Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Universita di Modena e Reggio Emilia

RIS

INSTITUTIOMAL RESEARCH INFORMATION SYSTEM
ARCHIMIO ISTITUZIOHALE DEI PRODCTTI DELLA RICERCA

intestazione repositorydell’ateneo

A memory-centric approach to enable timing-predictability within embedded many-core accelerators

This is the peer reviewd version of the followng article:

Original

A memory-centric approach to enable timing-predictability within embedded many-core accelerators / Burgio, Paolo;
Marongiu, Andrea; Valente, Paolo; Bertogna, Marko. - (2015), pp. 1-8. ((Intervento presentato al convegno CSI
Symposium on Real-Time and Embedded Systems and Technologies, RTEST 2015 tenutosi a Sharif University of
TechnologyTehran; Iran nel 7-8 ottobre 2015.

Availability:
This version is available at: 11380/1108868 since: 2017-05-11T14:32:28Z

Publisher:
IEEE - Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/RTEST.2015.7369851

Terms of use:
openAccess

Testo definito dall’ateneo relativo alle clausole di concessione d'uso

Publisher copyright

(Article begins on next page)

18 September 2017

https://core.ac.uk/display/54013492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2015 CSI Symposium on Real-Time and Embedded Systems and Tegieso{RTEST)

A memory-centric approach to enable timing-predictability
within embedded many-core accelerators

Paolo Burgid, Andrea Marongil Paolo Valentg, Marko Bertogna
*University of Modena and Reggio Emilia, Modena, Italy
TSwiss Federal Institute of Technology (ETH), Zurich, Swidret

Email: {paolo.burgio, paolo.valente, marko.bertogna}@unimore.imarongiu@iis.ee.ethz.ch

Abstract models, enhancing the predictability of multi-core reale sys-
tems. In the PRedictable Execution Model (PREM) [5], codé an
r%’glta are moved prior to executiopréfetchedl in a private core
resource (in that case, the L1 cache), removing the sources
hchg?ntention at run time, and ultimately reducing WCET bounds.

There is an increasing interest among real-time syste
architects for multi- and many-core accelerated platforribe
main obstacle towards the adoption of such devices wit

industrial settings is related to the difficulties in tigh#stimating We believe that the memory hierarchies of modern many-
the multiple interferences that may arise among the paralleores can further boost the effectiveness of the PREM model
components of the system. This in particular concerns go&ell and, in general, improve WCET predictability. The reasoma,t
accesses to shared memory and communication resourcest- Exi order to match the stringent energy/area constraintsazfem

ing worst-case execution time analyses are extremelypés&, embedded systems, platform architects partially or tptalplace
especially when adopted for systems composed of hundreds+aditional” data caches with explicitly managed memsrseich
thousands of cores. This significantly limits the potenf@ as scratchpads (SPMs), which may consume up to 40% les
the adoption of these platforms in real-time systems. Is thinergy and occupy up to 34% less area than caches [6], [7
paper, we study how the predictable execution model (PREM)8]. The key point is thatthe behavior of explicitly-managed
memory-aware approach to enable timing-predictabilityré@l- scratchpads is also much more predictable than that of cache
time systems, can be successfully adopted on multi- and-masstause access latencies are independent of the access [8iit

core heterogeneous platforms. Using a state-of-the-aitifoore [10], [11], and this potentially enhances the benefits ofRREM
platform as a testbed, we validate that it is possible to wbém model, when applied to them.

order-of-magnitude improvement in the WCET bounds of pelral _

applications, if data movements are adequately orchestran In this paper, we apply the PREM model to heterogeneous
accordance with PREM. We identify which system parametépgilti-/many-core embedded platforms with explicitly mgeel
mostly affect the tremendous performance opportunitiéeyesf Memories, enabling a predictable exploitation of the tnedoels
by this approach, both on average and in the worst case, rgoviperformance potential of these promising devices. The mair

the first step towards predictable many-core systems. novelty of our approach stems from the differences betweer
the targeted platform and traditional multi-cores [5]. W at

. assessing the applicability of PREM on a generic heteragene
1. Introduction (accelerator-based) embedded system, without requipegific
hardware such as memory shapers, bus bridges, or prefetc

In the last decade, embedded systems embraced heter?%[“aions that may not be available in the target platf¢5],

neous designs, where a powerful, general-purastprocessor
is coupled to massively parallelcceleratorsfeaturing hundreds

of simple and energy-efficient cores, grouped imiastersto cPU cPU s —

achieve architectural scalability [1], [2], [3], [4]. Figa1 1 shows 11s 18 Memory L1 (1
a possible system-on-chip (SoC) following this templatects MMU MMy - Menagement o =l
a technology is potentially mature enough for adoption a@so 12$ 2% a—n"

the real-time domain, but, unfortunately, current techag for | | /'_'

timing analysis are not effective when applied to the comple Coherent interconnect BT * Network
hierarchical memory system of modern many-cores. The reaso Interface
is that classic real-time theory usually views memory laies Host Many-core accelerator

as implicit components of the worst-case execution timesiks, Interconnect

and the interference among cores concurrently accessingpme |

is upper-bounded to provide a safe worst-case analysis. When 4 [e

moving to multi- and many-cores, the number of processaas sh
ing common memory banks increases, leading to a significantl
higher memory contention and more pessimistic worst-caperu
bounds.

Figure 1: Heterogeneous embedded SoC template

In this paper, we would like to show thitt is possible to This work focuses on the accelerator engine (rightmost par
reduce and/or more tightly upper-bound the duration of mgmoof Figure 1), which has a significantly different design than
contentionsby using recently proposed memory-aware executidine (host) architectures for which the PREM model was first

978-1-4673-8047-8/15/$31.00) 2015 IEEE

proposed. The (many) cores in the accelerator are desigmedbfandwidth, controlling per-task memory access rates taiobt
energy efficiency, and are thus based on a simpler instructi@a lower memory worst-case delay. In [16], the same author:
set architecture (ISA). Typically, they are not capablewfrning exploited the above memory-throttling strategy for deghwith

a full-fledged operating system (like the host counterpalist mixed-criticality fixed-priority tasks, where one core isdicated
usually rely on streamlined middleware or native runtimstegns to execute critical tasks, while the remaining cores exebeist-
running on top of bare metal [2], [3], [13]. effort workload.

Using a representative embedded heterogeneous systemExplicitly-managed local memories. Explicitly-managed lo-
namely, the Tl Keystone Il EVMK2H board [14], we demonstrateal memories are a well known paradigm for real-time systems
the great potential of the PREM execution model for achieas well as for general multi- and many-core systems. The)
ing predictable execution times on embedded multi-/mamg-c may consume up to 40% less energy and occupy up to 349
platforms. We model the principal system-level componénés less area than caches [6], [7], [8]. They are also cheaper tha
influence the execution time of parallel tasks, identifyirayv the caches. Finally, and most importantly for real-time apgiions,
WCET varies depending on the number of cores. These restiir behavior is much more predictablas access latencies are
constitute a first step towards the definition of the necgssandependent of the access pattern. A lot of research has be
models and system background to develop sound memory-aweatried out on these memory architectures. A detailed guisre
scheduling algorithms and schedulability tests for hefeneous available in [6].

many-core systems based on PREM. Chattopadhyay et al. [8] statically allocate data into thitual

This paper is structured as follows. Section 2 reviews a féwPM space, of a multi-core system with no caches, ultimately
works related to our contribution, and describes the PRallie aiming at increasing the predictability of real-time taskd-
Execution Model. Section 3 shows the heterogeneous actiniee though we don't specifically target systems with no caches (b
considered in this work, and the testbed platform, whiletiac rather use SPMs to exclusively store per-task input andubutp
4 introduces our timing analysis methodology for PREM arffta sets), our work proves how approaches such as in [8] ca
non-PREM applications running on top of it. Experiments ake easily adopted, and are even more effective, if applicati
presented in Section 5 to validate the approach. Finallgti@e follow a PREM-like scheme.

6 concludes the paper. Unfortunately, the use of explicitly-managed local merasri
entails some unavoidable issues, related to moving datadrat
2 State of the art and overview of PREM forth between a Iimited-si;e Iocal. memory anq a Ia_rger_share
) memory. Examples are pointer aliasing and pointer invabda
In this respect, dedicated memory management units ar@gedp
In the recent years, an increasing number of works explicitin [11], [17] to address these issues without requiring whol
modeled memory delays in the schedulability analysis oftimulprogram pointer analysis, while making memory accesses-tim
core systems. The memory access latency is basically splitpredictable.
two parts: i) the time that a task must wait due to simultaseou

concurrent memory accesseagmory-contention delyyand ii) non-PREM PREM

the time required to physically retrieve or store a datphyéical- MEM

access delgy i\{r Q{r <\\§T <\\§I'
Classic real-time theory usually views the above latenaies ﬁ

implicit components of the worst-case execution time okgas § -

The size of these components is then typically estimateciund £ mm

the assumption that task scheduling algorithms are unawfare 2

the relation between the schedule they produce and thetingsul g = =

memory latencies. Unfortunately, this approach becomes mo = .

and more pessimistic as the number of cores sharing com- = Memory

mon memory areas increases. Whereas, on one side, memory —— (PREM)

contention increases with this number, on the other sidé) wi F scheduler

appropriate memory-aware solutions, it is possible to cedor V {

upper-bound more tightly the duration of memory contertiongig re 2: PRedictable Execution Model in a parallel envinent
This is one of the main motivations of our proposal and of the

literature surveyed in this section.

Prefetch-based solutions and PREM. Starting from the
es_eminal work in [12], in [5] Pellizzoni et al. introduced PRIE
(PRedictable Execution Modela new task execution model in
which tasks are split into pairs ahemoryand computational
phases. Figure 2 shows the distribution of memory accessés b
in PREM and non-PREM models. In a first memory phase, task
retrieve and copy data from the main memory into the locaheac
]QJ the core they are executing on, whereas, in the following,
computational phase, they elaborate non-preemptivelyigarsly-
cached data. This execution model allows the variability of

Yun et al. [15] introducedMlemGuard a framework that aims memory-contention latencies to be greatly reduced, byiaxpl
at guaranteeing memory performance isolation similarlwkat controlling memory accesses during memory phases. As #uch,
happens for CPUs. Each core is assigned a fraction of the nyermallows the overall task execution times to become much more

Solutions for controlling memory contention. In [12],
Pellizzoni et al. analyze the impact of commercial off-th
shelf (COTS) peripherals on the task execution times foglsin
processor systems, providing a solution for preservindrtiese
feasibility in the presence of heavy 1/0. Peripherals witheavy
I/0O load are shown to increase the overall memory acceswxgte
making jobs last up td4% longer. A speciaperipheral gateis
proposed to shape the traffic coming from external devices
preserving the schedulability of the real-time tasks.

predictable. Addressing single-core systems, a PREM-tianmip execution model at cluster level. Introducing multiplestirs in
co-scheduler is proposed granting main-memory access otilg model will be the next step of our research.

when the task being executed on the processor is in the com-
putational phase, without incurring memory conflicts. Tdoece

this scheduling policy, the co-scheduler relies on thegwes of

a Real-Time Bridgewhich arbitrates the access to memory in
time-sharing fashion. This is howevaot the case of our work,

Keystone || memory system and PREM. In Tl Keystone II,
each DSP is a Very-Long Instruction Word core (VLIW), with L1
gnd L2 caches, and a L2 software-managed data memory, whic
we will leverage to implement PREM. The platform has also an

whose approach isompletely on the software point of viire., on-chip scratchpad memory shared among the host and thle acc

it does not need additional hardware other than the one V\'rhict?rator’ called Multicore Shared Memory Controller, or MSMC

usually already shipped embedded in a board (e.g., one c& m%?d an off-chip DDR SRAM. Figure 3 also highlights the hosl an
DMA engines). accelerator memory space (respectively the boxed and geag)a

due to these memory space restrictions, communicationdegtw
Different memory-aware scheduling policies for PREMthe host and the accelerator sub-system happelysthrough the
compliant tasks are evaluated in [18] by simulating synthetshared banks of the MSMC and DDR memory. For this reason
task systems on platform with 4 cores. While failing to deteonder PREM, the full working data set is atomically moved off
the worst-case scenario, the simulations show that, orageer and forth the MSMC and the local L2 scratchpad to implement
the best results are obtained by promoting memory phases diXe memory — M phase. This can be done in a very efficient
computational phasesijghlighting once more the importance ofvay using the on-chip DMA engine, called Enhanced Direct
memory-centric scheduling in multi-core systeffise schedula- Memory Access (EDMA). Since the DMA is a unique shared
bility analysis of one of these schedulers is presented 9 [1 resource, concurrent M phases will be sequentializedyduiring
a potential bottleneck that we aim at analyzing.

Programming the Keystone Il. Heterogeneous many-cores
are significantly different from “traditional” single-cerarchitec-
tures, mainly for their complex, hierarchical memory syste

This work explores the applicability of the PREM model td\S & consequence, programming models have evolved throug
heterogeneous multi- and many-core platforms with expjici the years to include heterogeneous computing resourcest (ho
managed shared memories. Figure 1 showsdeeric archi- VS- accelerators) and to expose the memory system and da
tecture targeted in this work. It couples a powerful generdfansfers to programmers. Noticeable examples are OpeRQJL [
purpose processor (thieos), featuring sophisticated cache hi&nd the recent OpenMP 4.0 specifications [21], both supgpante
erarchy, Memory Management Units (MMUs) to support virtudf€ystone Il. Currently, software architects rely on thecstied
memory and full-fledged operating system, and a progranenaﬁﬁ'oad execution model,_ where. an appllcanon runs on tht_a hos
manycoreacceleratorcomposed of one or more clusters of simpléores, and its computationally-intensive kernels are weetin

processors, to which critical portionsefnel§ of applications are the accelerator subsystem. After the offloading sequerzzaliel
offloaded. threads running on the cores of the accelerator subsystem a

responsible for triggering additional DMA transfers inteél or

3. Heterogeneous target platform

» private memories (see Figure 5), if needed. We organizesthes
Host [e transfers to implement the memory — M phase of PREM tasks.
memory C66x™ CorePac I memory
space | space
4. Architecture modeling and Wor st Case analysis
/Sx .)) .
In this section we explore the applicability of PREM to the
: TeraNet™ IC target multi-core platform. The advantage of PREM-commtlia
To ot chip ‘ code against “traditional” code is that all processing teayspon

local data, with no interfering traffi¢. Hence, the worst-case
YA timing analysis can be less “conservative” than in the nREM
case, leading to lower WCET estimates. In traditional anglys
made on non-PREM code, we don't “pay the price” of the M
phase and its DMA transfers, but we then must take into adcour
the contention for accessing the (shared) MSMC banks by thi

. parallel tasks.
Keystone Il Architecture. As a testbed, we chose the Key-

stone I™ [14] by Texas Instruments, a widely-known, well We first describe the timing model of the platform, which we
supported multi-core platform available on the market.ukég then use to support the worst-case execution time (WCET) ana
3 shows the target board, named Keystone II EVMK2H [14ysis of a generic application running on it. Table 3 sumnesiz
which embeds an ARMRCortex host Quad-core and a cluster ghe main architectural parameters of the Keystone Il 66AK2H
eight Digital Signal Processing cores of the TMS320C66xiiam board [14]. Latency estimates for MSMC and L2 (two lowermost
(also alledCorePag as an accelerator. While the final target ofows) come from Texas Instruments Here, it is important to
our work are many-core systems composed of tens-to-husdrégrall that the multi- and many-core accelerators we censide

of cores, the adopted platform allows modeling typical gesi)) —) .
choices made at cluster level for cluster-based many-gsterss 1. Several techniques exist to identify the “local data” ofaak, eithervia

. compiler analysis [5], or making them explicit using programgnimodels such
such as [1]' [2]’ [3], [4] In this sense, the acceleratorsystem as OpenCL [20] or OpenMP [21]. However, we do not cover thjzeat here.

of Keystone Il can be seen as a §ing|e cluste_r of @ many-core For more details, see official Keystone Il tutorials by Tg.ehttp://keystone-
design. This work focuses on the implementation of the PREMrkshop.googlecode.com/svn/trunk/preliminary/Moredizache_AndMPAX.pptx

Enhanced

controllers

Figure 3: Tl Keystone Il 66AK2H12 platform.

significantly simpler than a “standard” core such as the one i B'ECkbfizi 1 block | 2 blocks | 4 blocks | 8 blocks
the host (see Sections 1 and 3). Since these cores typicaily d ;'2 I?B b?occk 8'1’22 8'223 8'1’% 8'228
feature, e.g., MMUs nor branch predictors, the complexity o 64 KB block ™ 0122 0114 0114 0111

worst-case analysis is greatly reduced, and this is a kayt jpbi

our approach.

Table 2: DMA cost for transfering a single byte (microsec)nd

NOP instr. Specified|| Parallel instr. | 0 cyc.

Normal instr. (tasm,_instr) 1 cyc. LD (cached) | +0 cyc.

LD — Load (MSMC) ¢rp) | +20 cyc. || LD (L2) (tzp) | +7 cyc.
ST — Store (MSMC) +0 cyc. ST (L2) +0 cyc. | both non-PREM applications (data resides in MSMC) and PREM

applications (data resides in local L2 memory) without acting

Table 1: C66x instruction costs. for the M phase.

Modeling the ‘M’ phase of PREM. In order to perform

Modeling the ‘C’ phase of PREM, and non-PREM code. WCET analysis of PREM-compliant applications, we also need
Parameters in Table 3 allow us to model application exeoutig correctly model the DMA transfers from global MSMC to lbca
time on the Keystone Il. Being C66x a VLIW architecturgl2) scratchpad memories. To do so, we performed an ex@nsiv
with a width of 8 instructions, its CPI (Cycles-per-instlion) set of experiments to derive the minimum bandwidth for DMA
varies from 0,125 £ 1/8, in case 8 instruction are executedransfers of blocks of different sizes. For reasons of spaee
in parallel) to 1 (when only 1 instruction is executed). Wayill not describe our analysis in details here, but only thairm
developed a tool which analyzes the assembly code producecblitcomes. In a typical scenario for the target system [1Z]], [
the C66X™ compiler (from Texas Instrument's MCSDK), and?21], [22], the M phase moves one or more contiguous blocks
assigns a “penalty” for each instruction. of data off and forth the accelerator subsystem. We fount] tha
for block sizes of more than 32kB, the DMA programming cost
gets amortized, and performance scale linearly (i.e. sfearing
twice the data takes twice the time). Table 2 shows the etima
of the cost in microsecondsg,,.) for transferring a single Byte
of data, and with this we can estimate the worst-case time for
DMA transfer (the M phase) as:

D

i€inpul_vars

ion .text (Little Endian), bytes at
MVK.L1 0,A3
MVK.L1 0,A5
Il SET.S1 23,0,
SET.S1 A5,
Il MV.L2X A4,B4
MVK.L1 0,A6
CMPGTU.L1 A4,A3,A0
ADDK.S1 1,A3
MV.L2X A4,BS
4

---- n, 1, W, BU, nobr, nosat,

4-cycles NOP
instruction

w tp = [SiZS_BthSi * tByte * nthreads]a (2)

e7a00bb2

wheren,.qds represents the number of threads simultaneously
competing for memory resources. Note that if the core itiitga
the transfer runs in isolation, then;,...qs = 1, that is, there is
no interfering traffic towards the memory system.

Parallel instructions

4

Figure 4: Excerpt of C66x code.

Since instruction caches are warmed up before execution, w

Figure 4 shows an excerpt of C66x assembly code. As shoWfpy neglect the impact of instruction cache misses, suce.gs,
parallel instructions are marked with the|” symbol, while a Puauat et al. do in [23].
NOP instruction has an argument representing the number of
stall cycles of the core. We perform a WCET analysis of bothé)e . o
the non-PREM version and ii) the computation phase (C) of the EXperimental validation
PREM version of an application, by assigning a timing cost to
each instruction, depending on its type. Table 1 shows tsésco)))
considered for every type of instruction. With these nurapese In this section, we validate our approach on the Keystone II.

can simply derive the time spent in the computing phase as: comparing PREM and non-PREM versions of the same bench
Z mark. At first, we introduce and discuss a synthetic benckmar

(1) we developed that stresses the core and memory system, a
Vinstruction kinds run it on an varying number of cores to extract the execution

WHer€nasm instr ANLasm instr rEpresent the number of instruc__tlme, both for the PREM and non-PREM versions. As explained

; / ; : . Section 3, in the Keystone Il platform, data are placed by
tions of a particular kind, and the time it takes to execute ! : :
instruction, respectively. default in the MSMC. In the PREM version, we prefetch them

in the per-DSP local L2 SPM; in the non-PREM version of the

For load (LD) and store (ST) instructions, Table 1 showsenchmark, data are left in the (cacheable) MSMC. In a secon
additional cycles (other than the ones already spent in the caet of experiment, we test the accuracy of our timing model, i
pipeline). The extra cost for a memory loadp, can be either we compare the results obtained for the PREM version aggiast
20 or 7 cycles depending on where data is allocated (MSMC pmediction of the analysis based on the platform charazzgan
L2): tasm_instr fOr LD and ST are increased with numbers fronpresented in Section 4. We then study the performance of
Table 1, depending on the memory bank where related data aepresentative application — a matrix multiplication — tvem
The L1 data cache has a write-through policy, but the cosafoin OpenCL [20] for the target platform. Finally, we explore
write is 0 cycles thanks to the use of asynchronous positagtorhow application performance is affected by their compatati
techniques (a.k.alelayed-storingor lazy-storing. Putting these to-communication ratio, that is, the percentage of timechs
numbers in Equation 1, we correctly capture the executior tf spent on the memory — M phase.

Nasm_instr * tasm_instr)

to

Core frequency 1GHz || Cycles-per-instruction (CPI) 0.125-1

L1 D$ size 32kB L2 mem size 256kB
L2 mem write latency(cyc) O L2 SPM read latency (cyc) 7
MSMC size 1MB MSMC Ilatency (cyc) 20

Table 3: Keystone Il experimental setup.

Cores/threads 1 2 4 8
No-PREM — Worst (Analytical)|[0.026 | 0.047 | 0.088 | 0.170 PREM vs. No PRE _
PREM — Worst (Analytical) || 0.010 | 0.014 | 0.022 | 0.038 g 004 epRem - worst (Analytical
[Speedup H 2.6x [3.4x [4.0x [4.5x] = ; ——PREM - Worst (Exp)
0,0!
Table 4: Analysis of the WCET of synthetic benchmark (mi- ~B-No PREM - AVG (Exp)
crosec.) 0,02
~@-PREM -AVG (Exp)
0,01 -B-PREM- Best (Exp)
5.1Synthetic Benchmark description 00 | T ey e

Cores

We developed a synthetic benchmark which stresses the data i L)
memory by accessing an array in such a way it continuoudngure 6: Synthetic benchmark execution times (both Amzayt
causes cache misses. Figure 5 describes the job that ismerfo @1d Experimental)
on each DSP. There is a global (sharedput _ar r ay which is

ARM . the number of threads varying from 1 to 8 (each threads run:

A15 Co6x™ on a dedicated DSP core). It also shows how performance ¢

SREM CorePac PREM scales better with the number of threads. Times are i

o N, oew microseconds, and correspond to the WCET as derived from ot

ﬁ] analytical model in Section 4. They show that PREM outper-

forms non-PREM by more thaihx, for 8 parallel threads. This

Input_array (PREM impressive result mainly descends from the tremendous memo

(non-PREM) - partitioned)

bandwidth of DMA burst transfers (128B wide bursts) under
PREM, when compared to the cache fill time (20 cycles for a 64B
line) of the non-PREM model. This is particularly important

a typical real-time scenario, where parallel threads héffereint
(fixed) priorities in accessing shared resources. Herewibrst-
case performance of the PREM model corresponds tdatliest
priority thread that suffers full memory interference from the
memory phases of all other threads. With a memory-aware tas
mapping and scheduling algorithm in pldcé would be then
possible to select which task to assign to this “unlucky’ett,
reserving thehigher priority threads for more timing sensitive

split in NUM_THREADS parts ofSl ZE elements, and each threadasks.

Copies (|tem-by-|tem) it into another array. In our expeﬂ'm, This is shown in the bottom lines of l_:igure Gthe litteREM-
SIZEis 32kB. Best” shows that under PREM, the highest priority thread nevel

encounters memory interference, hence has a significantjler
In a default program deployment scheme on the KeystoRgecution time than the low-priority “unlucky” thread preusly

i nput _array resides in the MSMC, because the benchmapkentioned, and that his performance do not significantiyngba
starts running on the host, which has no access to the lo€al (khen the number of concurrent cores increases.

and L1) DSP memories. As explained in Section 3, this is due to
memory space restrictions. With PREM, we move data to the L2 The most interesting result in Figure 6, however, is that the
SPM by means of DMA transfers, and computation is perform&o topmost curves related to the prediction of our PREM ana:
locally. For the moment, we do not consider the writebacksphalytical model and the actual results from experimerBREM-
i.e.,out put _array always resides in the local L2 memory ofWorst (Analytical)” and “PREM-Worst (Exp)) overlap almost
the accelerator. The model can easily be enhanced to deal Wigrfectly. This means that our model is capable of correctly
it, as Alhammad et al. show in [24]. capturing the behavior of the synthetic benchmark, which, a
explained, was explicitly written to simulate a scenariohafh
traffic towards the accelerator memory system. Table 5 show

/* The unit of work that a single DSP executes */
oid work(un d int input_array[SIZE * NTHRDS],
d int output_array[SIZE])

red int thrid = MY_ID;
of "my" portion of the array */
nt base_idx = thrid * SIZE;

for(int i=0; i<SIZE; i+=CACHE_LINE_SIZE)
output_array[i] = input_array [base idx + i];

}

Figure 5: Synthetic benchmark.

5.2 Performance analysis of the synthetic benchmark

3. Designing a memory-aware scheduler is not the purposesoivtbrik, nor it is

. . dealing with recurring task models. However, this work irdieems at providing
Table 4 shows the estimated performance comparison 4f necessary system-level background to design such dohpdtrategies as a

PREM and non-PREM version of the synthetic benchmark, witkxt step of our research.

Wors?(iﬁﬁ;s/tical) 0(%09 0313 0321 0837 1) NO-PREFETCH — a “naive” version with no prefetching,
) : : : : where the three matrices reside in MSMC (which is the default
Worst (Experimental)]] 0.010 | 0.014 | 0.022 | 0.038 placement of the OpenCL data buffers in Keystone Il);

Table 5: Synthetic bench: accuracy of the analytical mod® PREFETCH — the “original” version, where prefetch is used
(microsec). to increase data locality, but not following the PREM modkeid

3) PREM - a version which follows the PREM model, i.e., where
the parallel threads lock the DMA resource during the whole

the absolute times (in microseconds), which are almostticBn \ phase, which is performed at the beginning of each OpenCl
besides an acceptable error due to measuring resolution @fik-item.

approximation. We show results fdno-PREM - Worst” only

in Table 4 and not in Figure 6 because they would harness theFigure 8 shows the performance (in seconds) an OpenCl
scale — hence the readability — of the plot. work-item for each of the three versions, when run on Keyston

II. It shows performance for the average, best (highestripyio
Figure 6 also shows the experimental results for the avetiread) and worst (lowest priority thread) case. Resulksvsthat
age AVG) execution times i.e., the sum of the experimentallyrefetching data improves performance &y 8x, and PREM
measured execution times of all threads divided by the numbgves an additionaks +20% improvement. The excellent perfor-
of threads. Somewhat surprisingly, also these results shew mance gain of the prefetch-based versions is due to the tieduc
PREM curves outperforming the non-PREM ones, even if bygi cache trashing: each matrix occupies 256kB, while L1 date
smaller factor that decreases with the number of threads. caches of DSP cores are only 32kB, causing a high number ¢
cache misses. By increasing data locality in the prefetchioe
(hence, also under PREM) we mitigate this effect. We easily
gmonstrate this re-running the benchmark with matricesizgf
gwn to 4kB, which entirely fit in the cache. Figure 10 shows

Boosting up the performance of PREM. A potential issue
in any prefetch-based technique is that, if explicit (DMAgtal
transfers are not carefully dimensioned and managed, one
end up in prefetching a larger amount of data than need : -
This potentially causes an increase in the average execui ot no-prefetch ?Ind p;]refetchkversmns perform almostiicily
time due to the initial latency of the memory phase, esplgcia Or matrices smaller than 64kB.
when the number of threads increases (remember that cencurr Figure 9 shows our WCET prediction fenatmpy and the
memory phases are sequentialized, under PREM). However, torresponding experimental values. WCET is improved by &
effect can be significantly reduced by means of double bnffer factor of ~ 2x using prefetch, and that PREM outperforms
techniques [25], which enables overlapping of memory — M anlde prefetch-based version by 3x. Thorough readers might
computation — C phases of two consecutive tasks. When the fitate noted than the difference between the prediction aed th
memory phase finishes, the running task can immediatelyts&r actual EXPerimentgl numbers is higher than for the synthetic
computational phase, while the next task starts its memioag®, benchmark. The reason is thatatmpyis not explicitly designed
and so on. If these M—C phases are properly dimensionedfanti stress the memory system, hence the WCET is not likely
the application allows it, it is therefore possible to “Hid#l of to appear even with a high number of experiments, such as |
the data accesses. The bottom black line in FigurePREM - happens with the synthetic benchmérk
Best w/smart buffering’) shows the performanaestimateof the
highest-priority thread, when memory latencies of the Mggha . .
are completely hidden using smart buffering techniquese Th-4Performance as a function of Memory Ratio
difference between the two lowermost lines shows how belitg a

to “hide” data transfers, e.g., with double buffering, puially In this section, we show thexpected worst-case performance
further improves performance, here by a factoro2x, even for on the target platform for generic PREM-compliant applimas
“privileged”, high-priority threads, and does not vary ieasing characterized by a givememory ratio (MR)defined as the total
the number of threads. number of cycles spent in the M phase, divided by the total
number of cycles of the application, when run in isolation:

5.3Matrix multiplication MRpppyy = — M 3)
(tar +to)

We choose the matrix multiplication as a “real” application Besides the application code itself, the memory ratio of a

code of thematmpybenchmark that comes with the Keystonghemory latencies, DMA bandwidth, type of processor, coepil
SDK provided by Texas Instruments. This code is written igptimizations, etc.

OpenCL [20]. In this application, one ARM core decomposes o

the output matrix into sub-matrices, and offloads the coatjnri The C66x core has a 10-stage pipeline, where a memor
of the sub-matrices to the DSP cores. We use the full set@feration takes at least 4 cycles to execute (memory acessissr

8 DSPs (8 parallel threads). Figure 7 shows the partitiomihg are fetched 4 stages “after” the address is emitted). In tese

application in small identical parallel tasks, which in @@ are IS not enough instruction-level parallelism to exploit fretsource
called work-items code, the compiler inserts 4 NOPs to meet this constrainicele
) o] considering a 7-cycles latency for the L2 memory (see Tahle 1
The version of the application written by Tl employs datander PREM each DSP has a maximum MR of:

prefetching to boost performance: input data is moved ihto t
L2 memory, but in a non-PREM fashion, that is, the access t¢ Several existing tools could be used that adopt the “IritgHath Enumer-

N - . ’ ation Technique” [26]. Note that, also profile-based andphilistic approaches
the (Shared) DMA regource is not mediated, and. parallgb‘ﬂ“e [27] are recently gaining attention and trust in soft réalet domains, but this is
concurrently access it. We thus explore three differensioes an orthogonal (vet, nowadays, “hot”) research direction s out of the scope

of the application: of this paper.

void matmpy ()

{
for (i < A_num cols) // Ll: #cols A = # rows B
{ // This is a single OpenCL work item

// and the fullcA matrix (P2) to L2 memory

Work item i
W v

N=6

(1)
(2] -~ :
X”’ef‘-"‘” ; Q‘E
¢ =
B (L)

* C matrix elements are accessed (written) once. => Not worth using L2 |

// PREFETCH load a single B column (P1l), Q i

for(j < AC_num_rows)
{ // L2: for each A/C row

for (k < A num cols)
{ // L3: for each element

// produce an element of the j-th row of C

// by multiplying j-th A row and i-th col of B
}

}
}
}

Figure 7: OpenCL matmpy partitioning.

Matmpy execution time - 8 cores Matmpy WCET modeling - 8 cores Matmpy perf. scaling w/matrix size
0,01 TTEAED) 0,02 0,001
orst (Exp . 256k
Worst (Analytical) 0,0008 §
o0 . é:set E;:E;) < 0018 0,0006 C\)ﬁs? 3%70279
— o , 2 0,
2 0,006 g = Worst (Exp) Best: 0,0071
a < o01 0,0004
g 0,004 E 0,0002
= 0,002 0,005 =
g ﬂ)
&
0 . - o — — g 4KB 16KB 64KB 256KB 4KB 16KB 64KB 256KB
E

NO PREFETCH PREFETCH PREM NO PREFETCH PREFETCH PREM NO PREFETCH PREFETCH

Figure 8: Matmpy: no-prefetch vs.Figure 9: Matmpy performance analyti-Figure 10: Performance scaling w/ ma-
prefetch vs. PREM. cal model. trix size.

7 Modeled PREM performance as f(MR) in Keystone Il
MRgeoystonerl = ———— = 0.63 4 6
cvsonets = (o @
——0,63 (Max for Keystone Il)
—4—0,56 (matmpy)
———0,44 (Synth bench)

According to our profiling tool, the considered synthetic

benchmark has a memory ratid Rpencn, Of 0.44, andmatmpy i 0a
has a memory ratio/ R, qtmpy Of 0.56. = +0’2
Figure 11 shows how the PREM performance deteriorates for j% 3| —e-01

different memory ratios and an increasing number of threads
according to our timing model. All times are normalized te th 2
case where a single DSP runs in isolation. From the bottom

to the top, we study performance degradation from a minimum 1

MR of 0.1 (out of 10 execution cycles, 1 is spent accessing the
memory) representing a computational-intensive apptinatto 0
the maximum achievable on Keystone MR cystone = 0.63). 1 2 4 8

Cores

Increasing the number of cores has a different impact on
the WCET depending on the memory ratio. In particular, anfigyre 11: Modeled PREM performance in the Keystone II.
increment in the WCET of 2x and ~ 5x is predicted for
the most computational-intensive and memory-intensiveesa
respectively, with eight DSP cores.

effective in guaranteeing timing predictability in a repeatative
embedded heterogeneous platform, with an order-of-madgmit
speedup compared to classical, non-PREM approaches. We mo
ed the main components that influence the worst-case &oxecu
forms, featuring many-core accelerators. Unfortunatély,com- |m(tes of th% partjclllelt tars]ks rtLrj]nnlng fon the cons@eredd mig%
plexity of worst-case timing analysis on these architeguypre- fﬁ' S em,t;':m ;as imate dot\(1v € per or;mance V?rt'.es etpengleng ¢
vents their adoption in the real-time domain due to pessimis.|c "UMPET of cores and the memory o computation ratio. reesu
and over-conservative WCET predictions. validate the effectiveness of the PREM execution model wher
adopted on a representative multi-core architecture, dsaw¢he
This paper explored the applicability of the PRedictableccuracy of the proposed timing model. This work provides us
Execution Model (PREM) to embedded many-core acceleratovih the basics and necessary model to develop smart séhegdul
with explicitly shared memories. This paper shows that PR&EMstrategies for PREM-compliant applications executingrupext-

6. Conclusions and future work

Future computing systems will run on heterogeneous pl

generation heterogeneous systems. [12]
As a next step, we intend to consider more complex applicatio
i.e., with multiple recurring real-time tasks, devisingatmem-

ory and CPU) scheduling strategies, and associated sctimiiyl
analysis, to maximize the feasibility. We would also like 16131
investigate the optimal resource allocation and dimenesfdacal
buffers, and the tradeoff/granularity between M and C phase
for instance identifyingclassesof applications, starting from the
achievements in Section 5.4, and exploring their behaviateu [14]
PREM. Finally, we want to generalize the presented teclentqu
hierarchically scheduled memory transfers for clusteseblzarchi- [15]
tectures, enriching our model by considering multiple DMAdn
ules, and multiple clusters which sum up to hundreds/thulsa

of cores. We believe these will soon be hot research topitisein
real-time and embedded systems domains.

[16]
Acknowledgments

This work has been supported in part by the Europe]
Commission under the P-SOCRATES project (FP?—ICT—61101§1;7

References
[18]

[1] Adapteva, Inc., “Epiphany-IV 64-core 28nm Microprocessor
[Online] http://www.adapteva.com/products/
silicon-devices/e64g401/, 2013.

[2] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012{19]
Building an ecosystem for a scalable, modular and high-efficiency
embedded computing accelerator,”Design, Automation Test in
Europe Conference Exhibition (DATE), 2012012, pp. 983—-987.

[3] Kalray Corporation, “Many-core Kalray MPPA;” [Online]
http://www.kalray.eu/, 2012. [20]

[4] NVIDIA, “Next Generation CUDA Compute
Architecture: Fermi - WhitePaper,” [Online] (21]

http://www.nvidia.fr/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2010.

[5] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamd?2]
and R. Kegley, “A predictable execution model for COTS-based
embedded systems,” Proceedings of the 17th IEEE International
Real-Time and Embedded Technology and Applications SymFo-
sium ser. RTAS '11, April 2011, pp. 269-279. 23]

[6] A. Marongiu and L. Benini, “An OpenMP compiler for efficient
use of distributed scratchpad memory in MPSoG3dmputers,
IEEE Transactions onvol. 61, no. 2, pp. 222-236, Feb 2012. [24]

[7] L. Karam, I. AlKamal, A. Gatherer, G. Frantz, D. Anderson, and
B. Evans, “Trends in multicore DSP platform&ignal Processing
Magazine, IEEEvol. 26, no. 6, pp. 38—49, November 2009.

[8] S. Chattopadhyay and A. Roychoudhury, “Static bus schedJ%S]
aware scratchpad allocation in multiprocessoBGPLAN Not.
vol. 46, no. 5, pp. 11-20, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2016603.1967680

[9] I. Puaut and C. Pais, “Scratchpad memories vs locked cacheé%ﬁ]

hard real-time systems: a quantitative comparison, Diesign,

Automation Test in Europe Conference Exhibition, 2007. DAT§7]

'07, April 2007, pp. 1-6.

B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards,

and E. A. Lee, “Predictable programming on a precision timed

architecture,” inProceedings of the 2008 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems

ser. CASES '08. New York, NY, USA: ACM, 2008, pp. 137-146.

[Online]. Available: http://doi.acm.org/10.1145/1450095.1450117

S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory

unit for predictable real-time embedded systems,Rieal-Time

Systems (ECRTS), 2013 25th Euromicro Conferencéuiyn 2013.

(10]

(11]

R. Pellizzoni, B. Bui, M. Caccamo, and L. Sha, “Coscheduling
of CPU and 1/O transactions in COTS-based embedded systems
in Proceedings of the IEEE Real-Time Systems Sympp$iomn
2008, pp. 221-231.

A. Marongiu, P. Burgio, and L. Benini, “Fast and lightweight
support for nested parallelism on cluster-based embedded man
cores,” in2012 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012
2012, pp. 105-110.

Texas Instrument Inc., “The 66AK2H12 Keystone |l Process
[Online]. Available: http://www.ti.com/product/66AK2H12

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
guard: Memory bandwidth reservation system for efficient per-
formance isolation in multi-core platforms,” ifroceedings of the
19th IEEE Real-Time and Embedded Technology and Application:
Symposium ser. RTAS ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 55-64.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
access control in multiprocessor for real-time systems with mixed
criticality,” in Proceedings of the 24th Euromicro Conference on
Real-Time Systemser. ECRTS '12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 299-308.

J. Whitham and N. Audsley, “Implementing time-predictable
load and store operations,” iRroceedings of the Seventh ACM
International Conference on Embedded Softwaer. EMSOFT
'09. New York, NY, USA: ACM, 2009, pp. 265-274. [Online].
Available: http://doi.acm.org/10.1145/1629335.1629371

S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo, “Memory-
aware scheduling of multicore task sets for real-time systems,
in Proceedings of the 18th IEEE International Conference on
Embedded and Real-Time Computing Systems and Application:
ser. RTCSA '12, Aug 2012, pp. 300-309.

G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo,
“Memory-centric scheduling for multicore hard real-time
systems,” Real-Time Systemsvol. 48, no. 6, pp. 681-715,
2012. [Online]. Available: http://dx.doi.org/10.1007/s11241-012-
9158-9

Kronos Group, “The OpenCL 1.1 Specifications,” 2010. [Orjline
Available: http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
“OpenMP Application Program Interface v4,”
2011. [Online]. Available: http://www.openmp.org/mp-
documents/OpenMP3.1.pdf

P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling
fine-grained OpenMP tasking on tightly-coupled shared memory
clusters,” inDesign, Automation Test in Europe Conference Exhi-
bition (DATE), 20132013, pp. 1504-1509.

I. Puaut, “WCET-centric software-controlled instruction caches
for hard real-time systems,” ifRReal-Time Systems, 2006. 18th
Euromicro Conference qr2006, pp. 10 pp.—226.

A. Alhammad and R. Pellizzoni, “Time-predictable execution of
multithreaded applications on multicore systems,Pioceedings

of Design, Automation and Test in Eurgper. DATE 14, Mar
2014.

J. Sancho and D. Kerbyson, “Analysis of double buffering oa tw
different multicore architectures: Quad-core opteron and the cell-
be,” in Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium p@pril 2008, pp. 1-12.

P. Puschner and A. Schedl, “Computing maximum task executior
times — a graph-based approacReal-Time Systemwsol. 13,

no. 1, pp. 67-91, 1997.

V. Nélis, P. M. Yomsi, and L. M. Pinho, “Methodologies for the
WCET Analysis of Parallel Applications on Many-core Architec-
tures,” in 18th Euromicro Conference on Digital System Design,
DSD 2015 August 2015.

»

