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Abstract. An existence result for differential inclusions in a separable Hilbert space

is furnished. A wide family of nonlocal boundary value problems is treated, including

periodic, anti-periodic, mean value and multipoint conditions. The study is based on an
approximation solvability method. Advanced topological methods are used as well as a

Scorza Dragoni-type result for multivalued maps. The conclusions are original also in

the single-valued setting. An application to a nonlocal dispersal model is given.

1. Introduction. The paper deals with the nonlocal problem{
x′(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]

x(0) = Mx
(1)

in a separable Hilbert space H where F : [0, T ]×H ( H is a multivalued map (multimap)
and M : C([0, T ], H)→ H is a bounded linear operator. The investigation of periodic, anti-
periodic, mean value and multi-point solutions is included. The multivalued framework can
be motivated by the introduction of control terms into the process, by the appearance of
jump discontinuities or by an incomplete knowledge of the model as in Section 3. Advanced
topological methods were recently used for the study of (1), based on suitable topological
degrees (see e.g. [1], [8] and [10]). Recent results in this context can be found in [3], [4],
[6], [7], [8] and [12]. In particular, in [4] and [6] the assumptions involve the weak topology
in the state space; an abstract homotopy invariant is introduced in [8], in order to detect
steady-states solutions of (1) with an additional m-accreative term appearing also in [12].
A new approach was proposed in [3], based on the approximation solvability method and it
was showed there that a quite general family of nonlinear terms can be considered. While
the transversality condition in [3] (see [3, (3.1)]) is taken on all an open set, we refine here
that technique by assuming a strictly located condition (see condition (3) below), i.e. only
on a suitable boundary. This change is not marginal since it requires the use of a Scorza
Dragoni type result for multivalued functions (see e.g. [2] and [9, Proposition 5.1]) and the
introduction of a sequence of auxiliary problems (see (6)). The main result is Theorem 1.1
below; we point out that it is new also in a single-valued framework.

We denote by Hω the topological space H equipped with its weak topology and assume
the following conditions
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(H) (H, ‖ · ‖H) is a separable Hilbert space which is compactly embedded in a Banach space
(E, ‖ · ‖E) with the relation of norms:

‖w‖E ≤ q‖w‖H for all w ∈ H; (2)

for some q > 0;
(F1) F takes nonempty, convex, closed and bounded values and for every w ∈ H the

multifunction F (·, w) : [0, T ] ( H is measurable;
(F2) for a.e. t ∈ [0, T ] the multimap F (t, ·) : H ( H is closed from H to Hω;
(F3) for a.e. t ∈ I the multimap F (t, ·) : H ( H is E − E u.s.c.;
(F4) for every bounded subset Ω ⊂ H there exists vΩ ∈ L1

+[0, T ] such that for each ω ∈ Ω
we have

‖F (t, w)‖H = sup{‖z‖H : z ∈ F (t, w)} ≤ vΩ(t)

for a.e. t ∈ [0, T ].
(M) M : C([0, T ], H) ( H is a linear bounded operator satisfying ‖M‖ ≤ 1.

Theorem 1.1. Assume (H), (F1) − (F4) and (M). In addition, suppose that there exists
R0 > 0 such that for every w ∈ H with ‖w‖H = R0, for a.e. t ∈ [0, T ] and z ∈ F (t, w), we
have 〈

w, z
〉
≤ 0. (3)

Then problem (1) admits a solution x ∈ W 1,1([0, T ], H) with ‖x(t)‖H ≤ R0, for a.e. t ∈
[0, T ].

Its proof appears in Section 2. Section 3 contains an application to a nonlocal dispersal
model given by an integro-differential equation; its multivalued nature is given by the pos-
sible uncertainty of the integral kernel which is not determined, but belongs to a prescribed
family of functions.

2. Proof of Theorem 1.1. Since H is separable, according to (F1) and the Kuratowski-
Ryll-Nardzewski Theorem (see [11]), a measurable selection of F (·, y) exists for every y ∈ H.
Thus we get that, (F2), (F4) and [3, Proposition 4] yield, for each q ∈ C([0, T ], H),

Sq = {f ∈ L1([0, T ], H) : f(t) ∈ F (t, q(t)) for a.e. t ∈ [0, T ]} 6= ∅
(see [5, Proposition 2.2]). The proof splits into five steps.
Step 1. Introduction of a sequence of problems in a finite dimensional space. Denote by
{en}∞n=1 an orthonormal basis of H and for every n ∈ N, let Hn be an n−dimensional
subspace of H with the basis {ek}nk=1 and Pn be the projection of H onto Hn. For the sake
of simplicity, we denote by F and M also their restrictions F/[0,T ]×Hn

and M/[0,T ]×Hn
. We

first prove that, for every fixed n ∈ N, the problem{
x′(t) ∈ PnF (t, x(t)), for a.e. t ∈ [0, T ],

x(0) = PnMx,
(4)

has a solution. By a solution to (4) we mean a function x ∈ W 1,1([0, T ], Hn) such that
x(0) = PnMx and there exists f ∈ Sx such that x′(t) = Pnf(t) for a.e. t ∈ [0, T ].

Let us denote by K = {x ∈ H : ‖x‖H < R0} and by Qn the closed and convex set
C([0, T ],K ∩Hn).
Step 2. Introduction of a sequence of approximating problems. To prove that problems (4)
are solvable we use an approximation result of Scorza-Dragoni type (see e.g. [9, Proposition
5.1]). According to Urisohn lemma, given ε ∈ (0, R0), there exists a continuous function
µ : H → [0, 1] such that µ ≡ 0 on H \ {x ∈ H : R0 − ε < ‖x‖H < R0 + ε} and µ ≡ 1 on
{x ∈ H : R0 − ε

2 ≤ ‖x‖H ≤ R0 + ε
2}. Trivially the function φ : H → R defined by

φ(x) =

µ(x)
x

‖x‖H
R0 − ε ≤ ‖x‖H ≤ R0 + ε

0 otherwise
(5)
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is well-defined, continuous and bounded in H.
Since Pn is a linear operator, from (F1) it easily follows that PnF : [0, T ]×(K∩Hn) ( Hn

has nonempty, convex and bounded values. We prove now that the map PnF has closed
values too. Given (t, x) ∈ [0, T ] × (K ∩Hn), take {wm} ⊂ PnF (t, x) converging to w and
wm ∈ F (t, x) with wm = Pnwm for all m ∈ N. From (F1), without loss of generality, we
get the existence of v ∈ F (t, x) such that wm ⇀ v, hence that wm ⇀ Pnv, for the linearity
and continuity of Pn. From the uniqueness of the weak limit we then obtain w = Pnv,
i.e. that PnF has closed values. Since Pn is continuous, (F1) also implies that PnF (·, x)
is measurable for every x ∈ K ∩ Hn. For a.e. t ∈ [0, T ], (F4) implies that PnF (t, ·) is a
compact multimap. Finally, given xm → x ∈ K ∩ Hn, wm → w with wm ∈ PnF (t, xm)
and wm ∈ F (t, xm) with wm = Pnwm, the convergence of {xm}, conditions (F2) and (F4)
yield the existence of a subsequence, denoted as the sequence, such that wm ⇀ v ∈ F (t, x).
According to the linearity and continuity of Pn, we then get w = Pnv, i.e. that PnF (t, ·)
is closed, hence u.s.c.. Let τ be the Lebesgue measure in R. Applying [9, Proposition 5.1
] to PnF : [0, T ] × (K ∩ Hn) ( Hn we obtain a multimap Gn : [0, T ] × (K ∩ Hn) ( Hn

with closed, bounded, convex and possibly empty values satisfying Gn(t, q) ⊂ PnF (t, q)
for every (t, q) and a monotone decreasing sequence {θm}m of subsets of [0, T ] such that
[0, T ] \ θm is compact, τ(θm) < 1

m for every m ∈ N and Gn is nonempty valued and u.s.c.

in ([0, T ] \ θm) × (K ∩ Hn). Obviously τ (∩∞m=1θm) = 0 and lim
m→∞

χθm(t) = 0, for every

t /∈ ∩∞m=1θm where χA is the characteristic function of a set A ⊂ R.
Now we introduce the initial problem{

x′(t) ∈ Gn(t, x(t))− φ(x(t))
(
vK(t)χθm(t) + 1

m

)
, for a.e. t ∈ [0, T ]

x(0) = PnMx.
(6)

Step 3. Solvability of problem (6). To prove that problem (6) has a solution, we shall apply
a classical continuation principle (see, e.g. [2, Proposition 2]). Fix q ∈ Qn; according to the
properties of Gn and since Sq 6= ∅ we have that

Rnq = {f ∈ L1([0, T ], Hn) : f(t) ∈ Gn(t, q(t)) for a.e. t ∈ [0, T ]} 6= ∅;
moreover, it is well known that, for each q ∈ Qn, λ ∈ [0, 1] and f ∈ Rnq, the linear initial
value problem{

x′(t) = λ[f(t)− φ(q(t))(vK(t)χθm(t) + 1
m )], for a.e. t ∈ [0, T ],

x(0) = λPnMnq,
(7)

has a unique solution denoted by Hnm(f, λ).
Let us introduce now the multimap Tnm : Qn × [0, 1] ( C([0, T ], Hn), defined as

Tnm(q, λ) = {Hnm(f, λ) : f ∈ Rnq}. According to (F1) it has convex values. We prove
now that Tnm has a closed graph in Qn × [0, 1] × C([0, T ], Hn). Assume that λk → λ ∈
[0, 1], qk → q in Qn and xk → x in C([0, T ],K ∩Hn) with xk ∈ Tnm(qk, λk) for all k and let
fk ∈ Rnqk be such that

x′k(t) = λk [fk(t)− φ(qk(t)) (vK(t)χθm(t) + 1/m)] .

According to the convergence of {qk}, condition (F4) and by the Dunford-Pettis Theorem
there exists f ∈ L1([0, T ], Hn) and a suitable subsequence of {fk} denoted as the sequence,
such that fk ⇀ f. Moreover, the continuity of φ implies that

x′k ⇀ l : t→ λ [f(t)− φ(q(t)) (vK(t)χθm(t) + 1/m)]

in L1([0, T ], Hn). From (M) we get that xk(0) = λkPnMqk → λPnMq and by the finite
dimension of Hn we then obtain that

xk(t)→ y(t) := λPnM(q) +

∫ t

0

l(s) ds
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for all t ∈ [0, T ]. According to the uniqueness of the limit we get x = y. Finally, the upper
semicontinuity of Gn in [0, T ] \ θm × (K ∩Hn) for every m implies that f ∈ Rnq, i.e. the
closure of the graph of Tnm for every m ∈ N.

Given now x ∈ Tnm(Qn× [0, 1]), we have that x(t) = λPnMq+λ
∫ t

0
[f(s)−φ(q(s))(vK(s)

χθm(s)+ 1
m )]dt, for some q ∈ Qn, λ ∈ [0, 1] and f ∈ Rnq. The boundedness and equicontinuity

of Tnm(Qn × [0, 1]) follow from (F4), the boundedness of Qn and the continuity of φ, thus
the Ascoli-Arzelá theorem implies the compactness of Tnm.

Since trivially Tnm(Qn × {0}) = {0} ⊂ int Qn, to apply the continuation principle it
remains to prove that Tnm(·, λ) is fixed point free on ∂Qn for every λ ∈ (0, 1). We reason
by a contradiction and assume the existence of λ ∈ (0, 1), q ∈ ∂Qn and t0 ∈ [0, T ] such that
q ∈ Tnm(q, λ) and q(t0) ∈ ∂K. If we assume that t0 = 0, by (M) we have the contradictory
conclusion R0 = ‖q(0)‖H = λ‖PnMq‖H < ‖M‖‖q‖C ≤ R0. Hence t0 > 0, thus there is
h > 0 such that q(t) ∈ {x ∈ Hn : R0 − ε

2 ≤ ‖x‖H ≤ R0} for all t ∈ [t0 − h, t0]. According to
(F4), we then obtain

0 ≤ ‖q(t0)‖2H − ‖q(t0 − h)‖2H = 2

∫ t0

t0−h
< q(s), q′(s) > ds =

2λ

∫
[t0−h,t0]∩θm

[< q(s), f(s) > −(vK(s) + 1/m)‖q(s)‖H ]ds+

2λ

∫
[t0−h,t0]\θm

[< q(s), f(s) > −1/m‖q(s)‖H ]ds ≤

2λ

∫
[t0−h,t0]∩θm

[‖q(s)‖HvK(s)− (vK(s) + 1/m)‖q(s)‖H ]ds+

2λ

∫
[t0−h,t0]\θm

[< q(s), f(s) > −1/m‖q(s)‖H ]ds <

2λ

∫
[t0−h,t0]\θm

[< q(s), f(s) > −1/m‖q(s)‖H ]ds.

(8)

Now, if t0 ∈ θm, we can choose h sufficiently small such that [t0−h, t0] ⊂ θm, because θm is
open and we get

∫
[t0−h,t0]\θm [< q(s), f(s) > − 1

m‖q(s)‖H ]ds = 0, so (8) gives a contradiction.

Otherwise, let us consider the map J : [0, T ] \ θm × (K ∩Hn) ( R defined as

(t, x) ( {< x,w > −1/m‖x‖H : w ∈ Gn(t, x)}.

Since ‖q(t0)‖H = R0, assumption (3) implies that

< q(t0), w >≤ 0, for every w ∈ Gn(t0, q(t0)) ⊂ PnF (t0, q(t0)).

Therefore, j ≤ − 1
mR0 < 0 for every j ∈ J (t0, q(t0)) and since the multimap Gn is u.s.c.

in [0, T ] \ θm × (K ∩Hn) and q is continuous, we can choose h sufficiently small such that
< q(s), f(s) > − 1

m‖q(s)‖H < 0 on all [t0 − h, t0] \ θm and (8) gives again a contradiction.
Therefore it follows the existence of qnm ∈ Qn with qnm ∈ Tnm(qnm, 1), i.e. of a solution

of problem (6).
Step 4. Solvability of problems (4). For every n ∈ N, we got a sequence {qnm} ⊂
AC([0, T ],K ∩Hn) such that

q′nm(t) = fm(t)− φ(qnm(t)) (vK(t)χθm(t) + 1/m) for a.a. t ∈ [0, T ] (9)

with fm ∈ Rnqnm
. Hence, {qnm}m is bounded. Moreover, according to (F4), {fm}m is

integrably bounded, thus the boundedness of φ implies the integrable boundedness of {q′nm}.
The Ascoli–Arzelà Theorem then implies the existence of qn ∈ AC([0, T ],K ∩Hn) such that
{qnm} has a subsequence, again denoted as the sequence, with qnm → qn uniformly in [0, T ],
and q′nm ⇀ q′n in L1[0, T ]. Notice, moreover, that since φ is bounded and lim

m→∞
χθm(t) = 0
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for every t /∈ ∩∞m=1θm, and τ (∩∞m=1θm) = 0,

φ(qnm(t)) (vK(t)χθm(t) + 1/m)→ 0, for a.a. t ∈ [0, T ].

Consequently, a standard limiting argument (see e.g. [13, page 88]) implies that qn is a
solution of (4).
Step 5. Solvability of problem (1). The conclusion follows as in [3, Theorem 7].

3. Applications. We apply the developed abstract theory to the Cauchy multi-point prob-
lem (10) associated to a nonlocal diffusion process. The multivalued nature of the nonlinear
integro-differential equation in (10) depends on the integral kernel, which can be unknown
and can only be chosen in a suitable family of functions.

Let Ω ⊂ Rk (k ≥ 2) be an open bounded domain with Lipschitz boundary. Consider the
multi-point problem

ut = u(t, ξ)

∫
Ω

v(ξ, η)u(t, η)dη − bu(t, ξ) + f(t, u(t, ξ))

v ∈ S

u(0, ξ) =
∑p
i=1 αiu(ti, ξ), αi ∈ R, i = 1, 2, ..., p, 0 < t1 < ... < tp ≤ 1,

(10)

for a.a. t ∈ [0, 1] and all ξ ∈ Ω, where b > 0,
∑p
i=1 |αi| ≤ 1, f : [0, 1]×R→ R is a continuous

function, and

S =

{
v ∈W 1,2(Ω× Ω,R) :

∃β > 0 such that

|v(ξ, η)|+ ‖∇v(ξ, η)‖R2k ≤ β for a.e. (ξ, η) ∈ Ω× Ω

}
,

where the symbol ∇ stands for the derivative with respect to (ξ, η) ∈ Ω× Ω.
Assume that

(f) the partial derivative ∂f
∂z : [0, 1]×R→ R is continuous and there is a positive constant

N , such that ∣∣∣∣∂f(t, z)

∂z

∣∣∣∣ ≤ N for all (t, z) ∈ [0, 1]× R.

We assume that b = N +
√

6δ|Ω|β, where δ = max
t∈[0,1]

|f(t, 0)|. The symbol D stands for

the derivative (i.e. the gradient) with respect to the variables in the vector ξ and for

(t, z) ∈ [0, 1]× R, we denote f
′

2(t, z) = ∂f(t,z)
∂z .

By a solution to (10) we mean a continuous function u : [0, 1] × Ω → R whose partial

derivative ∂u(t,ξ)
∂t exists, for a.a. t ∈ [0, 1], and it satisfies (10).

Let H = W 1,2(Ω,R) and E = L2(Ω,R). It is clear that H is a separable Hilbert space
which is compactly embedded in E. By means of a reformulation of this problem we will
prove the existence of a continuous function u(t, ξ) such that at every value t the function
u(t, ·) belongs to the Sobolev space W 1,2(Ω,R). To this aim, for each t ∈ [0, 1], set x(t) =
u(t, ·). Then we can substitute (10) with the following problem{

x′(t) ∈ F (t, x(t)), for a.e. t ∈ [0, 1],

x(0) =
∑p
i=1 αix(ti) with αi ∈ R, i = 1, 2, ..., p, 0 < t1 < ... < tp ≤ 1,

(11)

where F : [0, 1]×H ( H, F (t, w) = G(w) + f(t, w) with

G : H ( H,G(w) =

{
g ∈ H : g(ξ) = w(ξ)

∫
Ω

v(ξ, η)w(η) dη − bw(ξ) v ∈ S
}
,

f : [0, 1]×H → H, f(t, w)(ξ) = f(t, w(ξ)) for a.a. ξ ∈ Ω.
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First we remark that G is well-defined. Indeed for w ∈ H and v ∈ S, by Fubini’s Theorem
we have that {v(ξ, ·)} ∈ L2(Ω,R) for a.e. ξ ∈ Ω; so g can be defined and for a.e. ξ ∈ Ω it
holds

Dg(ξ) = Dw(ξ)

(∫
Ω

v(ξ, η)w(η) dη

)
+ w(ξ)

(∫
Ω

Dv(ξ, η)w(η) dη

)
− bDw(ξ).

Trivially, by the definition of the set S it follows that g ∈ H.
From (f) it follows that

|f(t, z)| ≤ |f(t, 0)|+
∫ z

0

|f
′

2(t, η)| dη ≤ |f(t, 0)|+N |z|, (12)

for all (t, z) ∈ [0, 1]× Ω. Moreover

Df(t, w(ξ)) = f ′2(t, w(ξ))Dw(ξ) for ξ ∈ Ω.

So f is well-defined as well. Trivially G has bounded and convex values. To prove that G
has closed values we have to show that given w ∈ H and {gn} ⊂ H such that gn ∈ G(w) for

any n ∈ N and gn
H→ g, it follows g ∈ G(w). First notice that w.l.o.g. {gn} almost pointwise

converges to g. By the definition of the multimap G there exists a sequence of functions
{vn} ⊂W 1,2(Ω× Ω,R) such that gn satisfies

gn(ξ) = w(ξ)

∫
Ω

vn(ξ, η)w(η) dη − bw(ξ), ξ ∈ Ω.

By the weak compactness of the set S there exists a subsequence, denoted as the sequence,
such that vn ⇀ v0, v0 ∈ S in W 1,2(Ω × Ω,R). By the compact embedding of W 1,2(Ω ×
Ω,R) into L2(Ω×Ω,R), the weak convergence of {vn} in W 1,2(Ω×Ω,R) implies its strong
convergence in L2(Ω × Ω,R) and hence the almost pointwise convergence of a suitable
subsequence. Denote with h : Ω→ R the function:

h(ξ) = w(ξ)

∫
Ω

v0(ξ, η)w(η) dη − bw(ξ), ξ ∈ Ω.

From the dominated almost pointwise convergence of {vn} to v0 it follows that |gn(ξ)−h(ξ)|
goes to zero as n goes to ∞ for a.e. ξ ∈ Ω. Therefore by the uniqueness of the limit we have
that g(ξ) = h(ξ) for a.e. ξ ∈ Ω, hence g ∈ G(w).

Now let wn
E→ w0. We have

‖f(t, wn)− f(t, w0)‖2E =

∫
Ω

|f(t, wn(ξ))− f(t, w0(ξ))|2dξ

=

∫
Ω

∣∣∣∣∣
∫ wn(ξ)

w0(ξ)

f ′2(t, τ)dτ

∣∣∣∣∣
2

dξ

≤N2

∫
Ω

|wn(ξ)− w0(ξ)|2dξ = N2‖wn − w0‖2E .

Hence f(t, wn)
E→ f(t, w0) and then f(t, ·) is E − E continuous.

Moreover the multimap G is E − E u.s.c.. Indeed, if wn
E→ w0, w.l.o.g. {wn} almost

pointwise converges to w0 and the convergence is dominated in E. Let moreover gn ∈ G(wn),
implying the existence of {vn} ⊂ S such that

gn(ξ) = wn(ξ)

∫
Ω

vn(ξ, η)wn(η) dη − bwn(ξ), ξ ∈ Ω. (13)

As above there is a subsequence, denoted as the sequence, and v0 ∈ S such that {vn} almost
pointwise converges to v0 and the convergence is dominated in L2(Ω× Ω,R). Put

g0(ξ) = w0(ξ)

∫
Ω

v0(ξ, η)w0(η) dη − bw0(ξ), ξ ∈ Ω. (14)
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Notice that

|gn(ξ)− g0(ξ)| ≤|wn(ξ)|
∫

Ω

|vn(ξ, η)− v0(ξ, η)||wn(η)| dη+

|wn(ξ)|
∫

Ω

|v0(ξ, η)||wn(η)− w0(η)| dη+

|wn(ξ)− w0(ξ)|
∫

Ω

|v0(ξ, η)||w0(η)| dη+

b|wn(ξ)− w0(ξ)|, ξ ∈ Ω,

implying that |gn(ξ) − g0(ξ)| → 0 for a.a. ξ ∈ Ω and the convergence is dominated in E.

Hence gn
E→ g0 and then the multimap G is quasicompact. Following the same reasonings

it follows that it is E − E closed. By [10, Theorem 1.1.12] we have that G is an u.s.c.
multimap.

So w 7−→ F (t, w) is u.s.c. from E into itself, for each t ∈ [0, 1] and condition (F3) is
satisfied.

Now, let t ∈ [0, 1]. To prove the H − H continuity of the map f(t, ·) we assume by

contradiction that there exists a sequence {w̃n} such that w̃n
H→ w0 and ε > 0 such that

‖f(t, w̃n)− f(t, w0)‖H > ε for any n ∈ N. Thus we have

ε2 < ‖f(t, w̃n)− f(t, w0)‖2H =∫
Ω

(
|f(t, w̃n(ξ))− f(t, w̃0(ξ))|2 + ‖Df(t, w̃n(ξ))−Df(t, w0(ξ))‖2Rk

)
dξ.

For the continuity in E of the map f(t, ·), w.l.o.g. has to be∫
Ω

‖Df(t, w̃n)−Df(t, w0)‖2Rk dξ > ε2 ∀n ∈ N. (15)

By the convergence of {w̃n} to w0 in H there exists a subsequence {w̃nk
} such that w̃nk

(ξ)→
w0(ξ) and Dw̃nk

(ξ) → Dw0(ξ) for a.e. ξ ∈ Ω and the convergence is dominated. We have
the following estimation∫

Ω

‖Df(t, w̃n)−Df(t, w0)‖2Rk dξ =

∫
Ω

‖f ′2(t, w̃nk
(ξ))Dw̃nk

(ξ)− f ′2(t, w0(ξ))Dw0(ξ)‖2Rk dξ

≤ 2

∫
Ω

|f ′2(t, w̃nk
(ξ))|2‖Dw̃nk

(ξ)−Dw0(ξ)‖2Rk dξ

+ 2

∫
Ω

|f ′2(t, w̃nk
(ξ))− f ′2(t, w0(ξ))|2‖Dw0(ξ)‖2Rk dξ.

By the continuity of the map f ′2 it follows f ′2(t, w̃nk
(ξ)) → f ′2(t, w0(ξ)) for a.e. ξ ∈ Ω.

Moreover by hypothesis (f) we have

|(f ′2(t, w̃nk
(ξ))− f ′2(t, w0(ξ))|2‖Dw0(ξ)‖2Rk ≤ 4N2‖Dw0(ξ)‖2Rk

and

|f ′2(t, w̃nk
(ξ))|2‖Dw̃nk

(ξ)−Dw0(ξ)‖2Rk ≤ N2‖Dw̃nk
(ξ)−Dw0(ξ)‖2Rk .

Thus by the convergence of {w̃n} to w0 in H and by the Lebesgue’s Convergence Theorem∫
Ω

‖Df(t, w̃n)−Df(t, w0)‖2Rk dξ goes to zero as n→∞,

obtaining a contradiction with (15). Hence for any sequence {wn} such that wn
H→ w0 it

follows f(t, wn)
H→ f(t, w0).

The multimapG isH−Hω closed. Indeed, assume that there exists wn
H→ w0, gn ∈ G(wn)

such that gn
H
⇀ g, we shall prove that g ∈ G(w0).
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By the definition of G, the function gn satisfies (13) with vn ∈ S for every n ∈ N.
Reasoning as above we can show the existence of v0 ∈ S and a subsequence, denoted as
the sequence, such that vn almost pointwise converges to v0 in Ω× Ω and the convergence

is dominated in L2(Ω × Ω,R). Moreover gn
E→ g0 with g0 defined as in (14). The weak

convergence of {gn} to g in H also implies that gn
E→ g. By the uniqueness of the limit we

have that g ≡ g0, i.e. g ∈ G(w). Hence w 7−→ F (t, w) is closed from H into Hω, for each
t ∈ [0, 1] and condition (F2) is satisfied.

To verify condition (F1) it is sufficient to prove that f(·, w) is measurable, for every
w ∈ H. In fact the multimap G does not depend on t ∈ [0, 1] and so it is trivially measurable
with respect to t. We will prove that f(·, w) is continuous. In fact, let t0 ∈ [0, 1] and
{tn} ⊂ [0, 1] such that tn → t0. According to (f) we obtain that f(tn, w(ξ)) → f(t0, w(ξ))
and Df(tn, w(ξ)) = f ′2(tn, w(ξ))Dw(ξ) → f ′2(t0, w(ξ))Dw(ξ) = Df(t0, w(ξ)) for all ξ ∈ Ω.
As a consequence of (12), the previous convergences are also dominated in E, implying that

f(tn, w)
H→ f(t0, w). Therefore, f(·, w) is continuous, and hence, it is measurable.

Now let Θ ⊂ H be bounded, w ∈ Θ and t ∈ [0, 1]. If z ∈ F (t, w), hence z = g + f(t, w)
with g ∈ G(w). Therefore there exists v ∈ S such that

‖z‖2H =

∫
Ω

∣∣∣∣w(ξ)

(∫
Ω

v(ξ, η)w(η) dη

)
− bw(ξ) + f(t, w(ξ))

∣∣∣∣2 dξ
+

∫
Ω

∥∥∥∥w(ξ)

(∫
Ω

Dv(ξ, η)w(η) dη

)
+Dw(ξ)

(∫
Ω

v(ξ, η)w(η) dη

)
− bDw(ξ) + f ′2(t, w(ξ))Dw(ξ)

∥∥2

Rk dξ

≤ 7β2|Ω|‖w‖4H + 4b2‖w‖2H + 6|f(t, 0)|2|Ω|+ 6N2‖w‖2H .

So condition (F4) is satisfied.
Now, let w ∈ H and g ∈ G(w); by virtue of (f) and (12) the following estimation is true

〈
w, g + f(t, w)

〉
≤ −b‖w‖2H +

∫
Ω

|w(ξ)| (|f(t, 0)|+N |w(ξ)|) dξ

+N

∫
Ω

∥∥Dw(ξ)
∥∥2

Rk dξ + β

(∫
Ω

|w(ξ)|2 dξ
)(∫

Ω

|w(η)| dη
)

+ β

(∫
Ω

‖Dw(ξ)‖Rk |w(ξ)| dξ
)(∫

Ω

|w(η)| dη
)

+ β

(∫
Ω

‖Dw(ξ)‖2Rk dξ

)(∫
Ω

|w(η)| dη
)

≤
(
−b+N

)
‖w‖2H + δ|Ω|1/2 ‖w‖H + β|Ω|1/2‖w‖2H‖w‖E

+
1

2
β|Ω|1/2‖w‖E‖w‖2H

≤ 3

2
β|Ω|1/2‖w‖3H + (−b+N)‖w‖2H + δ|Ω|1/2 ‖w‖H = 0,

provided ‖w‖H =
b−N

3β|Ω|1/2
.

Applying Theorem 1.1 we obtain the existence of a solution to (11), and therefore, of
(10).

Notice that the last term of the previous inequality is grater than zero for any w ∈ H
with ‖w‖H 6=

b−N
3β|Ω|1/2

. Thus, from [3, Theorem 7] it is not possible to deduce the existence

of a solution of problem (10) from the above estimation.
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Remark 1. We remark that different nonlocal conditions can be replaced in (10) such as
the mean value condition, i.e.,

u(0, ξ) =

∫ 1

0

u(s, ξ) ds, ξ ∈ Ω.
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