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To cite this version:
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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The survival probability of a critical
multi-type branching process in i.i.d.

random environment

E. Le Page (1), M. Peigné (2) & C. Pham (3)

Abstract

Conditioned on the generating functions of offspring distribution, we study the asymp-
totic behaviour of the probability of non-extinction of a critical multi-type Galton-Watson
process in i.i.d. random environments by using limits theorems for products of positive
random matrices. Under some certain assumptions, the survival probability is proportional
to 1/

√
n.

Keywords: multi-type branching process, survival probability, random environment, prod-
uct of matrices, critical case.
AMS classification 60J80, 60F17, 60K37.

1 Introduction and main results

Many researchers study the behaviour of critical branching processes in random en-
vironment. In 1999, under some strongly restricted conditions, Dyakonova [2] studied
the multi-type case using the similar tools of one-type case. In 2002, Geiger achieved an
important result for critical one-type case in random i.i.d. environment, see [4]. In the
present work, we propose a variation of Dyakonova’s result by imitating the approach of
Geiger and Kersting [5].

Fix an integer p ≥ 2 and denote R
p the set of p-dimensional column vectors with real

coordinates ; for any column vector x = (xi)1≤i≤p ∈ R
p, we denote x̃ the row vector

x̃ := (x1, . . . , xp). Let 1 be the column vector of Rp where all coordinates equal 1. We fix
a basis {ei, 1 ≤ i ≤ p} in R

p and denote |.| the corresponding L1 norm. Denote N
p the set

of all p-dimensional column vectors whose components are non-negative integers. We also
consider the general linear semi -group S+ of p×p matrices with non-negative coefficients.
We endow S+ with the L1-norm denoted also by |.|.

The multi-type Galton-Watson process is a temporally homogeneous vector Markov
process Z0, Z1, Zn,. . ., whose states are column vectors in N

p. We always assume that Z0

is non-random. For any 1 ≤ i ≤ p, the i-th component Zn(i) of Zn may be interpreted as
the number of objects of type i in the n-th generation.

We consider a family {fξ : ξ ∈ R} of multi-variate probability generating functions

fξ(s) = (f
(i)
ξ (s))1≤i≤p where

f
(i)
ξ (s) =

∑

α∈Np

p
(i)
ξ (α)sα
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with

1. α = (αi)i ∈ N
p, s = (si)i, 0 ≤ si ≤ 1 for i = 1, . . . , p and sα = sα1

1 . . . s
αp
p ;

2. p
(i)
ξ (α) = p

(i)
ξ (α1, . . . , αp) is the probability that an object of type i in environment

ξ has α1 children of type 1, . . . , αp children of type p.

Let ξ = {ξn, n = 0, 1, . . .} be a sequence of real valued i.i.d. random variables de-
fined on a probability space (Ω,F ,P). The Galton-Watson process with p types of
particles in a random environment ξ describes the evolution of a particle population
Zn = (Zn(1), . . . , Zn(p)) for n = 0, 1, . . ..
We assume that for ξ ∈ R and i = 1, . . . , p, if ξn = ξ, then each of the Zi(n) parti-
cles of type i, existing at time n produces offspring in accordance with the p-dimensional

generating function f
(i)
ξ (s) independently of the reproduction of other particles of all types.

If Z0 = ei then Z1 has the generating function:

f
(i)
ξ0

(s) =

+∞∑

α∈Np

p
(i)
ξ0
(α)sα.

In general, if Zn = (α1, . . . , αp), then Zn+1 is the sum of α1+ . . .+αp independent ran-

dom vectors where αi particles of type i have the generating function f
(i)
ξn

for i = 1, . . . , p.
It is obvious that if Zn = 0, then Zn+1 = 0.

Denote fn = fξn . By the above descriptions, (written in equation 2.1 in [10]) for any
s = (si)i, 0 ≤ si ≤ 1

E
[
sZn |Z0, ..., Zn−1, f0, ..., fn−1

]
= fn−1(s)

Zn−1

which yields (lemma 2.1 in [10])

E

[
sZn |f (i)0 , ..., fn−1

]
:= E

[
sZn |Z0 = ei, f0, ..., fn−1

]
= f

(i)
0 (f1(...fn−1(s)...)).

In particular, the probability of non-extinction q
(i)
n at generation n given the environment

f
(i)
0 , f1, ...fn−1 is

q(i)n := P(Zn 6= 0|f (i)0 , ..., fn−1)

= 1− f
(i)
0 (f1(...fn−1(0)...)) = ẽi(1− f0(f1(...fn−1(0)...))), (1)

so that

E[q(i)n ] = E[P(Zn 6= 0|f (i)0 , ..., fn−1)] = P(Zn 6= 0|Z0 = ei).

As in the classical one-type case, the asymptotic behaviour of the quantity above
is controled by the mean of the offspring distributions. From now on, we assume that
the offspring distributions have finite first and second moments; the generating functions

f
(i)
ξ , ξ ∈ R, 1 ≤ i ≤ p, are thus C2-functions on [0, 1]p and we introduce
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1. the random mean matrices Mξn = (Mξn(i, j))1≤i,j≤p =


∂f

(i)
ξn

(1)

∂sj




i,j

of the vector-

valued random generating function fξn(s) at s = 1, namely

Mξn =




∂f
(1)
ξn

(1)

∂s1
. . .

∂f
(1)
ξn

(1)

∂sp
...

∂f
(p)
ξn

(1)

∂s1
. . .

∂f
(p)
ξn

(1)

∂sp



,

where 1 = (1, ...1)T .

2. the random Hessian matrices B
(i)
ξn

= (B
(i)
ξn
(k, l))1≤k,l≤p =

(
∂2f

(i)
ξn

∂sk∂sl
(1)

)

k,l

, 1 ≤ i ≤ p,

of the real-valued random generating function f
(i)
ξn

(s) at s = 1.

The random variables Mξn and B
(i)
ξn

are i.i.d.. The common law of the Mξn is denoted
by µ and for the sake of brevity, we write Mn instead of Mξn .

Let Rn and Ln denote the right and the left product of random matrices Mk, k ≥ 0,
respectively Rn =M0M1...Mn−1 and Ln =Mn−1...M1M0.

By [3], if E(max(0, ln |M0|)) < +∞, then the sequence

(
1

n
ln |Rn|

)

n

converges P-

almost surely to some constant limit π := lim
n→+∞

1

n
E[ln |Rn|]. Furthermore, by [10], if

there exists a constant A > 0 such that
1

A
≤ Mξn(i, j) ≤ A and 0 ≤ B

(i)
ξn
(k, l) ≤ A

P-almost surely for any 1 ≤ i, j, k, l ≤ p, then the process (Zn)n extincts P-almost surely
if and only if π ≤ 0.

In the present work, we will focus our attention on the so-called critical case, that is
π = 0, and precise the speed of extinction of the Galton-Watson process.

We define the cone C, the sphere Sp−1 and the space X respectively as follows:

C = {x̃ = (x1, ..., xp) ∈ R
p : ∀i = 1, ..., p, xi ≥ 0} ,

S
p−1 = {x̃ : x ∈ R

p, |x| = 1}, and X = C ∩ S
p−1.

The semi-group S+ acts on X by the projective action defined by: x̃ · g =
x̃g

|x̃g| for

x̃ ∈ X and g ∈ S+. On the product space X × S+ we define the function ρ by setting
ρ(x̃, g) := log |x̃g| for (g, x̃) ∈ X×S+. This function satisfies the cocycle property, namely
for any g, h ∈ S+ and x̃ ∈ X,

ρ(x̃, gh) = ρ(x̃ · g, h) + ρ(x̃, g). (2)

Under conditions H1–H3 which are introduced below, there exists a unique µ-invariant
measure ν on X such that, for any continuous function ϕ on X,

(µ ∗ ν)(ϕ) =
∫

S+

∫

X

ϕ(x̃ · g)ν(dx̃)µ(dg) =
∫

X

ϕ(x̃)ν(dx̃) = ν(ϕ).

Moreover, the upper Lyapunov exponent π defined above coincides with the quantity∫
X×S+ ρ(x̃, g)µ(dg)ν(dx̃) and is finite [1].
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In the sequel, we first focus our attention to the class H of linear-fractional multi-
dimensional generating functions fξ which contains functions of the form

fξ(s) = 1− 1

1 + γ̃ξ(1− s)
Mξ(1− s),

where γ̃ξ = (γξ, ..., γξ) ∈ R
p with γξ > 0.

Hypotheses H: the variables fξ are H-valued and γξ (resp. the distribution µ of theMξ)
satisfies hypothesis H0 (resp. H1–H5), with

H0. There exists a real positive number A such that 1
A ≤ γξ ≤ A P-almost surely.

H1. There exists ǫ0 > 0 such that
∫
S+ |g|ǫ0µ(dg) <∞.

H2. (Strong irreducibility). The support of µ acts strongly irreducibly on R
p, i.e.

no proper finite union of subspaces of Rp is invariant with respect to all elements of the
semi-group it generates.

H3. There exists a real positive number B such that, µ-almost surely, for any and
i, j, k, l ∈ {1, ..., p}:

1

B
≤ M(i, j)

M(k, l)
≤ B.

H4. The upper Lyapunov exponent of the distribution µ is equal to 0.
H5. There exists δ > 0 such that µ{g ∈ G | ∀x̃ ∈ C, |x| = 1, ln |x̃g| ≥ δ} > 0.
We now state the main result of this paper.

Theorem 1.1 Under hypotheses H, for any i ∈ {1, ..., p}, there exists a real number
βi ∈ (0,+∞) such that

lim
n→+∞

√
nP(Zn 6= 0|Z0 = ei) = βi.

When the fξ are not assumed to be linear fractional generating functions, we have the
following weaker result:

Theorem 1.2 Assume that the fξ are C2-functions on [0, 1]p such that

1. there exists A > 0 such that, for any i, k, l ∈ {1, . . . , p}

∂2f
(i)
ξ

∂sk∂sl
(1) ≤ A

∂f
(i)
ξ

∂sk
(1),

2. the distribution µ of the Mξ =
(
∂f

(i)
ξ

∂sj
(1)
)
1≤i,j≤p

satisfies hypotheses H1–H5.

Then, there exist real constants 0 < c1 < c2 < +∞ such that, for any i ∈ {1, . . . , p}, and
n ≥ 1

c1√
n
≤ P(Zn 6= 0|Z0 = ei) ≤

c2√
n
. (3)

In particular, under weaker assumptions than Kaplan [10], this theorem states that the
process (Zn)n≥0 extincts P-a.s. in the critical case.

Notations. Let c > 0; we shall write f
c
� g (or simply f � g) when f(x) ≤ cg(x) for any

value of x. The notation f
c≍ g (or simply f ≍ g) means f

c
� g

c
� f.
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2 Preliminary concepts

From now on, we fix B ≥ 1 and denote S = S(B) the semi-group generated by matrices
g = (gi,j)i,j in S+ satisfying the condition

gi,j
B≍ gk,l for all 1 ≤ i, j, k, l ≤ p.

2.1 Product of matrices with non-negative coefficients

We describe in this section some properties of the set S+. We first endow X with a
distance d which is a variant of the Hilbert metric; it is bounded on X and any element
g ∈ S+ acts on (X, d) as a contraction; we summarise here its construction and its major
properties.

For any x, y ∈ X, we write

m(x, y) = min
{xi
yi

∣∣∣i = 1, . . . , p such that yi > 0
}

and we set
d(x, y) := ϕ

(
m(x, y)m(y, x)

)

where ϕ is the one-to-one function on [0, 1] defiend by ϕ(s) :=
1− s

1 + s
. For g ∈ S+, set

c(g) := sup{d(g · x, g · y) | x, y ∈ X}.

We now present some crucial properties of d.

Proposition 2.1 The function d is a distance on X wich satisfies the following proper-
ties:

1. sup{d(x, y) | x, y ∈ X} = 1.

2. for any g = (gij)i,j ∈ S+

c(g) = max
i,j,k,l∈{1,...,p}

|gijgkl − gilgkj |
gijgkl + gilgkj

.

In particular, there exists κ ∈ [0, 1) which depends on B such that c(g) ≤ κ < 1 for
any g ∈ S(B).

3. d(g · x, g · y) ≤ c(g)d(x, y) ≤ c(g) for any x, y ∈ X and g ∈ S(B).

4. c(gg′) ≤ c(g)c(g′) for any g, g′ ∈ S(B).

The following lemma is crucial in the sequel to control the asymptotic behaviour of
the norm of products of matrices of S(B).

Lemma 2.2 Under hypothesis H3, for any g, h ∈ S(B), and 1 ≤ i, j, k, l ≤ p

g(i, j)
B2

≍ g(k, l), obtained from [3]. (4)

In particular, there exist c > 1 such that for any g ∈ S(B) and for any x̃, ỹ ∈ X,

1. |gx| c≍ |g| and |ỹg| c≍ |g|,

2. |ỹgx| c≍ |g|,

3. |gh| c≍ |g||h|.
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2.2 Conditioned product of random matrices

Recall that (Mn)n≥0 is a sequence of i.i.d. matrices whose law µ satisfies hypothese H and
Rn = M0...Mn−1 for n ≥ 1. Consider the homogenous Markov chain (Xn)n on X, with
initial value X0 = x̃ ∈ X, defined by

Xn = x̃ · Rn, n ≥ 1.

Its transition probability P is given by: for any x̃ ∈ X and any bounded Borel function
ϕ : X → R,

Pϕ(x̃) :=

∫

S+

ϕ(x̃ · g)µ(dg).

The chain (Xn)n≥0 has been the object of many studies, in particular there exists on X a
unique P -invariant probability measure ν. Indeed, by Proposition 2.1, for any x̃, ỹ ∈ X,
one gets

d(x̃ · Ln, ỹ · Ln) ≤ κn (5)

so that sup
k≥0

d(x̃ ·Ln+k, x̃ ·Ln) → 0 a.s. as n→ +∞; the sequence (x̃ ·Ln)n≥0 thus converges

a.s. to some X-valued random variable Z. It follows that the Markov chain (x̃ · Rn)n≥0

converges in distribution to the law ν of Z, which is the unique P -invariant probability
measure on X. Property 5 allows to prove that the restriction of P to some suitable space
of continuous functions from X to C is quasi-compact, which is a crucial ingredient to
study the asymptotic behavior of (x̃ · Rn)n≥0 ( [8], [1], [9]).

In the sequel, we deal with the random process (Sn)n defined by S0 = S0(x̃, a) :=
a, Sn = Sn(x̃, a) := a + ln |x̃Rn|, where x̃ ∈ X and a ∈ R. Iterating the cocycle property
(2),the basic representation of Sn(x̃, a) arrives:

Sn(x̃, a) = a+ ln |x̃Rn| = a+

n−1∑

k=0

ρ(Xk,Mk). (6)

Let mn = mn(x̃) := min(S0(x̃), ..., Sn(x̃)) be the successive minima of the sequence
(Sn(x̃))n and for a ≥ 0 denote mn(x̃, a) := Px̃,a[mn > 0]. Let us emphasize that for
any a ∈ R the sequence (Xn, Sn)n is a Markov chain on X×R whose transition probability
P̃ is defined by: for any (x̃, a) ∈ X×R and any bounded Borel function ψ : X× R → C

P̃ψ(x̃, a) =

∫

S+

ψ(x̃ · g, a+ ρ(x̃, g))µ(dg).

We denote P̃+ the restriction of P̃ to X× R
+
∗ defined by: for a > 0 and any x̃ ∈ X

P̃+((x̃, a), ·) = 1
X×R

+
∗
(·)P̃ ((x̃, a), ·).

From now on, fix a > 0 and denote by τ the first time the random process (Sn)n becomes
non-positive:

τ := min{n ≥ 1 : Sn ≤ 0}.
For any x̃ ∈ X and a > 0, let us denote Px̃,a the probability measure on (Ω,F ,P)

conditioned to the event [X0 = x̃, S0 = a] and Ex̃,a the corresponding expectation; we
omit the index a when a = 0 and denote Px̃ the corresponding probability.

We now present a general result concerning the behavior of the tail distribution of the
random variable τ ; we refer to [6] in the case of product of random invertible matrices
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and under general suitable conditions we do not present here. The statement below is
given in the case of products of matrices with non-negative coefficients, it is not a direct
consequence of [6] but the proof is the same, we postpone the sketch of its main steps in
the Appendix.

Under hypotheses H1–H5, the function h : X× R
+
∗ → R

+
∗ defined by

h(x̃, a) = lim
n→+∞

Ex̃,a [Sn; τ > n] (7)

is P̃+–Harmonic, namely Ex̃,a [h(X1, S1); τ > 1] = h(x̃, a) for any x̃ ∈ X and a > 0.
Furthermore, there exists c > 0 such that

∀x̃ ∈ X,∀a > 0 h(x̃, a) ≤ c(1 + a) (8)

and the function a 7→ h(x̃, a) is increasing on R
+
∗ .

The tail of the distribution of τ is given by the following theorem; the relation un ∼ vn
defines lim

n→+∞

un
vn

= 1.

Theorem 2.3 Assume hypotheses H1–H5. For any x̃ ∈ X and a > 0,

Px̃,a(τ > n) ∼ 2

σ
√
2πn

h(x̃, a) as n→ ∞, (9)

where σ2 > 0 is the variance of the Markov walk (Sn)n, given in [6]. Moreover, there
exists a constant c > 0 such that for any x̃ ∈ X, a > 0 and n ≥ 0

√
nPx̃,a(τ > n) ≤ c(1 + a). (10)

Remark. The fact that σ2 > 0 is a direct consequence of hypotheses H2 and H5 (which
implies in particular that the semi-group generated by the support of µ is unbounded);
see [1], chap 6, Lemmas 5.2 and 5.3 and section 8 for the details.

3 Proof of Theorem 1.1

3.1 Expression of non-extinction probability

For any 0 ≤ k < n and x̃ ∈ X, set Rk,n := Mk...Mn−1 and Rk,n := I otherwise. Let
Yk,n(x) := Rk,n · x; the sequence (Yk,n(x))n converges P-almost surely to some limit Yk,∞
which does not depend on x, see [3]. Hypothesis H and (1) yield

(q(i)n )−1 =
1 + γ̃0M1 . . .Mn−11+ γ̃1M2 . . .Mn−11+ . . . + γ̃n−11

ẽiRn1
.

Indeed, recall that fξ(s) are linear-fractional generating functions, it is obvious that

1− f0(f1(...fn−1(s)...)) =
M0(1− f1(...fn−1(s)...))

1 + γ̃0(1− f1(...fn−1(s)...))

=
M0M1(1− f2(...fn−1(s)...))

1 + γ̃0M0(1− f2(...fn−1(s)...)) + γ̃1(1− f2(...fn−1(s)...))
= . . .

=
M0...Mn−1(1− s)

1 + γ̃0M1...Mn−1(1− s) + γ̃1M2...Mn−1(1− s) + ...+ γ̃n−1(1− s)

7



Substituting s = 0, the expression of q
(i)
n arrives.

In other words, since we have ẽiRkRk,n1 = ẽiM0 . . .Mn−11 for any 1 ≤ k ≤ n, we may
write

(q(i)n )−1 =
1

ẽiRn1
+

n−1∑

k=0

γ̃kYk+1,n

ẽiRkYk+1,n

=
1

ẽiRn1
+

n−1∑

k=0

γk
ẽiRkYk+1,n

. (11)

In the sequel, we prove that the sequence (q
(i)
n )n≥1 converges almost surely to a finite

quantity q
(i)
∞ given by

(q(i)∞ )−1 =

+∞∑

k=0

γk
ẽiRkYk+1,∞

, (12)

with respect to a new probability measure P̂x̃,a introduced in the following subsection
(Lemma 3.2).

3.2 Construction of a new probability measure P̂x̃,a conditioned to the

environment

Since the function h is P̃+–Harmonic on X × R
+
∗ , it gives rise to a Markov kernel P̃ h

+

on X× R
+
∗ defined by

P̃ h
+φ =

1

h
P̃+(hφ)

for any bounded measurable function φ on X × R
+
∗ . The kernels P̃+ and P̃ h

+ are related
to the stopping times τ by the following identity: for any x̃ ∈ X, a > 0 and n ≥ 1,

(P̃ h
+)

nφ(x̃, a) =
1

h(x̃, a)
P̃n
+(hφ)(x̃, a)

=
1

h(x̃, a)
Ex̃,a [hφ(Xn, Sn); τ > n]

=
1

h(x̃, a)
Ex̃,a [hφ(Xn, Sn);mn > 0] .

This newMarkov chain with kernel P̃ h
+ allows us to change the measure on the canonical

path space ((X × R)⊗N, σ(Xn, Sn : n ≥ 0), θ) of the Markov chain (Xn, Sn)n≥0
(4) from P

to the measure P̂x̃,a characterized by the property that

Êx̃,a[ϕ(X0, S0, ...,Xk, Sk)] =
1

h(x̃, a)
Ex̃,a[ϕ(X0, S0, ...,Xk , Sk)h(Xk, Sk); mk > 0] (13)

for any positive Borel function ϕ on (X× R)k+1 that depends on X0, S0, ...,Xk , Sk.

4θ denotes here the shift operator on (X×R)⊗N defined by θ
(

(xk, sk)k
)

= (xk+1, sk+1)k for any (xk, sk)k

in (X× R)⊗N

8



For any 0 ≤ k ≤ n,

Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk)|mn > 0]

=
1

Px̃,a(mn > 0)
Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk);S0 > 0, S1 > 0, . . . , Sn > 0]

=
1

Px̃,a(mn > 0)
Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk);S0 > 0, a + ρ(X0,M0) > 0,

. . . , a+

k−1∑

i=0

ρ(Xi,Mi) +

n−1∑

i=k

ρ(Xi,Mi) > 0]

=
1

Px̃,a(mn > 0)
Ex̃,a[E[ϕ(X0, S0, . . . ,Xk, Sk);S0 > 0, . . . , Sk > 0,

S0 ◦ θk > 0, . . . , Sk + Sn−k ◦ θk > 0|σ(M0, ...,Mk−1)]]

=
1

Px̃,a(mn > 0)
Ex̃,a

[
ϕ(X0, S0, . . . ,Xk, Sk)

E[Sk > 0, . . . , Sk + Sn−k ◦ θk > 0|σ(M0, ..,Mk−1)];mk > 0
]

=
1

Px̃,a(mn > 0)
Ex̃,a

[
ϕ(X0, S0, . . . ,Xk, Sk)

PXk,Sk
(S0 ◦ θk > 0, . . . , Sn−k ◦ θk > 0);mk > 0

]

=
1

Px̃,a(τ > n)
Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk)PXk,Sk

(τ > n− k);mk > 0].

Hence,

Ex̃,a [ϕ(X0, S0, . . . ,Xk, Sk);mn > 0] = Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk)mn−k(Xk, Sk);mk > 0].(14)

Moreover, in view of Theorem 2.3, the dominated convergence theorem and (14), we obtain
for any bounded function ϕ with compact support,

lim
n→+∞

Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk)|mn > 0]

=
1

h(x̃, a)
Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk)h(Xk, Sk);mk > 0]

= Êx̃,a[ϕ(X0, S0, . . . ,Xk, Sk)], (15)

which clarifies the interpretation of P̂x̃,a. Using [6], it follows that

Ex̃,a[ϕ(X0, S0, . . . ,Xk, Sk)|mn > 0] ∼
√
n√

n− k

Ex̃,a[ϕ(X0, S0, ...,Xk, Sk)h(Xk, Sk);mk > 0]

h(x̃, a)
.

Hence when n tends to +∞, (15) arrives.
Now we formalize in three steps the construction of a new probability measure, denoted
again P̂x̃,a, for each x̃ ∈ X and a > 0, but defined this time on the bigger σ-algebra

σ(fn, Zn : n ≥ 0). Retaining the notations from the previous parts, the measure P̂x̃,a is
characterized by properties (13), (16) and (17).
Step 1. The marginal distribution of P̂x̃,a on σ(Xn, Sn : n ≥ 0) is P̂x̃,a characterized by
the property (13).
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Step 2. The conditional distribution of (fn)n≥0 under P̂x̃,a given X0 = x̃0 = x̃,Xi =
x̃i, S0 = s0 = a, Si = si, ... is

P̂x̃,a(fk ∈ Ak, 0 ≤ k ≤ n|Xi = x̃i, Si = si, i ≥ 0)

= P(fk ∈ Ak, 0 ≤ k ≤ n|Xi = x̃i, Si(x̃) = si, i ≥ 0), (16)

defined for almost all (x̃i)i and (si)i with respect to the law of ((Xn)n, (Sn)n) under P ( and
also under P̂x̃,a since P̂x̃,a is absolutely continuous with respect to P on σ((Xn)n≥0, (Sn)n≥0)),
for any measurable set Ak.

Step 3. The conditional distribution of (Zn)n≥0 under P̂x̃,a given f
(i)
0 , f1, ... is the same

as under P, namely

Êx̃,a

[
sZn |Z0, ..., Zn−1, f

(i)
0 , ..., fn−1

]
= fn−1(s)

Zn−1

= E

[
sZn |Z0, ..., Zn−1, f

(i)
0 , ..., fn−1

]
. (17)

3.3 Proof of Theorem 1.1

For any x̃ ∈ X, a > 0 and i ∈ {1, . . . , p} let us denote P
(i)
x̃,a the probability measure on

(Ω,F ,P) conditioned to the event [X0 = x̃, S0 = a, Z0 = i] and E
(i)
x̃,a the corresponding

expectation.
We separate the proof in 4 steps.

1. Fix ρ > 1, x̃ ∈ X and a > 0, we prove that the sequence (P
(i)
x̃,a(Zn 6= 0|mρn > 0))n≥0

converges as n→ +∞ to lim
m→+∞

P̂
(i)
x̃,a(Zm 6= 0).

2. We identify the limit of the sequence (P̂
(i)
x̃,a(Zm 6= 0))m≥0 and prove that it belongs

to R
+
∗ .

3. We get rid of ρ and prove the sequence (
√
n P

(i)
x̃,a(Zn 6= 0,mn > 0))n≥0 converges in

R
+
∗ as n→ +∞, for any a > 0.

4. We achieve the assertion by letting a→ +∞.

Step 1. Fix 0 ≤ m ≤ n. Using (14), then conditioned on σ(f
(i)
0 , ..., fm−1), finally 1[mm>0]

and mρn−m(Xm, Sm) are measurable with respect to σ(f
(i)
0 , ..., fm−1), we may write

P
(i)
x̃,a(Zm 6= 0,mρn > 0) = P

(i)
x̃,a [Zm 6= 0,mm > 0,mρn−m(Xm, Sm)]

= Ex̃,a

[
E(1[Zm 6=0]1[mm>0]mρn−m(Xm, Sm) | f (i)0 , ..., fm−1)

]

= Ex̃,a

[
P(Zm 6= 0|f (i)0 , ..., fm−1)1[mm>0]mρn−m(Xm, Sm)

]

= Ex̃,a

[
q(i)m ,mρn > 0

]
(18)

so that, by (15), since 0 ≤ m ≤ n is fixed

lim
n→+∞

P
(i)
x̃,a(Zm 6= 0|mρn > 0) = lim

n→+∞
Ex̃,a

[
q(i)m |mρn > 0

]
= Êx̃,a

[
q(i)m

]
= P̂

(i)
x̃,a(Zm 6= 0).

(19)
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To get the similar result with n instead of m, we write, for 0 ≤ m ≤ n

P
(i)
x̃,a(Zn 6= 0|mρn > 0) = P

(i)
x̃,a(Zn 6= 0, Zm 6= 0|mρn > 0)

= P
(i)
x̃,a(Zm 6= 0|mρn > 0)

−P
(i)
x̃,a(Zm 6= 0, Zn = 0|mρn > 0). (20)

The first term of the right side of (20) is controled by (19); for the the second term, we
use the following Lemma.

Lemma 3.1 For any ρ > 1, x̃ ∈ X and a > 0,

lim sup
m→+∞

lim sup
n→+∞

P
(i)
x̃,a(Zm 6= 0, Zn = 0|mρn > 0) = 0.

Therefore, by taking limits over n and then m in (20), it follows that

lim sup
n→+∞

P
(i)
x̃,a(Zn 6= 0|mρn > 0)

= lim sup
m→+∞

lim sup
n→+∞

P
(i)
x̃,a(Zm 6= 0|mρn > 0)− lim sup

m→+∞
lim sup
n→+∞

P
(i)
x̃,a(Zm 6= 0, Zn = 0|mρn > 0)

= lim sup
m→+∞

lim sup
n→+∞

P
(i)
x̃,a(Zm 6= 0|mρn > 0)

= lim sup
m→+∞

P̂
(i)
x̃,a(Zm 6= 0). (21)

Step 2. By (15), we know that the sequence (P̂
(i)
x̃,a(Zm 6= 0))m≥0 converges; its limit is

given by the Lemma 3.2 below.

Lemma 3.2 For any x̃ ∈ X and a > 0,

lim
m→+∞

P̂
(i)
x̃,a(Zm 6= 0) = Êx̃,aq

(i)
∞ . (22)

Moreover, the following lemma deduces that the quantity v(x̃, a) := Êx̃,aq
(i)
∞ does not

vanish as m tends to ∞.

Lemma 3.3 For any x̃ ∈ X and a > 0, Êx̃,a

+∞∑
n=0

e−Sn < +∞.

Since γ̃k are bounded and Yk+1,∞ ∈ C ∩ S
p−1, by using Lemma 2.2 property 2), that is

to say |x̃Rn| ≍ ẽiRnYn+1,∞, Lemma 3.3 implies Êx̃,aq
(i)
∞ < +∞ and Êx̃,a(

+∞∑
n=0

e−Sn)−1 > 0,

which yields 0 < v(x̃, a) < +∞ for any a > 0.

Step 3. For ρ > 1 fixed, we decompose P
(i)
x̃,a(Zn 6= 0,mn > 0) as P1(ρ, n) + P2(ρ, n) with

P1(ρ, n) := P
(i)
x̃,a(Zn 6= 0,mn > 0)− P

(i)
x̃,a(Zn 6= 0,mρn > 0)

and P2(ρ, n) := P
(i)
x̃,a(Zn 6= 0,mρn > 0).

Next, we get rid of ρ. Theorem 2.3 states that, as n→ +∞

Px̃,a(mρn > 0) = Px̃,a(τ > ρn) = mρn(x̃, a) ∼ c1h(x̃, a)
1√
ρn
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so that on one hand

P1(ρ, n) = P
(i)
x̃,a(Zn 6= 0, τ > n)− P

(i)
x̃,a(Zn 6= 0, τ > ρn)

= P
(i)
x̃,a(Zn 6= 0, n < τ ≤ ρn)

≤ Px̃,a(n < τ ≤ ρn)

= Px̃,a(τ > n)− Px̃(τ > ρn)

∼ c1
h(x̃, a)√

n
(1− 1√

ρ
) as n→ +∞ (23)

and on the other hand, from (21) and (22),

P2(ρ, n) = P
(i)
x̃,a(Zn 6= 0|τ > ρn)Px̃,a(τ > ρn) ∼ c1h(x̃, a)v(x̃, a)

1√
ρn

as n→ +∞.

(24)
Hence, (23) and (24) yields

lim
n→+∞

√
nP

(i)
x̃,a(Zn 6= 0,mn > 0) = lim

n→+∞

√
nP1(ρ, n) + lim

n→+∞

√
nP2(ρ, n)

= c1h(x̃, a)(1−
1√
ρ
) +

c1√
ρ
h(x̃, a)v(x̃, a).

The factor (1− 1√
ρ
) in (23) can be made arbitrary small by choosing ρ sufficiently closed

to 1. Thus

lim
n→+∞

√
nP

(i)
x̃,a(Zn 6= 0,mn > 0) = c1h(x̃, a)v(x̃, a). (25)

Step 4. For any a > 0, we may decompose P
(i)(Zn 6= 0) as

P
(i)(Zn 6= 0) = P

(i)
x̃,a(Zn 6= 0,mn > 0) + P

(i)
x̃,a(Zn 6= 0,mn ≤ 0). (26)

The first term of the right side of (26) is controled by (25). For the second term, we write

P
(i)
x̃,a(Zn 6= 0,mn ≤ 0) = Ex̃,a

[
E

[
Zn 6= 0|f (i)0 , ..., fn−1

]
;mn ≤ 0

]

= Ex̃,a

[
q(i)n ;mn ≤ 0

]
.

Now, it is reasonable to control the quantity q
(i)
n ; using Lemma 2.2, one gets

(q(i)n )−1 =
1

ẽiRn1
+

n−1∑

k=0

γk
ẽiRkYk+1,n

≥ max
0≤k≤n−1

{
γk

ẽiRkYk+1,n

}
≍ max

0≤k≤n−1

{
1

|x̃Rk|

}

≥ 1

exp

{
min

0≤k≤n−1
(a+ ln |x̃Rk|)

} .
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Hence q
(i)
n � exp(mn(x̃, a)) and by applying Theorem 2.3 equation (10), the second term

of the right side of (26) becomes:

P
(i)
x̃,a(Zn 6= 0,mn ≤ 0) = P

(i)
x̃ (Zn 6= 0,mn ≤ −a)

� Ex̃[exp(mn);mn ≤ −a]

≤
+∞∑

k=a

e−k
Px̃(−k < mn ≤ −k + 1)

≤
+∞∑

k=a

e−k
Px̃,k(τ > n)

� 1√
n

+∞∑

k=a

(k + 1)e−k. (27)

Notice that the sum
+∞∑

k=a

(k + 1)e−k becomes arbitrarily small for sufficiently great a. Hence

the quantity lim sup
n→+∞

√
nP

(i)
x̃,a(Zn 6= 0,mn ≤ 0) is over approximated by the same manner.

On one hand,

c1h(x̃, a)v(x̃, a) = lim
n→+∞

√
nP

(i)
x̃,a(Zn 6= 0,mn > 0) ≤ lim

n→+∞

√
nP(i)(Zn 6= 0).

On the other hand, by (25), (26) and (27), we have for some constant c > 0,

c1h(x̃, a)v(x̃, a) = lim
n→+∞

√
nP

(i)
x̃,a(Zn 6= 0,mn > 0)

= lim
n→+∞

[
√
nP(i)(Zn 6= 0)−

√
nP

(i)
x̃,a(Zn 6= 0,mn ≤ 0)]

≥ lim sup
n→+∞

[
√
nP(i)(Zn 6= 0)− c

+∞∑

k=a

(k + 1)e−k],

which implies

c1h(x̃, a)v(x̃, a) + c

+∞∑

k=a

(k + 1)e−k] ≥ lim sup
n→+∞

√
nP(i)(Zn 6= 0).

Since
+∞∑
k=0

(k + 1)e−k < +∞, for any ε > 0, we can always choose a to be great enough so

that c
+∞∑
k=a

(k + 1)e−k < ε. Hence, for any ε > 0,

c1h(x̃, a)v(x̃, a) ≤ lim inf
n→+∞

√
nP(Zn 6= 0)

≤ lim sup
n→+∞

√
nP(Zn 6= 0) ≤ c1h(x̃, a)v(x̃, a) + ε (28)

if only a is chosen great enough. Remind that v(x̃, a) > 0 for any a > 0 and h(x̃, a) > 0
for a large enough; by (25) the quantity h(x̃, a)v(x̃, a) is increasing in a, hence β :=
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c1 lim
a→+∞

h(x̃, a)v(x̃, a) is strictly positive. For any ε > 0, by (25), it follows that

0 < β = lim
a→+∞

c1h(x̃, a)v(x̃, a)

= lim
a→+∞

lim
n→+∞

√
nP

(i)
x̃,a(Zn 6= 0,mn > 0)

≤ lim
a→+∞

lim sup
n→+∞

√
nP(i)(Zn 6= 0)

≤ lim sup
n→+∞

√
nP(i)(Zn 6= 0)

≤ c1h(x̃, a)v(x̃, a) + ε < +∞. (29)

Therefore, from (28) and (29), the assertion of the theorem arrives.

3.4 Proof of Theorem 1.2

First, for any n ≥ 1 and s = (s1, . . . , sp), we denote Fn(s) = f0(f1(. . . (fn−1(s)) . . .)).

By definition of q
(i)
n , we have for any 0 ≤ m < n,

q(i)n = ẽi(Fm(1)− Fm(z)),

where z = z(m,n) = fm(. . . (fn−1(0)) . . .). The Mean Value Theorem yields

ẽi(Fm(1)− Fm(z)) ≤
p∑

j=1

(∫ 1

0

∂Fm

∂sj
(z + (1− z)t)dt

)
(1− zj)

≤
p∑

j=1

∂Fm

∂sj
(1)

= ẽiM0 . . .Mm−11.

Therefore, using Lemma 2.2, we have for any 0 ≤ m ≤ n and x ∈ X,

q(i)n ≤ ẽiM0 . . .Mm−11 ≍ |x̃Rm| = exp(Sm(x̃, 0)),

which yields q
(i)
n � exp(mn(x̃, 0)) and

E[q(i)n ] � E[emn(x̃,0)] = Ex̃[e
mn ].

Using the same trick like in (27), we can deduce that there exists a constant c2 such that

Ex̃[e
mn ] = Ex̃[e

mn ;mn ≤ 0] ∼ c2√
n
,

and thus the upper estimate in equation (3) arrives.
To obtain the lower estimate in (3), for any R-valued multi-dimensional generating

function f(s) , s = (s1, . . . , sp)
T , we obtain (see for instance formulas (64) and (65)

in [12])

f(s) ≤ 1−
(

p∑

i=1

∂f

∂si
(1)(1 − si)

)


1 +

p∑

i,j=1

∂2f

∂si∂sj
(1)(1 − sj)(1− si)

p∑

l=1

∂f

∂sl
(1)(1 − sl)




−1

. (30)
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We set gξ(s) = 1 − Mξ(1− s)

1 + Γ̃ξ(1− s)
, where Mξ is the mean matrix of fξ(s) and Γ̃ξ =

(A, . . . , A). Denote gξn(s) = gn(s). Applying inequality (30) with f = f
(i)
ξ , we may write

f
(i)
ξ (s) ≤ g

(i)
ξ (s), i = 1, . . . , p,

which yields

E[1− g0(g1(. . . (gn−1(0)) . . .))] ≤ E[1− f0(f1(. . . (fn−1(0)) . . .))]. (31)

The lower estimate in equation (1.2) appears by applying Theorem 1.1 to the left side of
equation (31). Therefore, the assertion of the Theorem 1.2 arrives.

4 Proof of facts

We first give some hints for the proof of Lemma 2.2. Lemmas 3.1, 3.2 and 3.3 are listed
in the order of our use; since they are dependent, we first prove Lemma 3.3, then Lemma
3.2 and at last Lemma 3.1.

4.1 Proof of Lemma 2.2

First, we obtain (32) by formally using (4)

|g| =
p∑

i,j=1

g(i, j)
p2B2

≍ g(k, l). (32)

Further properties can be easily deduced from (32). Indeed, the assertions we need are
obvious by noticing that

|gx| =
p∑

i,j=1

g(i, j)xj
p3B2

≍ |g|,

ỹgx =

p∑

i,j=1

yig(i, j)xj
p2B2

≍ |g|,

|gh| =
p∑

i,j,k=1

g(i, j)h(j, k)
p7B4

≍ |g||h|.

4.2 Proof of Lemma 3.3

Before going into the proof, we first claim that in the critical case, for any δ > 0 and
c given from Lemma 2.2, there exists κ = κ(δ, c) ≥ 1 such that

µ∗κ(Eδ) := µ∗κ{g : ∀x̃ ∈ X, ln |x̃g| ≥ δ} > 0. (33)

Indeed, let τ ′ := inf{n ≥ 1 : ln |Rn| ≥ ln c + δ}; the random variable τ ′ is a stopping
time with respect to the natural filtration (σ(M0, . . . ,Mk))k≥0 and P-a.s. finite since
lim sup
n→+∞

ln |Rn| = +∞.
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Therefore, for any δ > 0 and c given from Lemma 2.2, there exists κ ≥ 1 such that
P(τ ′ = κ) = p > 0. Moreover, we also have

P(ln |Rκ| ≥ ln c+ δ) ≥ P(ln |Rκ| ≥ ln c+ δ, τ ′ = κ)

= P(ln |Rτ ′ | ≥ ln c+ δ, τ ′ = κ)

= P(τ ′ = κ) = p > 0.

Since for any x̃ ∈ X, g ∈ G, |gx| ≥ |g|
c , it follows that

{g : ln |g| ≥ ln c+ δ} ⊂ {g : ∀x̃ ∈ X, ln |x̃g| ≥ δ}.

Thus,

0 < P(ln |Rκ| ≥ ln c+ δ) = µ∗κ{g : ln |g| ≥ ln c+ δ} ≤ µ∗κ{g : ∀x̃ ∈ X, ln |x̃g| ≥ δ},

which is the assertion of the claim (33).
Now, let us go into the proof of Lemma 3.3. For any x̃ ∈ X, a > 0 and λ ∈ (0, 1),

there exists some constant C(λ) > 0 such that (t+ 1)e−t ≤ C(λ)e−λt for any t > 0 and c
is introduced in equation (8). Hence

Êx̃,a

[+∞∑

n=0

e−Sn

]
≤ 1 +

1

h(x̃, a)

+∞∑

n=1

Ex̃,a

[
e−Snh(Xn, Sn);S0 > 0, . . . , Sn > 0

]

≤ 1 +
c

h(x̃, a)

+∞∑

n=1

Ex̃,a

[
e−Sn(1 + Sn);S0 > 0, . . . , Sn > 0

]

≤ 1 +
cC(λ)

h(x̃, a)

+∞∑

n=1

Ex̃,a

[
e−λSn ;S0 > 0, . . . , Sn > 0

]

≤ 1 +
cC(λ)

h(x̃, a)

+∞∑

n=1

Ex̃,a

[
e−λSn ;S1 > 0, . . . , Sn > 0

]

Now, we define a function Φ for any x̃ ∈ X and a ∈ R as follow:

Φ(x̃, a) :=

+∞∑

n=1

Ex̃,a

[
e−λSn ;S1 > 0, . . . , Sn > 0

]
.

Notice that S0 := a with respect to Ex̃,a for any x̃ ∈ X, we may skip the event [S0 > 0] for
any positive a. This is a trick to deal with our problem since Φ(x̃, a) = 0 whenever a ≤ 0
and we can not do anything more. Hence, it suffices to prove for any x̃ ∈ X and a ∈ R,

Φ(x̃, a) < +∞, (34)

and the assertion of Lemma 3.3 arrives for a > 0.
Notice that for any x̃ ∈ X, the function Φ(x̃, .) increases on R. We take into account

the spirit of the strategy of the proof of Lemma 3.2 in [5]. In the multi-dimensional
case, it is more complicated to apply the duality principle, namely L(M0,M1, ...,Mn) =
L(Mn, ...,M1,M0) , and we can only prove that for some a0 < 0, the quantity Φ(x̃, a0) is
finite. Unfortunately, Φ(x̃, a0) may vanish and then we can not say anything else about
Φ(x̃, a) for a > a0. To avoid this difficulty, we skip the first κ steps by introducing the
functions Φκ associated with the κth power of convolution µ∗κ of µ. For any x̃ ∈ X, a ∈ R,
let
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Φκ(x̃, a) :=

+∞∑

n=1

Ex̃

[
e−λSnκ ;Sκ > 0, . . . , Snκ > 0

]
.

The relation is that Φ(x̃, a) � Φκ(x̃, a) for any x̃ ∈ X, a ∈ R. Then, by using the duality
principle, we bound from above Φκ(x̃, a) by a new quantity Ψκ(x̃) defined below for any
x̃ ∈ X and a ∈ R. Finally, we prove Ψκ(x̃) < +∞ by using the ascending ladder epochs
associated to the Markov walk (Ln ·x, ln |Lnx|)n≥0 and the Elementary Renewal Theorem.

We set L0 = 0 and denote Ln := Mn−1 . . .M0 the left product of the matrices
M0, . . . ,Mn when n ≥ 1. For any x̃ ∈ X, a ∈ R, let

Ψκ(x̃) :=

+∞∑

n=1

E

[
|Lnκx|−λ; |Lnκx| > |L(n−1)κx|, . . . , |Lnκx| > 1

]
.

Property (34) is a direct consequence of the four steps following:

1. For any κ ≥ 1, there exists C(κ) > 0 such that, for any x̃ ∈ X and a ∈ R,

Φ(x̃, a) ≤ C(κ)(1 + Φκ(x̃, a)).

2. If there exist some κ ≥ 1, x̃0 ∈ X and a0 < 0 such that 0 < Φκ(x̃0, a0) < +∞, then

∀x̃ ∈ X,∀a ∈ R Φκ(x̃, a) < +∞.

3. There exist C1 > 0 and a1 < 0 such that for any κ ≥ 1, x̃ ∈ X and a < a1

Φκ(x̃, a)
C1� Ψκ(x̃).

4. For any κ ≥ 1 and x̃ ∈ X

Ψκ(x̃) < +∞.

Roughly speaking, on one hand, for any a0 ≤ a1 < 0, we can always choose some δ0 such
that δ0 > −a0 > 0. For each δ0, there exists κ0 ≥ 1 such that P(ln |x̃Rκ0 | ≥ δ0) > 0 (see
(33) above). Since δ0 > −a0, we have Px̃,a(Sκ0 > 0) > 0, which implies Φκo(x̃0, a0) > 0.
On the other hand, since a0 ≤ a1, step 3 and step 4 yield Φκo(x̃0, a0) < +∞. Therefore,
we can apply step 2 and it yields Φκ(x̃, a) < +∞ for any x̃ ∈ X and a ∈ R. Finally, thanks
to Step 1, (34) arrives.
Step 1. It is easy to see that

Φ(x̃, a) ≤
κ−1∑

r=1

Ex̃[e
−λSr ] +

+∞∑

n=1

κ−1∑

r=0

Ex̃,a[e
−λSnκ+r ;Sκ > 0, . . . , Snκ > 0]

≤
κ−1∑

r=1

Ex̃

[
e−λSr

]
+

+∞∑

n=1

Ex̃,a

[
e−λSnκ ;Sκ > 0, . . . , Snκ > 0

]
×

κ−1∑

r=0

sup
ỹ∈X

Eỹ,a

[
e−λSr

]

≤
(κ−1∑

r=0

sup
ỹ∈X

Eỹ,a

[
e−λSr

])
(1 + Φκ(x̃, a)),

which yields to the expected result with 0 < C(κ) =

κ−1∑

r=0

sup
ỹ∈X

Eỹ,a[e
−λSr ] < +∞.
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Step 2. The inequality Φκ(x̃0, a0) > 0 implies that P(ln |x̃0Rκ| > −a0) > 0; we thus fix
δ > −a0 > 0 and κ ≥ 1 such that µ∗κ(Eδ) > 0. Since a0 < 0, this property may hold only
when κ is large enough; this happens for instance when the support of µ is bounded.
To simplify the notations, we assume that −a0 < δ where δ is given by H5. We set κ = 1
and write

Φ(x̃0, a0) =

+∞∑

n=1

E[|x̃0Rn|−λ; |x̃0R1| > e−a0 , . . . , |x̃0Rn| > e−a0 ]

≥
∫

{g∈G:|x̃0g|≥e−a0}

+∞∑

n=2

E

[
|x̃0gR1,n|−λ; |x̃0g| > e−a0 , . . . , |x̃0gR1,n| > e−a0

]
µ(dg)

≥
∫

Eδ

+∞∑

n=2

E[|x̃0gR1,n|−λ;

|x̃0g| ≥ eδ > e−a0 , |x̃0gR1,2| > e−a0 , . . . , |x̃0gR1,n| > e−a0 ]µ(dg)

=

∫

Eδ

|x̃0g|−λ
+∞∑

m=1

E[|(x̃0 · g)Rm|−λ;

|(x̃0 · g)R1| > e−a0−ln |x̃0g|, . . . , |(x̃0 · g)Rm| > e−a0−ln |x̃0g|]µ(dg)

=

∫

Eδ

|x̃0g|−λΦ(x̃0 · g, a0 + ln |x̃0g|)µ(dg)

≥
∫

Eδ

|x̃0g|−λΦ(x̃0 · g, a0 + δ)µ(dg).

Consequently, if Φ(x̃0, a0) < +∞ then Φ(x̃0 · g, a0 + δ) < +∞ for µ-almost all g ∈ Eδ and
by iterating this argument, there thus exists a sequence (gk)k≥1 of elements of Eδ such
that

∀k ≥ 1, Φ(x̃0 · g1 · · · gk, a0 + kδ) < +∞.

By Lemma 2.2, for any x̃, ỹ ∈ X and a ∈ R

Φ(x̃, a− ln c) ≤ cλ
+∞∑

n=1

E[|Rn|−λ; |R1| > e−a, . . . , |Rn| > e−a] ≤ c2λΦ(ỹ, a+ ln c);

it follows that, by choosing k sufficiently great such that a0 + kδ > a+ 2 ln c, we have

Φ(x̃, a) ≤ Φ(x̃0 · g1 · · · gk, a+ 2 ln c) ≤ Φ(x̃0 · g1 · · · gk, a0 + kδ) < +∞.

Step 3. For any 0 ≤ k < n, denote Ln,k := Mn−1 . . .Mk and Ln,k = I otherwise. Let
c > 1 be the constant given by Lemma 2.2. For any x̃ ∈ X and a ∈ R, by using Lemma
2.2, we may write

Φκ(x̃, a) =

+∞∑

n=1

E

[
|x̃Rnκ|−λ ; |x̃Rκ| > e−a, . . . , |x̃Rnκ| > e−a

]

≤ cλ
+∞∑

n=1

E

[
|Rnκ|−λ ; |Rκ| >

e−a

c
, . . . , |Rnκ| >

e−a

c

]
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so that, by duality principle and Lemma 2.2,

Φκ(x̃, a) ≤ cλ
+∞∑

n=1

E

[
|Lnκ|−λ ;

∣∣Lnκ,(n−1)κ

∣∣ > e−a

c
, . . . , |Lnκ| >

e−a

c

]

= cλ
+∞∑

n=1

E[|Lnκ|−λ ;
∣∣Lnκ,(n−1)κ

∣∣×
∣∣L(n−1)κ

∣∣ >
∣∣L(n−1)κ

∣∣ e
−a

c
,

. . . , |Lnκ| >
e−a

c
]

≤ cλ
+∞∑

n=1

E

[
|Lnκ|−λ ; |Lnκ| >

∣∣L(n−1)κ

∣∣ e
−a

c2
, . . . , |Lnκ| >

e−a

c2

]

≤ c2λ
+∞∑

n=1

E

[
|Lnκx|−λ ; |Lnκx| >

∣∣L(n−1)κx
∣∣ e

−a

c4
, . . . , |Lnκx| >

e−a

c4

]

Consequently, setting a1 := −4 ln c and using the fact that the map a 7→ Φκ(x̃, a) is non
decreasing for any a ∈ R, one may write Φκ(x̃, a) ≤ Ψ(x̃) as long as a < a1.

Step 4. To simplify the notations, we assume here κ = 1; the proof is the same when
κ ≥ 2. For any x̃ ∈ X and n ≥ 0, set X ′

n := Ln · x and S′
n := ln |Lnx|; the random process

(X ′
n, S

′
n)n≥0 is a Markov walk on X × R starting from (x, 0) and whose transitions are

governed by the ones of the Markov chain (X ′
n)n≥0 on X. To study the quantity Ψ(x̃),

we follow the strategy developed in the case of one dimensional random walks on R with
independent increments and we thus introduce the sequence (ηj)j≥0 of ladder epochs of
(S′

n)n defined by

η1 = 0, ηj+1 = ηj+1(x) := min
{
n > ηj : ln |Lnx| > ln

∣∣Lηjx
∣∣} , j ≥ 0.

For any x̃ ∈ X, one may write

Ψ(x̃) =
+∞∑

n=1

E

[
|Lnx|−λ;∃j ≥ 1 : n = ηj

]

=
+∞∑

j=1

E

[∣∣Lηjx
∣∣−λ
]
. (35)

Let Q′ denote the transition kernel of the Markov walk (X ′
n, S

′
n)n and GQ′ :=

+∞∑

n=0

Q′n

its Green kernel. The sub-process (X ′
ηj , S

′
ηj )j≤0 is also a Markov chain, its transition kernel

Q′
η is given by: for any bounded Borel function φ : X× R → C and for any x ∈ X, a ∈ R,

Q′
ηφ(x, a) = E

[
φ(X ′

η1 , a+ S′
η1)|X

′
0 = x

]

=

+∞∑

n=1

E [φ(Ln · x, a+ ln |Lnx|); η1 = n]

=

+∞∑

n=1

E[φ(Ln · x, a+ ln |Lnx|);

|L1x| ≤ 1, · · · , |Ln−1x| ≤ 1, |Lnx| > 1].

19



Let G′
η denote the Green kernel associated with the process (X ′

ηj , S
′
ηj )j≥0; by (35)

1 + Ψ(x̃) =
+∞∑

j=0

E

[
|Lηjx|−λ

]

=
+∞∑

j=0

∫

X

∫

R

e−λa(Q′
η)

j((x, 0), dyda)

=

∫

X

∫

R

e−λaG′
η((x, 0), dyda).

The Markov walk (X ′
n, S

′
n)n≥0 has been studied by many people (see for instance [3], [8]

or [6]). All the work are based on the fact that the transition kernel of the chain (X ′
n)n has

some “nice” spectral properties, namely its restriction to the space of Lipschitz functions
on X is quasi-compact. In particular, it allows these authors to prove that the classical
renewal theorem remains valid for this Markov walk on X×R as long as it is not centered,

that is π = lim
n→+∞

1

n
E[ln |Ln|] 6= 0; in this case one may prove in particular that, for

any x̃ ∈ X, the quantity GQ′((x, 0),X × [0, a]) is equivalent to
a

π
as a → +∞ [8]. For

the behavior as a → +∞ of G′
η((x, 0),X × [0, a]), the situation is way different. On one

hand, it is easier since for any j ≥ 1 the random variables S′
ηj are strictly positive, one

might thus expect a similar result; on the other hand, the control of the spectrum of the
transition kernel Q′

η remains unfortunately unknown in this circumstance, in particular
the transition kernel Q′

η does not even act on the space of continuous functions on X !
Nevertheless, we have the following weak result with the postponed proof at the end

of this subsection.

Fact 4.1 There exists C > 0 such that for any x̃ ∈ X and a > 0

G′
η((x, 0),X × [0, a]) =

+∞∑

j=0

P([ln |Lηjx| ≤ a) ≤ Ca.

It follows that

1 + Ψ(x̃) =

∫

X

∫

R
+
∗

e−λaG′
η((x, 0), dyda)

≤ eλ
+∞∑

a=1

e−λaG′
η((x, 0),X × [a− 1, a])

≤ eλ
+∞∑

a=1

e−λaG′
η((x, 0),X × [0, a])

≤ Ceλ
+∞∑

a=1

ae−λa < +∞.

To complete the proof of Step 4, it remains to prove Fact 4.1. First, by definition of Eδ,
for any j ≥ 0 and x̃ ∈ X, we may write S′

ηj+1
− S′

ηj ≥ δ1Eδ
(Mηj ); setting εj := 1Eδ

(Mηj ),
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this yields S′
ηj ≥ δ(ε0 + . . .+ εj−1) so that

G′
η((x, 0),X × [0, a]) =

+∞∑

j=0

P(X ′
ηj ∈ X, S′

ηj ∈ [0, a]|X ′
0 = x)

≤
+∞∑

j=0

E

[
1[0,a](S

′
ηj )|X

′
0 = x

]

≤
+∞∑

j=0

E
[
1[0,a](δ(ε0 + · · · εj−1))

]
.

To conclude, we use the fact that (εi)i≥0 is a sequence of i.i.d. random variables; the
Elementary Renewal Theorem for the Bernoulli random walk process [(ε0+ . . .+εj−1)]j≥0

implies

G′
η((x, 0),X × [0, a]) ≤ E



+∞∑

j=1

1[0,a](δ(ε0 + . . .+ εj−1))


 � a.

To check that the εj are i.i.d., we set E0 = G \ Eδ, E
1 = Eδ and we fix k ≥ 1 and

e0, . . . , ek ∈ {0, 1}; since [g0 ∈ Ee0 , . . . , gnk−1
∈ Eek−1 , η1 = n1, · · · , ηk = nk] belong to

σ(g0, · · · , gnk−1
), a straightforward computation yields

P(ε0 = e0, . . . , εk = ek) = P(g0 ∈ Ee0 , . . . , gηk ∈ Eek)

=
∑

1≤n1<...<nk

P(g0 ∈ Ee0 , gn1 ∈ Ee1 , . . . , gnk
∈ Eek ,

η1 = n1, · · · , ηk = nk)

=
∑

1≤n1<...<nk

P(g0 ∈ Ee0 , gn1 ∈ Ee1 , . . . , gnk−1
∈ Eek−1 ,

η1 = n1, · · · , ηk = nk)× P(gnk
∈ Eek)

= P(g0 ∈ Ee0 , . . . , gηk−1
∈ Eek−1)µ(Eek)

and the assertion arrives by induction.

4.3 Proof of Lemma 3.2

We claim that

lim
n→+∞

Êx̃,a

∣∣∣(q(i)n )
−1 − (q(i)∞ )

−1
∣∣∣ = 0. (36)

By definition, the quantities q
(i)
n are always less than or equal to 1. Therefore, (36)

implies that the same property holds P̂x̃,a-almost surely for q
(i)
∞ . Hence,

∣∣∣q(i)n − q
(i)
∞

∣∣∣ =

q
(i)
n q

(i)
∞

∣∣∣∣(q
(i)
n )

−1
− (q

(i)
∞ )

−1
∣∣∣∣≤

∣∣∣∣(q
(i)
n )

−1
− (q

(i)
∞ )

−1
∣∣∣∣. Using (36) again, we find that lim

n→+∞
Êx̃,a

∣∣∣q(i)n − q
(i)
∞

∣∣∣ =
0. In particular,

lim
n→+∞

P̂
(i)
x̃,a(Zn 6= 0) = lim

n→+∞
Êx̃,aq

(i)
n = Êx̃,aq

(i)
∞ ,

which is the assertion of (22). Finally, it remains to verify (36). From (11) and (12), for
any 0 ≤ l ≤ n, it follows that

∣∣∣(q(i)n )
−1 − (q(i)∞ )

−1
∣∣∣ ≤

∣∣∣∣
1

ẽiRn1

∣∣∣∣+
l−1∑

k=0

∣∣∣∣
γk

ẽiRkYk+1,n
− γk
ẽiRkYk+1,∞

∣∣∣∣+
+∞∑

k=l

∣∣∣∣
γk

ẽiRkYk+1,∞

∣∣∣∣ .
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Taking expectations with respect to P̂x̃,a, we obtain

Êx̃,a

∣∣∣∣(q
(i)
n )

−1
− (q

(i)
∞ )

−1
∣∣∣∣ ≤ Êx̃,a

∣∣∣∣
1

ẽiRn1

∣∣∣∣+
l−1∑
k=0

Êx̃,a

∣∣∣∣
γk

ẽiRkYk+1,n
− γk
ẽiRkYk+1,∞

∣∣∣∣

+
+∞∑
k=l

Êx̃,a

∣∣∣∣
γk

ẽiRkYk+1,∞

∣∣∣∣ .

Let us denote An, Bn and Cn repectively as below,

An = Êx̃,a

∣∣∣∣
1

ẽiRn1

∣∣∣∣ ,

Bn =
l−1∑
k=0

Êx̃,a

∣∣∣∣γk
ẽiRk(Yk+1,n − Yk+1,∞)

(ẽiRkYk+1,n)(ẽiRkYk+1,∞)

∣∣∣∣ ,

Cl =
+∞∑
k=l

Êx̃,a

∣∣∣∣
γk

ẽiRkYk+1,∞

∣∣∣∣ .

By using Lemma 2.2, it is obvious that Lemma 3.3 implies

+∞∑

k=0

Êx̃,a

[
|Rk|−1

]
< +∞. (37)

Besides, it is also an immediate consequence of Lemma 2.2 that

An � Êx,a
1

|Rn|
, (38)

∣∣∣∣γk
ẽiRk(Yk+1,n − Yk+1,∞)

(ẽiRkYk+1,n)(ẽiRkYk+1,∞)

∣∣∣∣ �
1

|Rk|
, (39)

Cn �
+∞∑

k=l

Êx,a
1

|Rk|
. (40)

Hence, (37) and (38) implies An → 0 as n → ∞. For Bn, using (37), (39) and the fact
that Yk,n → Yk,∞ P-almost surely, we may apply the Dominated Convergence Theorem.
Thanks to (37) and (40), Cl can be made arbitrarily small by choosing l sufficiently great.

4.4 Proof of Lemma 3.1

Assume 0 ≤ m ≤ n. Using first (18), (14), and then (9), we find that

P
(i)
x̃,a(Zm 6= 0, Zn = 0|mρn > 0)

= P
(i)
x̃,a(Zm 6= 0|mρn > 0)− P

(i)
x̃,a(Zn 6= 0|mρn > 0)

= Ex̃,a

[
q(i)m − q(i)n |mρn > 0

]

=
1

Px̃,a(mρn > 0)
Ex̃,a

[
(q(i)m − q(i)n )m(ρ−1)n(Xn, Sn);mn > 0

]

�
√

ρ

ρ− 1

1

h(x̃, a)
Ex̃,a

[
E

[
(q(i)m − q(i)n )h(Xn, Sn);mn > 0|S0, ..., Sn

]]
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Since 1[mn>0] and h(Xn, Sn) are σ(S0, ..., Sn)-measurable, by (13) and (19), we can observe
that

P
(i)
x̃,a(Zm 6= 0, Zn = 0|mρn > 0)

�
√

ρ

ρ− 1

1

h(x̃, a)
Ex̃,a

[
E

[
(q(i)m − q(i)n )|S0, . . . , Sn

]
h(Xn, Sn);mn > 0

]

=

√
ρ

ρ− 1
Êx̃,a

[
E

[
q
(i)
m − q

(i)
n |S0, . . . , Sn

]]

=

√
ρ

ρ− 1
Êx̃,a

[
q
(i)
m − q

(i)
n

]

=

√
ρ

ρ− 1

[
P̂
(i)
x̃,a(Zm 6= 0)− P̂

(i)
x̃,a(Zn 6= 0)

]
.

Now let first n and then m tend to +∞. By applying Lemma 3.2, the assertion arrives.

5 Appendix: sketch of the proof of Theorem 2.3

We adapt here the proof of [6] in our setting. Identity (6) may be rewritten as

Sn(x̃, a) = a+ ln |x̃Rn| = a+
n−1∑

k=0

ρ(Yk) (41)

with Yk = (x̃ · Rk,Mk), k ≥ 0. The process (Yn)n≥0 is an homogenous Markov chain on
(Ω,F ,P) with values in the product space X = X × S+, with initial distribution δx̃ ⊗ µ
and transition operator Q defined by: for any (x̃, g) ∈ X and any bounded Borel function
ϕ : X → C,

Qϕ(x̃, g) :=

∫

S+

ϕ(x̃ · g, h)µ(dh).

The probability measure λ(dx̃ dg) = ν(dx̃) µ(dg) on X is stationary for the Markov chain
(Yn)n≥0.

For any a ∈ R, the sequence (Yn, Sn)n≥0 is a Markov chain on X ×R whose transition

probability Q̃ is defined by: for any ((x̃, g), a) ∈ X × R and any bounded Borel function
ψ : X × R → C

Q̃ψ((x̃, g), a) =

∫

S+

ψ((x̃ · g, h), a + ρ(x̃, g))µ(dh).

The operator Q̃+ is the restriction of Q̃ to X ×R
+
∗ and by τ := min{n ≥ 1 : Sn ≤ 0}.

the first time the random process (Sn)n becomes non-positive.
Denote by P(x̃,g) the probability measure generated by the finite dimensional distribu-

tions of (Yn)n≥0 starting at Y0 = (x̃, g) ∈ X and by E(x̃,g) the corresponding expectation.
Similarly P(x̃,g),a denotes the probability measure generated by the finite dimensional dis-
tributions of ((Yn, Sn))n≥0 starting at (Y0, S0) = ((x̃, g), a) ∈ X and by E(x̃,g),a the corre-
sponding expectation.

Equality (41) states that Sn(x̃, a) may be decomposed as a sum of the values of ρ along
the trajectories of the Markov chain (Yn)n≥0. This is in this context that is stated in [7]
a weak invariance principle for a one dimensional Markov walk with a control of the rate
of convergence, which is the key ingredient to control the tail of the law of the entrance
time in R

− of the process (Sn(x̃, a))n≥0. We emphasize that the quantity ρ(x̃, g) cannot
be expressed in term of the point x̃ · g, so that Sn(x̃, a) may not be decomposed as a sum
along the trajectories of (Xn)n≥0, this explains why we have to introduce the new process
(Yn)n≥0.
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We follow now step by step the approach developed by these authors in the context of
product of invertible matrices.

The operator Q acts on the space Cb(X ) of continuous bounded functions f : X → C

endowed with the supremum norm

|f |∞ = sup
(g,x̃)∈X

|f(g, x̃)|.

In this Appendix, we verify that the restriction of Q (and also a family of pertubations of
Q) to some Banach subspace B ⊂ Cb(X ) satisfies some spectral gap properties M1-M3 to
be introduced below; for more details we refer to [11]. Under these properties and some
additional moment conditions M4-M5 stated below, we have established in [7] a Komlos-
Major-Tusnady type strong approximation result for Markov chains (see Proposition 3.3)
which is one of the crucial points in our proof and the one of the main results in [6].
The conditions M1-M5 also imply the existence of the solution θ of the Poisson equation
ρ = θ −Qθ which is used in the next section to construct a martingale approximation of
the Markov walk (Sn)n≥0.

Let us now define the Banach space B. For any fix ǫ > 0 and f ∈ Cb(X ) set

kε(f) = sup
x̃ 6=ỹ

g∈S+

|f(g, x̃)− f(g, ỹ)|
d(x̃, ỹ)ǫ|g|4ǫ + sup

x̃∈X

g 6=h

|f(g, x̃)− f(h, x̃)|
|g −−H|ǫ|g|3ǫ|h|3ǫ

The space B = Bε := {f ∈ Cb : kε(f) < +∞} endowed with the norm

|f |B = |f |∞ + kε(f) (42)

the space B becomes a Banach space and also a Banach algebra. Denote by B′ = L(B,C)
the topological dual of B equipped with the dual norm | · |B′ .

Using the techniques of the paper [11], it can be checked that under H1–H3 the con-
dition M1 below is satisfied:
M1 (Banach space):

i) The constant functions belongs to B.
ii) For every (x̃, g) ∈ X , the Dirac measure δ(x̃,g) belongs to B′ and its norm is ≤ 1.
iii) B ⊆ L1(Q((x̃, g), ·) for every (x̃, g) ∈ X
iv) There exists a constant η0 ∈ (0, 1) such that for any t ∈ [−η0, η0] and f ∈ B the

function eitρf belongs to B.
Condition M1 iii) implies that Qf is well defined for any f ∈ B; it follows from M1 iv)

that the perturbed operator Qtf = Q(eitρf) is also well defined on B for any t ∈ [−η0, η0].
Combining techniques from [11] with the contraction property 2 in Proposition 2.1, on

can check that the following conditions M2-M3 are satisfied:
M2 (Spectral gap): The operator Q on B may be decomposed as Q = Π+R where Π
is a one dimensional projector on the constant functions space and R is an operator on B
with spectral radius < 1

Notice that Πf = λ(f)1 for any f ∈ B.
M3 (Perturbate transition operator): There exists a constant C = CQ > 0 such
that

∀n ≥ 1,∀t ∈ [−η0, η0] |Qn
t |B ≤ C.

Using H1, we readily deduce the conditions M4-M5 below:
M4 (Moment condition): For any p > 2

sup
(x̃,g)∈X

sup
n≥1

E
1/p
(x̃,g)|ρ(Yn)|

p < +∞.

24



M5: The stationary probability measure λ satisfies

∫
sup
n≥0

Qnρ2(x̃, g)λ(dg dx̃) < +∞.

In summary, under hypotheses H1, H2, H3 and H4, the conditions M1-M5 are satis-
fied. The proof of Theorem 2.3 is decomposed in several steps.

FirstM1-M3 allows to construct a martingale approximation of the sequence (Mn(x̃, a))n≥0

base on the existence of a solution in B of the Poisson equation ρ = (I−Q)ϕ (see [6] section
4).

Conditions M1-M4 yields to the fact that the function V on X × R
∗
+ defined by

V ((x̃, g), a) = lim
n→+∞

E((x̃,g),a) (Sn; τ > n)

for any (x̃, g) ∈ X and a > 0, is Q̃+–Harmonic. Comparing the forms of the operators P
and Q implies that V ((x̃, g), a) = h(x̃ · g, a + ln |x̃g|). Hypothesis H5 is needed to prove
that this function V does not vanish on X × R

+.
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