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Abstract

There is an increasing interest among real-time systems
architects for multi- and many-core accelerated platforms. The
main obstacle towards the adoption of such devices within
industrial settings is related to the difficulties in tightly estimating
the multiple interferences that may arise among the parallel
components of the system. This in particular concerns concurrent
accesses to shared memory and communication resources. Exist-
ing worst-case execution time analyses are extremely pessimistic,
especially when adopted for systems composed of hundreds-to-
thousands of cores. This significantly limits the potentialfor
the adoption of these platforms in real-time systems. In this
paper, we study how the predictable execution model (PREM),a
memory-aware approach to enable timing-predictability inreal-
time systems, can be successfully adopted on multi- and many-
core heterogeneous platforms. Using a state-of-the-art multi-core
platform as a testbed, we validate that it is possible to obtain an
order-of-magnitude improvement in the WCET bounds of parallel
applications, if data movements are adequately orchestrated in
accordance with PREM. We identify which system parameters
mostly affect the tremendous performance opportunities offered
by this approach, both on average and in the worst case, moving
the first step towards predictable many-core systems.

1. Introduction

In the last decade, embedded systems embraced heteroge-
neous designs, where a powerful, general-purposehostprocessor
is coupled to massively parallelacceleratorsfeaturing hundreds
of simple and energy-efficient cores, grouped intoclusters to
achieve architectural scalability [1], [2], [3], [4]. Figure 1 shows
a possible system-on-chip (SoC) following this template. Such
a technology is potentially mature enough for adoption alsoin
the real-time domain, but, unfortunately, current techniques for
timing analysis are not effective when applied to the complex
hierarchical memory system of modern many-cores. The reason
is that classic real-time theory usually views memory latencies
as implicit components of the worst-case execution time of tasks,
and the interference among cores concurrently accessing memory
is upper-bounded to provide a safe worst-case analysis. When
moving to multi- and many-cores, the number of processors shar-
ing common memory banks increases, leading to a significantly
higher memory contention and more pessimistic worst-case upper
bounds.

In this paper, we would like to show thatit is possible to
reduce and/or more tightly upper-bound the duration of memory
contentionsby using recently proposed memory-aware execution

models, enhancing the predictability of multi-core real-time sys-
tems. In the PRedictable Execution Model (PREM) [5], code and
data are moved prior to execution (prefetched) in a private core
resource (in that case, the L1 cache), removing the sources of
contention at run time, and ultimately reducing WCET bounds.

We believe that the memory hierarchies of modern many-
cores can further boost the effectiveness of the PREM model,
and, in general, improve WCET predictability. The reason is that,
in order to match the stringent energy/area constraints of modern
embedded systems, platform architects partially or totally replace
“traditional” data caches with explicitly managed memories such
as scratchpads (SPMs), which may consume up to 40% less
energy and occupy up to 34% less area than caches [6], [7],
[8]. The key point is thatthe behavior of explicitly-managed
scratchpads is also much more predictable than that of caches,
because access latencies are independent of the access pattern [9],
[10], [11], and this potentially enhances the benefits of thePREM
model, when applied to them.

In this paper, we apply the PREM model to heterogeneous
multi-/many-core embedded platforms with explicitly managed
memories, enabling a predictable exploitation of the tremendous
performance potential of these promising devices. The main
novelty of our approach stems from the differences between
the targeted platform and traditional multi-cores [5]. We aim at
assessing the applicability of PREM on a generic heterogeneous
(accelerator-based) embedded system, without requiring specific
hardware such as memory shapers, bus bridges, or prefetch
instructions that may not be available in the target platform [5],
[12].
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Figure 1: Heterogeneous embedded SoC template

This work focuses on the accelerator engine (rightmost part
of Figure 1), which has a significantly different design than
the (host) architectures for which the PREM model was first
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proposed. The (many) cores in the accelerator are designed for
energy efficiency, and are thus based on a simpler instruction-
set architecture (ISA). Typically, they are not capable of running
a full-fledged operating system (like the host counterparts), but
usually rely on streamlined middleware or native runtime systems
running on top of bare metal [2], [3], [13].

Using a representative embedded heterogeneous system,
namely, the TI Keystone II EVMK2H board [14], we demonstrate
the great potential of the PREM execution model for achiev-
ing predictable execution times on embedded multi-/many-core
platforms. We model the principal system-level componentsthat
influence the execution time of parallel tasks, identifyinghow the
WCET varies depending on the number of cores. These results
constitute a first step towards the definition of the necessary
models and system background to develop sound memory-aware
scheduling algorithms and schedulability tests for heterogeneous
many-core systems based on PREM.

This paper is structured as follows. Section 2 reviews a few
works related to our contribution, and describes the PRedictable
Execution Model. Section 3 shows the heterogeneous architecture
considered in this work, and the testbed platform, while Section
4 introduces our timing analysis methodology for PREM and
non-PREM applications running on top of it. Experiments are
presented in Section 5 to validate the approach. Finally, Section
6 concludes the paper.

2. State of the art and overview of PREM

In the recent years, an increasing number of works explicitly
modeled memory delays in the schedulability analysis of multi-
core systems. The memory access latency is basically split in
two parts: i) the time that a task must wait due to simultaneous
concurrent memory accesses (memory-contention delay), and ii)
the time required to physically retrieve or store a datum (physical-
access delay).

Classic real-time theory usually views the above latenciesas
implicit components of the worst-case execution time of tasks.
The size of these components is then typically estimated under
the assumption that task scheduling algorithms are unawareof
the relation between the schedule they produce and the resulting
memory latencies. Unfortunately, this approach becomes more
and more pessimistic as the number of cores sharing com-
mon memory areas increases. Whereas, on one side, memory
contention increases with this number, on the other side, with
appropriate memory-aware solutions, it is possible to reduce or
upper-bound more tightly the duration of memory contentions.
This is one of the main motivations of our proposal and of the
literature surveyed in this section.

Solutions for controlling memory contention. In [12],
Pellizzoni et al. analyze the impact of commercial off-the-
shelf (COTS) peripherals on the task execution times for single
processor systems, providing a solution for preserving real-time
feasibility in the presence of heavy I/O. Peripherals with aheavy
I/O load are shown to increase the overall memory access latency,
making jobs last up to44% longer. A specialperipheral gateis
proposed to shape the traffic coming from external devices for
preserving the schedulability of the real-time tasks.

Yun et al. [15] introducedMemGuard, a framework that aims
at guaranteeing memory performance isolation similarly towhat
happens for CPUs. Each core is assigned a fraction of the memory

bandwidth, controlling per-task memory access rates to obtain
a lower memory worst-case delay. In [16], the same authors
exploited the above memory-throttling strategy for dealing with
mixed-criticality fixed-priority tasks, where one core is dedicated
to execute critical tasks, while the remaining cores execute best-
effort workload.

Explicitly-managed local memories. Explicitly-managed lo-
cal memories are a well known paradigm for real-time systems,
as well as for general multi- and many-core systems. They
may consume up to 40% less energy and occupy up to 34%
less area than caches [6], [7], [8]. They are also cheaper than
caches. Finally, and most importantly for real-time applications,
their behavior is much more predictable, as access latencies are
independent of the access pattern. A lot of research has been
carried out on these memory architectures. A detailed survey is
available in [6].

Chattopadhyay et al. [8] statically allocate data into the virtual
SPM space, of a multi-core system with no caches, ultimately
aiming at increasing the predictability of real-time tasks. Al-
though we don’t specifically target systems with no caches (but
rather use SPMs to exclusively store per-task input and output
data sets), our work proves how approaches such as in [8] can
be easily adopted, and are even more effective, if applications
follow a PREM-like scheme.

Unfortunately, the use of explicitly-managed local memories
entails some unavoidable issues, related to moving data back and
forth between a limited-size local memory and a larger shared
memory. Examples are pointer aliasing and pointer invalidation.
In this respect, dedicated memory management units are proposed
in [11], [17] to address these issues without requiring whole-
program pointer analysis, while making memory accesses time-
predictable.
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Figure 2: PRedictable Execution Model in a parallel environment

Prefetch-based solutions and PREM. Starting from the
seminal work in [12], in [5] Pellizzoni et al. introduced PREM
(PRedictable Execution Model), a new task execution model in
which tasks are split into pairs ofmemoryand computational
phases. Figure 2 shows the distribution of memory accesses both
in PREM and non-PREM models. In a first memory phase, tasks
retrieve and copy data from the main memory into the local cache
of the core they are executing on, whereas, in the following,
computational phase, they elaborate non-preemptively previously-
cached data. This execution model allows the variability of
memory-contention latencies to be greatly reduced, by explicitly
controlling memory accesses during memory phases. As such,it
allows the overall task execution times to become much more



predictable. Addressing single-core systems, a PREM-compliant
co-scheduler is proposed granting main-memory access only
when the task being executed on the processor is in the com-
putational phase, without incurring memory conflicts. To enforce
this scheduling policy, the co-scheduler relies on the presence of
a Real-Time Bridge, which arbitrates the access to memory in a
time-sharing fashion. This is howevernot the case of our work,
whose approach iscompletely on the software point of view, i.e.,
it does not need additional hardware other than the one whichis
usually already shipped embedded in a board (e.g., one or more
DMA engines).

Different memory-aware scheduling policies for PREM-
compliant tasks are evaluated in [18] by simulating synthetic
task systems on platform with 4 cores. While failing to detect
the worst-case scenario, the simulations show that, on average,
the best results are obtained by promoting memory phases over
computational phases,highlighting once more the importance of
memory-centric scheduling in multi-core systems. The schedula-
bility analysis of one of these schedulers is presented in [19].

3. Heterogeneous target platform

This work explores the applicability of the PREM model to
heterogeneous multi- and many-core platforms with explicitly-
managed shared memories. Figure 1 shows thegeneric archi-
tecture targeted in this work. It couples a powerful general-
purpose processor (thehost), featuring sophisticated cache hi-
erarchy, Memory Management Units (MMUs) to support virtual
memory and full-fledged operating system, and a programmable
manycoreacceleratorcomposed of one or more clusters of simple
processors, to which critical portions (kernels) of applications are
offloaded.
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Figure 3: TI Keystone II 66AK2H12 platform.

Keystone II Architecture. As a testbed, we chose the Key-
stone IITM [14] by Texas Instruments, a widely-known, well
supported multi-core platform available on the market. Figure
3 shows the target board, named Keystone II EVMK2H [14],
which embeds an ARMrCortex host Quad-core and a cluster of
eight Digital Signal Processing cores of the TMS320C66x family
(also alledCorePac) as an accelerator. While the final target of
our work are many-core systems composed of tens-to-hundreds
of cores, the adopted platform allows modeling typical design
choices made at cluster level for cluster-based many-core systems
such as [1], [2], [3], [4]. In this sense, the accelerator subsystem
of Keystone II can be seen as a single cluster of a many-core
design. This work focuses on the implementation of the PREM

execution model at cluster level. Introducing multiple clusters in
the model will be the next step of our research.

Keystone II memory system and PREM. In TI Keystone II,
each DSP is a Very-Long Instruction Word core (VLIW), with L1
and L2 caches, and a L2 software-managed data memory, which
we will leverage to implement PREM. The platform has also an
on-chip scratchpad memory shared among the host and the accel-
erator, called Multicore Shared Memory Controller, or MSMC,
and an off-chip DDR SRAM. Figure 3 also highlights the host and
accelerator memory space (respectively the boxed and gray areas):
due to these memory space restrictions, communication between
the host and the accelerator sub-system happensonly through the
shared banks of the MSMC and DDR memory. For this reason,
under PREM, the full working data set is atomically moved off
and forth the MSMC and the local L2 scratchpad to implement
the memory – M phase. This can be done in a very efficient
way using the on-chip DMA engine, called Enhanced Direct
Memory Access (EDMA). Since the DMA is a unique shared
resource, concurrent M phases will be sequentialized, introducing
a potential bottleneck that we aim at analyzing.

Programming the Keystone II. Heterogeneous many-cores
are significantly different from “traditional” single-core architec-
tures, mainly for their complex, hierarchical memory system.
As a consequence, programming models have evolved through
the years to include heterogeneous computing resources (host
vs. accelerators) and to expose the memory system and data
transfers to programmers. Noticeable examples are OpenCL [20]
and the recent OpenMP 4.0 specifications [21], both supported in
Keystone II. Currently, software architects rely on the so-called
offload execution model, where an application runs on the host
cores, and its computationally-intensive kernels are executed in
the accelerator subsystem. After the offloading sequence, parallel
threads running on the cores of the accelerator subsystem are
responsible for triggering additional DMA transfers into local or
private memories (see Figure 5), if needed. We organize these
transfers to implement the memory – M phase of PREM tasks.

4. Architecture modeling and Worst Case analysis

In this section we explore the applicability of PREM to the
target multi-core platform. The advantage of PREM-compliant
code against “traditional” code is that all processing happens on
local data, with no interfering traffic1. Hence, the worst-case
timing analysis can be less “conservative” than in the non-PREM
case, leading to lower WCET estimates. In traditional analysis
made on non-PREM code, we don’t “pay the price” of the M
phase and its DMA transfers, but we then must take into account
the contention for accessing the (shared) MSMC banks by the
parallel tasks.

We first describe the timing model of the platform, which we
then use to support the worst-case execution time (WCET) anal-
ysis of a generic application running on it. Table 3 summarizes
the main architectural parameters of the Keystone II 66AK2H12
board [14]. Latency estimates for MSMC and L2 (two lowermost
rows) come from Texas Instruments2. Here, it is important to
recall that the multi- and many-core accelerators we consider are

1. Several techniques exist to identify the “local data” of atask, eithervia
compiler analysis [5], or making them explicit using programming models such
as OpenCL [20] or OpenMP [21]. However, we do not cover this aspect, here.

2. For more details, see official Keystone II tutorials by TI, e.g., http://keystone-
workshop.googlecode.com/svn/trunk/preliminary/MoreAboutCache_AndMPAX.pptx



significantly simpler than a “standard” core such as the one in
the host (see Sections 1 and 3). Since these cores typically don’t
feature, e.g., MMUs nor branch predictors, the complexity of
worst-case analysis is greatly reduced, and this is a key point of
our approach.

NOP instr. Specified Parallel instr. 0 cyc.
Normal instr.(tasm_instr) 1 cyc. LD (cached) +0 cyc.
LD – Load (MSMC) (tLD) +20 cyc. LD (L2) (tLD) +7 cyc.

ST – Store (MSMC) +0 cyc. ST (L2) +0 cyc.

Table 1: C66x instruction costs.

Modeling the ‘C’ phase of PREM, and non-PREM code.
Parameters in Table 3 allow us to model application execution
time on the Keystone II. Being C66x a VLIW architecture
with a width of 8 instructions, its CPI (Cycles-per-instruction)
varies from 0,125 (= 1/8, in case 8 instruction are executed
in parallel) to 1 (when only 1 instruction is executed). We
developed a tool which analyzes the assembly code produced by
the C66xTM compiler (from Texas Instrument’s MCSDK), and
assigns a “penalty” for each instruction.

TEXT Section .text (Little Endian), 0x5C0 bytes at 0x80000000

80000000 05a6 MVK.L1 0,A3

80000002 06a6 MVK.L1 0,A5 

80000004 018c1d88 || SET.S1 A3,0,29,A3 

80000008 12a2 SET.S1 A5,16,16,A5 

8000000a 9247 || MV.L2X A4,B4 

8000000c 0726 || MVK.L1 0,A6 

8000000e 8de8 CMPGTU.L1 A4,A3,A0 

80000010 25ae || ADDK.S1 1,A3 

80000012 b247 || MV.L2X A4,B5 

80000014 1a76 || MVK.D1 0,A4 

80000016 9b22 NOP 4

8000001c e7a00bb2 .fphead n, l, W, BU, nobr, nosat, 0111101b

...

Parallel instruc�ons

4-cycles NOP 

instruc�on

Figure 4: Excerpt of C66x code.

Figure 4 shows an excerpt of C66x assembly code. As shown,
parallel instructions are marked with the ’||’ symbol, while a
NOP instruction has an argument representing the number of
stall cycles of the core. We perform a WCET analysis of both i)
the non-PREM version and ii) the computation phase (C) of the
PREM version of an application, by assigning a timing cost to
each instruction, depending on its type. Table 1 shows the costs
considered for every type of instruction. With these numbers, we
can simply derive the time spent in the computing phase as:

tC =
∑

∀instruction kinds

nasm_instr ∗ tasm_instr, (1)

wherenasm_instr andtasm_instr represent the number of instruc-
tions of a particular kind, and the time it takes to execute the
instruction, respectively.

For load (LD) and store (ST) instructions, Table 1 shows
additional cycles (other than the ones already spent in the core
pipeline). The extra cost for a memory loadtLD can be either
20 or 7 cycles depending on where data is allocated (MSMC or
L2): tasm_instr for LD and ST are increased with numbers from
Table 1, depending on the memory bank where related data are.
The L1 data cache has a write-through policy, but the cost fora
write is 0 cycles thanks to the use of asynchronous post-storing
techniques (a.k.a.delayed-storing, or lazy-storing). Putting these
numbers in Equation 1, we correctly capture the execution time of

Block size 1 block 2 blocks 4 blocks 8 blocks
4 kB block 0.488 0.366 0.427 0.336
32 kB block 0.153 0.137 0.130 0.130
64 kB block 0.122 0.114 0.114 0.111

Table 2: DMA cost for transfering a single byte (microseconds)

both non-PREM applications (data resides in MSMC) and PREM
applications (data resides in local L2 memory) without accounting
for the M phase.

Modeling the ‘M’ phase of PREM. In order to perform
WCET analysis of PREM-compliant applications, we also need
to correctly model the DMA transfers from global MSMC to local
(L2) scratchpad memories. To do so, we performed an extensive
set of experiments to derive the minimum bandwidth for DMA
transfers of blocks of different sizes. For reasons of spacewe
will not describe our analysis in details here, but only the main
outcomes. In a typical scenario for the target system [13], [20],
[21], [22], the M phase moves one or more contiguous blocks
of data off and forth the accelerator subsystem. We found that,
for block sizes of more than 32kB, the DMA programming cost
gets amortized, and performance scale linearly (i.e., transferring
twice the data takes twice the time). Table 2 shows the estimate
of the cost in microseconds (tByte) for transferring a single Byte
of data, and with this we can estimate the worst-case time fora
DMA transfer (the M phase) as:

tM =
∑

i∈input_vars

[size_Bytesi ∗ tByte ∗ nthreads], (2)

wherenthreads represents the number of threads simultaneously
competing for memory resources. Note that if the core initiating
the transfer runs in isolation, thennthreads ≡ 1, that is, there is
no interfering traffic towards the memory system.

Since instruction caches are warmed up before execution, we
may neglect the impact of instruction cache misses, such as,e.g.,
Puauat et al. do in [23].

5. Experimental validation

In this section, we validate our approach on the Keystone II,
comparing PREM and non-PREM versions of the same bench-
mark. At first, we introduce and discuss a synthetic benchmark
we developed that stresses the core and memory system, and
run it on an varying number of cores to extract the execution
time, both for the PREM and non-PREM versions. As explained
in Section 3, in the Keystone II platform, data are placed by
default in the MSMC. In the PREM version, we prefetch them
in the per-DSP local L2 SPM; in the non-PREM version of the
benchmark, data are left in the (cacheable) MSMC. In a second
set of experiment, we test the accuracy of our timing model, i.e.,
we compare the results obtained for the PREM version againstthe
prediction of the analysis based on the platform characterization
presented in Section 4. We then study the performance of a
representative application – a matrix multiplication – written
in OpenCL [20] for the target platform. Finally, we explore
how application performance is affected by their computation-
to-communication ratio, that is, the percentage of time which is
spent on the memory – M phase.



Core frequency 1GHz Cycles-per-instruction (CPI) 0.125-1
L1 D$ size 32kB L2 mem size 256kB

L2 mem write latency(cyc) 0 L2 SPM read latency (cyc) 7
MSMC size 1MB MSMC latency (cyc) 20

Table 3: Keystone II experimental setup.

# Cores/threads 1 2 4 8
No-PREM – Worst (Analytical) 0.026 0.047 0.088 0.170

PREM – Worst (Analytical) 0.010 0.014 0.022 0.038
Speedup 2.6× 3.4× 4.0× 4.5×

Table 4: Analysis of the WCET of synthetic benchmark (mi-
crosec.)

5.1.Synthetic Benchmark description

We developed a synthetic benchmark which stresses the data
memory by accessing an array in such a way it continuously
causes cache misses. Figure 5 describes the job that is performed
on each DSP. There is a global (shared)input_array which is

/* The unit of work that a single DSP executes */

void work(unsigned int input_array[SIZE * NTHRDS],

unsigned int output_array[SIZE])

{

unsigned int thrid = MY_ID;

/* Offset of "my" portion of the array */

unsigned int base_idx = thrid * SIZE;

for(int i=0; i<SIZE; i+=CACHE_LINE_SIZE)

output_array[i] = input_array [base_idx + i];

}
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Figure 5: Synthetic benchmark.

split in NUM_THREADS parts ofSIZE elements, and each thread
copies (item-by-item) it into another array. In our experiments,
SIZE is 32kB.

In a default program deployment scheme on the Keystone,
input_array resides in the MSMC, because the benchmark
starts running on the host, which has no access to the local (L2
and L1) DSP memories. As explained in Section 3, this is due to
memory space restrictions. With PREM, we move data to the L2
SPM by means of DMA transfers, and computation is performed
locally. For the moment, we do not consider the writeback phase,
i.e., output_array always resides in the local L2 memory of
the accelerator. The model can easily be enhanced to deal with
it, as Alhammad et al. show in [24].

5.2.Performance analysis of the synthetic benchmark

Table 4 shows the estimated performance comparison of
PREM and non-PREM version of the synthetic benchmark, with
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Figure 6: Synthetic benchmark execution times (both Analytical
and Experimental)

the number of threads varying from 1 to 8 (each threads runs
on a dedicated DSP core). It also shows how performance of
PREM scales better with the number of threads. Times are in
microseconds, and correspond to the WCET as derived from our
analytical model in Section 4. They show that PREM outper-
forms non-PREM by more than4×, for 8 parallel threads. This
impressive result mainly descends from the tremendous memory
bandwidth of DMA burst transfers (128B wide bursts) under
PREM, when compared to the cache fill time (20 cycles for a 64B
line) of the non-PREM model. This is particularly importantin
a typical real-time scenario, where parallel threads have different
(fixed) priorities in accessing shared resources. Here, theworst-
case performance of the PREM model corresponds to thelowest
priority thread that suffers full memory interference from the
memory phases of all other threads. With a memory-aware task
mapping and scheduling algorithm in place3, it would be then
possible to select which task to assign to this “unlucky” thread,
reserving thehigher priority threads for more timing sensitive
tasks.
This is shown in the bottom lines of Figure 6: the line“PREM-
Best” shows that under PREM, the highest priority thread never
encounters memory interference, hence has a significantly smaller
execution time than the low-priority “unlucky” thread previously
mentioned, and that his performance do not significantly change
when the number of concurrent cores increases.

The most interesting result in Figure 6, however, is that the
two topmost curves related to the prediction of our PREM ana-
lytical model and the actual results from experiments (“PREM-
Worst (Analytical)” and “PREM-Worst (Exp)”) overlap almost
perfectly. This means that our model is capable of correctly
capturing the behavior of the synthetic benchmark, which, as
explained, was explicitly written to simulate a scenario ofhigh
traffic towards the accelerator memory system. Table 5 shows

3. Designing a memory-aware scheduler is not the purpose of this work, nor it is
dealing with recurring task models. However, this work indeed aims at providing
the necessary system-level background to design such scheduling strategies as a
next step of our research.



# Cores 1 2 4 8
Worst (Analytical) 0.009 0.013 0.021 0.037

Worst (Experimental) 0.010 0.014 0.022 0.038

Table 5: Synthetic bench: accuracy of the analytical model
(microsec).

the absolute times (in microseconds), which are almost identical,
besides an acceptable error due to measuring resolution and
approximation. We show results for“no-PREM - Worst” only
in Table 4 and not in Figure 6 because they would harness the
scale – hence the readability – of the plot.

Figure 6 also shows the experimental results for the aver-
age (AVG) execution times i.e., the sum of the experimentally
measured execution times of all threads divided by the number
of threads. Somewhat surprisingly, also these results showthe
PREM curves outperforming the non-PREM ones, even if by a
smaller factor that decreases with the number of threads.

Boosting up the performance of PREM. A potential issue
in any prefetch-based technique is that, if explicit (DMA) data
transfers are not carefully dimensioned and managed, one may
end up in prefetching a larger amount of data than needed.
This potentially causes an increase in the average execution
time due to the initial latency of the memory phase, especially
when the number of threads increases (remember that concurrent
memory phases are sequentialized, under PREM). However, this
effect can be significantly reduced by means of double buffering
techniques [25], which enables overlapping of memory – M and
computation – C phases of two consecutive tasks. When the first
memory phase finishes, the running task can immediately start the
computational phase, while the next task starts its memory phase,
and so on. If these M–C phases are properly dimensioned, and if
the application allows it, it is therefore possible to “hide” all of
the data accesses. The bottom black line in Figure 6 (“PREM -
Best w/smart buffering”) shows the performanceestimateof the
highest-priority thread, when memory latencies of the M phase
are completely hidden using smart buffering techniques. The
difference between the two lowermost lines shows how being able
to “hide” data transfers, e.g., with double buffering, potentially
further improves performance, here by a factor of≈ 2×, even for
“privileged”, high-priority threads, and does not vary increasing
the number of threads.

5.3.Matrix multiplication

We choose the matrix multiplication as a “real” application
testbed for our approach. We modified according to PREM the
code of thematmpybenchmark that comes with the Keystone
SDK provided by Texas Instruments. This code is written in
OpenCL [20]. In this application, one ARM core decomposes
the output matrix into sub-matrices, and offloads the computation
of the sub-matrices to the DSP cores. We use the full set of
8 DSPs (8 parallel threads). Figure 7 shows the partitioningof
application in small identical parallel tasks, which in OpenCL are
calledwork-items.

The version of the application written by TI employs data
prefetching to boost performance: input data is moved into the
L2 memory, but in a non-PREM fashion, that is, the access to
the (shared) DMA resource is not mediated, and parallel threads
concurrently access it. We thus explore three different versions
of the application:

1) NO-PREFETCH – a “naive” version with no prefetching,
where the three matrices reside in MSMC (which is the default
placement of the OpenCL data buffers in Keystone II);
2) PREFETCH – the “original” version, where prefetch is used
to increase data locality, but not following the PREM model,and
3) PREM – a version which follows the PREM model, i.e., where
the parallel threads lock the DMA resource during the whole
M phase, which is performed at the beginning of each OpenCL
work-item.

Figure 8 shows the performance (in seconds) an OpenCL
work-item for each of the three versions, when run on Keystone
II. It shows performance for the average, best (highest priority
thread) and worst (lowest priority thread) case. Results show that
prefetching data improves performance by≈ 8×, and PREM
gives an additional≈ +20% improvement. The excellent perfor-
mance gain of the prefetch-based versions is due to the reduction
of cache trashing: each matrix occupies 256kB, while L1 data
caches of DSP cores are only 32kB, causing a high number of
cache misses. By increasing data locality in the prefetch version
(hence, also under PREM) we mitigate this effect. We easily
demonstrate this re-running the benchmark with matrices ofsize
down to 4kB, which entirely fit in the cache. Figure 10 shows
that no-prefetch and prefetch versions perform almost identically
for matrices smaller than 64kB.

Figure 9 shows our WCET prediction formatmpy, and the
corresponding experimental values. WCET is improved by a
factor of ≈ 2× using prefetch, and that PREM outperforms
the prefetch-based version by≈ 3×. Thorough readers might
have noted than the difference between the prediction and the
actual (EXPerimental) numbers is higher than for the synthetic
benchmark. The reason is that,matmpyis not explicitly designed
to stress the memory system, hence the WCET is not likely
to appear even with a high number of experiments, such as it
happens with the synthetic benchmark4.

5.4.Performance as a function of Memory Ratio

In this section, we show theexpected worst-case performance
on the target platform for generic PREM-compliant applications
characterized by a givenmemory ratio (MR), defined as the total
number of cycles spent in the M phase, divided by the total
number of cycles of the application, when run in isolation:

MRPREM =
tM

(tM + tC)
(3)

Besides the application code itself, the memory ratio of a
PREM-compliant application depends of multiple factors, such as
memory latencies, DMA bandwidth, type of processor, compiler
optimizations, etc.

The C66x core has a 10-stage pipeline, where a memory
operation takes at least 4 cycles to execute (memory access results
are fetched 4 stages “after” the address is emitted). In casethere
is not enough instruction-level parallelism to exploit in the source
code, the compiler inserts 4 NOPs to meet this constraint. Hence,
considering a 7-cycles latency for the L2 memory (see Table 1),
under PREM each DSP has a maximum MR of:

4. Several existing tools could be used that adopt the “Implicit Path Enumer-
ation Technique” [26]. Note that, also profile-based and probabilistic approaches
[27] are recently gaining attention and trust in soft real-time domains, but this is
an orthogonal (yet, nowadays, “hot”) research direction, and it’s out of the scope
of this paper.
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MRKeystoneII =
7

(7 + 4)
= 0.63 (4)

According to our profiling tool, the considered synthetic
benchmark has a memory ratioMRsbench of 0.44, andmatmpy
has a memory ratioMRmatmpy of 0.56.

Figure 11 shows how the PREM performance deteriorates for
different memory ratios and an increasing number of threads,
according to our timing model. All times are normalized to the
case where a single DSP runs in isolation. From the bottom
to the top, we study performance degradation from a minimum
MR of 0.1 (out of 10 execution cycles, 1 is spent accessing the
memory) representing a computational-intensive application, to
the maximum achievable on Keystone II (MRKeystone = 0.63).

Increasing the number of cores has a different impact on
the WCET depending on the memory ratio. In particular, an
increment in the WCET of∼ 2× and ∼ 5× is predicted for
the most computational-intensive and memory-intensive cases,
respectively, with eight DSP cores.

6. Conclusions and future work

Future computing systems will run on heterogeneous plat-
forms, featuring many-core accelerators. Unfortunately,the com-
plexity of worst-case timing analysis on these architectures pre-
vents their adoption in the real-time domain due to pessimistic
and over-conservative WCET predictions.

This paper explored the applicability of the PRedictable
Execution Model (PREM) to embedded many-core accelerators
with explicitly shared memories. This paper shows that PREMis
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effective in guaranteeing timing predictability in a representative
embedded heterogeneous platform, with an order-of-magnitude
speedup compared to classical, non-PREM approaches. We mod-
eled the main components that influence the worst-case execution
times of the parallel tasks running on the considered multi-core
system, and estimate how the performance varies depending on
the number of cores and the memory to computation ratio. Results
validate the effectiveness of the PREM execution model when
adopted on a representative multi-core architecture, as well as the
accuracy of the proposed timing model. This work provides us
with the basics and necessary model to develop smart scheduling
strategies for PREM-compliant applications executing upon next-



generation heterogeneous systems.
As a next step, we intend to consider more complex application,
i.e., with multiple recurring real-time tasks, devising smart (mem-
ory and CPU) scheduling strategies, and associated schedulability
analysis, to maximize the feasibility. We would also like to
investigate the optimal resource allocation and dimensionof local
buffers, and the tradeoff/granularity between M and C phases,
for instance identifyingclassesof applications, starting from the
achievements in Section 5.4, and exploring their behavior under
PREM. Finally, we want to generalize the presented technique to
hierarchically scheduled memory transfers for cluster-based archi-
tectures, enriching our model by considering multiple DMA mod-
ules, and multiple clusters which sum up to hundreds/thousands
of cores. We believe these will soon be hot research topics inthe
real-time and embedded systems domains.
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