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Abstract. A substructuring technique is proposed which enables fast computation of the acous-
tic response of arbitrary-shaped 2D cavities subject to different kinds of excitations. It com-
bines rectangular superelements which are modeled by meansof the wave finite element (WFE)
method, and arbitrary-shaped superelements modeled usingcomponent mode synthesis (CMS).
Within the WFE framework, the so-called receptance matrices of rectangular superelements
— which link the pressure vectors to the acoustic force vectors over the boundaries — can be
derived in an efficient way in terms of wave modes, without theneed of explicitly condensing
the internal degrees of freedom of the systems. A model reduction strategy is proposed which
aims at expressing the receptance matrices with a few wave modes only. The proposed strategy
involves enclosing each rectangular superelement in a finite element (FE) layer with a small
width. In this way, smoothed pressure fields are likely to occur over the WFE superelements,
hence enabling these superelements to be described with a few wave modes only. By consid-
ering those WFE-based rectangular superelements surrounded by FE layers, this yields the
so-called hybrid WFE/FE superelements whose dynamic stiffness matrices can be computed in
a very fast way. Modeling a whole arbitrary-shaped acousticcavity follows from conventional
assembly procedure between hybrid WFE/FE superelements, CMS superelements and other FE
components. Numerical experiments are carried out to highlight the relevance of the proposed
substructuring technique.
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1 INTRODUCTION

Developing fast and accurate numerical tools for assessingthe acoustic behavior of arbitrary-
shaped cavities over wide frequency ranges appears to be an open industrial challenge, leading
the way of proposing efficient solutions to noise reduction.Popular examples of such cavities
are passenger compartments in cars, and aircraft cabins. The finite element (FE) and bound-
ary element (BE) methods are popular techniques for computing internal acoustic problems,
but have however to face several severe issues as soon as the number of degrees of freedom
(DOFs) involved reaches excessive values. The issue lies inthe computation of large-sized ma-
trix systems (FE framework), or the consideration of dense matrices which require high memory
storage (BE framework), at many discrete frequencies. Thismeans numerical techniques which
are either time consuming or inaccurate.

Reduction methods like FE-based substructuring or wave-based analytical techniques seem
to constitute efficient alternatives to the conventional FEand BE methods. Among the FE-based
substructuring techniques, one can mention the Craig-Bampton method [1] which focuses on
partitioning a whole system into several components and modeling these components by means
of static modes and fixed interface modes. The tough issue when dealing with the CB method
concerns the determination of the fixed interface modes which would need to be retained for as-
sessing the acoustic behavior of cavities with accurate precision. This explains why, in practice,
many fixed interface modes are usually retained to ensure theconvergence of the CB solutions,
hence impacting the CPU times required for modeling the CB components. On the other hand,
Trefftz techniques like the wave based method (WBM) [2] aim ausing a few analytical wave
functions to describe the acoustic behavior of 2D cavities,even in the short wavelength domain.
In this sense, they appear to be efficient in terms of CPU times. Their disadvantage, however, is
that they invoke dense matrices in the same way as the BE method.

A new FE-based substructuring technique is proposed here which overcomes the aforemen-
tioned issues. It makes use of the wave finite element (WFE) method which aims at assessing
numerical wave modes traveling along periodic systems [3, 4, 5]. Within this framework, a
so-called hybrid WFE/FE superelement is formulated which consists in a rectangular acous-
tic domain, with a periodic FE mesh, surrounded by an arbitrary-meshed FE layer with a small
width. The interesting feature of this superelement is thatthe receptance matrix of the rectangu-
lar domain — i.e., which links the vector of nodal pressures to that of the nodal forces over the
boundary — can be expressed by means of a small number of wave modes. The fact that a few
wave modes are only used is explained because the pressure field is expected to be smooth over
the rectangular domain, it being understood that local singularities near excitations and bound-
ary conditions are managed by the FE layer. In doing so, the proposed superelement can be
modeled using a dynamic stiffness matrix of small size whosecomputation doesn’t require ex-
cessive CPU times. Modeling a whole acoustic cavity followsfrom conventional FE procedure
by assembling several hybrid WFE/FE superelements, as wellas CMS-based superelements
and other FE components together.

The rest of the paper is organized as follows. In Section 2, the basics of the WFE method are
recalled which concern the description of wave modes traveling along a rectangular acoustic
domain with a periodic FE mesh. Also, the strategy for computing the forced response of peri-
odic systems is presented. In Section 3, the WFE-based procedure for expressing the receptance
matrix of a rectangular domain is proposed. Also, the formulation of the WFE/FE hybrid su-
perelement is proposed. Finally, numerical experiments are carried out in Section 4 to highlight
the computational efficiency of the proposed approach in comparison with the conventional CB
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method.

2 WFE METHOD

2.1 Wave mode computation

The basics of the WFE method, which concern the description of wave modes traveling along
a one-dimensional periodic system, are recalled hereafter. Within the present scope, emphasis
will be placed on the study of rectangular acoustic domains with a FE mesh which is periodic
along one straight direction, i.e., composed of identical substructures connected to each other,
as shown in Figure 1. Such a rectangular acoustic domain is supposed to be excited by harmonic
excitations (the angular frequency being denoted asω) which are confined to the left and right
edges only, and modeled in terms of two vectors of acoustic forcesF0 andF⋆

0 (see Figure 1).

Figure 1: Rectangular acoustic domain with a periodic FE mesh, and related WFE modeling.

For the purpose of wave mode description, the WFE method requires one to know the acous-
tic mass matrixM and acoustic stiffness matrixK of a substructure, and ultimately the con-
densed dynamic stiffness matrixD∗ = DBB − DBID

−1
II DIB, whereD = −ω2M + K is the

dynamic stiffness matrix of the substructure Here, the subscript B refers to the degrees of free-
dom (DOFs) on the left and right edges of the substructure, while the subscriptI refers to the
internal DOFs (i.e., which do not belong to the left and rightedges). Denote asn the number of
DOFs on the left (or right) edge of the substructure. Following the WFE framework [4, 3], the
wave modes are sought as the solutions of an eigenproblem of the formSφj = µjφj in which
S is a2n× 2n symplectic matrix expressed by

S =

[
−D∗−1

LR D∗
LL −D∗−1

LR

D∗
RL −D∗

RRD
∗−1
LR D∗

LL −D∗
RRD

∗−1
LR

]
, (1)

where the subscriptsL andR refer to the left and right edges of the substructure, respectively.
The eigenvectors ofS — namely,{φj}j — are the so-called wave shapes which are partitioned
into pressure and force components asφj = [(φj)

T
p (φj)

T
F ]

T . Also, since the matrixS is sym-
plectic, its eigenvalues come in pairs as(µj, 1/µj).

From the numerical point of view, a so-calledS + S−1 transformation of the eigenproblem
(1) can be considered [6, 7] for accurately computing the eigensolutions{µj}j and{φj}j . The
interesting feature of theS + S−1 transformation lies in the use of skew-symmetric matrices
(N′JL

′T +L′JN
′T ) andL′JL

′T , leading to the following eigenproblem whose eigenvalues are
of the formλj = µj + 1/µj:(

(N′JL
′T + L′JN

′T )− λjL
′JL

′T
)
zj = 0, (2)
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where

L′ =

[
0 In

D∗
LR 0

]
, N′ =

[
D∗

RL 0

−(D∗
LL +D∗

RR) −In

]
, J =

[
0 In

−In 0

]
. (3)

Once the eigenvalues{λj}j in Eq. (2) are found, the original eigenvalues{µj}j are found
analytically by solving a quadratic equation of the form

x2 − λjx+ 1 = 0. (4)

Also, once the eigenvectors{zj}j in Eq. (2) are found, the original eigenvectors{φj}j are
found analytically as follows [7]:

φj =

[
In 0

D∗
RR In

]
w′

j where w′
j = J

(
L

′T −
1

µj

N
′T

)
zj. (5)

2.2 Conventions and matrix notations

As was mentioned in Section 2.1, the eigenvalues of the matrix S are pairs(µj, 1/µj). This
leads to the consideration ofn right-going wave modes for which|µj| ≤ 1, andn left-going
wave modes for which|µj| ≥ 1. Regarding the case|µj| = 1, the right-going (resp. left-going)
wave modes are defined so that(iω/4)φH

j Jφj > 1 (resp. (iω/4)φH
j Jφj < 1), which means

that the related energy flows [8] are conveyed towards the right (resp. left) direction of the
system.

For the sake of clarity, the sets of right- and left- going wave modes will be denoted as
{(µj,φj)}j=1,...,n and{(µ⋆

j ,φ
⋆
j )}j=1,...,n, where it is understood thatµ⋆

j = 1/µj ∀j ∈ {1, . . . , n}.
Also, by considering Eq. (5), the wave shapesφj andφ⋆

j are expressed as

φj =

[
In 0

D∗
RR In

]
J
(
L

′T − µ⋆
jN

′T
)
zj , φ⋆

j =

[
In 0

D∗
RR In

]
J
(
L

′T − µjN
′T
)
zj , (6)

wherezj is an eigenvector of Eq. (2) corresponding to the eigenvalueλj. In matrix form, the
wave modes can thus be written as

µ = diag{µj}j=1,...,n , µ⋆ = µ−1 , Φ = [φ1 . . .φn] , Φ⋆ = [φ⋆
1 . . .φ

⋆
n], (7)

with the property that||µ||2 ≤ 1 (||.||2 being the2−norm). Also, the matricesΦ andΦ⋆ are to
be partitioned into pressure and force components, as follows:

Φ =

[
Φp

ΦF

]
, Φ⋆ =

[
Φ⋆

p

Φ⋆
F

]
, (8)

whereΦp, ΦF, Φ
⋆
p andΦ⋆

F aren× n matrices which are full rank [9].
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2.3 Forced response computation

Within the framework of the WFE method, the vectors of pressures and acoustic forces of an
assembly ofN substructures like the one displayed in Figure 1 are expressed in terms of wave
shapes, as follows [10]:

p(k) = Φpµ
k−1Q+Φ⋆

pµ
N−k+1Q⋆ , ±F(k) = ΦFµ

k−1Q+Φ⋆
Fµ

N−k+1Q⋆ k = 1, . . . , N+1.
(9)

where the subscript(k) designates any substructure boundary, i.e., either a coupling inter-
face/edge between two consecutive substructuresk−1 andk, or the left/right edge of the whole
domain; also,Q andQ⋆ are vectors of wave amplitudes which are respectively defined at the
left and right edges of the whole domain, i.e., at the substructure boundaries(1) and(N + 1).
In Eq. (9), the sign ahead ofF(k) should be negative in case when a left boundary is considered,
and positive for a right boundary.

The problem behind the computation of the forced response ofthe acoustic domain can be
stated as to find the vectors of wave amplitudesQ andQ⋆. This is achieved by considering the
boundary conditions (BCs) on the left and right edges, the other substructure boundaries being
assumed to be free from excitations sources (see Figure 1). Those BCs may involve prescribed
pressures or acoustic forces. In view of the subsequent developments made in this paper, we
will restrict the present analysis to the study of two vectors of prescribed forcesF0 andF⋆

0 that
apply over the substructure boundaries(1) and(N +1), respectively, as shown in Figure 1. The
related wave expansion, Eq. (9), yields

−F0 = ΦFQ +Φ⋆
Fµ

NQ⋆ , F⋆
0 = ΦFQµN +Φ⋆

FQ
⋆. (10)

As a result, a wave-based matrix system can be derived whose resolution provides the vectors
of wave amplitudesQ andQ⋆. According to Eq. (10), it is expressed as follows:

A

[
Q

Q⋆

]
= B

[
F0

F⋆
0

]
, (11)

whereA andB are2n× 2n matrices defined as

A =

[
I Φ−1

F Φ⋆
Fµ

N

Φ⋆−1
F ΦFµ

N I

]
, B =

[
−Φ−1

F 0

0 Φ⋆−1
F

]
. (12)

To derive the matricesA andB, it has been assumed that the matricesΦF andΦ⋆
F are invertible

(a proof of this statement is brought in ref. [9]). The motivation behind the use of the matrix
inversesΦ−1

F andΦ⋆−1
F is to make the matrixA well-conditioned [9]. The determination of the

vectors of wave amplitudesQ andQ⋆ hence follows from Eq. (11):
[

Q

Q⋆

]
= A−1B

[
F0

F⋆
0

]
. (13)

3 SUPERELEMENT MODELING

3.1 Introduction

Consider now a rectangular acoustic domain which undergoesacoustic forces over its left/right
and bottom/top edges, as depicted in Figure 2. The motivation behind the proposed study is to

5



J.-M. Mencik, D. Duhamel and M.-L. Gobert

express a so-called receptance matrixH which links the vector of pressures of the boundary
nodespB to that of the vector of acoustic forcesFB, where the subscriptB refers to the nodes
belonging to the left/right and bottom/top edges. This relation is expressed bypB = HFB. The
key idea here is to express the receptance matrixH in terms of wave modes (Section 2) traveling
along both horizontal and vertical directions, as shown in Figure 2. This yields a superelement
modeling whose derivation follows from the well-known superposition principle (see Section
3.2).

Figure 2: Illustration of the superposition principle involving a vector of acoustic force decomposed into two ones
acting respectively along the left/right and bottom/top edges.

3.2 Receptance matrix

The key idea behind the present approach is to decompose the vector of acoustic forces
FB into two states of excitation(FB)1 and(FB)2 that operate, respectively, on the vertical and
horizontal edges (see Figure 2). This means two WFE modelings (namely,1 and2), and related
substructures, for assessing the wave propagation along the horizontal and vertical directions.
For each WFE modelingi (i = 1, 2), the number of right/left- (or top/bottom-) going wave
modes involved isni — n1 andn2 being the number of DOFs contained over the left/right
edge and bottom/top edge, respectively — while the number ofsubstructures isNi — N1 and
N2 being the number of substructures involved along the horizontal and vertical directions,
respectively. For the sake of simplicity, it is assumed thatthe boundary nodes of the “vertical”
substructures (WFE modeling1) are only confined to their left and right edges, while those
of the “horizontal” substructures (WFE modeling2) are only confined to their bottom and top
edges (see Figure 2). By considering the superposition principle, this yields

FB = (FB)1 + (FB)2 ⇒ pB = (pB)1 + (pB)2. (14)

This means that the vector of pressurespB produced by the vector of acoustic forcesFB is
expressed as the sum of two vectors(pB)1 and (pB)2 which are respectively induced by the
vectors of acoustic forces(FB)1 and(FB)2 as acting independently on the acoustic domain. It
should be noticed that the vectorsFB, (FB)1, (FB)2, pB, (pB)1 and(pB)2 have the same size,
i.e.,nB × 1, wherenB = 2(n1 − 1) + 2(n2 − 1) represents the number of boundary DOFs of
the rectangular domain. Also, it should be pointed out that the vectors(FB)1 and(FB)2 contain,
respectively,2(n2 − 1) and2(n1 − 1) zero-components. Those vectors are expressed as

(FB)1 = P1FB , (FB)2 = P2FB, (15)
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whereP1 andP2 are twonB × nB matrices which relate the partitioning depicted in Figure 2
and which are defined so that

P1 + P2 = InB
. (16)

In fact, the matricesP1 andP2 are diagonal and mostly composed of1 and0 components to
enforce the fact that certain nodes are excited, while otherare free. Other components equal to
1/2 should also be considered which specifically address the acoustic forces at the corners of
the domain (Figure 2), it being understood they are to be equally partitioned between the states
of excitation(FB)1 and(FB)2.

The acoustic behavior of the rectangular domain, as subjected either to(FB)1 or (FB)2, can
be assessed using the strategy depicted in Section 2.3. For each statei, the strategy consists
in consideringni × 1 vectors of acoustic forces(F0)i and (F⋆

0)i acting over the left/right or
bottom/top edges. These vectors are linked to the full vector of acoustic forces(FB)i as follows:

[
(F0)i
(F⋆

0)i

]
= (BF)i(FB)i i = 1, 2, (17)

where(BF)i is a2ni × nB Boolean matrix. According to Eqs. (13), (15) and (17), the vectors of
wave amplitudes are expressed as

[
Qi

Q⋆
i

]
= A−1

i Bi(BF)iPiFB i = 1, 2, (18)

where

Ai =

[
Ini

(ΦF)
−1
i (Φ⋆

F)iµ
Ni

i

(Φ⋆
F)

−1
i (ΦF)iµ

Ni

i Ini

]
, Bi =

[
−(ΦF)

−1
i 0ni×ni

0ni×ni
(Φ⋆

F)
−1
i

]
i = 1, 2.

(19)
In a similar way as Eq. (17), there exists a relation which links the vector of nodal pressuresp

(ki)
i

on a given substructure boundary(ki) (ki = 1, . . . , Ni + 1) with the vector of nodal pressures
(pB)i on the edges of the rectangular domain. This yields




p
(1)
i

L
(2)
i p

(2)
i

...
L

(Ni)
i p

(Ni)
i

p
(Ni+1)
i



= (Bp)i(pB)i i = 1, 2, (20)

whereL(ki) (ki = 2, . . . , Ni) is a2 × ni Boolean matrix which localizes among the DOFs of
the substructure boundary(ki), those belonging to the edges of the domain. The way the matrix
L(ki) works is highlighted in Figure 3. Notice that bothp(1)

i andp(Ni+1)
i are considered in the

left-hand side of Eq. (20) since all their components relatenodal pressures on the edges of the
domain (see Figure 3). Finally, in Eq. (20),(Bp)i is anB×nB orthogonal Boolean matrix whose
purpose is to renumber the rows and columns of the matrix occurring in the left-hand side so
as to match the node numbering scheme of the vectorspB andFB, Eq. (14), which may be
arbitrary a priori.

Invoking the wave expansion (9) into Eq. (20) while using thefact that the matrix(Bp)i is
orthogonal — i.e.,(Bp)

−1
i = (Bp)

T
i —, this yields

(pB)i = (Bp)
T
i (Ψp)i

[
Qi

Q⋆
i

]
i = 1, 2, (21)
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Figure 3: Illustration of the vectorsL(k1)
1 p

(k1)
1 andL(k2)

2 p
(k2)
2 .

where(Ψp)i is anB × 2ni matrix defined by

(Ψp)i =




(Φp)i (Φ⋆
p)iµ

Ni

i

L
(2)
i (Φp)iµi L

(2)
i (Φ⋆

p)iµ
Ni−1
i

...
...

L
(Ni)
i (Φp)iµ

Ni−1
i L

(Ni)
i (Φ⋆

p)iµi

(Φp)iµ
Ni

i (Φ⋆
p)i




i = 1, 2. (22)

By considering Eqs. (21) and (18), a relation linking the vector of pressures(pB)i and acoustic
forcesFB can be derived as follows:

(pB)i = (Bp)
T
i (Ψp)iA

−1
i Bi(BF)iPiFB i = 1, 2. (23)

The derivation of the receptance matrixH — defined aspB = HFB wherepB = (pB)1 + (pB)2
— finally follows as

H = (Bp)
T
1 (Ψp)1A

−1
1 B1(BF)1P1 + (Bp)

T
2 (Ψp)2A

−1
2 B2(BF)2P2. (24)

3.3 Model reduction

3.3.1 Introduction

One way to speed up the computation of the receptance matrixH is to make use of re-
duced wave mode bases. In this framework, the vectors of pressures and acoustic forces are
assessed by means of reduced sets of wave shapes{(φ̃pj)i}j=1,...,mi

∪ {(φ̃
⋆

pj)i}j=1,...,mi
and

{(φ̃Fj)i}j=1,...,mi
∪{(φ̃

⋆

Fj)i}j=1,...,mi
extracted from the full sets{(φpj)i}j=1,...,ni

∪{(φ⋆
pj)i}j=1,...,ni

and{(φFj)i}j=1,...,ni
∪ {(φ⋆

Fj)i}j=1,...,ni
, wheremi ≤ ni. This yields a small sizedmi ×mi ma-

trix µ̃i = diag{(µ̃j)i}j=1,...,mi
, and small sizedni ×mi matrices(Φ̃p)i = [(φ̃p1)i . . . (φ̃pmi

)i],

(Φ̃
⋆

p)i = [(φ̃
⋆

p1)i . . . (φ̃
⋆

pmi
)i], (Φ̃F)i = [(φ̃F1)i . . . (φ̃Fmi

)i] and(Φ̃
⋆

F)i = [(φ̃
⋆

F1)i . . . (φ̃
⋆

Fmi
)i]. As

a result, the receptance matrix can be approximated asH ≈ H̃, where (cf. Eq. (24)):

H̃ = (Bp)
T
1 (Ψ̃p)1Ã

−1
1 B̃1(BF)1P1 + (Bp)

T
2 (Ψ̃p)2Ã

−1
2 B̃2(BF)2P2. (25)

8
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Here, the matrices̃Ai andB̃i are to be expressed as follows (cf. Eq. (19)):

Ãi =

[
Imi

(Φ̃F)
+
i (Φ̃

⋆

F)iµ̃
Ni

i

(Φ̃
⋆

F)
+
i (Φ̃F)iµ̃

Ni

i Imi

]
, B̃i =

[
−(Φ̃F)

+
i 0mi×ni

0mi×ni
(Φ̃

⋆

F)
+
i

]
i = 1, 2,

(26)
where(Φ̃F)

+
i and(Φ̃

⋆

F)
+
i are the left pseudo-inverse of the matrices(Φ̃F)i and(Φ̃

⋆

F)i. Also, in
Eq. (25), the matrices(Ψ̃p)1 and(Ψ̃p)2 are expressed by (cf. Eq. (22)):

(Ψ̃p)i =




L
(1)
i (Φ̃p)i L

(1)
i (Φ̃

⋆

p)iµ̃
Ni

i

L
(2)
i (Φ̃p)iµ̃i L

(2)
i (Φ̃

⋆

p)iµ̃
Ni−1
i

...
...

L
(Ni+1)
i (Φ̃p)iµ̃

Ni

i L
(Ni+1)
i (Φ̃

⋆

p)i




i = 1, 2. (27)

3.3.2 Hybrid WFE/FE superelement modeling

Although interesting, the use of reduced sets of wave shapes{(φ̃pj)i}j=1,...,mi
∪{(φ̃

⋆

pj)i}j=1,...,mi

and{(φ̃Fj)i}j=1,...,mi
∪ {(φ̃

⋆

Fj)i}j=1,...,mi
may be subject to strong issues, e.g., in case when ex-

citation sources are applied on the edges of the rectangularsuperelements. In this case, the
pressure field is likely to be strongly heterogeneous in the vicinity of the excitation sources,
meaning that almost the full sets of wave shapes are requiredto describe the acoustic behavior
of the system with accurate precision. To solve this issue, it is proposed to surround any WFE-
based rectangular superelement by means of a thin FE layer whose thickness is not necessarily
uniform, as shown in Figure 4.

Figure 4: Illustration of a WFE superelement surrounded by athin FE layer with a non-uniform thickness.

While the rectangular domain exhibits a periodic FE mesh, the layer can be discretized in
arbitrary ways. By coupling a WFE-based rectangular element whose dimensions can be large,
with a small FE layer, this yields the consideration of a so-called hybrid WFE/FE superele-
ment which is well-suited for model reduction purpose. The modeling of this superelement is
achieved as follows.

In matrix form, the dynamic equilibrium equation of the FE layer is expressed as
[
DBB DBR

DRB DRR

] [
p̃B

p̃R

]
=

[
−F̃B

F̃R

]
, (28)
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where the subscriptB refers to the interface DOFs — i.e., where coupling with the WFE-based
rectangular superelement occurs — while the subscriptR refers to the remaining DOFs. Also,
the tilde sign indicates that vector terms result from the reduced modeling of the WFE-based
rectangular superelement, with the assumption thatH̃F̃B = p̃B (see after Eq. (23)). Note that the
term−F̃B in the right hand side of Eq. (28) reflects the opposite of the vector of nodal acoustic
forces acting on the edges of the rectangular superelement,and results from the action-reaction
law. Also, the termF̃R refers to the vector of nodal acoustic forces acting on the remaining
nodes of the FE layer. In left-multiplying the first row blockof the matrix system in Eq. (28)
by DBBH̃, whereH̃ is the receptance matrix of the rectangular domain, this yields

[
DBBH̃DBB DBBH̃DBR

DRB DRR

] [
p̃B

p̃R

]
=

[
−DBBH̃F̃B

F̃R

]
. (29)

By using the fact that̃HF̃B = p̃B, thus it turns out from Eq. (29) that the dynamic equilibrium
equation of the hybrid WFE/FE superelement can be expressedas follows:

[
DBB + DBBH̃DBB DBBH̃DBR

DRB DRR

] [
p̃B

p̃R

]
=

[
0

F̃R

]
. (30)

3.3.3 Superelement assembly

Modeling a whole arbitrary-shaped acoustic cavity involves assembling several hybrid WFE/FE
superelements with conventional FE components and CMS superelements, as shown in Figure
5. Within the CMS framework, the condensed dynamic stiffness matrices of superelements
may be assessed by considering the Craig-Bampton (CB) method [1], i.e., by means of static
modes and fixed interface modes. In matrix form, the dynamic equilibrium equations of these
FE components and CB-based superelements may be translatedas follows, respectively:

DFEp̃ = F̃, , D̃CBp̃B = F̃B, (31)

whereDFE is the classic dynamic stiffness matrix of a FE component (p̃ andF̃ being the vectors
of nodal pressures and nodal forces of the component), whileD̃CB is the condensed dynamic
stiffness matrix of a superelement, whose expression can befound in [11]; also, the subscript
B refers to the boundary DOFs, while the tilde sign ofD̃CB indicates that a reduced number of
fixed interface modes are used to derive the matrix. On the other hand, the dynamic equilibrium
equation of a hybrid WFE/FE superelement is expressed as follows (Eq. (30)):

D̃SEp̃Lay = F̃Lay, (32)

where

D̃SE =

[
DBB + DBBH̃DBB DBBH̃DBR

DRB DRR

]
. (33)

In Eq. (30), p̃Lay and F̃Lay are the vectors of nodal pressures and nodal forces of the layer,
expressed by

p̃Lay =

[
p̃B

p̃R

]
, F̃Lay =

[
0

F̃R

]
. (34)
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The numerical model of a whole cavity composed of several WFE/FE superelements, FE com-
ponents and CB superelements hence follows from conventional FE procedure, by assembling
several dynamic stiffness matricesD̃SE

r , DFE
s andD̃CB

t (r, s, t = 1, 2, . . .). This yields the follow-
ing dynamic equilibrium equation

D̃Cavp̃ = F̃, (35)

wherep̃ and F̃ are to be understood as the full vectors of nodal pressures and forces of the
cavity, respectively. Also, the matrix̃DCav is expressed by

D̃Cav =
∑

r

(LSE
r )T D̃SE

r LSE
r +

∑

s

(LFE
s )TDFE

s LFE
s +

∑

t

(LCB
t )T D̃CB

t LCB
t . (36)

whereLSE
r , LFE

s andLCB
t are conventional Boolean localization matrices.

Figure 5: Illustration of an assembly involving two hybrid WFE/FE superelements, one FE component and one
CMS superelement.

4 NUMERICAL RESULTS

4.1 Hybrid WFE/FE superelement

The concept of hybrid WFE/FE superelement is first investigated in the case of a two-
dimensional rectangular cavity filled with air. Following the strategy depicted in Section 3,
this acoustic domain is composed of a WFE-based superelement of dimensions3 m ×2 m sur-
rounded by a uniform FE layer of thickness0.02 m (Figure 6(a)). Both WFE domain and FE
layer are meshed by means of square linear acoustic elementsowning 1 DOF per node, of size
0.01 m × 0.01 m (Figure 6(b)). The FE layer therefore contains2 elements in its thickness,
involving a total number of3, 024 DOFs. The mesh of the WFE-based internal domain consists
of N1 = 300 elements in the horizontalx−direction andN2 = 200 elements in the vertical
y−direction. Each left/right and bottom/top edge contains respectivelyn1 = 201 andn2 = 301
DOFs, the total number of DOFs on the interface between the WFE domain and the FE layer
beingnB = 1, 000.

The hybrid WFE/FE superelement modeling is used to investigate the frequency behavior of
the cavity which is subject to two acoustic point sources on the external boundary of the FE
layer, as shown in Figure 6(a). These acoustic point forces have equal frequency-dependent
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Figure 6: Hybrid WFE/FE superelement: (a) dimensions and test configuration; (b) detailed view of the mesh.

magnitudes ofF0 = 2
√

ωP
ρ0

whereP = 10−6 W.m−1. The fluid, considered as compress-

ible and barotropic, is characterized by its mean densityρ0 = 1.25 kg.m−3 and sound velocity
c0 = 343 m.s−1. Also, a fluid viscosity is taken into account through the Stokes’ law of sound
attenuation, i.e., the Helmholtz equation that governs theacoustic pressure in the cavity is mod-
ified by an attenuation coefficientα:

∆p +

(
ω

c0
− i α

)2

p = 0. (37)

The damping is here frequency-dependent and given byα = 2 η ω2

3 ρ0 c30
, whereη = 18.27 10−6 Pa.s

is the dynamic viscosity of air.
The pressure FRF is assessed at the node located at the top left corner of the FE layer (Figure

6(a)), for 246 discrete frequencies uniformly spaced over the range[10 Hz, 500 Hz] with a
frequency step of2 Hz. The mesh is supposed to be fine enough to accurately capture the
dynamic behavior of the system throughout the whole frequency range, i.e., by considering the
usual criterion that the acoustic wavelengths should be discretized by a minimum of8 elements.
As was explained in Section 3, the computation of the FRF of the hybrid WFE/FE superelement
involves several steps which includes the calculation of matrices of reduced wave bases(Φ̃p)i,

(Φ̃
⋆

p)i, (Φ̃F)i, (Φ̃
⋆

F)i for each directioni = 1, 2. These are used to form thenB × nB receptance

matrix H̃, see Eq. (25). The receptance matrix is finally combined to the dynamic stiffness
matrix D of the FE layer to form the matrix̃DSE (Eqs. (30), (33)) of the hybrid WFE/FE
superelement, with a view to solving the matrix system (35) at each frequency of interest.

The motivation behind the use of the FE layer, around the WFE domain, is to highly reduce
the sizes of the wave bases without significantly altering the accuracy of the solution. In the
present case, the pressure FRF has been computed by only retaining m1 = 20 right/left- and
m2 = 20 top/bottom-going wave modes among then1 = 201 andn2 = 301 modes of the full
wave bases. The resulting dB pressure levels, i.e.,20 log10(

|p|
pref

)wherepref = 20×10−6 Pa, are
shown in Figure 7 (dotted pink line). For validation purpose, a reference FE solution issued from
the commercial FE software Comsol MultiphysicsR© is also displayed in Figure 7 (black solid
line). It can be seen that the reference levels are correctlyretrieved by the hybrid superelement
approach over the whole frequency band, despite a few slightdifferences regarding some low-
frequency anti-resonance peaks and the resonance peak atf = 378 Hz.
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Figure 7: Pressure FRFs of the rectangular hybrid WFE/FE cavity: (—) FE reference solution; (−−) WFE/FE
solution; (—) CB solution with1, 000 elastic modes; (a) full frequency range; (b) focus in the range [360 Hz,
500 Hz].

Regarding CPU times, it takes as a whole852 s to achieve the computation of the pres-
sure FRF (including the computations of wave modes) with MATLAB R© and using an IntelR©

Core(TM) i7-3720QM@2.6 GHz processor. By considering full wave bases instead of reduced
wave bases, it would have taken1, 888 s to compute the FRF. Thus the use of reduced wave
bases yields a reduction of54.9% of the computational cost, hence giving credit to the proposed
model reduction strategy.

Also, the efficiency of the method is assessed when compared to the Craig-Bampton (CB)
method [1]. In this framework, the condensed dynamic stiffness matrixD̃CB of the cavity is
modeled by means of1, 016 static modes and1, 000 fixed interface modes. The related FRF is
displayed in Figure 7 in green solid line. As it can be seen in Figure 7(b), the CB solution fails to
accurately describe the resonance peaks of the reference FEsolution above300 Hz, as opposed
to the hybrid WFE/FE-based approach. Besides, the CPU time involved in the CB approach
is 966 s, which exceeds that of the hybrid WFE/FE-based approach. To summarize, it appears
from the analysis of this first test case that the hybrid WFE/FE-based approach constitutes an
efficient alternative to the CB method.

4.2 Superelement assembly

In the following, the above rectangular cavity is embedded in an arbitrary-shaped assembly
depicted in Figure 8. The latter is composed of a hybrid WFE/FE superelement which is con-
nected to a CMS superelement, modeled by means of the CB method. The system is excited by
means of an acoustic point source located inside the CMS superelement. In the present case,
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the hybrid WFE/FE superelement is made up of a WFE-based rectangular domain which is
connected to a non-uniform FE layer over two of its edges only. In doing so, large reduction
of the sizes of the WFE wave bases is expected over a reasonable frequency range — which is
chosen to be[10 Hz, 300 Hz] — without significantly penalizing the accuracy of the proposed
approach.

Figure 8: Assembly of a hybrid WFE/FE superelement and a CMS superelement: dimensions and test configura-
tion.

The WFE-based rectangular domain is meshed as in the previous case, i.e., using square
linear elements of size0.01 m × 0.01 m. Regarding the FE layer, square linear elements are
used in the vertical portion of the layer, as well as triangular linear elements in the curved
portion at the top of the WFE domain (Figure 9). The mesh of theFE layer hence contains
1, 698 DOFs, including501 DOFs on the interface with the WFE domain. Finally, the mesh
of the CMS superelement is composed of triangular and rectangular linear elements, which
involves a total of12, 047 DOFs including530 DOFs uniformly spread on the superelement
boundary. Within the framework of the present approach, twodynamic stiffness matrices̃DSE

andD̃CB are thus involved which are of respective sizes875× 875 and530× 530, while the full
assembly contains73, 540 DOFs.

Figure 9: Detailed view of the assembly meshes.

The pressure FRF is computed at a node located on the interface between the CMS and
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hybrid WFE/FE superlements, as shown in Figure 8. The resulting pressure levels are plotted in
Figure 10. Again,m1 = 20 right/left- andm2 = 20 top/bottom-going wave modes are retained
for modeling the hybrid WFE/FE superelement, while500 fixed interface modes are considered
for modeling the CMS/CB superelement. Again, the WFE-basedsolution correctly matches
the FE reference solution over the whole frequency range, despite some very slight differences
above200 Hz which appear to be less than 3dB, however.
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Figure 10: Pressure FRFs of the assembly: (—) FE reference solution; (−−) solution obtained with the hybrid
WFE/FE superelement and a CB superelement with500 fixed interface modes; (—) solution obtained using two CB
superelements with500 and1000 fixed interface modes; (a) full frequency range; (b) focus inthe range[267 Hz,
281 Hz].

The efficiency of the method is assessed in comparison with the conventional CB method.
For this purpose, two CMS/CB superelements are considered which concern the one depicted
in Figure 8 and the previous WFE/FE superelement. Here,500 and1, 000 fixed interface modes
are respectively used for modeling these superelements. The CB-based pressure FRF is dis-
played in Figure 10, which appears to be a little bit less accurate than the WFE-based solution,
as shown Figure 10(b). The interesting feature of the proposed hybrid WFE/FE modeling lies
in the reduction of the CPU times. It actually takes433 s for computing the pressure FRF with
the hybrid WFE/FE-based approach, compared to905 s with the conventional CB method. This
means52.2% of time reduction, which fully gives credit to the proposed approach.

5 CONCLUSIONS

A new substructuring technique has been proposed for the prediction of the acoustic behav-
ior of arbitrary-shaped 2D cavities. It involves WFE/FE hybrid superelements, consisting in a
rectangular domain, with a periodic FE mesh and modeled by means of the WFE method, sur-
rounded by a FE layer with a small width. The interesting feature behind this modeling is that a
few wave modes are only required to describe the dynamic stiffness matrices of those WFE/FE
hybrid superelements, meaning that they can be computed in avery fast way. Modeling a whole
arbitrary-shaped acoustic cavity follows from conventional FE assembly procedure, i.e., by cou-
pling several WFE/FE hybrid superelements together as wellas with other CMS superelements
and classical FE components. Numerical experiments have been carried out which highlight
the relevance of the proposed substructuring technique, interms of accuracy and computational

15



J.-M. Mencik, D. Duhamel and M.-L. Gobert

saving, in comparison with the conventional CMS technique.
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