PN4u4)>‘

152,
N N
Z Z |PN1w1||L°°Hé+

N<28N1 No,N3,Ny

2

N2,N3,Ny

4/3
Lyl

|PN2U2||L<X>L8?H ||PN U,L||L4H4 _
4

Sl -l TT 1Pl 7

2. Ny < 278N and N; > 275N3. Then either Ny > N V N, and it holds

PN<PN1U)1PN2U2

)2:|é
4/3
Ly

N 2
SO0 G Iuliy)” 3 1wl g | Pl sl Pl e ?

N N42N N1,N2,N3
Sllw|

S)NOIED IR IS s

N N4ZN N1<2-8N N3<25N; No

T

PN48 (P+8 PNBU3P+8 PN4U4)>‘

yllwall

sl

L°°H2 H 2HL°°H2 L4HZ .

or Ny 2 NV N4 and it holds

Py (PN1w1PN2U2

215
Lff) ]
N 1 4
2
(0 Ghliy)® 30 IPswlem? [T Prilizess?
=3

N No2ZN N,N3,Ny

IS)NOIND I IID I

N Ny2N N;<2-8N N3<2°N; N4

Py, 0N (P 0y Pryus Pr 0, PN4u4))‘

x

Sllw

~Y

LOOHQ—H 2||L4H5H|| Loon% :
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3. N < (275N A27°N;).
3.1 N, > 278N. Then we have

IS(Z[ Z ZZNSHPN<PN1UHPN2U2

N Ny>2-8N N3,Nis N;
:|2> 1/2
4/3
Ly

2\ 1/2
Shoillem (32| X G2 MallPyualiny, |)

N Ny>2-8N

. Pr, 0N (P8, Pryus Py O, PN4u4)>‘

T

' Z N4_1HPN4<P+8IPN3U3P+81‘PN4U4)HLfﬁ
Ny

N3
Slwillzgem | 2HL4HSZHPN4D3/2U4||L§I > (E
4

N3<Ny

)2 P, Dy Pus| s,

Slws | e myllusll =11 D3 2us| 2 (1D} uallza -

L}H;

where we use two times the discret Young inequality.
3.2 Ny < 278N and N, > 27°Nj5. Then we must have N ~ N4 and thus

IS(Z[Z ST N AN Py wn | e || Py T s,

N4 N1,N3 No>2-5N3

|| Py, D Py, D3 )
1Py Do/ “us|| g, | Py Deal g,

1/2
Sl (32 105 Pruallyy )

Ny
P % 1/2 P D1/2
ZH UL T ()N Pry Do usl g,
N3<23N, 2

SleHL;”H;’|U2\’L§FQHU3’|L;}E72HU4HL§7{§ .

3.3 Ny < (278N A27°N3). Then N ~ N, and the resonance relation yields
|Omaz| 2 16364 > 272 N5 Ny . (4.11)

First we can easily treat the contribution of the region {(7, &), (t—¢£[¢]) > 272 N3N, }.
Indeed, we then get

ISy >0 NANGND) T | e s || Pt 250
Ny N35N4 Nl\/NQSN;g
N\ Pry DY usl| o || Py Tl s,
Slwillzge 1Dy 2 usll o wall oy > Ny V) Pyyus| e
Na

lHU4HL§Hj .

SleuL?oH% HUQHL?OH;mHuB”L?Hf

which is acceptable. Therefore in the sequel we can assume that (7 — £[¢]) <
272N3N,}. We now split vy, us and ug into two parts related to the value of o; by
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setting
2= F 7 (manaw (7 = €16DZ) + F (1= mmany (7 — €JN)E) 1= 24 2.

It is worth noticing that in this region N? << N3N, for i = 1,2,3. Therefore
Lemma 4.8 holds for wy, 2 and us.

3.3.1. Contribution of w;. We first control the contribution of @w; to I in the
following way :

1533 > NEN(NaNG) Y|Pyt -1

Ny N35N4 Nl\/NQSNg
[Py un|| e (| P usl| nge | Py Jywal s,

3.3.2. Contribution of w;.
3.3.2.1 Contribution of @5. In the same way, using Sobolev inequality, we have

1S3 ST NN (NN TN P e | P sl -2
Ny N3SN4 N1\/N2§N3
| Pyt coe | Py S5~ S s,
SleuL?oH%Hu2|‘X*1/2*v1‘|u3HL?oH%”u4HLt°°HSﬂL§H4S :

3.3.2.2 Contribution of .
3.2.2.2.1 Contribution of 3.

1533 ST NYANGNY TN P

Ny N3SN4 N1VN2§N3
| Py ia| 20 | Povy sl =172 || Py T~ Ctaal | g,
Slwill e gy Nzl oo 3 sl x -2 lluall e g -

3.2.2.2.2 Contribution of @3. Since max(|o;]) > 272N3Ny, it remains to treat the
subcontribution of u,. We easily obtain

PEY(X X NNANGN) | P

Ny N3§N4 Nl\/NQSNg

- 2
1P i sl Py DY Py g, | Pl 1)

2
Xsfl,1>

Therefore, we complete the proof. O]
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