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Lara Leclerc, Jérémie Pourchez, Gérald Aubert, Sandrine Leguellec, Laurent Vecellio, et al..
Impact of Airborne Particle Size, Acoustic Airflow and Breathing Pattern on Delivery of Nebu-
lized Antibiotic into the Maxillary Sinuses Using a Realistic Human Nasal Replica. Pharmaceu-
tical Research, American Association of Pharmaceutical Scientists, 2014, 31 (9), pp.2335-2343.
<http://link.springer.com/article/10.1007

HAL Id: emse-01110944

https://hal-emse.ccsd.cnrs.fr/emse-01110944

Submitted on 16 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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ABSTRACT 

Purpose 

Improvement of clinical outcome in patients with sinuses disorders involves targeting delivery 

of nebulized drug into the maxillary sinuses. We investigated the impact of nebulization 

conditions (with and without 100 Hz acoustic airflow), particle size (9.9 µm, 2.8 µm, 550 nm 

and 230 nm) and breathing pattern (nasal vs. no nasal breathing) on enhancement of aerosol 

delivery into the sinuses using a realistic nasal replica developed by our team. 

Methods 

After segmentation of the airways by means of high-resolution computed tomography scans, a 

well-characterized nasal replica was created using a rapid prototyping technology. 

A total of 168 intrasinus aerosol depositions were performed with changes of aerosol particle 

size and breathing patterns under different nebulization conditions using gentamicin as a 

marker. 

Results 

The results demonstrate that the fraction of aerosol deposited in the maxillary sinuses is 

enhanced by use of submicrometric aerosols, e.g. 8.155 ± 1.476 mg/L of gentamicin in the left 

maxillary sinus for the 2.8 µm particles vs. 2.056 ± 0.0474 for the 550 nm particles. 

Utilization of 100-Hz acoustic airflow nebulization also produced a 2- to 3-fold increase in 

drug deposition in the maxillary sinuses (e.g. 8.155 ± 1.476 vs. 3.990 ± 1.690 for the 2.8 µm 

particles). 

Conclusion 

Our study clearly shows that optimum deposition was achieved using submicrometric 

particles and 100-Hz acoustic airflow nebulization with no nasal breathing. It is hoped that 

our new respiratory nasal replica will greatly facilitate the development of more effective 

delivery systems in the future. 
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INTRODUCTION 

Health problems caused by rhinosinusitis constitute a considerable financial burden on society 

(1,2). Blockage of sinus drainage through infection of the nasal mucosa or impaired 

mucociliary clearance produces a favorable environment for sinusitis in which pathogens may 

proliferate. Better targeting of delivery of nebulized antibiotics to the maxillary sinuses could 

improve clinical outcomes in patients with chronic rhinosinusitis disorders. However, such 

targeting is complex due to the anatomical features of the maxillary sinuses. These cavities 

are poorly ventilated and only communicate with the nasal fossa via the maxillary ostium, a 

narrow duct (about 1–5 mm in diameter; 10–15 mm in length) (3). Drug aerosolization is a 

common therapeutic approach in the treatment of sinuses disorders such as rhinosinusitis 

since it is painless and safe and offers a number of advantages over systemic therapy (4,5). 

Several studies have demonstrated clinical benefits (6), although the question has not been 

extensively clinically investigated. 

 

In this context, it is clearly of interest to achieve a better understanding of any nebulization 

features allowing specific targeting of the maxillary sinuses while avoiding pulmonary 

deposition, since the latter involves a risk of side effects. However, the nebulization 

conditions required to enhance aerosol deposition in the sinuses are not well established (7). 

For example, particles larger than 10 µm inhaled nasally are known to be deposited in the 

nasal cavities (FDA guidance, 2002) but no international consensus or guidelines exist 

regarding the relationship between aerosol characteristics and precise deposition site within 

the nasal cavities such as the sinuses. 

Human intranasal deposition studies are restricted by the risks associated with exposure and 

by ethical considerations. As an alternative, anatomical models have been proposed, such as 

cadaver heads (8,9), nasal cavity replicas (10,11) and nasal casts using recent prototyping 
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techniques [fused deposition modeling (FDM) and stereolithography (e.g. the SLA, Viper or 

SAINT models)] (12,13). While in vitro studies have shown that nebulized particles may be 

deposited in the paranasal sinuses, this is always at low concentrations due to ostium 

morphology as well as aerosol characteristics such as size, pressure and flow rate (14–18). 

Moreover, in a recent study we demonstrated a significant increase in intrasinus drug 

deposition using acoustic airflow nebulization (100 Hz) of micrometric airborne particles (9). 

 

The aim of this study is to provide a better understanding of the parameters that enable 

specific drug targeting of the maxillary sinuses. To that end, we assessed and quantified the 

deposition of gentamicin (aminoglycoside antibiotic, used as a marker) as a function of 

variations in three nebulization parameters: airborne particle size within the micron and sub-

micron range (230 nm to 9.9 µm), 100 Hz acoustic airflow, and nasal or non-nasal breathing. 

The experiments were performed on a realistic nasal replica built using a stereolithography 

technique. 
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MATERIALS AND METHODS 

Nasal replica 

Plastination allows anatomical specimens to be preserved in a physical state approaching that 

of live physiological conditions with numerous advantages (19). In particular, in plastinated 

head specimens, anatomical and aerodynamic behavior closely resembles patterns seen in 

vivo. Moreover, such models have a specific lateral-paramedian section providing easy access 

to the maxillary sinuses. Such plastinated human specimens were previously characterized 

anatomically, geometrically and aerodynamically (20) and then used for aerosol deposition 

studies (9). However, the main limitations of previous specimens of this type were the 

complexity of the washing steps involved, especially the long drying time (around 2 days) and 

the time required to obtain specimens (6 months). To overcome these drawbacks, a nasal 

replica of the human plastinated specimen was created for this study using a stereolithography 

technique. 

First, a precise CT-scan of the plastinated model was obtained (LightSpeed VCT scanner, GE 

Healthcare, Milwaukee, Illinois, US). 226 DICOM scan images of the CT-scan, 

corresponding to the entire nasal cavities, were processed using HYCAD software to delimit 

the outlines of the cavities of interest, namely the frontal, ethmoidal and maxillary sinuses and 

the nasal fossae. Special care was taken in delineating the ostia, which constitute a critical 

ventilation pathway. The 226 segmented images were then converted and imported into the 

SolidWorks® software, a mechanical 3D computer-aided design program. The model was 

reconstructed step by step in 3D, as shown in Figure 1, and the replica was then manufactured 

in transparent, water-resistant, non-porous resin. 

Endoscopy and CT scans were performed on the replica in order to assess the anatomical 

reproducibility of the known human plastinated model. Precise measurements were compared 

for the critical anatomical regions of the ostia and maxillary sinuses. 
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Nebulization systems and aerosol characterization 

Micrometric, submicrometric and nanometric aerosols were generated using the following 

medical jet nebulizers: an Atomisor NL20 (DTF Medical, France) and an Atomisor NL11 

(DTF Medical, France), a modified SideStream (Philips Respironics, Ref 12NEB400, 

England), and a Nanoneb (DTF Medical, France). Aerosol particle sizes were expressed as 

mass median aerodynamic diameter (MMAD) using an electrical low-pressure impactor 

(ELPI, Dekati Ltd., Finland), as described in a previous study (9). 

Aerosol characterization was performed using a chemical tracer, sodium fluoride (NaF; 2.5 

wt%; 4 mL), as recommended in a European standard (NF EN 13544-1). Operating at an 

airflow of 10 L.min
−1

, the ELPI allowed nebulized particles to be sorted into 12 size groups 

(7 nm to 10 nm). The nebulizer was connected to the ELPI via a metal United States 

Pharmacopeia (USP) like artificial throat (height 112 mm; width 42 mm; internal diameter 19 

mm). NaF was aerosolized by the nebulizer for 10 min, after which the various elements (USP 

throat and each stage) were rinsed with 5 mL of deionized water. The NaF concentration of 

samples was assayed by electrochemical means (PerfectION
TM

 combined with a SevenGo 

pro
TM

 F− electrode, Mettler Toledo, France). Finally, the MMAD and the geometric standard 

deviation (GSD) of the nebulized particles were calculated using the electrochemical NaF 

measurements. 

 

Emitted aerosol fraction (output) 

The quantity of aerosol produced by the nebulizer over a 10-minute period was measured 

using a residual gravimetric method (21). The mass of gentamicin was measured on a filter 

before and after nebulization. The results were expressed as the percentage and as the actual 

mass of gentamicin collected. 
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Aerosol inhalation 

The experimental set-up is described on Figure 2 and comprised a nebulizer linked to nasal 

replica nostrils by a nasal plug (C28, medium size, DTF Medical, France) of a type used in 

clinical practice. The trachea of the nasal replica was connected to a respiratory pump (Pari, 

Compas II) allowing reproduction of various sinusoidal breathing patterns. A system of valves 

was used with the respiratory pump and the nasal cast to simulate different breathing patterns. 

A filter was connected to the trachea of the nasal cast to measure the amount of aerosol 

penetrating into the lung model (Inhalation Filter Pad, Pari GmbH, Germany). 

An aminoglycoside antibiotic (gentamicin) was used as the marker (Gentamicin Panpharma, 

80 mg/mL, CIP: 3400935120540, Exp: 03/2014, Batch 10267). In each experiment, 4 mL of 

gentamicin at a concentration of 80 mg/mL was nebulized for 10 minutes. 

The nebulization systems were used with an AOLH® air source compressor (Diffusion 

Technique Française, DTF Medical, Saint-Etienne, France). This compressor can produce a 

“sonic aerosol” by adding a 100Hz acoustic airflow during aerosol production as described 

previously (9). Each experiment was performed both with and without 100Hz acoustic 

airflow. 

 

Breathing patterns 

- Normal nasal breathing: a cycle was defined as 15 breaths per minute, with a tidal 

volume (Vt) of 500 mL, extrathoracic dead space of 21 ml, tracheal diameter of 1 cm, 

principal bronchial diameter of 0.8 cm and inspiratory-to-expiratory time ratio (I:E) of 

40/60. Under these conditions, inhalation time was set at 1.6 seconds and exhalation 

time was set at 2.4 seconds. These breathing parameters correspond to the reference 

physiological parameters for male adults (22–24). 
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- Slow nasal breathing: a cycle was defined as a breathing rate of 10 breaths per minute 

and a Vt of 750 mL. Under these conditions, inhalation time was set at 2.4 seconds 

and exhalation time at 3.6 seconds. Vt values were increased to avoid simulated 

hypoventilation. 

For normal and slow nasal breathing, the set-up simulated inhalation through the nose 

and expiration through the mouth during operation of the respiratory pump. 

- No nasal breathing: we compared nebulization without nasal breathing. The same 

experimental set-up was used but without any cycles. This experimental condition 

mimics inhalation and exhalation by the mouth. 

 

Drug deposition in the maxillary sinuses 

After nebulization, gentamicin was collected from each maxillary sinus by flushing 3 times 

with the same saline solution using a 1 mL syringe as previously described (9). Gentamicin 

concentrations in samples were quantified by fluorescence polymerization immunoassay 

(FPIA) with a TDxFLx® analyzer (Abbott Diagnostics Division, USA), which has a lower 

detection limit of 0.2 mg/L. After recovery, the nasal replica was washed copiously with tap 

water and dried with pulsed air. Control nebulizations were performed with saline solution. 

 

Statistical analysis 

Analysis was performed and graphs plotted using Prism 5.0 software (GraphPad, San Diego, 

CA). Significance (***) was established by ANOVA test (p < 0.05). 
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RESULTS 

Anatomical features of the nasal replica 

Nasofibroscopy showed that the nasal replica obtained by stereolithography was similar to the 

original plastinated human specimen. Endoscopic observations demonstrated good 

preservation of nasal airway anatomy in the nasal replica. Moreover, physical measurements 

of the replica confirmed exact reproduction of the plastinated model with a mean error of less 

than 0.3 mm. For example, between the distance between the right and left sinuses for the 

plastinated model was 90.88 mm vs. 90.51 mm for the nasal replica, and 8.35 mm for the 

septum in the plastinated nasal septum vs. 8.90 mm for the nasal replica. All dimensions were 

well-respected, especially in such critical anatomical regions as the ostia of the maxillary 

sinuses. 

Imaging data from CT scans confirmed high preservation of anatomy, particularly regarding 

the nasal airway and turbinate mucosa, which were as close as possible to actual physiological 

conditions. Figure 3 compares images of the left and right ostia in the plastinated specimen 

and the nasal replica where the measurements of the structures in the images were identical 

between the two models. Like the plastinated specimen (9, 20), the plastic nasal replica 

exhibits differences in the dimensions of the individual maxillary ostia: 6 mm long with a 

diameter of 2 mm for the right maxillary sinus ostium (normal anatomical form: long and 

narrow) and 2 mm long with a diameter of 5 mm for the left maxillary ostium (abnormally 

short and broad). These CT and endoscopy results confirm the good preservation of the 

anatomical and geometrical details in the model, enabling comparison to be made in this study 

between two different types of ostia morphology. 

 

We earlier determined the reliability of airway geometry (using acoustic rhinometry) and 

airflow resistance (measured by rhinomanometry) in the plastinated model used as the basis 
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for the stereolithographic nasal replica (20). Taking into account all of these elements, the 

nasal replica manufactured by stereolithography appeared anatomically, geometrically and 

aerodynamically similar to the original human plastinated specimen, which is a well-validated 

model of a healthy subject without nasal congestion. 

 

Aerosol particle size and emitted aerosol fraction 

The results are shown in Table I. 

Each type of nebulizer had its own specific aerosol MMAD: 9.9 µm for the Atomisor NL20 

(GSD of 2), 2.8 µm for the Atomisor NL11 (GSD of 3.2), 550 nm for the Sidestream (GSD of 

2.1) and 230 nm for the Nanoneb (GSD of 1.6). 

The emitted aerosol fraction was different for each type of nebulizer: 6.84±0.29% for the 

Atomisor NL20, 9.96±1.72% for the Atomisor NL11, 2.06±0.46% for the Sidestream and 

0.26±0.04% for the Nanoneb. 

 

Drug deposition in the maxillary sinuses 

All results for gentamicin collected in the maxillary sinuses (mg/L and percentage of the 

emitted dose) under each test condition (particle size, 100 Hz acoustic effect and breathing 

pattern) are summarized in two tables in the Supplementary Data section. 

 

Impact of anatomy 

Aerosols penetrate the maxillary sinuses with different gentamicin deposition profiles due to 

the anatomical features of the maxillary ostium (Figure 4 A and B). The amount of nebulized 

active substance collected in the left sinus of the nasal replica was consistently significantly 

higher for each type of nebulizer in accordance with the morphological differences of the 

ostia explained in the previous paragraph. These results are perfectly consistent with our 
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previous study (9), and we again confirmed that the airflow resistance associated with the 

endonasal anatomy has a huge impact on drug deposition in the maxillary sinuses. 

 

Impact of nebulized particle size 

The impact of airborne particle size (different MMAD values) is clearly discernible in Figure 

4. Data obtained for the 230 nm size are not exposed on the graphic because values are very 

close from the detection limit. Since the impact of particle size in aerosols is closely linked to 

the emitted aerosol fraction, the results shown in Figure 4A are expressed as percentage of 

emitted aerosol. We clearly demonstrated that deposition in the maxillary sinuses is enhanced 

for the smallest particle sizes for a normalized emitted aerosol fraction. Under these 

conditions, optimal results were obtained with the 230-nm nebulizer, particularly in the left 

maxillary sinus. 

Figure 4B expresses the results in terms of the amount of gentamicin collected in the 

maxillary sinuses in mg/L. The Nanoneb nebulizer generated particles of around 230 nm and 

the gentamicin collected in the maxillary sinuses was between 0.2 and 0.4 mg/L, which is 

very close to the control values (around 0.2 mg/L). The SideStream nebulizer generated 

particles of around 550 nm and the maximum mean quantity of gentamicin deposited was 

close to 2 mg/L. Use of larger particles appeared to enhance drug deposition in the maxillary 

sinuses, with the amount of gentamicin collected for the NL11 nebulizer reaching a mean 

maximum of 10 mg/L. Finally, the largest particles generated by the NL20 nebulizer (9.9 µm) 

were deposited to a lesser extent than the 2.8-µm particles (maximum of 2 mg/L in the left 

maxillary sinus). Under these conditions, using current nebulization technologies, the particles 

most efficiently deposited in the maxillary sinuses in terms of mass are those measuring 2.8 

µm. 
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Impact of breathing patterns 

Figure 5 shows the results for the SideStream and the NL11 nebulizers under normal nasal 

breathing and non-nasal breathing conditions. No significant differences were noted between 

normal and slow nasal breathing for the various types of nebulizers (data not shown). By 

contrast, intrasinus deposition with non-nasal breathing was at least twice as high as with 

nasal breathing (e.g. in the left sinus: 2 mg/L vs. 1 mg/L for the SideStream and 3 mg/L vs. 

8 mg/L for the NL11). 

 

Impact of 100-Hz sonic aerosols 

The results concerning the impact of acoustic airflow are shown on Figure 6. The data shown 

are for the SideStream and the NL11 nebulizers with and without 100-Hz acoustic airflow. No 

significant differences were noted for the NL20 and Nanoneb nebulizers (data not shown). 

Graphs A and B show that acoustic airflow significantly enhanced gentamicin deposition in 

both the left and right maxillary sinuses for the SideStream and the NL11 nebulizers with 

non-nasal breathing. With normal or slow nasal breathing, acoustic airflow had no significant 

effect for any of the four types of nebulizer. 
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DISCUSSION 

This study assessed the deposition of a nebulized antibiotic in the maxillary sinuses of a nasal 

replica while varying three following parameters: particle size, 100 Hz acoustic effect and 

breathing patterns. 

The 3D nasal replica manufactured for this study was highly consistent with a plastinated 

anatomical model that closely resembles a healthy subject without nasal congestion (20). 

Three main families of human nasal casts exist for the study of aerosol deposition: human 

cadaver models (16), plastic replicas (12,25) and pipe models (10,26,27). However, these 

casts have several disadvantages such as biosafety and stability over time for cadaver models 

and lack of fine detail such as maxillary ostium morphology for plastic replicas and pipe 

models. The replica of the human plastinated model manufactured for this study appears very 

useful for in vitro characterization of drug deposition in the maxillary sinuses. This model 

exhibits many desirable technical characteristics such as anatomical features very closely 

resembling those of in vivo human nasal cavities, coupled with ease of access to the maxillary 

sinuses, stability over several years, ease of washing, ease of handling and transport, absence 

of odors and biological safety. 

 

We demonstrated that sonic aerosols using a variety of acoustic airflow (w/wo 100 Hz), 

breathing patterns (nasal vs. non-nasal breathing) and particle size (MMAD in the 230 nm-

9.9 µm range) lead to disparate intra-sinus drug deposition. These results clearly demonstrate 

the ability of gentamicin aerosol to penetrate and the maxillary sinuses. We also confirmed 

the great efficacy of a 100-Hz acoustic airflow in enhancing drug deposition in the maxillary 

sinuses. These results confirm the conclusions previously described for a single particle size 

(2.8 µm; NL11) using the human plastinated specimen (9). 
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Aerosol deposition within the maxillary sinuses appears to be inversely related to aerosol 

particle size in the 230 nm – 2.8 µm size range (i.e. all except the largest 9.9 µm particles with 

the NL20 nebulizer). Maximum deposition was achieved with 2.8-µm particles using the 

NL11 nebulizer. We clearly demonstrated non-significant deposition of the smallest particles 

generated by the Nanoneb device and weak deposition of the 550-nm and 9.9-µm particles 

generated by the SideStream and NL20 devices respectively. The clear impact of nebulized 

particle size on the quantity of drug deposited in the maxillary sinuses was observed under 

non-nasal breathing conditions. In this case, maximum deposition was observed for the 2.8-

µm particles (NL11 nebulizer) with an acoustic frequency of 100Hz. It must be noted that for 

a normalized emitted aerosol fraction, gentamicin deposition of nanometric particles in the 

maxillary sinuses is enhanced. It suggested the best performance in relation to emitted dose 

but most of the 230 nm depositions data were very close to the detection limit and therefore 

should not be over-interpreted. These results are of great interest for the development of new 

nano-aerosol devices with improved emitted aerosol fractions. For the moment, the NL11 

nebulizer seems to be the best compromise for intrasinus targeting. 

Interestingly a recent study also presents data of maxillary sinuses deposition in the 

percentage range of emitted dose (28). Sinus deposition data are obtained in vivo by means of 

a radiolabelled aerosol study in patients. Results are approximately 10 times higher than 

gentamicin deposition obtained in our medication study using a realistic nasal cast. It is 

however difficult to reach a conclusion because three major parameters change between these 

studies. 1) Anatomical models are different (in vivo vs. realistic nasal cast). The sinus 

anatomic features appear to be crucial in predicting the maxillary sinuses deposition even if 

good consistency has been noticed using realistic nasal cast (29,30) (Durand et al 2012, Le 

Guellec 2013). Comparison between results of maxillary sinuses deposition obtained using 

different anatomical model remains difficult. 2) The maxillary sinuses deposition assessment 
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was evaluated by a 2D radiolabelled methodology vs. in situ dosage of intrasinusal lavage. 2D 

radiolabelled quantification is very useful for comparing devices but seems to significantly 

over-estimate deposition in comparison to other methodologies such as 3D SPECT-CT and 

intrasinusal lavage (31) (Leclerc et al, in press) and a comparison remains difficult. 3) The 

nebulization devices are also different and should probably have a strong influence on the 

deposition (DTF vs. PARI Pharma GmbH). 

 

No differences were observed between normal and slow nasal breathing, even with different 

particle sizes. By contrast, intrasinus drug deposition was significantly enhanced under non-

nasal breathing conditions compared to nasal breathing. These results suggest that the increase 

in aerosol velocity due to nasal breathing leads to significantly decreased intrasinus drug 

deposition, underlining the potential value of advocating non-nasal breathing to patients for 

therapeutic ends. 

Our approach is based on the fact that in patients with chronic rhinosinusitis, the ostium of the 

maxillary sinus is obstructed. Thus, the quantity of antibiotic measured within the maxillary 

sinus is in fact found at the ostium, which constitutes the “crossroads” of sinus disease (since 

all gentamicin deposited in the maxillary sinus in our model of a non-congested healthy 

subject clearly entered the maxillary sinus via the ostium). In addition, for subjects 

undergoing sinus surgery, meatotomy may enable greater quantities of antibiotic to be 

deposited in the maxillary sinus than those measured in our model. In either case (operated 

and unoperated subjects), our results, although obtained in a model of a healthy non-

congested subject, are encouraging as regards the potential efficacy of nebulized antibiotics in 

the treatment of chronic rhinosinusitis, and they demonstrate the relevance of clinical trials on 

this subject, which should begin in the near future. 
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While delivery of effective doses of drug continues to be limited by nebulizer technology, 

micrometric nebulizers such as the NL11 jet appear to offer the best currently available 

solution for improved drug delivery in sinus patients. In this conditions addition of a 100 Hz 

acoustic airflow is also recommended. 

 

CONCLUSION 

We demonstrated that optimal gentamicin deposition in the maxillary sinuses was obtained 

with the NL11 nebulizer (MMAD: 2.8 µm) using 100-Hz acoustic airflow and non-nasal 

breathing. This finding indicates that a specific aerosol pattern should be selected in order to 

fully enhance intrasinus deposition. Providing patients with specific recommendations 

concerning the nebulization procedure could thus significantly improve the efficacy of 

antibiotic treatment. 
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MMAD (nm) GSD 

Emitted aerosol 

fraction (%) 

Gentamicin 

output mass (mg) 

NL20 9900 2 6.84 ± 0.29 21.88 

NL11 2800 3.2 9.96 ± 1.72 31.89 

SideStream 550 2.1 2.06 ± 0.46 6.6 

Nanoneb 230 1.6 0.26 ± 0.04 0.83 

 

Table 1: Aerosol characteristics after 10 min of nebulization: mass median aerodynamic 

diameter (MMAD) evaluated using ELPI. Results are also expressed as a percentage of the 

emitted aerosol fraction and gentamicin output mass (mg). 
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Figure 1: Plastic replica made from the plastinated model. A) Plastinated human specimen – 

B) DICOM scan image – C) SolidWorks® image – D) 3D reconstruction – E) Resin nasal 

replica. 
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Figure 2: Experimental design for aerosol deposition. 
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Figure 3: CT scans performed on the plastinated specimen (A and B) and on the plastic nasal 

replica (C and D). Note preservation of mucosa and different maxillary ostia morphologies 

(white arrows). 
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Figure 4: Impact of nebulized particle size (MMAD) and anatomical features such as right vs. 

left maxillary sinus (MS). A) Amount of nebulized gentamicin collected in the maxillary 

sinus, expressed as emitted aerosol fraction. B) Amount of nebulized gentamicin collected in 

the maxillary sinus, in mg/L. Experiments conducted under non-nasal breathing conditions 

with 100 Hz acoustic airflow. Nebulized physiological saline solution was used as the control 

(n=7 for each data set, mean ± SEM, p < 0.05). 

 

 

Figure 5: Impact of breathing patterns on nebulized gentamicin collected in the maxillary 

sinus (MS) in mg/L. Experiments conducted with 100 Hz acoustic airflow. A) SideStream 

nebulizer (MMAD: 550 nm). B) NL11 nebulizer (MMAD: 2.8 µm). Nebulized physiological 

saline solution was used as the control (n=7 for each data set, mean ± SEM, p < 0.05). 
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Figure 6: Impact of 100 Hz acoustic airflow on nebulized gentamicin collected in the 

maxillary sinus (MS) in mg/L. Experiments conducted under non-nasal breathing conditions. 

A) SideStream nebulizer (MMAD: 550 nm). B) NL11 nebulizer (MMAD: 2.8 µm). Nebulized 

physiological saline solution was used as the control (n=7 for each data set, mean ± SEM, 

p < 0.05). 
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Normal nasal 

breathing 
Slow nasal 
breathing 

No nasal breathing 
 

  
Right MS Left MS Right MS Left MS Right MS Left MS Control 

9.9 µm 
(NL20) 

100 Hz 
acoustic 
airflow 

0.333 ± 
0.047 

2.137 ± 
0.814 

0.500 ± 
0.101 

1.923 ± 
0.298 

0.331 ± 
0.144 

1.743 ± 
0.897 

< 0.2 

Without 
pressure 

waves 

0.073 ± 
0.003 

3.030 ± 
0.189 

0.158 ± 
0.026 

4.280 ± 
0.330 

0.073 ± 
0.024 

2.146 ± 
0.703 

< 0.2 

2.8 µm 
(NL11) 

100 Hz 
acoustic 
airflow 

0.850 ± 
0.206 

2.758 ± 
0.546 

1.214 ± 
0.296 

2.694 ± 
0.602 

4.185 ± 
0.797 

8.155 ± 
1.476 

< 0.2 

Without 
pressure 

waves 

0.258 ± 
0.019 

3.313 ± 
0.565 

1.012 ± 
0.610 

3.270 ± 
0.709 

0.233 ± 
0.021 

3.990 ± 
1.690 

< 0.2 

550 nm 
(Sidestream) 

100 Hz 
acoustic 
airflow 

0.239 ± 
0.031 

0.966 ± 
0.319 

0.280 ± 
0.033 

0.621 ± 
0.180 

1.670 ± 
0.269 

2.056 ± 
0.474 

< 0.2 

Without 
pressure 

waves 
< 0.2 

0.810 ± 
0.379 

0.273 ± 
0.075 

1.080 ± 
0.276 

0.380 ± 
0.495 

1.622 ± 
0.626 

< 0.2 

230 nm 
(Nanoneb) 

100 Hz 
acoustic 
airflow 

0.207 ± 
0.007 

0.209 ± 
0.009 

0.214 ± 
0.014 

< 0.2 
0.200 ± 
0.028 

0.331 ± 
0.068 

< 0.2 

Without 
pressure 

waves 

0.203 ± 
0.003 

0.246 ± 
0.026 

< 0.2 < 0.2 < 0.2 
0.407 ± 
0.092 

< 0.2 

 

Supplementary Table I: Summary table of nebulized gentamicin collected in the maxillary 

sinus (MS) in mg/L. Physiological saline solution was nebulized as the control (n=7 for each 

data set, mean ± SEM, p < 0.05). Significant differences between “100 Hz acoustic airflow” 

and “Without pressure waves” (***) are highlighted in bold in the table (ANOVA test).
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Normal Breathing Slow Breathing No Nasal Breathing 

  
Right MS Left MS Right MS Left MS Right MS Left MS 

9.9 µm 
(NL20) 

100 Hz 
acoustic 
airflow 

0.00152 ± 
0.00037 

0.00977 ± 
0.00644 

0.00229 ± 
0.00092 

0.00879 ± 
0.00236 

0.00151 ± 
0.00197 

0.00797 ± 
0.01085 

Without 
pressure 

waves 

0.00034 ± 
0.00003 

0.01385 ± 
0.00150 

0.00072 ± 
0.00026 

0.02754 ± 
0.01391 

0.00033 ± 
0.00029 

0.00981 ± 
0.00908 

2.8 µm 
(NL11) 

100 Hz 
acoustic 
airflow 

0.00267 ± 
0.00171 

0.00715 ± 
0.00407 

0.00381 ± 
0.00245 

0.00652 ± 
0.00479 

0.01313 ± 
0.00902 

0.02558 ± 
0.01670 

Without 
pressure 

waves 

0.00081 ± 
0.00019 

0.01472 ± 
0.00531 

0.00317 ± 
0.00605 

0.00879 ± 
0.00630 

0.00073 ± 
0.00021 

0.01252 ± 
0.00750 

550 nm 
(Sidestream) 

100 Hz 
acoustic 
airflow 

0.00361 ± 
0.00124 

0.01463 ± 
0.01277 

0.00424 ± 
0.00130 

0.00942 ± 
0.00720 

0.02530 ± 
0.01079 

0.05357 ± 
0.04054 

Without 
pressure 

waves 
NC 

0.01227 ± 
0.01520 

0.00413 ± 
0.00299 

0.01935 ± 
0.01224 

0.00582 ± 
0.00739 

0.02458 ± 
0.02122 

230 nm 
(Nanoneb) 

100 Hz 
acoustic 
airflow 

0.02496 ± 
0.00228 

0.02513 ± 
0.00273 

0.02575 ± 
0.00496 

NC 
0.02410 ± 
0.00888 

0.03993 ± 
0.02155 

Without 
pressure 

waves 

0.02444 ± 
0.00091 

0.02960 ± 
0.00820 

NC NC NC 
0.04905 ± 
0.02942 

 

Supplementary Table II: Summary table of nebulized gentamicin collected in the maxillary 

sinus (MS). Results are expressed in percentage of the emitted dose (NC = Not Calculated). 

Physiological saline solution was nebulized as the control (n=7 for each data set, mean ± 

SEM, p < 0.05). 


