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Juan G. Villegas4
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Abstract

Electric vehicle routing problems (eVRPs) extend classical routing problems to con-
sider the limited driving range of electric vehicles. In general, this limitation is overcome
by introducing planned detours to battery charging stations. Most existing eVRP models
rely on one (or both) of the following assumptions: (i) the vehicles fully charge their bat-
teries every time they reach a charging station, and (ii) the battery charge level is a linear
function of the charging time. In practical situations, however, the amount of charge is a
decision variable, and the battery charge level is a concave function of the charging time.
In this paper we extend current eVRP models to consider partial charging and nonlinear
charging functions. We present a computational study comparing our assumptions with
those commonly made in the literature. Our results suggest that neglecting partial and
nonlinear charging may lead to infeasible or overly expensive solutions.

Keywords: Vehicle routing problem, Electric vehicles, Partial charging, Nonlinear charging function

1 Introduction

Electric vehicles are one of the most promising technologies for reducing petroleum dependency
and greenhouse gas emissions. The use of electric vehicles in freight and passenger transporta-
tion introduces a new family of vehicle routing problems (VRPs), the so-called electric VRPs
(eVRPs) [11]. As their name suggests, eVRPs extend classical VRPs to account for the tech-
nical features of electric vehicles. Two of these features are the short driving range and the
relatively long battery charging time.

Because of the short driving range, eVRP solutions frequently include routes with planned
detours to charging stations (CSs) where the vehicles recharge. To model the battery charging
process eVRP models make assumptions about the charging policy and the charging function
approximation. The former defines how much of the battery capacity can be (or must be)
restored when a vehicle visits a CS, and the latter models the relationship between battery
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charging time and charging level. From the point of view of charging policies, the existing
eVRP literature can be classified into two groups: studies assuming full and partial charging
policies. As the name suggests, in full charging policies, the battery capacity is fully restored
every time a vehicle reaches a CS. Some studies in this group assume that there is no charging
function but rather a constant charging time [3, 5, 10]. This is a plausible assumption in
applications where the CSs do not actually charge the batteries but rather replace a (partially)
depleted battery with a fully charged one. On the other hand, [4, 7, 8, 14, 15] consider full
charging policies with a linear charging function approximation (i.e., the battery charge level is
assumed to be a linear function of the charging time). In their models, the time spent at each
CS depends on the charge level when the vehicle arrives and on the (constant) charging rate
of the CS. In partial charging policies, the amount of charge (and thus the time spent at each
charging point) is a decision variable. To the best of our knowledge, all existing eVRP models
with partial charging policies consider linear charging function approximations [2, 4, 6, 13].

In practice, using linear approximations to model the charging function may not be realistic:
it is well documented that the charging level is a concave function of the charging time [1, 9, 12].
To the best of our knowledge, only [17] deals with nonlinear charging functions in electric vehicle
routing-related problems. In that paper the author solves a shortest path problem with battery
capacity constraints, and some of the nodes in the graph represent CSs with piecewise-linear
charging functions.

In this paper, we extend existing eVRP models to consider partial charging and nonlinear
charging functions. Our main goal is to compare these more realistic assumptions to those
commonly used in the literature. We first define what we call the vehicle routing problem with
partial charging and nonlinear charging functions (eVRP-PNL). Then, we propose a mixed-
integer linear programming (MILP) formulation that, with a few modifications, can be adapted
to other charging policies and charging function approximations. We use our MILP and a
commercial solver to study the impact of different charging assumptions on the quality and
feasibility of eVRP solutions. Our results suggest that disallowing partial charging and ne-
glecting the nonlinear nature of the charging functions leads to solutions that may be infeasible
or overly expensive.

2 Vehicle routing problem with partial charging and non-

linear charging function

2.1 Problem description

Let I be the set of nodes representing the customers, F be the set of CSs, and 0 be a node
representing the depot. Each customer i ∈ I has a service time pi. The eVRP-PNL is defined
on an undirected and complete graph G = (V,E), where V = {0} ∪ I ∪ F ′ and F ′ contains the
set F and β copies of each CS (i.e., |F ′| = |F | × (1 + β)). The value of 1 + β corresponds to
the number of times that each CS can be visited. Let E = {(i, j) : i, j ∈ V, i 6= j} be the set
of edges connecting vertices of V . Each edge (i, j) has two associated nonnegative values: a
travel time tij and a distance dij. The customers are served using an unlimited fleet of electric
vehicles with a consumption rate cr (expressed in kWh/km). All the vehicles have a battery
with capacity Q (expressed in kWh) and a maximum tour duration limit Tmax. It is assumed
that the vehicles leave the depot with a fully charged battery, and that all the CSs can handle
an unlimited number of vehicles simultaneously.

In the eVRP-PNL the objective is to find a set of routes of minimum total time, defined as
the sum of the travel times and the charging times, satisfying the following conditions: each
customer is visited exactly once; the level of the battery when the vehicle arrives at any vertex
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is nonnegative; each route satisfies the maximum-duration limit; and each route starts and ends
at the depot.

2.2 Modeling of battery charging functions

Each CS i ∈ F ′ has a charging mode (e.g., slow, moderate, fast), which is associated with a
charging function gi(qi,∆i). This function maps the charge level when the vehicle arrives at i
(qi), and the time spent charging at i (∆i) to the charge level when the vehicle leaves i. To
avoid handling a two-dimensional function, we use the transformation proposed in [17]. Let
ĝi(l) be the charging function when qi = 0 and the battery is charged for l time units; gi(qi,∆i)
is estimated as ĝi(∆i + ĝ−1(qi)). Note that ∆i = ĝi

−1(oi)− ĝi
−1(qi), where oi is the charge level

when the vehicle departs from i.
The function ĝi(l) is concave [1, 9, 12] with an asymptote at Q. Similarly to Zundorf in

[17], we argue that ĝi(l) can be accurately approximated using piecewise linear functions. We
support our claim using the data provided by Uhrig and Leibfried in [16]. These authors
conducted experiments to estimate the charging time for different charge levels with two types
of electric vehicles and three types of CSs. We fit piecewise linear functions to their data and
obtain approximations with an average relative absolute error of 0.90%, 1.24%, and 1.90% for
CSs of 11, 22, and 44 kW, respectively. Figure 1(a) shows the piecewise linear approximation
for a CS i of 22 kW charging a vehicle equipped with a battery of 16 kWh. In the plot, cik and
aik represent the charging time and the charge level for the breakpoint k ∈ B of the CS i ∈ F ′,
where B = {0, .., b} is the set of breakpoints of the piecewise linear approximation.
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(a) Real data vs. piecewise linear approximation for
a CS with 22 kW charging a battery of 16 kWh.
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(b) Battery charge levels and charging times i ∈ F ′

Figure 1: Piecewise linear approximation for the charging function.

2.3 Mixed-integer linear program

We formulate the eVRP-PNL as an MILP with the following decision variables: variable xij is
equal to 1 if a vehicle travels from vertex i to j, and 0 otherwise. Variables τj and yj track the
time and charge level when the vehicle departs from vertex j ∈ V . Variables qi and oi specify
the charge levels when a vehicle arrives at and departs from CS i ∈ F ′, and si and ei are the
associated charging times (see Figure 1(b)). Variable ∆i = ei − si represents the time spent
at CS i ∈ F ′. Variables zik and wik are equal to 1 if the charge level is between ai,k−1 and
aik, with k ∈ B \ {0}, when the vehicle arrives at and departs from CS i ∈ F ′ respectively.
Finally, variables αik and λik are the coefficients of the breakpoint k ∈ B in the piecewise linear
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approximation, when the vehicle arrives at and departs from CS i ∈ F ′ respectively. The MILP
follows:

min
∑

i,j∈V

tijxij +
∑

i∈F ′

∆i (1)

subject to

∑

j∈V,i6=j

xij = 1, ∀i ∈ I (2)

∑

j∈V,i6=j

xij ≤ 1, ∀i ∈ F ′ (3)

∑

j∈V,i 6=j

xji −
∑

j∈V,i6=j

xij = 0, ∀i ∈ V (4)

dijxijcr − (1− xij)Q ≤ yi − yj ≤ dijxijcr + (1− xij)Q, ∀i ∈ V, ∀j ∈ I (5)

dijxijcr − (1− xij)Q ≤ yi − qj ≤ dijxijcr + (1− xij)Q, ∀i ∈ V, ∀j ∈ F ′ (6)

yi ≥ di0xi0cr, ∀i ∈ V (7)

yi = oi, ∀i ∈ F ′ (8)

y0 = Q (9)

qi ≤ oi, ∀i ∈ F ′ (10)

qi =
∑

k∈B

αikaik, ∀i ∈ F ′ (11)

si =
∑

k∈B

αikcik, ∀i ∈ F ′ (12)

∑

k∈B

αik =
∑

k∈B

zik, ∀i ∈ F ′ (13)

∑

k∈B

zik =
∑

j∈V

xij , ∀i ∈ F ′ (14)

αik ≤ zik + zi,k+1, ∀i ∈ F ′, ∀k ∈ B \ {b} (15)

αib ≤ zib, ∀i ∈ F ′ (16)

oi =
∑

k∈B

λikaik, ∀i ∈ F ′ (17)

ei =
∑

k∈B

λikcik, ∀i ∈ F ′ (18)

∑

k∈B

λik =
∑

k∈B

wik, ∀i ∈ F ′ (19)

∑

k∈B

wik =
∑

j∈V

xij , ∀i ∈ F ′ (20)

λik ≤ wik + wi,k+1, ∀i ∈ F,′ ∀k ∈ B \ {b} (21)

λib ≤ wib, ∀i ∈ F ′ (22)

∆i = ei − si, ∀i ∈ F ′ (23)

τi + (tij + pj)xij − Tmax(1− xij) ≤ τj , ∀i ∈ V, ∀j ∈ I (24)

τi +∆j + tijxij − (Smax + Tmax)(1− xij) ≤ τj , ∀i ∈ V, ∀j ∈ F ′ (25)

τj + tj0 ≤ Tmax, ∀j ∈ V (26)

τ0 ≤ Tmax (27)

xij ∈ {0, 1}, ∀i, j ∈ V (28)

τi ≥ 0, yi ≥ 0 ∀i ∈ V (29)

zik ∈ {0, 1}, wik ∈ {0, 1}, αik ≥ 0, λik ≥ 0, ∀i ∈ F ′, ∀k ∈ B (30)

qi ≥ 0, oi ≥ 0, si ≥ 0, ei ≥ 0,∆i ≥ 0, ∀i ∈ F ′ (31)
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The objective function (1) seeks to minimize the total time (travel times plus charging
times). Constraints (2) ensure that each customer is visited once. Constraints (3) ensure that
each CS is visited at most once. Constraints (4) impose the flow conservation. Constraints
(5) and (6) track the battery charge level at each vertex. Constraints (7) ensure that, if the
vehicle travels between a vertex and the depot, it has sufficient energy to reach its destination.
Constraints (8) reset the battery tracking to oi upon departure from CS i ∈ F ′. Constraint
(9) ensures that the battery charge level is Q at the depot. Constraints (10) couple the charge
levels when a vehicle arrives at and departs from any CS. Constraints (11–16) define the charge
level (and its corresponding charging time) when a vehicle arrives at CS i ∈ F ′ (based on the
piecewise linear approximation of the charging function). Similarly, constraints (17–22) define
the charge level (and its corresponding charging time) when a vehicle departs from CS i ∈ F ′.
Constraints (23) define the time spent at any CS. Constraints (24) and (25) track the departure
time at each vertex, where Smax = maxi∈F ′{cib}. Constraints (26) and (27) ensure that the
vehicles return to the depot no later than Tmax. Finally, constraints (28–31) define the domain
of the decision variables.

2.4 Valid inequalities

To help avoid the symmetry generated by the copies of the CSs, we added to our model the
following set of valid inequalities:

xij = 0, ∀i, j ∈ F ′ : mij = 1 (32)

τj ≤ τi, ∀i, j ∈ F ′ : mij = 1, j ≤ i (33)

τj ≤ Tmax

∑

i∈V

xij , ∀j ∈ F ′ (34)

∑

i∈V

xih ≤
∑

j∈V

xjf , ∀h, f ∈ F ′ : mhf = 1, h ≤ f (35)

where mij is a parameter equal to 1 if i and j ∈ F ′ represent the same CS.

3 Computational study: Comparison of different charg-

ing assumptions

To assess the value of considering partial charging and nonlinear charging function approxi-
mations in eVRPs, we conducted an experiment to compare our battery charging assumptions
with assumptions commonly used in the literature. For the sake of completeness we briefly
explain here the charging assumptions considered in our study and how our MILP or input
data can be adapted to work with those assumptions.

Partial charge and piecewise linear approximation (PR-PL) : These are the assump-
tions proposed in this paper (Figure 2(a)).

Full charge and piecewise linear approximations (FR-PL) : As mentioned earlier, the
full charge policy is widely used in the literature [3, 5, 7, 8, 10, 14, 15]. We combined this
policy with our piecewise linear approximation. To adapt our MILP to the full charge
policy, we replace constraints (17) and (18) by
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oi =
∑

k∈B

λikaib, ∀i ∈ F (36)

ei =
∑

k∈B

λikcib, ∀i ∈ F ′ (37)

Partial charge using the first segment (PR-FS) : According to Pelletier et al. [12], the
actual battery charging function has two segments: a linear segment from 0 to (around)
0.8Q, and a nonlinear segment from (around) 0.8Q to Q. To avoid dealing with the
nonlinear segment, Bruglieri et al. [1] use a linear approximation that considers only the
first segment (Figure 2(b)). To run our MILP with this assumption, we modify the input
data to include only the first segment.

Partial charge and linear approximations (PR-L) : Although several authors assume a
linear approximation [2, 4, 6, 13], they do not explain how the approximation is esti-
mated. We implemented two linear approximations. For the first (PR-L1) we assume
that the charging rate of the function corresponds to the slope of the first segment of
the piecewise linear approximation (see Figure 2(c)). This approximation is optimistic,
because it assumes that batteries charge up to Q faster than they do in reality. For the
second approximation (PR-L2) we assume that the charging rate is the slope of the line
connecting the first and last observations (see Figure 2(d)). This approximation tends to
be pessimistic, because over a large portion of the curve, the charging rate is slower than
in reality. To run our MILP with PR-L1 and PR-L2, we modify the input data so that
in the piecewise linear approximation there is a single segment with the corresponding
charging rate.

We implemented our MILP (and its variant) in Gurobi 5.6. We ran the experiments on a
set of 20 randomly generated instances of the eVRP-PNL. Because of the complexity of the
problem, we restricted our instances to 10 customers and 2 or 3 CSs. We believe, however,
that our conclusions hold for any instance size. We consider three types of CSs with different
charging rates: slow (11 kW), moderate (22 kW), and fast (44 kW). For each CS type we build
the charging function approximation by fitting a piecewise linear function to the Uhrig and
Leibfried data [16]. To allow comparison with our results, our instances are publicly available
at www.vrp-rep.org.1

As mentioned in Section 2, our MILP uses β copies of the CSs to model multiple visits to
the same CS. Although several authors have followed this strategy [3, 5, 7, 8, 13, 14], they do
not explain how the value of β is set. It is worth noting that β plays an important role in the
definition of the solution space, and therefore it restricts the optimal solution of the model.
For instance, an optimal solution found with β = 3 may not be optimal for β = 4. In practice,
there is no restriction on the number of times that a CS can be visited, but large values of β
result in models that are computationally intractable. To overcome this difficulty, we designed
an iterative procedure in which our MILP is solved for increasing values of β. Starting with
β = 0, at each iteration, our procedure (i) tries to solve the MILP to optimality with a time
limit of 100 h, and (ii) sets β = β+1. The procedure stops when the time limit is reached or an
iteration ends with a solution sβ satisfying f(sβ) = f(s∗β−1), where f(·) denotes the objective
function and ∗ an optimal solution.

Table 1 presents the results. For each charging assumption, we give the objective function
value (of), the percentage gap between of and the PR-PL solution (G), the number of routes
in the solution (r), and the value of β. Since in practice the charging time is controlled by

1The instances will be released after the completion of the reviewing process.
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(d) Linear approximation 2 (PR-L2)

Figure 2: Assumptions for charging function.

the nonlinear charging function, the charging decisions of the PR-L solutions are evaluated
a posteriori using the piecewise linear approximation. The last rows of Table 1 summarize
the results. We present, for each assumption, the average and maximum percentage gap, the
number of solutions employing more vehicles than in the PR-PL solution, and the number of
infeasible solutions.

The results show that solutions based on the full charging policy perform poorly in terms
of both objective function (+20.11% on average) and number of routes (8 solutions use a larger
fleet) with respect to those based on the partial charging policy. This is because the vehicles
spend more time than necessary at the CSs. The main motivation for a full charging policy is
to avoid complex charging-quantity decisions. However, according to our results, the gain in
simplicity does not offset the loss of solution quality.

The main implication of the PR-FS assumption is that vehicles can charge their batteries
up to only around 80% of the actual capacity. Artificially constraining the capacity may force
vehicles to detour to CSs more often than necessary when traveling to distant customers.
Because the maximum route duration is limited, the time spent detouring and recharging the
battery reduces the number of customers that can be visited. Consequently, more routes may
be needed to service the same number of customers. Our results confirm this intuition: in 3
of the 20 instances the PR-FS assumption increases the number of routes. Furthermore, in
practice some distant customers may not be included in routes unless the vehicles can fully
use their battery capacity. In our experiments, 9 instances become infeasible under PR-FS.
In conclusion, although PR-FS simplifies the problem (avoiding the nonlinear segment of the
charging function) it may lead to solutions that are infeasible or overly expensive.

As mentioned before, PR-L1 assumes that batteries charge faster than they do in reality
(Figure 2(c)). As a consequence, routes based on PR-L1 may in practice need more time to
reach the planned charge levels. The extra time may make a route infeasible if there is little
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slack in the duration constraint. Indeed, a post-hoc evaluation shows that for 14 instances, the
PR-L1 solutions are infeasible in practice. On the other hand, PR-L2 assumes that batteries
charge slower than in reality (Figure 2(d)). Overestimating the charging times does not lead
to feasibility issues, but the resulting routes may be overly conservative. For instance, in
our experiments PR-L2 leads to solutions that are (on average) 1.45% more expensive, and it
increases the number of routes in 2 instances. Although an extra 1.45% may seem reasonable, in
the VRP context it represents the performance difference between state-of-the-art and regular
algorithms.

Table 1: Comparison of our charging assumptions with charging assumptions from the literature
Instance PR-PL FR-PL PR-FS PR-L1 PR-L2

Solution Evaluation Solution Evaluation

ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ

tc0c10s2cf1 19.75 3 2 20.82 5.42 3 2 NF NF NF NF 19.61 3 2 NF NF NF NF 20.50 3 2 20.22 2.38 3 2
tc0c10s2ct1 12.30 2 0 12.53 1.87 2 0 12.61 2.52 3 0 12.22 2 0 12.42 0.98 2 0 12.46 2 0 12.30 0.00 2 0
tc0c10s3cf1 19.75 3 2 20.82 5.42 3 2 NF NF NF NF 19.61 3 2 NF NF NF NF 20.50 3 2 20.22 2.38 3 2
tc0c10s3ct1 10.80 2 0 11.10 2.78 2 0 10.80 0.00 2 0 10.79 2 0 11.03 2.13 2 0 10.97 2 0 10.80 0.00 2 0
tc1c10s2cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s2cf3 16.37 3 2 21.33 30.30 3 2 NF NF NF NF 15.99 3 1 NF NF NF NF 16.89 3 2 16.37 0.00 3 2
tc1c10s2cf4 16.10 3 2 25.31 57.20 4 3 NF NF NF NF 15.66 3 2 NF NF NF NF 16.43 3 2 16.23 0.81 3 2
tc1c10s2ct2 10.75 3 1 11.14 3.63 3 0 10.75 0.00 3 1 10.75 3 0 10.76 0.09 3 0 10.94 3 0 10.78 0.28 3 0
tc1c10s2ct3 13.17 2 2 22.76 72.82 3 3 15.98 21.34 3 2 13.06 2 2 NF NF NF NF 13.60 2 2 13.17 0.00 2 2
tc1c10s2ct4 13.83 2 1 17.61 27.33 3 1 NF NF NF NF 13.34 2 1 NF NF NF NF 14.17 2 1 14.17 2.46 2 1
tc1c10s3cf2 9.03 3 0 9.19 1.77 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s3cf3 16.37 3 1 21.33 30.30 3 2 NF NF NF NF 15.99 3 1 NF NF NF NF 16.89 3 2 16.37 0.00 3 2
tc1c10s3cf4 14.90 3 1 18.43 23.69 4 0 NF NF NF NF 14.56 2 1 NF NF NF NF 15.18 3 0 15.18 1.88 3 0
tc1c10s3ct2 9.20 3 0 11.14 21.09 3 0 9.20 0.00 3 0 9.19 3 0 NF NF NF NF 10.80 3 0 10.57 14.89 3 0
tc1c10s3ct3 13.02 2 0 17.06 31.03 3 0 13.07 0.38 2 1 12.98 2 0 13.16 1.08 2 0 13.60 2 0 13.02 0.00 2 0
tc1c10s3ct4 13.21 2 0 15.54 17.64 3 1 13.58 2.80 3 1 12.92 2 1 NF NF NF NF 13.71 2 0 13.21 0.00 2 0
tc2c10s2cf0 21.77 3 3 25.24 15.94 4 2 NF NF NF NF 14.53 2 2 NF NF NF NF 22.78 4 4 22.15 1.75 4 4
tc2c10s2ct0 12.45 3 2 15.05 20.88 3 3 12.45 0.00 3 2 12.44 3 3 NF NF NF NF 12.93 3 2 12.45 0.00 3 2
tc2c10s3cf0 21.77 3 2 25.24 15.94 4 2 NF NF NF NF 14.53 2 2 NF NF NF NF 23.02 4 3 22.20 1.98 4 3
tc2c10s3ct0 11.51 3 0 13.27 15.29 2 0 11.51 0.00 3 0 11.50 3 0 NF NF NF NF 11.92 3 0 11.54 0.26 3 0

Avg. Difference (%) 20.11 2.70 1.04 1.45
Max. Difference (%) 72.82 21.34 2.13 14.89
Solutions with larger fleet 8 3 0 2
Infeasible solutions 0 9 14 0

NF: Infeasible, G(%) = (of − ofPR−PL)/ofPR−PL × 100

4 Conclusion and future work

We have extended existing eVRP models to allow more realistic assumptions regarding the
battery charging policy and functions. We introduced the eVRP with partial charging and
nonlinear charging functions (eVRP-PNL) and proposed an MILP to solve it. We then adapted
our MILP to run with charging policies and functions commonly used in the literature. Us-
ing 20 instances that we built based on real charging data, we ran an experiment comparing
our charging hypotheses to those in the literature. Our results show that disallowing partial
charging and neglecting the nonlinear nature of the charging function may lead to infeasible
or overly expensive solutions. Ongoing research includes the development of solution methods
tailored for the eVRP-PNL and experimentation with industrial-scale instances.
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