
Bulk quartic vertices from boundary four-point

correlators

Xavier Bekaert, Johanna Erdmenger, Dmitry Ponomarev, Charlotte Sleight

To cite this version:

Xavier Bekaert, Johanna Erdmenger, Dmitry Ponomarev, Charlotte Sleight. Bulk quartic ver-
tices from boundary four-point correlators. Higher Spin Gauge Theories, 2017. <hal-01279811>

HAL Id: hal-01279811

https://hal.archives-ouvertes.fr/hal-01279811

Submitted on 27 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We present arguments which suggest that the bulk higher-spin gravity duals of weakly-
coupled conformal field theories obey some refined notion of locality. In particular, we
discuss the Mellin amplitude programme in this context. We focus on the O(N) vector
model and minimal higher-spin gravity as a paradigmatic example of such holographic dual
pairs. We restrict ourselves to three- and four-point functions of scalar primary operators,
but the qualitative conclusions are expected to hold for the generic case.
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1 Bulk locality and Mellin amplitudes

Bulk locality is one of the most remarkable features of the AdS/CFT correspondence. The concept
of bulk locality refers to the fact that the usual conditions for locality in a quantum field theory also
hold in the interior of anti de Sitter (AdS) space. It is expected to hold in the usual regime where
the duality is tested, i.e. when the curvature radius RAdS is large compared to the string length `s
which, in turn, is large compared to the Planck length `P . On the gravity side, this corresponds to (I)
a semi-classical limit: RAdS � `P and (II) a higher-spin gap: all particles of spins s greater than two
have large masses Ms>2 �Ms′≤2. On the conformal field theory (CFT) side, this translates into:

(I) a semi-classical limit: a perturbative expansion around a generalised free field theory when
N � 1,

(II) a higher-spin gap: all single-trace operators of higher-spins have large conformal dimensions
∆s>2 � ∆s′≤2 .

These two properties were argued to provide necessary and sufficient conditions for a CFT to possess
a semiclassical and local bulk dual [1, 2]. Later, a third condition was added from the perspective of
effective field theory [3]:

(III) polynomial boundedness of Mellin amplitudes.

Over the last years, significant progress has been made in the Mellin amplitude programme. Initi-
ated in [4], the goal is to interpret the Mellin amplitudes [5] associated to CFT correlation functions
as AdS scattering amplitudes (the corresponding dictionary is summarised in Table 1).
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Table 1: Mellin amplitude dictionary
Minkowski spacetime Anti-de Sitter spacetime
Feynman diagram Witten diagram

Mandelstam invariants Mellin variables
Scattering amplitude Mellin amplitude

For a given correlation function, the corresponding Mellin amplitude is a suitably normalised Mellin
transform of the factor that is not fixed by conformal symmetry. Consider, for example, the simplest
case of a four-point correlator of a scalar primary operator O with scaling dimension ∆,

〈O (y1)O (y2)O (y3)O (y4)〉 =
1(

y2
12y

2
34

)∆ F (u, v) , (1)

with u and v the two cross ratios u =
y2
12y

2
34

y2
13y

2
24
, v =

y2
14y

2
23

y2
13y

2
24
, and yij = yi − yj . Then the reduced Mellin

amplitude [5] is the function M(s, t) of two scattering variables s and t defined via the relation

F (u, v) =

∫
ds

2πi

∫
dt

2πi
us v∆−s−tM(s, t), (2)

providing a Mellin-Barnes representation of the conformal correlator (1). The Mellin amplitude itself
is the functionM(s, t) defined by

M(s, t) =
[
Γ(∆− s)Γ(∆− t)Γ(s+ t−∆)

]2M(s, t), (3)

where a numerical coefficient (irrelevant for the present discussion) has been dropped. The extraction
of the corresponding gamma functions is important to ensure the following property: For a large-N
CFT with a discrete set of primary operators, the Mellin amplitudes of single-trace primary-operator
correlators are meromorphic functions with simple poles determined by the twists of the single-trace
operators in the OPE [4,5]. In particular, the reduced Mellin amplitude M(s, t) possesses extra poles
with respect to the Mellin amplitude M(s, t), due to the gamma functions in (3). These extra poles
originate from the double-trace operators in the OPE.

Table 2: Amplitude properties
Bulk process Boundary amplitude

Local contact interaction Polynomial
Particle exchange Simple pole

For individual (Feynman or Witten) diagrams, scattering amplitudes of elementary particles and
Mellin amplitudes for single-trace primary operators thus share common properties as functions of
Mandestam invariants vs Mellin variables [4–7] (c.f. Table 2) suggesting a common

Boundary criterion of bulk locality: Interactions on flat/AdS spacetime are local iff the ampli-
tudes of the corresponding contact Feynman/Witten diagram are polynomial functions of Mandelstam
invariants / Mellin variables.

In this sense, the condition (III) can be seen as the criterion of bulk locality itself, in the same way
that the condition (I) stands for the criterion of existence of a semiclassical limit. Nevertheless, the
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condition (II) remains of interest because the presence of a higher-spin gap sets a higher-spin symmetry
breaking scale in the bulk. Even if the gravity theory may be nonlocal in the sense of being an effective
field theory, the previous scale controls the low-energy expansion of the theory and the validity range
of its local truncations.

The Mellin amplitude programme of rewriting CFT correlators as Witten diagrams seemingly ap-
plies to the large class of strongly-coupled CFTs obeying the criteria (I)-(III). Under these hypotheses,
the corresponding bulk dual would possess a simultaneously weakly-coupled & weakly-curved regime.
Indeed, the Mellin amplitude programme seems well adapted (but presently restricted) to the holo-
graphic reconstruction of bulk theories (or individual scattering processes) possessing a weakly-coupled
& weakly-curved limit. However it does not apply directly to the simplest example of CFTs: free ones
(or weakly coupled ones). In fact, the Mellin transform of correlators of free CFTs is often not even
well defined (see section 4). The bulk duals of free CFTs are conjectured to be higher-spin gravity
theories which are indeed non-local in the restricted sense of locality (see section 2).

What could be a mild replacement of the criteria (II) and (III), that could provide necessary and
sufficient conditions for CFTs (including weakly-coupled ones) to possess (mildly non-local) bulk duals
(including higher-spin gravity theories)? A tentative answer could be:

(II’) a finite number of single-trace primary operators with conformal dimension below any fixed
dimension, in the N →∞ limit,

(III’) analyticity of Mellin amplitudes.

The criterion (II’) is inspired from the second basic property in [8]. In spirit, it is analogous to the
second assumption of the Coleman-Mandula theorem [9] since the conformal dimension of a single-
trace operator translates into the energy of the corresponding elementary particle in the bulk. In
contrast to flat spacetime, in AdS this condition does not rule out a tower of massless higher spins
as their dimensions grow with spin. Another motivation for criterion (II’) is that bulk locality would
be obscure if an infinite number of fields were relevant in a scattering process at a given energy. The
criterion (III’) relaxes strict locality and replaces it with the milder requirement that the coefficients
in the Taylor series expansion of the amplitude decrease fast enough in order to have an infinite radius
of convergence. In other words, the amplitude can be approximated, for any fixed accuracy, by a
polynomial of sufficiently high degree, i.e. by a local interaction of sufficiently high order. More
precisely, the criterion (III’) amounts to the following [10]

boundary criterion of weak locality: Interactions on flat/AdS spacetime are weakly local iff the
amplitudes of the corresponding contact Feynman/Witten diagram are entire functions of Mandelstam
invariants / Mellin variables.

2 Bulk locality and higher-spin holography

The higher-spin holographic duality arose shortly after the birth of AdS/CFT correspondence and
was initially motivated by the semiclassical but stringy regime (`s � RAdS � `P ) in the strong
version of Maldacena conjecture. A more general picture progressively emerged in a long series of
paper (see [11–13] for some early steps) but the basic idea underlying higher-spin holography is easy
to summarise.
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Free (or integrable) CFTs have an infinite number of global higher (sometimes called “hidden”)
symmetries (including conformal symmetry). Applying Noether’s theorem, one deduces that their
spectrum must contain an infinite tower of traceless conserved currents with unbounded spin (including
spin two). Therefore, the AdS/CFT dictionary suggests that free (or some integrable) CFTs should be
dual to “higher-spin gravity” theories, in the sense of theories whose spectra contain an infinite tower
of gauge fields with unbounded spin (including spin two). The simplest example of such a scenario
states that the singlet sector of the free and critical vector models should be holographically dual to
minimal higher-spin gravity [12,13].

Turning back to the issue of bulk locality, higher-spin interactions in four (and higher) dimension
appear to be generically:

(A) quasi-local in the sense that they possess a perturbative expansion (in powers of fields and their
derivatives) where each individual term in the Lagrangian is local (effective field theories are
typically quasilocal).

(B) non-local in the sense that the total number of derivatives in the complete Lagrangian is un-
bounded (as in string field theory). This is a corollary of:

(a) Metsaev bounds: The number of derivatives appearing in a non-trivial cubic vertex evaluated
on the free mass-shell is bounded from [14]
i. below by the highest spin involved,
ii. above by the sum of the spins involved.

(b) Higher-spin algebra structure: The Jacobi identity requires a spectrum with an infinite tower
of fields with unbounded spin [15,16].

The number of derivatives is bounded from below by the highest spin involved by virtue of
Metsaev’s lower bound (a.i). However, there cannot be any upper bound on the spin in a
consistent theory due to point (b). Hence, the number of derivatives is necessarily unbounded.

(C) weakly-local in the sense that the Mellin amplitude of contact Witten diagrams are entire
functions of the Mellin variables.

This weak-locality holds at cubic level due to Metsaev upper bound and should hold for the
quartic self-interactions of the AdS scalar field due to general facts about Mellin amplitudes.

(a) Locality of cubic vertices: Individual cubic higher-spin interactions are indeed local in the
sense that any 3-point contact Witten diagram with fixed external legs is a polynomial
function of the Mellin variables. This follows as a corollary from Metsaev upper bound
(a.ii): For any triplet of spins, the number of derivatives in any relevant cubic vertex is
bounded from above by the sum of the spins.

(b) Weak-locality of quartic vertices: The quartic self-interactions of the AdS scalar field dual to
the single-trace scalar primary operator in the O(N) model (or, more generally, in a large-
N CFT with discrete spectrum) appear to be weakly local, in the sense that the 4-point
contact Witten diagram with four scalar external legs is an entire function of the Mellin
variables.

This follows from the following general facts about the decomposition of single-trace scalar
primary operator 4-point function in conformal blocks at leading order in 1/N :
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(i) This decomposition contains both single-trace and double-trace conformal blocks.
(ii) Any single-trace conformal block can be accounted by a Witten exchange diagram.
(iii) The Mellin amplitude of a 4-point function is an entire function of the Mellin variables

iff its conformal block decomposition does not contain any single-trace contribution.

The point (i) is expected; the coinciding point limit of two single-trace operators will produce
double-trace operators as well. The point (ii) is AdS/CFT standard lore. The correspon-
dence between single-trace conformal blocks and Witten exchange diagrams is one-to-one: It
is essentially an identity up to double-trace conformal blocks (see e.g. the recent discussion
in [8]). The point (iii) holds because Mellin amplitudes are meromorphic functions with
simple poles arising only from single-trace operators [4].

The proof of (C.b) goes as follows: Consider a single-trace scalar primary operator 4-point
function in a CFT with discrete spectrum and at large N . First, decompose this 4-point function
into conformal blocks. Second, using facts (i)-(ii) associate to each single-trace conformal block
its corresponding Witten exchange diagram. Third, substract from the 4-point function all these
Witten exchange diagrams. By construction, the difference that remains is a 4-point function
whose decomposition contains only double-trace conformal blocks. Fourth, conclude from (iii)
that this remainder is an entire function of the Mellin variables since it does not contain any
single-trace contribution. This allows to interpret the remainder as a 4-point contact Witten
diagram associated to a weakly local quartic vertex.

As one can see, the boundary criterion of weak locality (see Section 1) tantamounts to the existence
of a neat separation in the amplitude between the exchange and contact contributions: Poles in the
scattering amplitude are accounted by particle exchanges and what remains is interpreted as the contact
amplitude.

Remarks:

• It would be interesting to compare the criterion of weak locality for higher-spin gravity advocated
here with the recent proposals [17] and [18] based, respectively, on functional classes of star-
product elements and on classes of field redefinitions leaving Witten diagrams invariant.

• A caveat of our argument that the bulk dual of the O(N) model is a weakly local higher-spin
gravity is that it implicitly assumes that Mellin amplitudes are well defined functions while they
actually require some regularisation. They may also be thought as distributions (c.f. Section 4)
but then it is their analyticity properties which are somewhat elusive.

• Another subtlety is that the third step in the proof (substraction of all Witten exchange diagrams)
can bring infinities in the double-trace conformal block decomposition of the remainder. Taking
an optimistic standpoint, this step might actually regularise the Mellin amplitudes alluded above.

3 Holographic reconstruction of higher-spin gravity vertices

The line of arguments presented in section 2 is expected to generalise (to all spins and to higher
numbers of points) and indicates that the higher-spin interactions for the bulk dual of the O(N)
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model might be weakly local. This picture is very suggestive but remains somewhat qualitative. The
explicit holographic reconstruction of some quartic vertices in higher-spin gravity, to which we now
turn, provides a more concrete playground to test bulk locality.

More specifically, we will consider the holographic reconstruction of quartic AdS interations from
a free CFT. In practice, this task amounts to:

• Compute the 3 and 4 point conformal correlators via Wick contraction,

• Write the most general ansatz for the relevant cubic and quartic vertices,

• Compute the corresponding exchange and contact amplitudes,

• Fix the coefficients of vertices by matching correlators with total amplitudes.

A priori, it is not guaranteed that such a purely holographic reconstruction produces interactions
compatible with the Noether procedure. However, it is natural to expect that these two perturbative
procedures are compatible with each other since Ward identities of the boundary CFT should be dual
to Noether identities of the AdS theory.

The holographic reconstruction was performed in [10, 19] for the simplest nontrivial case: The
quartic self-interaction of the AdS4 scalar field in the higher-spin multiplet dual to the d = 3 free
O(N) model. The relevant four-point Witten diagrams are displayed in figure 1. Diagrams (a)-(c) are
exchanges of massless spin-s fields between two pairs of the real scalar. The contact diagram (d) is the
amplitude associated to the quartic vertex.

Figure 1: Four-point Witten diagrams contributing to the holographic reconstruction.
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Among the important technical simplifications in this example are the structure of relevant vertices:
On the one hand, the bulk cubic vertices s− 0− 0 are of Noether type ϕsJs (see [20,21]), i.e. a gauge
field ϕs times a conserved current Js = ϕ0(∇)sϕ0 + ... bilinear in the scalar field ϕ0, and traceless
on-shell. Therefore, the diagrams (a)-(c) correspond to current exchange JsPsJs, where Ps is the spin-s
gauge field propagator. On the other hand, all bulk quartic vertices 0 − 0 − 0 − 0 are also of current
exchange type Js�mJs (see [1, 10]). Consequently, the exchange and contact Witten diagrams are of
the same type and can be easily compared for each spin s and in each channel (see figure 2).

Figure 2: Comparison of exchange and contact Witten diagrams in a single channel.

The form of the quartic vertex can be summarised as follows:

V =
∑
s∈2N
Vs , Vs = Jµ1···µs as (�) Jµ1···µs , (4)

where as(�) are generating functions

as (�) =
∞∑
m=0

am,s�
m, (5)

for the individual couplings am,s in front of the individual vertices

Vm,s = Jµ1···µs �
m Jµ1···µs . (6)

The explicit expression of the quartic vertex V can be found in [10]. The generating functions are
defined by

as
(
ν2 + s+ 9

4

)
∝ 28−s

ν2 + (s− 1
2)2

[
π

Γ
(

2s−2iν+1
4

)2
Γ
(

2s+2iν+1
4

)2 − 1

Γ (s)2

]

−
(−1)

s
2 π

3
2 2s+5Γ

(
s+ 3

2

)
Γ
(
s
2 + 1

2

)
√

2 Γ
(
s
2 + 1

)
Γ (s+ 1) Γ

(
3
4 −

iν
2

)
Γ
(

3
4 + iν

2

)
Γ
(
s+ 1

2 + iν
)

Γ
(
s+ 1

2 − iν
) ,

which are entire functions, though it is not manifest. Heuristically, this indicates that each contact
diagram associated to the cubic vertex Vs and depicted in figure 2 looks weakly local.

A subtlety is that the quartic vertices (6) are linearly independent on the free mass shell only for
2m 6 s. However, the generating function includes infinitely many terms with 2m > s. The latter
should be reexpressed in terms of the previous independent ones. Since this involves infinitely many
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couplings and since we are on AdS4 background where covariant derivatives do not commute, this
procedure can a priori produce infinities, c.f. the examples in [18, 22] at cubic level (see also [23–25]
where this possibility was discussed). In other words, the couplings in front of the independent quartic
vertices might be infinite. However, one may expect this phenomenon not to happen in the present
context of holographic reconstruction because infinite couplings in front of the independent quartic
vertices would correspond to infinite coefficients in the double-trace conformal block decomposition.

4 Mellin amplitudes of the free and critical O(N) model

As mentioned above, Mellin amplitudes of weakly-coupled theories are sometimes ill-defined as genuine
functions, so they may either require some regularisation procedure or to be treated as generalised
functions (i.e. distributions). We will investigate the latter option and focus on the O(N) model.

The scalar single-trace primary operatorO has conformal dimension ∆ = d−2 for the d-dimensional
free O(N) model. Its 4-point correlator (1) has a factor not fixed by conformal symmetry

Ffree(u, v) = Fdis.(u, v) +
1

N
Fcon.(u, v) (7)

where the first term Fdis.(u, v) arise from disconnected diagrams and the second term Fcon.(u, v)
from connected diagrams. Both terms are power functions of the two cross ratios. This is true for the
disconnected piece

Fdis.(u, v) = 1 + u∆ +
(u
v

)∆
(8)

and for the connected piece

Fcon.(u, v) = u
∆
2 +

(u
v

)∆
2

+ u
∆
2

(u
v

)∆
2
, (9)

where, again, front numerical factors have been neglected for the sake of simplicity.

A power function, say
f(x) = xα (α ∈ R) , (10)

does not have a well defined Mellin transform [26]

M(z) =

∞∫
0

xz f(x)
dx

x
, (11)

or, rather, its fundamental strip of convergence degenerates to the vertical line z = −α + iR in the
complex plane. Actually, the Mellin transform (11) of the power function (10) may be understood∗ as
a distribution [27]: M(z) = δ(z + α) . With this interpretation, the Mack ampitudes corresponding to
(8) and (9) are, respectively,

Mdis.(s, t) = δ(s) δ(t−∆) + δ(s−∆) δ(t) + δ(s−∆) δ(t−∆) (12)

∗ We thank S. Rychkov and M. A. Vasiliev for pointing out to us this possibility, which we later traced in the
mathematical litterature.
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and
Mcon.(s, t) = δ(s− ∆

2 ) δ(t− ∆
2 ) + δ(s− ∆

2 ) δ(t−∆) + δ(s−∆) δ(t− ∆
2 ) . (13)

Due to the distributional nature of these reduced Mellin amplitudes Mdis.(s, t) and Mcon.(s, t), the
definition (3) for the corresponding Mellin amplitudesMdis.(s, t) andMcon.(s, t) is difficult to apply.
The problem is that each value in the support of the left-hand-side in (3) corresponds to a pole at
zero of one (even two for the disconnected piece) gamma function on the right-hand-side. Formally,
treating the Mellin amplitudesMdis.(s, t) andMcon.(s, t) as genuine functions, one would conclude
that they must vanish identically. In other words, although the reduced Mellin amplitudes (12) and
(13) are well defined distributions, the nature of the corresponding Mellin amplitudes remains to be
clarified.

Let us stress that the above observations are not restricted to free CFTs but even holds for some
integrable CFTs. A good example is the large-N limit of the O(N) model at large N whose integrability
has been recognised a long time ago [28]. From a modern perspective, the integrability of the large-
N limit of the O(N) model is intimately related to its equivalence to the free O(N) model, up to a
Legendre transformation. This latter fact lies at the heart of the Klebanov-Polyakov conjecture [12]. In
the N →∞ limit, the scalar single-trace primary operator O for the critical O(N) model has conformal
dimension ∆ = 2 and its 4-point correlator (1) has a factor not fixed by conformal symmetry

Fint(u, v) = Gdis.(u, v) +
1

N
Gcon.(u, v) + O

( 1

N2

)
(14)

which is also a sum of power functions of the two cross ratios. More precisely, the disconnected part
is given by formula (8) with ∆ = 2 and the connected part reads for d = 3 [29]

Gcon.(u, v) = u2
[
u−

3
2 (1 + u− v) + v−

3
2 (1− u+ v)− (uv)−

3
2 (1− u− v)

]
. (15)

The reduced Mellin amplitude of the connected part is thus

Mcon.(s, t) = δ(s− 1
2) δ(t− 3

2) + δ(s− 3
2) δ(t− 1

2)− δ(s− 1
2) δ(t− 1

2)

+ δ(s− 2) δ(t− 3
2)− δ(s− 3) δ(t− 1

2) + δ(s− 2) δ(t− 1
2) (16)

− δ(s− 1
2) δ(t− 3) + δ(s− 3

2) δ(t− 2) + δ(s− 1
2) δ(t− 2) .

Again the support of the Dirac delta functions coincide with poles of the gamma functions in (3). The
presence of a product of two Dirac distributions in the reduced Mellin amplitudes (12), (13) and (16)
seem to preclude their interpretation as scattering amplitudes since trivial scattering (i.e. alignment of
pairs of momenta) should correspond to fixing a single Mandelstam variable (and not all of them). This
may be a hint that Mellin amplitudes of free (or integrable) CFTs do not admit a sensible flat limit, a
reasonable expectation since unbroken higher-spin gravity theories do not admit a weakly-coupled flat
regime.

The distributional nature of tree-level amplitudes of four scalar fields and their absence of scattering
has also been recently observed in conformal higher-spin gravity [30]. The triviality of scattering
amplitudes may look surprising at first sight since higher-spin gravity theory has nonvanishing bulk
interaction vertices. Nevertheless, retrospectively it seems reasonable to expect that the algebra of
asymptotic higher-spin symmetries is so huge as to constrain the scattering of particles to be essentially
trivial.

10



5 Conclusion and open directions

Characterising the degree of (non)locality of the bulk duals of weakly-coupled CFTs is an important
issue for understanding holographic duality beyond the regime where the bulk spacetime is weakly
curved. Looking at higher-spin gravity suggests to broaden the definition of locality in order to encom-
pass interactions on flat/AdS spacetime for which the Feynman/Witten amplitudes of the correspond-
ing contact diagrams are not polynomial but entire functions. At the level of four-point conformal
correlators and quartic bulk vertices, this weak locality criterion is equivalent to the property that
Witten exchange diagrams account for all single-trace conformal blocks in the decomposition of corre-
lators. General arguments and explicit computations indicate that, for the higher-spin gravity dual of
the free O(N) model, the quartic self-interaction of the bulk scalar field is weakly (non)local.

Extending the holographic reconstruction of quartic vertices to spin s 6= 0 using twistor techniques,
or to boundary dimension d 6= 3, are interesting challenges, as well as comparing the quartic vertices
obtained purely from holographic reconstruction with the corresponding ones that can be extracted
from Vasiliev equations.
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