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Abstract. A substructuring technique is proposed which enables fasipeitation of the acous-
tic response of arbitrary-shaped 2D cavities subject téed#int kinds of excitations. It com-
bines rectangular superelements which are modeled by nfahs wave finite element (WFE)
method, and arbitrary-shaped superelements modeled asimgponent mode synthesis (CMS).
Within the WFE framework, the so-called receptance madrigierectangular superelements
— which link the pressure vectors to the acoustic force veawer the boundaries — can be
derived in an efficient way in terms of wave modes, withounhtes of explicitly condensing
the internal degrees of freedom of the systems. A modeltredwgtrategy is proposed which
aims at expressing the receptance matrices with a few wadesmnly. The proposed strategy
involves enclosing each rectangular superelement in aefieiément (FE) layer with a small
width. In this way, smoothed pressure fields are likely tauoower the WFE superelements,
hence enabling these superelements to be described with wdge modes only. By consid-
ering those WFE-based rectangular superelements suredity FE layers, this yields the
so-called hybrid WFE/FE superelements whose dynamioess$fmatrices can be computed in
a very fast way. Modeling a whole arbitrary-shaped acous#eity follows from conventional
assembly procedure between hybrid WFE/FE superelemeMiS,stiperelements and other FE
components. Numerical experiments are carried out to laghthe relevance of the proposed
substructuring technique.
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1 INTRODUCTION

Developing fast and accurate numerical tools for assesisengcoustic behavior of arbitrary-
shaped cavities over wide frequency ranges appears to beeanrdustrial challenge, leading
the way of proposing efficient solutions to noise reductiBopular examples of such cavities
are passenger compartments in cars, and aircraft cabirsfifite element (FE) and bound-
ary element (BE) methods are popular techniques for comgutiternal acoustic problems,
but have however to face several severe issues as soon agntibemof degrees of freedom
(DOFs) involved reaches excessive values. The issue ltbg ioomputation of large-sized ma-
trix systems (FE framework), or the consideration of denagices which require high memory
storage (BE framework), at many discrete frequencies. mie@ns numerical techniques which
are either time consuming or inaccurate.

Reduction methods like FE-based substructuring or wagedanalytical techniques seem
to constitute efficient alternatives to the conventionabiRE BE methods. Among the FE-based
substructuring technigues, one can mention the Craig-Bammethod([ll] which focuses on
partitioning a whole system into several components andefimagithese components by means
of static modes and fixed interface modes. The tough issue dbaling with the CB method
concerns the determination of the fixed interface modeswhauld need to be retained for as-
sessing the acoustic behavior of cavities with accurateigio®. This explains why, in practice,
many fixed interface modes are usually retained to ensureotineergence of the CB solutions,
hence impacting the CPU times required for modeling the QBpmnents. On the other hand,
Trefftz techniques like the wave based method (WBM) [2] aiosang a few analytical wave
functions to describe the acoustic behavior of 2D caviggen in the short wavelength domain.
In this sense, they appear to be efficient in terms of CPU tifikesir disadvantage, however, is
that they invoke dense matrices in the same way as the BE thetho

A new FE-based substructuring technique is proposed heidhwliercomes the aforemen-
tioned issues. It makes use of the wave finite element (WFE)odenhich aims at assessing
numerical wave modes traveling along periodic systemsl|[].4 Within this framework, a
so-called hybrid WFE/FE superelement is formulated whiehsgsts in a rectangular acous-
tic domain, with a periodic FE mesh, surrounded by an amyitnaeshed FE layer with a small
width. The interesting feature of this superelement istiiateceptance matrix of the rectangu-
lar domain — i.e., which links the vector of nodal pressucethat of the nodal forces over the
boundary — can be expressed by means of a small number of wadbesnThe fact that a few
wave modes are only used is explained because the pressdiise égpected to be smooth over
the rectangular domain, it being understood that localldargies near excitations and bound-
ary conditions are managed by the FE layer. In doing so, thpgsed superelement can be
modeled using a dynamic stiffness matrix of small size wioaseputation doesn’t require ex-
cessive CPU times. Modeling a whole acoustic cavity follénesn conventional FE procedure
by assembling several hybrid WFE/FE superelements, asagselMS-based superelements
and other FE components together.

The rest of the paper is organized as follows. In Sectionéb#sics of the WFE method are
recalled which concern the description of wave modes tiagedlong a rectangular acoustic
domain with a periodic FE mesh. Also, the strategy for conmgpithe forced response of peri-
odic systems is presented. In Section 3, the WFE-basedgquoe®r expressing the receptance
matrix of a rectangular domain is proposed. Also, the foatiah of the WFE/FE hybrid su-
perelement is proposed. Finally, numerical experimemgarried out in Section 4 to highlight
the computational efficiency of the proposed approach inpasison with the conventional CB
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method.

2 WFEMETHOD
2.1 Wave mode computation

The basics of the WFE method, which concern the descriptis@ee modes traveling along
a one-dimensional periodic system, are recalled hereaffghin the present scope, emphasis
will be placed on the study of rectangular acoustic domaiitis & FE mesh which is periodic
along one straight direction, i.e., composed of identicéissructures connected to each other,
as shown in Figurigl 1. Such a rectangular acoustic domaiposed to be excited by harmonic
excitations (the angular frequency being denoted)ashich are confined to the left and right
edges only, and modeled in terms of two vectors of acoustees¥, andF (see Figuréll).

Rectangular Substructures
acoustic domain v N\
>

Fo F} —>

Figure 1: Rectangular acoustic domain with a periodic FEmmasd related WFE modeling.

For the purpose of wave mode description, the WFE methodresgqone to know the acous-
tic mass matrixM and acoustic stiffness matriX of a substructure, and ultimately the con-
densed dynamic stiffness matidX* = Dgg — DBIDI?DIB, whereD = —w?M + K is the
dynamic stiffness matrix of the substructure Here, the siftsB refers to the degrees of free-
dom (DOFs) on the left and right edges of the substructurdewthe subscript refers to the
internal DOFs (i.e., which do not belong to the left and rigtiges). Denote asthe number of
DOFs on the left (or right) edge of the substructure. Follapthe WFE framework [4,13], the
wave modes are sought as the solutions of an eigenprobleine 66tmSep,; = 1;¢; in which
S is a2n x 2n symplectic matrix expressed by

~Di'Dy | Dy
D* — D* D*le* ‘ —_D* D*fl ) (1)
RL RR™LR LL RR—LR
where the subscripts andR refer to the left and right edges of the substructure, resEdye
The eigenvectors & — namely,{ ¢, } ; — are the so-called wave shapes which are partitioned
into pressure and force componentsfgs= [(¢,)} (¢,)f]". Also, since the matri$ is sym-
plectic, its eigenvalues come in pairs(@as, 1/1;).

From the numerical point of view, a so-call8d+ S~! transformation of the eigenproblem
(@) can be considered][6], 7] for accurately computing thersglutions{1; }; and{¢,};. The
interesting feature of th8 + S~—! transformation lies in the use of skew-symmetric matrices
(N'JL'T + L'IN'T) andL’JL'", leading to the following eigenproblem whose eigenvalues a
of the form\; = p; + 1/ p;:

S:

((NILT + LINT) - \LILT) 25 =0, )

3
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where

0 I Dy 0 0 I
L = ", N = SR . J= m 3
{Din 0] |:_(DLL +DRR) _ITJ { -I, 0 } ( )

Once the eigenvalueg\;}; in Eq. (2) are found, the original eigenvalugs,}; are found
analytically by solving a quadratic equation of the form

> — Nz +1=0. 4)

Also, once the eigenvectokg; }; in Eq. (2) are found, the original eigenvectdig, }; are
found analytically as follows |7]:

I, O

! 1 !
¢ = [D* ; } w,  where w,=1J] (LT - —N T) z;. )
RR n

Hj

2.2 Conventions and matrix notations

As was mentioned in Secti¢n 2.1, the eigenvalues of the m@tare pairs(j:;,1/u;). This
leads to the consideration efright-going wave modes for whichy;| < 1, andn left-going
wave modes for whicky;| > 1. Regarding the cagg,;| = 1, the right-going (resp. left-going)
wave modes are defined so thiat/4)¢) Jp; > 1 (resp. (iw/4)pl J¢p; < 1), which means
that the related energy flows| [8] are conveyed towards th# (igsp. left) direction of the
system.

For the sake of clarity, the sets of right- and left- going eamodes will be denoted as

Also, by considering EqQL{5), the wave shaggsand¢; are expressed as

. In 0 T aN\'T ‘ . In 0 T N'T )
0= oy 1) 3 (7N s 6= [ p ]I (TN s @

wherez; is an eigenvector of Eq[](2) corresponding to the eigenvajuén matrix form, the
wave modes can thus be written as

p=diag{utior.n . w=p , 2=[p... 0] , ' =[p]...¢)], (V)

with the property that|u||> < 1 (]|.||2 being the2—norm). Also, the matrice® and®* are to
be partitioned into pressure and force components, asisilo

®, . @;
(2] vl

where®,, ¢, ®; and®; aren x n matrices which are full rank[9].
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2.3 Forced response computation

Within the framework of the WFE method, the vectors of pressand acoustic forces of an
assembly ofV substructures like the one displayed in Figure 1 are expdessterms of wave
shapes, as follows [10]:

p(k) _ q)pﬂk_lQ+<I);IJfN_k+1Q* ’ j:F(lc) _ (I'Fﬂk_lQ+(I';HN_k+1Q* k= 1’ — N+1
(9)

where the subscriptk) designates any substructure boundary, i.e., either a icgupiter-

face/edge between two consecutive substructures andk, or the left/right edge of the whole

domain; alsoQ andQ* are vectors of wave amplitudes which are respectively deéfatehe

left and right edges of the whole domain, i.e., at the subsire boundarie§l) and(N + 1).

In Eqg. (9), the sign ahead &f*) should be negative in case when a left boundary is considered

and positive for a right boundary.

The problem behind the computation of the forced responsleecfcoustic domain can be
stated as to find the vectors of wave amplituandQ*. This is achieved by considering the
boundary conditions (BCs) on the left and right edges, theratubstructure boundaries being
assumed to be free from excitations sources (see HigurehbselBCs may involve prescribed
pressures or acoustic forces. In view of the subsequentaieuents made in this paper, we
will restrict the present analysis to the study of two vestoirprescribed forceB, andFj that
apply over the substructure boundarigsand(N + 1), respectively, as shown in Figurke 1. The
related wave expansion, E@J (9), yields

~Fy = ®:Q + ®;p" Q" | F{§ = P:Qu” + 2;Q*. (10)

As a result, a wave-based matrix system can be derived wlees&ution provides the vectors
of wave amplitude€) andQ*. According to Eq.[(10), it is expressed as follows:

SRS
A =B| 0, 11
{ @ - (11)
whereA andB are2n x 2n matrices defined as
_ I O Py’ _[-%" 0
A= |: (I);flq)F”N I ) B = 0 @;71 . (12)

To derive the matriceA andB, it has been assumed that the matribesand®; are invertible
(a proof of this statement is brought in ref/ [9]). The moatioa behind the use of the matrix
inversesh, ! and®; ! is to make the matrixA well-conditioned[[9]. The determination of the
vectors of wave amplitudeg andQ* hence follows from Eq[(11):

8]z

3 SUPERELEMENT MODELING
3.1 Introduction

Consider now a rectangular acoustic domain which undemgoasstic forces over its left/right
and bottom/top edges, as depicted in Figure 2. The motivaiehind the proposed study is to

5
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express a so-called receptance maHixvhich links the vector of pressures of the boundary
nodesps to that of the vector of acoustic forcés, where the subscrift refers to the nodes
belonging to the left/right and bottom/top edges. Thistretais expressed by = HFg. The
key idea here is to express the receptance mHkiixterms of wave modes (Sectibh 2) traveling
along both horizontal and vertical directions, as shownigufe[2. This yields a superelement
modeling whose derivation follows from the well-known stpesition principle (see Section

B.2).

F;y (FB)I (FB)2

1l

-p <

Figure 2: lllustration of the superposition principle iving a vector of acoustic force decomposed into two ones
acting respectively along the left/right and bottom/toges!

3.2 Receptance matrix

The key idea behind the present approach is to decomposesther\of acoustic forces
F; into two states of excitatio(Fy); and(F3), that operate, respectively, on the vertical and
horizontal edges (see Figure 2). This means two WFE mode(imgmely,l and2), and related
substructures, for assessing the wave propagation alenigatizontal and vertical directions.
For each WFE modeling (: = 1, 2), the number of right/left- (or top/bottom-) going wave
modes involved i$; — n; andn, being the number of DOFs contained over the left/right
edge and bottom/top edge, respectively — while the numbsulb$tructures i&; — N; and
N, being the number of substructures involved along the hotacand vertical directions,
respectively. For the sake of simplicity, it is assumed thatboundary nodes of the “vertical”
substructures (WFE modeling are only confined to their left and right edges, while those
of the “horizontal” substructures (WFE modeligfare only confined to their bottom and top
edges (see Figulé 2). By considering the superpositiocipta this yields

Fg = (Fg)1 + (Fg)2 = pes=(ps)1 + (Ps)2 (14)

This means that the vector of pressupasproduced by the vector of acoustic forcEg is
expressed as the sum of two vectopg); and (pg). Which are respectively induced by the
vectors of acoustic force&'s); and(F), as acting independently on the acoustic domain. It
should be noticed that the vectdrs, (Fz)1, (Fz)2, ps, (pPs): and(ps)2 have the same size,
i.e.,ng X 1, whereng = 2(n; — 1) + 2(ny — 1) represents the number of boundary DOFs of
the rectangular domain. Also, it should be pointed out thatectorgFg); and(F;), contain,
respectively2(ny, — 1) and2(n; — 1) zero-components. Those vectors are expressed as

(FB>1 - PIFB 5 (FB>2 - 732FB7 (15)
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whereP; andP, are twong x ng matrices which relate the partitioning depicted in Fidure 2
and which are defined so that
P1+Py=1,. (16)

In fact, the matriceg®; andP, are diagonal and mostly composedlodnd(0 components to
enforce the fact that certain nodes are excited, while @hefree. Other components equal to
1/2 should also be considered which specifically address thesticdorces at the corners of
the domain (Figurtl2), it being understood they are to belggoartitioned between the states
of excitation(Fg); and(F;),.

The acoustic behavior of the rectangular domain, as swegegither taFz); or (Fg),, can
be assessed using the strategy depicted in Sdcfibn 2.3.aEbrstate, the strategy consists
in consideringn; x 1 vectors of acoustic forced); and (F}); acting over the left/right or
bottom/top edges. These vectors are linked to the full vexftacoustic force¢Fy); as follows:

(F5)s

where(Bg); is a2n; x ng Boolean matrix. According to Eqd._(13]), {15) afdl(17), thetoes of
wave amplitudes are expressed as

{ (Fo): } = (Be)i(Fs);  i=1.2 (17)

[ gi ] = A;lBi(BF)iPZ-FB 1=1,2, (18)
where
L, (‘I’F)?l(@*)#{\@ } l _(@F)'—l 0, v0n »
A= o . BT , B = P i=1,2.
(P5); 1(<I)F)iNzNZ L, Onixn;  (Pr); !
(19)
In a similar way as Eq[(17), there exists a relation whickdithe vector of nodal pressurpg“')
on a given substructure boundddy) (k; = 1,..., N; + 1) with the vector of nodal pressures
(ps); on the edges of the rectangular domain. This yields
p,"
£&p®
EZ(Ni)pgNi)
(Ni+1)
where£®*) (k; = 2,...,N;) is a2 x n; Boolean matrix which localizes among the DOFs of

the substructure boundat¥; ), those belonging to the edges of the domain. The way thexmatri
L£*) works is highlighted in Figurgl3. Notice that bqﬁlﬁl) andp(.Ni“) are considered in the

left-hand side of Eq.[(20) since all their components refetgal pressures on the edges of the
domain (see Figuitd 3). Finally, in EQ._{20)5,); is ans x ng orthogonal Boolean matrix whose
purpose is to renumber the rows and columns of the matrixrdaguin the left-hand side so
as to match the node numbering scheme of the vegipandF;, Eq. (14), which may be
arbitrary a priori.

Invoking the wave expansiohl(9) into Eq._[20) while using fdet that the matrixX5,); is
orthogonal —i.e.(B,); ' = (B,)T —, this yields

e = B | & ] it @

7
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k k
£§\1if>§ 1) py
] L2 )
p] [ p(Ma+) /
;'—I
M
Ps

Figure 3: lllustration of the vectoﬂgkl)pgkl) andﬁékz)pg”).

where(W¥,); is ang x 2n,; matrix defined by

oo (Z@wfjv 1
LO®,)p, | L <<I>*>Zuz
(), = : : i=1,2. (22)
M (@ Do) cEN“@;)iui
(@p)ip" (@) |

By considering Eqs[(21) and (18), a relation linking theteeof pressure$ps); and acoustic
forcesFy can be derived as follows:

(Pe)i = (Bp)! (W) A 'Bi(Bp)iPiFs  i=1,2. (23)

2

The derivation of the receptance matkk— defined aps = HF whereps = (ps)1 + (Ps)2
— finally follows as

H = (By)] (¥,)1A] 'B1(Be)1 P+ (By)3 (¥p)2A5 By (B )2 Pa. (24)

3.3 Modd reduction
3.3.1 Introduction

One way to speed up the computation of the receptance nidtiix to make use of re-
duced wave mode bases. In this framework, the vectors ofpres and acoustic forces are

assessed by means of reduced sets of wave si{aphgs Fiet,m U A{( p])-}j 1,..m; and

.....

trix p; = dlag{(,u]) Fizt, mir and smaII S|ze@h X m; matnces(@ )i = [(<~bp1) ...(Zz;pmi)z],
(@,); = [(Ggr)i- - By )il (Be)s = [(Ger)i- - (Jen, )il aNd(Rp)s = (G52 (B ). As

a result, the receptance matrix can be approxmatéﬂl asH, where (cf. Eq.|12|4)):

H = (By)] ()1 A7 'Bi(Be)1P1 + (By)2 (¥,)2A5 Ba(Be )2 P (25)

8
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Here, the matriced, andB, are to be expressed as follows (cf. Hg.](19)):

o] . In (@) (Bp)it,"
(QF);F(CI’F)Z‘I]@]'W Imi

B = _(EI;F):— OTiXm

X i=1,2,
Omixm (CI)F);’_

N . _ . (26)
where(®¢);” and(®;);” are the left pseudo-inverse of the matri¢ds); and (®;);. Also, in
Eq. (25), the matrice§¥,); and(¥,), are expressed by (cf. E4.(22)):

L&) | L@
- L@, | L@
(\I’p)i — 7 ( . P) l’l'z 7 ( p.) 12 i = 1’ 9. (27)

LN (@), m | L@,

3.3.2 Hybrid WFE/FE superelement modeling

...........

..........

citation sources are applied on the edges of the rectangufmrelements. In this case, the
pressure field is likely to be strongly heterogeneous in ibmity of the excitation sources,
meaning that almost the full sets of wave shapes are reqiaréescribe the acoustic behavior
of the system with accurate precision. To solve this isgug proposed to surround any WFE-
based rectangular superelement by means of a thin FE layesenthickness is not necessarily
uniform, as shown in Figui€ 4.

Rectangular domain FE layar

0/

Figure 4: lllustration of a WFE superelement surrounded thiraFE layer with a non-uniform thickness.

While the rectangular domain exhibits a periodic FE mesé lalger can be discretized in
arbitrary ways. By coupling a WFE-based rectangular elémwdiose dimensions can be large,
with a small FE layer, this yields the consideration of a atbed hybrid WFE/FE superele-
ment which is well-suited for model reduction purpose. Thadgling of this superelement is
achieved as follows.

In matrix form, the dynamic equilibrium equation of the Figdais expressed as

[DBB DBR} [ﬁB:| _ _NFB
ID)RB ]DRR ﬁR

& (28)
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where the subscrift refers to the interface DOFs — i.e., where coupling with thEBAbased
rectangular superelement occurs — while the subsgripfers to the remaining DOFs. Also,
the tilde sign indicates that vector terms result from tleuoed modeling of the WFE-based
rectangular superelement, with the assumptlon]iﬂag p: (see after EqL(23)). Note that the
term —F; in the right hand side of Eq_(28) reflects the opposite of #&ar of nodal acoustic
forces acting on the edges of the rectangular superelearghtesults from the action-reaction
law. Also, the termFy refers to the vector of nodal acoustic forces acting on theaneing
nodes of the FE layer. In left-multiplying the first row blookthe matrix system in Eq[(28)
by DgsH, whereH is the receptance matrix of the rectangular domain, thislyie

—D@ﬁﬁB (29)
Fr

{DBBFIDBB DBBFIDBR} {’ga] _
Deg Deg Pr

By using the fact thaHF; = P, thus it turns out from Eq[{29) that the dynamic equilibrium
equation of the hybrid WFE/FE superelement can be expresstallows:

[]D)BB +DBBﬁDBB DBBﬁDBR} |:§B} — |:9:| . (30)
DRB ]D)RR pR FR

3.3.3 Superelement assembly

Modeling a whole arbitrary-shaped acoustic cavity invelaesembling several hybrid WFE/FE
superelements with conventional FE components and CMSalepeents, as shown in Figure
B Within the CMS framework, the condensed dynamic stifnestrices of superelements
may be assessed by considering the Craig-Bampton (CB) uh§ihoi.e., by means of static
modes and fixed interface modes. In matrix form, the dynamigli@rium equations of these
FE components and CB-based superelements may be traretafi@tbws, respectively:

DEp=F, , D%p;=Fy, (31)

whereD* is the classic dynamic stiffness matrix of a FE corgponﬁrar(df‘ being the vectors
of nodal pressures and nodal forces of the component), Mfiteis the condensed dynamic
stiffness matrix of a superelement, whose expression cdourel in [11]; also, the subscript
B refers to the boundary DOFs, while the tilde sign@® indicates that a reduced number of
fixed interface modes are used to derive the matrix. On ther bidind, the dynamic equilibrium
equation of a hybrid WFE/FE superelement is expressed asvo(Eq. [30)):

ﬁSEﬁLay - f‘Laya (32)
where

DSE — |:]DBB + DBBﬁDBB DBBﬁDBR:| .

33
Dige Digr (33)

In Eq. (30),pr.y; and f‘Lay are the vectors of nodal pressures and nodal forces of tleg, lay

expressed by
~ _ I3B i o P
pLay - |:§R:| 9 FLay - |:FR:| . (34)

10
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The numerical model of a whole cavity composed of several ¥WWEEuperelements, FE com-
ponents and CB superelements hence follows from conveaitida procedure, by assembling
several dynamic stiffness matricB§®, DFE andD¢® (r, s, ¢ = 1,2,...). This yields the follow-
ing dynamic equilibrium equation N N

D%p =F, (35)

wherep andF are to be understood as the full vectors of nodal pressurgsosces of the
cavity, respectively. Also, the matriv®®” is expressed by

T

B = SO LETHELE + 3 LHTDELE + Y LEDELE (30
s t

whereL®, LFF andL{® are conventional Boolean localization matrices.

FE

CMS component
superelement A

N/
Hybrid WFE/FE

superelements

Acoustic
excitation

Figure 5: lllustration of an assembly involving two hybridRE/FE superelements, one FE component and one
CMS superelement.

4 NUMERICAL RESULTS
4.1 Hybrid WFE/FE superelement

The concept of hybrid WFE/FE superelement is first investigan the case of a two-
dimensional rectangular cavity filled with air. Followinket strategy depicted in Sectiéh 3,
this acoustic domain is composed of a WFE-based superetarhdimensionss m x2 m sur-
rounded by a uniform FE layer of thickne$$2 m (Figure[6(a)). Both WFE domain and FE
layer are meshed by means of square linear acoustic elemeniisg 1 DOF per node, of size
0.01 m x 0.01 m (Figure[6(b)). The FE layer therefore contaihslements in its thickness,
involving a total number o8, 024 DOFs. The mesh of the WFE-based internal domain consists
of N; = 300 elements in the horizontal—direction andN, = 200 elements in the vertical
y—direction. Each left/right and bottom/top edge contaispeetivelyn; = 201 andn, = 301
DOFs, the total number of DOFs on the interface between th& Wémain and the FE layer
beingng = 1, 000.

The hybrid WFE/FE superelement modeling is used to invastithe frequency behavior of
the cavity which is subject to two acoustic point sourceshanexternal boundary of the FE
layer, as shown in Figurlg 6(a). These acoustic point foree® lequal frequency-dependent
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(a) (b)

\
Measurement point
Im
& . 2
Acouistic =0
0,8 m excitations
Im

Figure 6: Hybrid WFE/FE superelement: (a) dimensions astddenfiguration; (b) detailed view of the mesh.

magnitudes offy, = 2 “;—f where P = 10~¢ W.m~!. The fluid, considered as compress-

ible and barotropic, is characterized by its mean density: 1.25 kg.m~2 and sound velocity
co = 343 m.s L. Also, a fluid viscosity is taken into account through theke® law of sound
attenuation, i.e., the Helmholtz equation that governatwaistic pressure in the cavity is mod-
ified by an attenuation coefficient

2
Ap+<f—m)p:0. (37)

Co
The damping is here frequency-dependent and givem by:fgo“fg wheren = 18.27107% Pa.s
is the dynamic viscosity of air.

The pressure FRF is assessed at the node located at thet et of the FE layer (Figure
[Bl(a)), for246 discrete frequencies uniformly spaced over the rafigeHz, 500 Hz] with a
frequency step o2 Hz. The mesh is supposed to be fine enough to accurately eafbter
dynamic behavior of the system throughout the whole frequeange, i.e., by considering the
usual criterion that the acoustic wavelengths should beetized by a minimum of elements.
As was explained in Secti¢n 3, the computation of the FRF@hbrid WFE/FE superelement
involves several steps which includes the calculation dfices of reduced wave bases,);,

(fﬁ;)i, (£I3F)Z-, (<AI3;)Z- for each direction = 1,2. These are used to form thg x ny receptance

matrix H, see Eq. [(25). The receptance matrix is finally combined ¢odynamic stiffness
matrix D of the FE layer to form the matriD (Eqgs. [30), [(3B)) of the hybrid WFE/FE
superelement, with a view to solving the matrix system (3®eeh frequency of interest.

The motivation behind the use of the FE layer, around the WéiRain, is to highly reduce
the sizes of the wave bases without significantly alteriregabcuracy of the solution. In the
present case, the pressure FRF has been computed by omiyngeta; = 20 right/left- and
mo = 20 top/bottom-going wave modes among the= 201 andn, = 301 modes of the full
wave bases. The resulting dB pressure Ievelszi()elogw(%) wherep,os = 20x 1076 Pq, are
shown in Figur€l7 (dotted pink line). For validation purpasesference FE solution issued from
the commercial FE software Comsol Multiphysicis also displayed in Figuid 7 (black solid
line). It can be seen that the reference levels are corresttigved by the hybrid superelement
approach over the whole frequency band, despite a few diffetences regarding some low-
frequency anti-resonance peaks and the resonance pgak ar8 Hz.
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Figure 7: Pressure FRFs of the rectangular hybrid WFE/FHyca~—) FE reference solution; —) WFE/FE
solution; (—) CB solution with1,000 elastic modes; (a) full frequency range; (b) focus in thegeg|360 Hz,
500 Hz].

Regarding CPU times, it takes as a wh8Il& s to achieve the computation of the pres-
sure FRF (including the computations of wave modes) with MAB® and using an Int&
Core(TM) i7-3720QMa2.6 GHz processor. By considering full wave bases instead afoed
wave bases, it would have takeén388 s to compute the FRF. Thus the use of reduced wave
bases yields a reduction ©.9% of the computational cost, hence giving credit to the pregos
model reduction strategy.

Also, the efficiency of the method is assessed when comparttetCraig-Bampton (CB)
method [1]. In this framework, the condensed dynamic sggmatrixD® of the cavity is
modeled by means df, 016 static modes andl, 000 fixed interface modes. The related FRF is
displayed in Figurgl7 in green solid line. As it can be seengnife[7(b), the CB solution fails to
accurately describe the resonance peaks of the referenseliton above300 Hz, as opposed
to the hybrid WFE/FE-based approach. Besides, the CPU timavied in the CB approach
iS 966 s, which exceeds that of the hybrid WFE/FE-based approazisuimarize, it appears
from the analysis of this first test case that the hybrid WiEEllased approach constitutes an
efficient alternative to the CB method.

4.2 Superelement assembly

In the following, the above rectangular cavity is embedaedn arbitrary-shaped assembly
depicted in Figur€l8. The latter is composed of a hybrid WEE¢Eperelement which is con-
nected to a CMS superelement, modeled by means of the CB chéthe system is excited by
means of an acoustic point source located inside the CMSalepsgent. In the present case,
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the hybrid WFE/FE superelement is made up of a WFE-basedngglar domain which is
connected to a non-uniform FE layer over two of its edges.olmydoing so, large reduction
of the sizes of the WFE wave bases is expected over a reasdnadpiency range — which is
chosen to bél0 Hz, 300 Hz] — without significantly penalizing the accuracy of the preed
approach.

3m

+ >

CMS

superelement | Measurement point

s

WFE/FE
Ldm superelement

0.45 m

' ‘ - . . .
.45 m Acoustic excitation

Figure 8: Assembly of a hybrid WFE/FE superelement and a Ciygrelement: dimensions and test configura-
tion.

The WFE-based rectangular domain is meshed as in the psegase, i.e., using square
linear elements of siz@.01 m x 0.01 m. Regarding the FE layer, square linear elements are
used in the vertical portion of the layer, as well as triaaguinear elements in the curved
portion at the top of the WFE domain (Figure 9). The mesh ofRRelayer hence contains
1,698 DOFs, includings01 DOFs on the interface with the WFE domain. Finally, the mesh
of the CMS superelement is composed of triangular and rgatanlinear elements, which
involves a total ofl2, 047 DOFs including530 DOFs uniformly spread on the superelement
boundary. Within the framework of the present approach,dwramic stiffness matrice®**
andD°®® are thus involved which are of respective siges x 875 and530 x 530, while the full
assembly contaings3, 540 DOFs.

CMS superelement WEE/FE superelement

Figure 9: Detailed view of the assembly meshes.

The pressure FRF is computed at a node located on the irgebfsteveen the CMS and
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hybrid WFE/FE superlements, as shown in Fidure 8. The liegylressure levels are plotted in
Figure[10. Againm; = 20 right/left- andm, = 20 top/bottom-going wave modes are retained
for modeling the hybrid WFE/FE superelement, wiil@ fixed interface modes are considered
for modeling the CMS/CB superelement. Again, the WFE-bas#dtion correctly matches
the FE reference solution over the whole frequency rangspitiesome very slight differences
above200 Hz which appear to be less than 3dB, however.
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Figure 10: Pressure FRFs of the assembly: (—) FE referedotasyg (— —) solution obtained with the hybrid
WFE/FE superelement and a CB superelement#ithiixed interface modes;) solution obtained using two CB
superelements with00 and 1000 fixed interface modes; (a) full frequency range; (b) focuthimrangg267 Hz,
281 Hz].

The efficiency of the method is assessed in comparison wéltdmventional CB method.
For this purpose, two CMS/CB superelements are considengthweoncern the one depicted
in Figurel8 and the previous WFE/FE superelement. Hg@and1, 000 fixed interface modes
are respectively used for modeling these superelements.CHibased pressure FRF is dis-
played in Figuré 10, which appears to be a little bit less eatetthan the WFE-based solution,
as shown FigurE_10(b). The interesting feature of the pregbdybrid WFE/FE modeling lies
in the reduction of the CPU times. It actually taks s for computing the pressure FRF with
the hybrid WFE/FE-based approach, compareitos with the conventional CB method. This
means>2.2% of time reduction, which fully gives credit to the proposgxbeoach.

5 CONCLUSIONS

A new substructuring technique has been proposed for thtegbien of the acoustic behav-
ior of arbitrary-shaped 2D cavities. It involves WFE/FE hgbsuperelements, consisting in a
rectangular domain, with a periodic FE mesh and modeled lansef the WFE method, sur-
rounded by a FE layer with a small width. The interestingdeabehind this modeling is that a
few wave modes are only required to describe the dynamfoasi$ matrices of those WFE/FE
hybrid superelements, meaning that they can be computeddrydast way. Modeling a whole
arbitrary-shaped acoustic cavity follows from convendildfE assembly procedure, i.e., by cou-
pling several WFE/FE hybrid superelements together asagedlith other CMS superelements
and classical FE components. Numerical experiments hame t&ried out which highlight
the relevance of the proposed substructuring technigueymms of accuracy and computational
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saving, in comparison with the conventional CMS technique.
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