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ON THE PLACEMENT OF AN OBSTACLE SO AS TO

OPTIMIZE THE DIRICHLET HEAT TRACE

Ahmad El Soufi

Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 7350
Université François Rabelais de Tours, Parc de Grandmont, F-37200 Tours, France

Evans M. Harrell II

School of Mathematics
Georgia Institute of Technology, Atlanta GA 30332-0160, USA

Abstract. We prove that among all doubly connected domains
of Rn bounded by two spheres of given radii, Z(t), the trace of
the heat kernel with Dirichlet boundary conditions, achieves its
minimum when the spheres are concentric (i.e., for the spherical
shell). The supremum is attained when the interior sphere is in
contact with the outer sphere.

This is shown to be a special case of a more general theorem
characterizing the optimal placement of a spherical obstacle inside
a convex domain so as to maximize or minimize the trace of the
Dirichlet heat kernel. In this case the minimizing position of the
center of the obstacle belongs to the “heart” of the domain, while
the maximizing situation occurs either in the interior of the heart or
at a point where the obstacle is in contact with the outer boundary.

Similar statements hold for the optimal positions of the obstacle
for any spectral property that can be obtained as a positivity-
preserving or positivity-reversing transform of Z(t), including the
spectral zeta function and, through it, the regularized determinant.

1. Introduction and statement of results

Let Ω ⊂ Rn be a bounded C2 Euclidean domain and let

λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ · · · ≤ λi(Ω) ≤ · · · → ∞,

be the sequence of eigenvalues of the Dirichlet realization of the Lapla-
cian −∆ in Ω, where each eigenvalue is repeated according to its mul-
tiplicity. The corresponding “heat operator” et∆ has finite trace for all
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t > 0 (known in physical literature as the “partition function”), which
we denote

ZΩ(t) =
∑

k≥1

e−λk(Ω)t. (1)

Let ζΩ be the zeta function, defined as the meromorphic extension
to the entire complex plane of

∑∞

k=1 λk(Ω)
−s, which is known to be

convergent and holomorphic on {Re s > n
2
}. Following [29], we denote

by det(Ω) the regularized determinant of the Dirichlet Laplacian in Ω
defined by

det(Ω) = exp (−ζ ′Ω(0)) . (2)

Eigenvalue optimization problems date from Rayleigh’s “Theory of
Sound” (1877), where it was suggested that the disk should minimize
the first eigenvalue λ1 among all planar domains of given measure.
Rayleigh’s conjecture was proved in any dimension independently by
Faber [10] and Krahn [22].

Later, Luttinger [25] proved an isoperimetric result analogous to
Faber-Krahn for Z(t), considered as a functional on the set of bounded
Euclidean domains, that is, for any bounded domain Ω ⊂ Rn and any
t > 0, Luttinger showed that

ZΩ(t) ≤ ZΩ∗(t),

where Ω∗ is a Euclidean ball whose volume is equal to that of Ω. A
similar property was proved in [26] for the regularized determinant of
the Laplacian in two dimensions (see [23, 30] for other examples of
results in this direction).

The case of multiply connected planar domains, i.e. whose boundary
admits more than one component, was first considered by Hersch. Us-
ing the method of interior parallels, in [19] Hersch proved the following
extremal property of annular membranes:
“A doubly connected fixed membrane, bounded by two circles of given
radii, has maximum λ1 when the circles are concentric”.

Hersch’s result has been extended to a wider class of domains in
any dimension by Harrell, Kröger and Kurata [15] and Kesavan [21],
whereby the authors consider a fixed domain D from which an “obsta-
cle” of fixed shape, usually spherical, has been excised. The position
of the obstacle is allowed to vary, and the problem is to maximize or
minimize λ1. The critical assumption on the domain D in [15] is an
“interior symmetry property,” and with this assumption the authors
further proved that, for the special case of two balls, λ1 decreases when
the center of the small ball (the obstacle) moves away from the center of
the large ball, using a technique of domain reflection. For a wider class
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of domains containing obstacles, it was shown in [15] that the maxi-
mizing position of the obstacle resides in a special subset of D, which
in the case where D is convex corresponds to what has later come to be
called the heart of D in [2, 3], denoted ♥(D) (see the definition below).
El Soufi and Kiwan [7, 8] have moreover proved other extensions of
Hersch’s result including one valid for the second eigenvalue λ2.

The main aim of this paper is to establish a Hersch-type extremal
result for the heat trace, the spectral zeta function, and the deter-
minant of the Laplacian, as well as suitable generalizations for more
general outer domains. We begin by stating the special case of do-
mains bounded by balls: Given two positive numbers R > r and a
point x ∈ R

n, |x| < R − r, we denote by Ω(x) the domain of R
n

obtained by removing the ball B(x, r) of radius r centered at x from
within the ball of radius R centered at the origin.

Theorem 1.1. Let Ω(x) be the domain bounded by balls as in the
preceding paragraph.

(i) For every t > 0, the heat trace ZΩ(x)(t) is nondecreasing as the
point x moves from the origin directly towards the boundary of the
larger ball. In particular, ZΩ(x)(t) is minimal when the balls are con-
centric (x = O) and maximal when the small ball is in contact with the
boundary of the larger ball (|x| = R− r).

(ii) For every s > 0, the zeta function ζΩ(x)(s) increases as the point
x moves from the origin directly towards the boundary of the larger
ball. In particular, ζΩ(x) is minimal when the balls are concentric and
maximal in the limiting situation when the small ball approaches the
boundary of the larger ball.

(iii) The determinant of the Laplacian det(Ω(x)) decreases as the
point x moves from the origin directly towards the boundary of the
larger ball. In particular, det(Ω(x)) is maximal when the balls are
concentric and minimal in the limiting situation when the small ball
approaches the boundary of the larger ball.

Let us clarify what we mean by the “limiting situation when the ball
approaches the boundary” in this and in the more general Theorem 1.2.
Our conclusion in these cases is derived by contradiction. By assuming
that the obstacle is in the interior of the domain, extremality can be
excluded. If the function under consideration is continuous, then, since
the set of configurations including the cases where the obstacle touches
the boundary is compact, the extremum is attained there. Since the
heat trace is continuous with respect to translations of the obstacle,
claim (i) is not problematic, and the same is true for claim (ii) when s >
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n
2
. For smaller real values of s the spectral zeta function is defined by

analytic continuation, and the determinant of the Laplacian is defined
by (2). In the proof these quantities will be shown to be continuous as
a function of the position of the obstacle as it moves to the boundary,
and their limits are what we describe as the “limiting situations” of
the theorems. The subtlety here is that when the obstacle is in contact
with the boundary, a cusp is formed, as a consequence of which the
heat-trace asymptotics are not necessarily known well enough to allow
a direct definition of ζ(s), s ≤ n

2
, by analytic continuation, cf. [31].

Since e−λ1(Ω)t is the leading term in ZΩ(t) as t goes to infinity, it
is clear that Theorem 1.1 implies the optimization result mentioned
above for λ1.
In order to state the more general theorem of which Theorem 1.1 is

a special case, we recall some definitions.

Definition 1.1. Let P be a hyperplane in Rn which intersects D so
that D \P is the union of two open subsets located on either side of P .
According to [15], the domain D is said to have the interior reflection
property with respect to P if the reflection through P of one of these
subsets, denoted Ds, is contained in D. Any such P will be called
a hyperplane of interior reflection for D. The subdomain Ds will be
called the small side of D (with respect to P ) and its complement

Db = D \Ds will be called the big side.
When D is convex, the heart of D is defined as the intersection of

all the big sides with respect to the hyperplanes of interior reflection of
D. We denote it ♥(D).

This definition of ♥(D) is equivalent to that introduced in [2, 3],
where several properties of the heart of a convex domain are investi-
gated. A point x belongs to ♥(D) if either there is no hyperplane of
interior reflection passing through x or if any hyperplane of interior re-
flection passing through x is such that the reflection of ∂Ds \P touches
∂Db. The first situation occurs when x is an interior point of ♥(D)
while the latter is characteristic of the boundary points of ♥(D).

By construction the heart of a bounded convex domainD is a nonempty
relatively closed subset of D. Moreover, if D is strictly convex and
bounded, then dist(♥(D), ∂D) > 0. We observe that for the ball and
for many other domains with sufficient symmetry to identify an un-
ambiguous center point, the heart is simply the center. It is, however,
shown in [2] that without reflection symmetries the typical heart has
non-empty interior, even for simple polygons. For instance, for an
asymmetric acute triangle, it is a quadrilateral bounded by two angle
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bisectors and two perpendicular axes, while for an asymmetric obtuse
triangle, it can be either a quadrilateral or a pentagon.

Theorem 1.2. Let D be a bounded C2 convex domain of Rn and let
r > 0 be such that Dr = {x ∈ D : dist(x, ∂D) > r} 6= ∅. For every
x ∈ D̄r we set Ω(x) = D \B(x, r).

(i) For each fixed t > 0, the function x ∈ D̄r 7→ ZΩ(x)(t) achieves its
minimum at a point x0(t) ∈ ♥(D), while the maximum is achieved
either at an interior point x1(t) of ♥(D) or in the limiting situation
when the ball approaches the boundary of D.

(ii) For each fixed s > 0 and x ∈ Dr \♥(D), the zeta function satisfies

ζΩ(x)(s) > inf
y∈♥(D)∩Dr

ζΩ(y)(s), (3)

and ζΩ(x)(s) is less than the supremum of all the values attained by the
zeta function in the limiting situations when the ball approaches the
boundary of D. Moreover, if r < dist(♥(D), ∂D), then x ∈ Dr 7→
ζΩ(x)(s) achieves its infimum at a point x0(s) ∈ ♥(D), while the supre-
mum is reached either at an interior point x1(s) of ♥(D) or in a lim-
iting situation when the ball approaches the boundary of D.

(iii) The regularized determinant of the Laplacian satisfies

det(Ω(x)) < sup
y∈♥(D)∩Dr

det(Ω(y)) (4)

for every x ∈ Dr \ ♥(D), and det(Ω(x)) is greater than the infi-
mum of all the values attained by the determinant in the limiting sit-
uations when the ball approaches the boundary of D. Moreover, if
r < dist(♥(D), ∂D), then the function x ∈ Dr 7→ det(Ω(x)) achieves
its supremum at a point x′

0 ∈ ♥(D), while the infimum is achieved
either at an interior point x′

1 of ♥(D) or in a limiting situation when
the ball approaches the boundary of D.

We remark that a straightforward consideration of the limit t → ∞
leads back to related results of [15]. As in that article, it is not difficult
to extend Theorem 1.2 to many nonconvex domains, at the price of
entering into the sometimes complex nature of ♥(D). For simplicity
we limit the present article to the case of convex D.

We conjecture that the minimum of ZΩ(x)(t) is never achieved out-
side ♥(D), and that the maximum of ZΩ(x)(t) and resp. the maximum
of ζΩ(x)(s) and the minimum of det(Ω(x))), are achieved only in the
limiting situation where B(x, r) touches the boundary of D. This is
certainly the case for example when a convex domain D admits a hy-
perplane of symmetry since then, int(♥(D)) = ∅.
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Remark 1.1. We shall approach the analysis of the spectral zeta func-
tion and the regularized determinant through order-preserving integral
transforms relating them to the heat trace. As in [14], transform theory
can similarly be used to obtain corollaries for many further functions,
e.g., Riesz means, with respect to the optimal position of an obstacle.

A main ingredient of the proof is the following Hadamard-type for-
mula for the first variation of ZΩ(t) with respect to a deformation
Ωε = fε(Ω) of the domain :

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
= − t

2

∫

∂Ω

∆K(t,x,x)v(x)dx, (5)

where v = X · ν is the component of the deformation vectorfield
X = dfε

dε
|ε=0 in the direction of the inward unit normal ν, and K is the

heat kernel (cf. [6, Theorem 4.1]). Notice that this formula coincides
with that given by Ozawa in [27, Theorem 4] for deformations of the
form fε(x) = x + ερ(x)ν(x) along the boundary, where ρ is a smooth
function on ∂Ω. Indeed, it is easy to check that for all x ∈ ∂Ω, v(x) =
ρ(x) and (using (12) below) ∆K(t,x,x) = 2

∑∞

k=0 e
−λkt|∇uk(x)|2 =

2
∑∞

k=0 e
−λkt|∂uk

∂ν
(x)|2. For more information about Hadamard defor-

mations we refer to [5, 6, 11, 12, 18, 27, 29].)

2. Proof of results

Let Ω ⊂ Rn be a domain of the form Ω = D \ B, where D is a
bounded domain and B is a convex domain such that the closure of B
is contained in D. (For simplicity our theorems have been stated for
the case of a spherical obstacle B, but the essential argument requires
only a lower degree of symmetry.)

Let us start by establishing how the zeta function and the Laplacian
determinant are related to the heat trace in our situation. Indeed, the
following formula is valid for every complex number s with Re s > n

2
:

ζΩ(s) :=
∑

k≥1

1

λsk(Ω)
=

1

Γ(s)

∫ ∞

0

ZΩ(t)t
s−1dt.

It is well known that the function ZΩ satisfies

ZΩ(t) ∼
∑

k≥0

ak t
(k−n)

2 as t→ 0, (6)

where ak is a sequence of real numbers that depend only on the geome-
try of the boundary of Ω (see e.g. [1]). In particular, the coefficients
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ak are independent of the position of B within D. We set

Z̃Ω(t) = ZΩ(t)−
n

∑

k=0

ak t
(k−n)

2 ,

so that Z̃Ω(t)/
√
t is a bounded function in a neighborhood of t = 0.

We also introduce the meromorphic function

R(s) =
1

Γ(s)

n
∑

k=0

ak

∫ 1

0

ts−1+(k−n)/2dt =
1

Γ(s)

n
∑

k=0

ak
s− (n− k)/2

,

which has poles at 1/2, 1, 3/2, 2, · · · , n/2. (Note that s = 0 is not a
pole since 1

sΓ(s)
is a holomorphic function on C.) Consequently, for

every s ∈ R+,

ζΩ(s) = R(s) +
1

Γ(s)

∫ 1

0

Z̃Ω(t)t
s−1dt+

1

Γ(s)

∫ ∞

1

ZΩ(t)t
s−1dt. (7)

where the last term is an entire function of s, since ZΩ(t) behaves as
e−λ1(Ω)t when t → +∞. On the other hand, the reciprocal gamma
function f(s) := 1

Γ(s)
vanishes at s = 0 and satisfies f ′(0) = 1. There-

fore,

ζ ′Ω(0) = R′(0) +

∫ 1

0

Z̃Ω(t)t
−1dt+

∫ ∞

1

ZΩ(t)t
−1dt. (8)

Assume that the domain D has the interior reflection property with
respect to a hyperplane P about which the setB is reflection-symmetric.
(Here we do not need to restrict to convex D.) Our strategy is to con-
sider a displacement of the obstacle by ε in a certain direction and to
show that ZΩε

(t) is monotonically increasing in that direction.

Thus let V be the unit vector perpendicular to P and pointing in
the direction of the small side Ds. For small ε > 0, we translate B by a
distance ε in the direction of V and set Bε := B+εV and Ωε := D\Bε.
The results of this paper rely on the following proposition.

Proposition 2.1. Assume that the domain D has the interior reflec-
tion property with respect to a hyperplane P about which the set B
is reflection-symmetric. Consider displacements as described above.
Then,

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
> 0, (9)

except possibly for a finite set of values t in any interval [τ,∞) with
τ > 0. Moreover, for each s > 0,

d

dε
ζΩε

(s)
∣

∣

ε=0
> 0, (10)
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and
d

dε
det(Ωε)

∣

∣

ε=0
< 0. (11)

Proof. The heat kernel K on Ω under the Dirichlet boundary condition
is defined as the fundamental solution of the heat equation, that is























( ∂
∂t
−∆y)K(t,x,y) = 0 in Ω

K(0+,x,y) = δx(y)

K(t,x,y) = 0 ∀y ∈ ∂Ω.

The relationship between the heat kernel and the spectral decomposi-
tion of the Dirichlet Laplacian in Ω is given by

K(t,x,y) =
∑

k≥1

e−λk(Ω)tuk(x)uk(y), (12)

where (uk)k≥1 is an L2(Ω)-orthonormal family of eigenfunctions satis-
fying







−∆uk = λk(Ω)uk in Ω

uk = 0 on ∂Ω.

The heat trace is then given by

ZΩ(t) =

∫

Ω

K(t,x,x)dx =
∑

k≥1

e−λk(Ω)t.

Let X be a smooth vectorfield such that X vanishes on ∂D and
coincides with the vector V on ∂B. For sufficiently small ε, one has
Ωε = fε(Ω) where fε(x) = x + εX(x). The Hadamard-type formula
(5) gives :

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
= − t

2

∫

∂Ω

∆K(t,x,x) (X · ν) (x)dx

= − t

2

∫

∂B

∆K(t,x,x) V · ν(x)dx.

Let Bs be the half of B contained in the small side Ds of D and
(∂B)s = ∂B ∩ Ds. Here, we assume without loss of generality that
Ds is connected (otherwise, Bs is contained in one connected compo-
nent of Ds and we concentrate our analysis on this single component).
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Using the symmetry assumption on B with respect to P we obtain

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
= − t

2

∫

(∂B)s

(∆K(t,x,x)−∆K(t,x∗,x∗)) V · ν(x)dx
(13)

where x∗ stands for the reflection of x through P .

Define the function φ(t,x,y) = K(t,x,y)−K(t,x∗,y∗) on (0,∞)×
Ωs × Ωs with Ωs = Ds \Bs.

Claim : For all (t,x,y) ∈ (0,∞)× Ωs × Ωs, φ(t,x,y) ≤ 0.
Let us check the sign of φ(t,x,y) on (0,∞) × ∂Ωs × ∂Ωs. Notice
that ∂Ωs is the union of three components : (∂D)s, (∂B)s and Ω ∩ P .
First, from the boundary conditions, if x ∈ (∂B)s or y ∈ (∂B)s, then
K(t,x,y) = K(t,x∗,y∗) = 0 and, hence, φ(t,x,y) = 0. On the other
hand, K(t,x,y) vanishes as soon as x ∈ (∂D)s or y ∈ (∂D)s, which
implies φ(t,x,y) = −K(t,x∗,y∗) ≤ 0. It remains to consider the case
where both x and y belong to Ω ∩ P . In this case we have x∗ = x,
y∗ = y and φ(t,x,y) = 0.
Observe next that for all x ∈ Ω̄s, the function (t,y) 7→ φ(t,x,y) is a

solution of the following parabolic problem :

(∗)







( ∂
∂t
−∆y)φ(t,x,y) = 0 in Ωs

φ(0+,x,y) = 0.

Given any x ∈ ∂Ωs, the parabolic maximum principle (see e.g., [9],
§7.1) tells us that, since (t,y) 7→ φ(t,x,y) is nonpositive on the bound-
ary of the cylinder (0,∞)×Ωs, it follows that φ(t,x,y) ≤ 0 for all t > 0
and all y ∈ Ω̄s.
Now, from the symmetry of φ with respect to x and y, the function

(t,x) 7→ φ(t,x,y) satisfies the same parabolic system as (∗). Since
we have established that ∀y ∈ Ω̄s, the function (t,x) 7→ φ(t,x,y) is
everywhere nonpositive on the boundary of the cylinder (0,∞)×Ωs, the
parabolic maximum principle then implies that φ(t,x,y) is nonpositive
in the whole cylinder (0,∞)× Ωs × Ωs.

Claim : ∆φ(t,x,x) ≤ 0 for all (t,x) ∈ (0,∞)× (∂B)s.
For a sufficiently small δ > 0, let V = {ψ(z, ρ) := z + ρ ν(z) ; z ∈

∂B and 0 ≤ ρ < δ} be the 1-sided δ-tubular neighborhood of ∂B. The
Euclidean metric gE can be expressed in V with respect to so-called
Fermi coordinates (z, ρ) ∈ ∂B × (0, δ) as follows (see for instance [28,
Lemma 3.1]) :

gE = dρ2 + gρ,
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where gρ is a Riemannian metric on the hypersurface Γρ = {z +
ρ ν(z) ; z ∈ ∂B}. Consequently, the Euclidean Laplacian in V takes
on the following form with respect to Fermi coordinates :

∆ =
∂2

∂ρ2
−Hρ

∂

∂ρ
+∆gρ ,

where Hρ is the mean curvature of Γρ and ∆gρ is the Laplace-Beltrami
operator of (Γρ, gρ).
Now, K(t,x,x) =

∑

k≥1 e
−λk(Ω)tuk(x)

2, and it is known that for C2

domains, ‖∇uk‖∞ is bounded by a constant times a finite power of
λk (see [13, 16]). Hence, the functions K(t,x,x) and consequently
φ(t,x,x) vanish quadratically on (∂B)s. Thus, for any point z =
ψ(z, 0) ∈ (∂B)s,

∂

∂ρ
φ(t, ψ(z, ρ), ψ(z, ρ))

∣

∣

ρ=0
= 0 and ∆gρφ(t, ψ(z, ρ), ψ(z, ρ))

∣

∣

ρ=0
= 0.

Therefore,

∆φ(t, z, z) =
∂2

∂ρ2
φ(t, ψ(z, ρ), ψ(z, ρ))

∣

∣

ρ=0
,

which is nonpositive since ∂
∂ρ
φ(t, ψ(z, ρ), ψ(z, ρ))

∣

∣

ρ=0
= 0 and, accord-

ing to what we proved in the previous claim, the function ρ ∈ [0, δ) 7→
φ(t, ψ(z, ρ), ψ(z, ρ)) achieves its maximum at ρ = 0.

Claim : Let τ be any positive real number. Except possibly for a
finite set of values of t in [τ,∞),

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
> 0.

From the assumptions that B is convex and symmetric with respect
to the hyperplane P , it follows that the product V · ν(x) is positive at
almost every point x of (∂B)s. From equation (13) and the previous
claim we then deduce that ∀t > 0,

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
≥ 0.

To show that this quantity cannot vanish at more than a finite set of
values of t ∈ [τ,∞), we shall show that it is analytic as a function of t
in the open right half plane, and positive for real values of t sufficiently
large. By the unique continuation theorem an analytic function that
vanishes on a set with a point of accumulation is identically zero, which
would pose a contradiction.
To establish the analytic properties of ZΩε

(t), we argue as follows.
Observe first that the deformation Ωε depends analytically on ε in a
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neighborhood of 0, since Ωε = fε(Ω) with fε(x) = x + εX(x). As
in the proof of Lemma 3.1 in [6], the Dirichlet Laplacian in Ωε is an
analytic family of operators in the sense of Kato [20] with respect to
the parameter ε. Because each eigenvalue of the Laplacian is at most
finitely degenerate, according to [20, p. 425], there is a numbering of the
eigenvalues {λk(Ωε)} → {Λk(ε)} for which each Λk(ε) is analytic in ε
in a neighborhood of ε = 0. (Using this numbering, which is important
only in a neighborhood of a degenerate eigenvalue, does not alter Z(t)
as defined in (1).) In consequence of the Hadamard formula for the
derivative of an eigenvalue, ∂Λk

∂ε
|ε=0 is dominated in norm by the integral

of the square of the normal derivative of an associated L2 normalized
eigenfunction uk over the boundary of the obstacle. We again call
upon estimates for C2 domains, by which both ‖uk‖∞ and ‖∇uk‖∞ are
bounded by constants times finite powers of λk [13, 16], which in turn

∼ k
2
n by the Weyl law. It follows that both the series

∑

k≥1 e
−λk(Ωε)t

and its term-by-term derivative with respect to ε converge uniformly
on each set of the form {Re t ≥ τ > 0}, and are therefore analytic on
such sets.
To finish the argument, we observe that by differentiating ZΩε

(t) =
∑

k≥1 e
−λk(Ωε)t,

∂

∂ε
ZΩε

(t)

∣

∣

∣

∣

ε=0

= e−λ1(Ω)t

(

− ∂λ1(Ωε)

∂ε

∣

∣

∣

∣

ε=0

+ 0(e−(λ2−λ1)t)

)

.

This is positive for large t because λ1 is nondegenerate and
∂λ1(Ωε)

∂ε

∣

∣

ε=0
<

0 by [15].

This completes the proof of (9). The proof of (10) and (11) relies on
the formulae (7) and (8) that give for every s ∈ R

+ and every ε 6= 0
sufficiently small,

ζΩε
(s) = R(s) +

1

Γ(s)

∫ 1

0

Z̃Ωε
(t)ts−1dt+

1

Γ(s)

∫ ∞

1

ZΩε
(t)ts−1dt (14)

and

ζ ′Ωε
(0) = R′(0) +

∫ 1

0

Z̃Ωε
(t)t−1dt+

∫ ∞

1

ZΩε
(t)t−1dt, (15)

with det(Ωε) = e−ζ′Ωε
(0). �

Proof of Theorem 1.2. Let D be a bounded convex domain of Rn and
let r > 0 be less than the inradius of D. Observe first that for every
t > 0, the function x 7→ ZΩ(x)(t) is continuous on D̄r = {x ∈ D :
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dist(x, ∂D) ≥ r}. Indeed, we know that

λk(Ω(x)) ≥
n

n+ 2
Cn

(

k

|Ω(x)|

)
2
n

(see [24]), where Cn is the constant appearing in Weyl’s asymptotic
formula and |Ω(x)| is the volume of Ω(x). Since |Ω(x)| does not depend
on x, we deduce that the series

∑

e−λk(Ω(x))t converges uniformly on D̄r

and that its sum ZΩ(x)(t) depends continuously on x. (The continuity
of eigenvalues λk(Ω(x)) can be derived in several ways from standard
continuity results cited in [17, Section 2.3.3]. In particular, see Remark
6.2 of [4].) Consequently, ZΩ(x)(t) achieves its extremal values in D̄r.

Let x ∈ Dr = {x ∈ D : dist(x, ∂D) > r} be a point such that
x /∈ ♥(D). From the definition of ♥(D), there exists a hyperplane
of interior reflection P of D passing through x. Moreover, since the
reflection of ∂Ds \ P is disjoint from ∂Db, there exists δ > 0 such
that ∀ε ∈ [0, δ], the hyperplane Pε parallel to P and passing through
xε = x − εV is a hyperplane of interior reflection, where V is the
unit vector perpendicular to P and pointing in the direction of Ds.
Applying Proposition 2.1, we see that the function ε 7→ ZΩ(xε)(t) is
monotonically nonincreasing (notice that the variation formula (9) is
given for a displacement into the small side Ds. Here, the obstacle
moves in the opposite direction, that of −V , which has the effect of
changing the sign of the derivative.) At the same time, the distance
dist(xε,♥(D)) is clearly decreasing since xε moves into the big side. It
follows that the set of points where x 7→ ZΩ(x)(t) achieves its minimum
cannot be disjoint from ♥(D). The minimum is therefore achieved at
a point x0(t) ∈ ♥(D).

Similarly, if a point x ∈ Dr does not belong to the interior of ♥(D),
then there exists a hyperplane of interior reflection passing through x so
that it is possible to move the obstacle into the small sideDs along a line
segment perpendicular to P . The function ZΩ(x)(t) is monotonically
nondecreasing along such displacement while the obstacle approaches
the boundary of D. Again, this proves that if the set of points where
x 7→ ZΩ(x)(t) achieves its maximum is not contained in the interior of
♥(D), then it must hit {x ∈ D : dist(x, ∂D) = r}.
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The continuity of the zeta function and of the determinant in Dr

derive from the continuity of the heat trace, through (7) and (8), ac-
cording to which, for every s ∈ R

+ and every x ∈ Dr,

ζΩ(x)(s) = R(s) +
1

Γ(s)

∫ 1

0

Z̃Ω(x)(t)t
s−1dt+

1

Γ(s)

∫ ∞

1

ZΩ(x)(t)t
s−1dt,

(16)
and

ζ ′Ω(x)(0) = R′(0) +

∫ 1

0

Z̃Ω(x)(t)t
−1dt+

∫ ∞

1

ZΩ(x)(t)t
−1dt, (17)

where R(s) is a function that does not depend on x. These formulae
are not necessarily valid in the situation where the ball B(x, r) touches
the boundary of D since, due to the cuspidal singularity that the do-
main Ω(x) will then present, in consequence of which the function
Z̃Ω(x)(t)/

√
t may cease to be bounded in the neighborhood of t = 0.

Let x ∈ Dr be a point lying outside ♥(D) and let s ∈ R+. As before,
using the definition of ♥(D) and Proposition 2.1, we see that it is pos-
sible to move B(x, r) towards the heart so as to decrease ζΩ(x)(s). This
enables us to construct a (possibly finite) sequence of points converg-
ing to a point y ∈ ♥(D), along which the zeta function is decreasing.
Thus, ζΩ(x)(s) < ζΩ(y)(s), which leads to (3). Similarly, it is possible to
move B(x, r) in the direction of the boundary so as to increase ζΩ(x)(s),
which implies that ζΩ(x)(s) is less than a limiting value of ζΩ(y)(s) as
B(y, r) approaches the boundary of D.
Now, when r < dist(♥(D), ∂D), the heart is contained in Dr and, con-
sequently, x 7→ ζΩ(x)(s) is continuous on ♥(D) (which is a compact
set) and achieves its minimum at a point x0(s) ∈ ♥(D). Similarly,
x ∈ ♥(D) 7→ ζΩ(x)(s) achieves its maximum at a point which belongs
to the interior of ♥(D), since a ball of radius r < dist(♥(D), ∂D) cen-
tered at the boundary of ♥(D) can be moved away from ♥(D) so as
to increase ζ .

The statement concerning the determinant can be proved using the
same arguments.

�
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