
Oncotarget58649www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 36

Angiogenesis in pancreatic ductal adenocarcinoma: A 
controversial issue
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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) occurs in the majority of cases 

with early loco-regional spread and distant metastases at diagnosis, leading to 
dismal prognosis with a 5-year overall survival rate moderately over than 5%. This 
malignancy is largely resistant to chemotherapy and radiation, but the reasons of the 
refractoriness to the therapies is still unknown. Evidence is accumulating to indicate 
that the PDAC microenvironment and vascularity strongly contribute to the clinical 
features of this disease. In particular, PDAC is characterized by excessive dense 
extracellular matrix deposition associated to vasculature collapse and hypoxia with 
low drug delivery, explaining at least partly the low efficacy of antiangiogenic drugs 
in this cancer. Strategies aimed to modulate tumor stroma favoring vasculature 
perfusion and chemotherapeutics delivery are under investigation. 

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is 
characterized by a low microvascular density (MVD) as 
compared to other tumor types [1]. Therefore, hypoxia 
inducible factor 1 alpha (HIF-1α) and vascular endothelial 
growth factor-A (VEGF-A) expression is increased and 
correlates with poor prognosis [2-3]. Another typical 
feature of PDAC is the presence of an intense fibro-
inflammatory reaction, namely desmoplastic reaction 
(DR), responsible of an high intratumoral pressure and 
solid stress causing vasculature collapse [1, 4]. 

However, even though the anti-angiogenic 
treatments improved survival in subcutaneous and 
orthotopic pre-clinical models, the same treatments 
resulted ineffective in genetically engineered mouse 
models (GEMMs) of PDAC, as well as in clinical trials 
[5]. Differently from the transplantable models that 

have low stroma and pancreatic cancer cells (PCCs) 
are close to the vessels, GEMMs and human PDAC are 
characterized by a dense stroma, which is responsible of 
a high interstitial pressure and collapsed vessels with and 
impaired drug delivery. 

This review will focus on the peculiar tumor 
angiogenesis and microenvironment in PDAC, and on the 
effects of these findings on the efficacy of anti-angiogenic 
clinical trials. 

ANGIOGENESIS AND TUMOR 
MICROENVIRONMENT IN PDAC

Different studies have demonstrated a relationship 
between microvascular density (MVD), tumor 
VEGF-A levels, and disease progression in PDAC [6-
10]. The functional analysis of the tumor vasculature 
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has demonstrated that vessels appear collapsed as a 
consequence of high interstitial pressure with a low 
delivery of small molecules [1, 4]. PDAC is characterized 
by a fibro-inflammatory reaction, namely DR, which 
consists in an abundant deposition of dense collagen 
types I and III bundles, hyaluronic acid and fibronectin, 
loss of basement membrane integrity, and invasion of 
malignant cells into the interstitial matrix associated with 
a disorganized vasculature characterized by vessels with 
variable diameters, abnormal multiple branching and 
disrupted interendothelial junctions [11-13]. 

DR is the result of a complex interplay between 
pancreatic stellate cells (PSCs) and PCCs. Co-colture of 
these two types of cells or the incubation of PCCs with 
PSCs supernatants results in a significant increase of 
release of endostatin by PCCs. Moreover, both PSCs and 
PCCs produce matrix metalloproteinase-12 (MMP-12) 
and cathepsin B to cleave endostatin from collagen XVIII. 
Endostatin increases hypoxia levels by inhibiting the 
angiogenesis and at the same time stimulates the secretion 
of MMPs by PSCs [14]. 

This hypoxic microenviroment, not only contributes 
to pro-fibrogenic activity of PSCs but stimulates PSCs to 
produce several angiogenic molecules, including VEGF, 
fibroblast growth factor-2 (FGF-2), platelet derived 
growth factor (PDGF), interleukin-8 (IL-8), MMP-9, 
and vasohibin-1, resulting in foci of angiogenesis in the 
peripheral areas of the tumor [14-15] (Figure 1). High 
levels of HIF-α increases, in turn, VEGF-A expression, 
and HIF-1α and VEGF-A not only contribute to PDAC 
aggressiveness by angiogenesis but also by a direct 
stimulation of tumor cell proliferation and metastatic 
capacity [2-3]. Stimulation of tumor cell proliferation 
and metastatic capacity through the regulation of the 
expression of actin-bundling proteins, MMPs and 
chemokine receptors, also occurs [16]. Furthermore, in 
PDAC other mitogenic and pro-angiogenic growth factors 
are over-expressed including transforming growth factor 
beta (TBF-β), hepatocyte growth factor, epidermal growth 
factor, and insulin like growth factor [17]. In particular, 
once activated, TGF-β receptors phosphorylate SMAD 
proteins to form complexes with transcription factor 
SMAD4, involved in the regulation of several genes which 
control angiogenesis and extracellular matrix remodeling 
[18]. 

INFLAMMATION IN PDAC

Inflammatory cells contribute to the proliferative 
and invasive capacity of solid and hematological 
malignancies [19-21]. PDAC is characterized by an 
abundant inflammatory infiltration consisting in cancer-
associated fibroblasts, macrophages, mast cells (MCs) and 
lymphocytes [12, 22]. MCs are now recognized as critical 
components of tumor stromal microenvironment. They 
are more numerous in PDAC than in benign pancreatic 

pathology and, at the same time, they are more numerous 
in PDAC than in the normal adjacent tissue [22-23]. In 
addition, PDACs with elevated numbers of infiltrating 
MCs and high MVD have a worse prognosis [24-25]. 
PCCs induce MCs and macrophages migration releasing 
chemoattractant molecules, such as colony-stimulating 
factor-1 and chemokine ligand 2 [26]. MCs express pro-
angiogenic factors as VEGF-A, FGF-2, PDGF, tryptase, 
chymase, and MMPs promoting tumor growth [27-28]. 
Moreover, MCs promote PSCs proliferation releasing IL-
13 and tryptase, and PSCs stimulate MCs proliferation 
[29].

Tumor-supportive M2-macrophages number is 
higher in PDAC than in benign pancreatic pathology 
and in normal tissue [22], and correlates with higher 
rate of metastasis and poor prognosis [30]. Inhibition of 
macrophage recruitment to the tumor microenvironment 
by targeting adhesion molecule integrin α4β1 or myeloid 
PI3Kγ resulted in a marked decrease of blood vessel 
formation in pancreatic cancer models [31].

GENES INVOLVED IN PDAC 
ANGIOGENESIS

HIF-1α G1790A and C1772T single nucleotide 
polymorphisms appeared more frequently in PDAC, 
predicting higher risk for its development [32]. HIF-1α 
expression in PSCs results as a sensor of oxygen levels 
in pancreatic tissue, inducing an up-regulation of VEGF 
levels [15]. Moreover, PSCs improve angiogenesis by 
enhancing the levels of angiopoietin-1 and its receptor 
Tie-2 mRNA, both involved in the control of tumor 
angiogenesis, in PDAC microenvironment [15, 33]. 

Angiogenic gene signature has been assessed in 
PDAC analyzing the levels of 129 angiogenic genes 
from The Cancer Genome Atlas (TCGA). About 35% of 
PDACs show an up-regulation of pro-angiogenic genes, 
including FGFR-1, and VEGFR-1, −2 and −3, and of 
pro-inflammatory genes, such as IL-1B, IL-6, and JAK2, 
anti-inflammatory IL-10, as well as histone deacetylase-9, 
with a major involvement of TGF-β, which regulates 
the smad signal pathway [34]. Most of PDAC show 
loss of heterozygosity for SMAD4 locus, with 50% of 
PDAC having either homozygous deletion or mutational 
inactivation of the second allele. SMAD4 restoration 
inhibited both angiogenesis and extracellular matrix 
remodeling [18]. Conversely, SMAD4 re-expression in 
BxPC3 PCCs fails to suppress angiogenesis in vivo [35]. 
SMAD4 and nuclear SMAD4 expression correlates with 
high levels of CD31, the main endothelial cell-specific 
marker [34]. 

MicroRNAs (miRNA), play an important role in 
the regulation of gene expression in PDAC, including 
angiogenesis [36]. Hypoxia induces the expression of 
miRNA-21 in PDAC cells via HIF-1α allowing cells 
to avoid apoptosis [37], at the same time miRNA-21 
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acts as an inhibitor of endothelial cell proliferation and 
migration [38]. In a PDAC model, a lentiviral transported 
antimiRNA-21 improved tumor angiogenesis, improving 
the flow of gemcitabine with a synergistic antitumoral 
effect [39]. Whereas, MiR139 and miR200c resulted 
upregulated in primary endothelial cell cultures derived 
from PDAC patients, suggesting that they may improve 
tumor angiogenesis [40]. 

Although there has been some progress concerning 
angiogenesis gene signature in PDAC, the epigenetic 
regulation systems seem to be still poorly known, and 
might be used as a possible therapeutic target. 

PRE-CLINICAL ANTI-ANGIOGENIC 
APPROACHES IN PDAC

Several Authors targeted VEGF signaling using 
nude mouse models of human PDAC. Injection of PDAC 
antisense VEGF-A gene cells into athymic nude mice lead 
to an 80% decrease of tumor growth compared with mice 
injected with control cells [41]. Engineerization of Panc-1 
cells and PK-8 cells to produce a soluble form of the decoy 
receptor of VEGF, inoculated in SCID mice, resulted in a 
PDAC model with both low MVD and tumor growth [42]. 
Ziv-aflibercept, a VEGF-Trap, decreased tumor MVD 
and suppressed cancer cell proliferation in an orthotopic 
model of PDAC [43]. More recently, curcumin analogues 
UBS109 and EF31 downregulated angiogenic factors 
such as HIF-1α, Hsp90, COX-2 and VEGF in xenograft 
models of PDAC showing antitumor and anti-angiogenic 
effects [44]. LY294002 (a PI3K inhibitor) in combination 
with gemcitabine and ionizing radiation, inhibited cancer 
cell growth, metastasis and angiogenesis targeting PI3K/
MMPs/Ln-5γ2 signaling pathways in xenograft model in 
which vasculogenic mimicry occurs. [45]. Ginsenoside 
Rg3, a tetracyclic triterpenoid saponin, altered 
vasculogenic mimicry process in nude mouse xenografts 
of PDAC, downregulating the expression level of VE-
cadherin, EphA2, MMP-2 and MMP-9 mRNA [46]. The 
simultaneous target of TGF-βR and JAK1 phosphorylase, 
using SB505124 and ruxolitinib suppressed endothelial 
activation in 3D co-cultures of PDAC and endothelial cells 
by suppressing proliferation and angiogenesis [34].

Experimental models are characterized by an high 
vascularity and the absence of desmoplastic reaction, as 
instead occurs in human PDAC. To avoid this pitfall, a 
GEMM of PDAC characterized by a dense stroma and 
collapsed vessels has been developed, using mutant 
Kras and p53 alleles in pancreatic cells (KPC) mice 
models [47]. In these models, sunitinib , targeting VEGF 
and PDGF receptors impair angiogenesis, but fail to 
reduce tumor burden [48]. Similarly, gemcitabine plus 
bevacizumab did not achieve a statistical increase of 
median (m) OS or progression free survival (PFS) [49]. 

As consequences of hypoperfusion, a reduced 
sensitivity to chemotherapy derives from a limitation of 

drug delivery due to reduced vascularization [1]. In this 
context, murine models have been developed in order to 
normalize the vasculature [50] or to reduce the pressure 
on the collapsed vessels, [1, 51]. The small molecule LB-
100, an inhibitor of phosphatase 2A (PP2A), increased 
MVD in the PDAC xenograft model resulting in a 
higher chemotherapeutics delivery with improvement of 
objective response [50]. 

A recombinant human hyaluronidase conjugated 
with polyethylene glycol has been used in KPC mice 
PDAC models with a reduction of intratumoral hyaluronan 
and a significant improvement of tumor perfusion 
without an increase of MVD favouring chemotherapeutic 
delivery. KPC mice treated with gemcitabine together 
with this drug or gemcitabine alone, show a significantly 
increased response and mOS [1]. In a parallel similar 
study, Jacobetz et al demonstrate that hyaluronidase 
leads to microenvironment changes in endothelium with 
an increase of vascular permeability drug permeability, 
and an increase of survival in KPC mice treated with 
gemcitabine [4]. IPI-926, a derivate of cyclopamine, 
targeting Hedgehog pathway by inhibiting Smo, reduced 
the collagen-1 content and destroyed tumor-associated 
desmoplastic tissue, increased the MVD and concentration 
of gemcitabine, in KPC mice model [51]. Nonetheless, 
in contrast with this last study, in a Kre PDAC mice 
model, both the Shh (Sonic Hedgehog, a peculiar ligand 
of Hedgehog pathway) gene delection and Hedgehog 
targeting through IPI-926, reduced stromal content, but 
generated more aggressive PDAC with a high proliferation 
rate and an increased vascularity [52]. Furthermore, 
administration of DC101, an antibody blockingVEGFR-2, 
in Shh-deleted mice, reduces tumor proliferation inducing 
tumoral necrosis through angiogenesis inhibition. 
Moreover, inhibition of desmoplasia with depletion of 
myofibroblasts, resulted in transgenic mice with shorter 
survival and invasive and aggressive PDAC [53].

Despite the fact that many attempts to reduce 
the stroma to normalize tumor vascularization led 
to interesting results in vivo, most recent data have 
highlighted how this approach lead to a more aggressive 
phenotype with a lower survival. In parallel, although 
classic anti-angiogenic  molecules, such as bevacizumab 
and sunitinib, has failed to induce tumor regression, the 
use of alternative angiogenetic targets, such as SB505124 
and ruxolitinib of TGF-β type I receptor kinase and JAK1 
phosphorylase, give more promising results in PDAC 
treatment. 

CLINICAL TRIALS OF ANTI-
ANGIOGENIC THERAPY IN PDAC

Several phase II and III clinical trials have been 
conducted in PDAC using anti-angiogenic inhibitors. 
On the basis of a multicenter phase II trial in patients 
with metastatic PDAC which achieved a 21% ORR and 
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Table 1: Main clinical trials ongoing in PDAC targeting angiogenesis/stroma
Targeting PDAC angiogenesis

Setting Phase Design Mechanism of action Primary endpoints
Trial 
identification 

number

I line I Ruxolitinib plus gemcitabine plus nab-
paclitaxel Janus-associated kinase 1 (JAK1) and 

JAK2 inhibition
Safety NCT01822756

I line I Gemcitabine plus nab-paclitaxel plus 
GS-5745 MMP9 inhibition Safety NCT01803282

I line I/II
5FU plus  nab-paclitaxel plus 
bevacizumab plus  calcium leucovorin 
plus oxaliplatin

Inhibition of  vascular endothelial growth 
factor A

Dose limiting toxicities 
(Phase 1);
1 year survival rate 
(Phase II)

NCT02620800

Resectable II
Gemcitabine plus bevacizumab plus 
external beam radiotherapy 3 Gy/
fraction utilizing a 95% isodose field 
over 10 consecutive weekdays

Inhibition of  vascular endothelial growth 
factor A

R0 resection rate/ rate 
of complete pathologic 
response after resection NCT00557492

II  line II Regorafenib plus gemcitabine
Dual targeted VEGFR2-TIE2 tyrosine 
kinase inhibition PFS NCT02383433

II line II Regorafenib
Dual targeted VEGFR2-TIE2 tyrosine 
kinase inhibition PFS NCT02080260

II line II Regorafenib
Dual targeted VEGFR2-TIE2 tyrosine 
kinase inhibition 2-months progression 

free survival rate NCT02307500

I line II R Gemcitabine plus TL118 vs 
gemcitabine 

TL118 is a drug formed by four 
molecules: cyclophosphamide,  
diclofenac, sulfasalazine, and cimetidine, 
angiogetic inhibitors  through anti-
inflammatory mechanisms

Disease control rate NCT01509911

I line II R mFOLFIRINOX plus ramucirumab VEGF Receptor 2 inhibition PFS NCT02581215

II line (after 
gembitabine)

IIR Capecitabine plus ruxolitinib vs 
capecitabine

Janus-associated kinase 1 (JAK1) and 
JAK2 inhibition OS NCT01423604

II line III Capecitabine plus ruxolitinib vs 
capecitabine Janus-associated kinase 1 (JAK1) and 

JAK2 inhibition
OS NCT02119663

Targeting PDAC stroma

Setting Phase Design Mechanism of action Primary endpoints
Trial 
identification 

number

I line I mFOLFIRINOX plus IPI-926 Hedgehog pathway inhibitor 
Maximum tolerated dose 
(MTD) NCT01383538

I line I PEGPH20 plus cetuximab Destruction of the stroma through the 
cleavage of hyaluronan Safety NCT02241187

I line
I
II R

PEGPH20 
mFOLFIRINOX plus PEGPH20 vs 
mFOLFIRINOX

Destruction of the stroma through the 
cleavage of hyaluronan

MTD/safety
OS NCT01959139

I line II R PEGPH20 plus nabpaclitaxel plus 
gemcitabine vs nabpaclitaxel plus 
gemcitabine

Destruction of the stroma through the 
cleavage of hyaluronan

PFS;
Evaluation of the 
thromboembolic events

NCT01839487

Borderline 
resectable

II R Gemcitabine plus nab-paclitaxel plus 
PEGPH20 vs gemcitabine plus nab-
paclitaxel

Destruction of the stroma through the 
cleavage of hyaluronan

Pathologic complete 
response;
Clinically 
relevant pancreatic
fistula 

NCT02487277

I line III
Gemcitabine plus nab-paclitaxel plus 
PEGPH20 vs gemcitabine plus nab-
paclitaxel

Destruction of the stroma through the 
cleavage of hyaluronan

PFS
OS NCT02715804
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a mOS of 8.8 months with the combination gemcitabine 
plus bevacizumab [54], Cancer and Leukemia Group B 
(CALGB) conduct a double-blind, placebo-controlled, 
randomized phase III trial of gemcitabine/bevacizumab 
versus gemcitabine/placebo in advanced PDAC. Five 
hundred and thirty-five patients were enrolled to receive 
gemcitabine at 1,000 mg/m2 over 30 minutes on days 
1, 8, and 15 every 28 days and bevacizumab at 10 mg/
kg or placebo on days 1 and 15 every 28 days. In spite 
the promising results of the phase II trial, the addition 
of bevacizumab to gemcitabine did not improve mOS 
of 5.8 and 5.9 months, with a not statistically improved 
mPFS of 3.8 and 2.9 months for combination arm and 
gemcitabine alone arm, respectively. The only statistically 
significant differences in grades 3 and 4 toxicity regarded 
hypertension (10% v 3%; P < .001) and proteinuria (5% 
v 1%; P = .002) [5]. The Authors imputed the different 
results between the two phase trials to the different 
selection of patients, i.e. a better PS in the phase II study. 

A subsequent study, with the aim to identify 
predictive biomarkers of response to bevacizumab-
containing regimen in PDAC has been conducted using 
serum from patients enrolled in the CALGB 80303 
trial. One hundred and fifty-six proteins were quantified 
and authors selected histidine-rich glycoprotein (HRG) 
and complement factor H (CFH) as possible predictive 
markers. Unfortunately, there was no evidence for 
interaction with bevacizumab and HRG, but there was 

some evidence for a weak positive correlation of HRG 
with OS (τ = 0.11 [0.03, 0.19]; P < .01). CFH was found 
to be neither a predictive nor a prognostic factor for 
OS [55]. Subsequently, on the same setting of patients, 
three markers predictive for bevacizumab response were 
identified: VEGF-D, SDF1, and Ang-2. In particular, 
low levels of VEGF-D were predictive to benefit from 
bevacizumab plus gemcitabine arm, whereas, below 
median levels of both Ang-2 and SDF1 predicted for 
greater benefit in the placebo group [56]. However, the 
same authors assert the need to evaluate these markers in 
a larger sample in order to select the highest number of 
positive and negative predictive markers of response to 
anti-angiogenic treatment. 

From the evidence that simultaneous inhibition of 
EGFR and VEGFR leads to better target angiogenesis, 
a phase III trial tested the use of bevacizumab added to 
the association gemcitabine-erlotinib. Three hundred 
and one PDAC patients were randomly assigned to 
receive gemcitabine (1,000 mg/m(2)/week), erlotinib 
(100 mg/day), with or without bevacizumab (5 mg/
kg every 2 weeks). Despite a good safety profile and a 
better significant PFS (HR 0.73;P = .0002) of the triplet 
schedule, the addition of bevacizumab did not show 
a statistically significant improvement in terms of OS 
(7.1 and 6.0 months in the bevacizumab and placebo 
arms, respectively, HR 0.89; P = .2087) [57]. Similarly 
negative results were achieved in phase III trials using 

Figure 1: PDAC is characterized by a robust fibro-inflammatory response, namely desmoplastic reaction (DR). DR 
is the result of a complex interplay between pancreatic stellate cells (PSCs) and pancreatic cancer cells (PCCs). DR increased vascular 
strickness inducing hypoxia. Angiogenesis is both inhibited by DC and is enhanced by PSCs and hypoxia.
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combination of gemcitabine with anti-angiogenic agents 
such as axitinib [58], sorafenib [59], and ZIV-aflibercept  
[60]. In a phase II randomized trial, sunitinib , a tyrosine 
kinases inhibitor, compared to observation alone showed 
a PFS at six months of 22.2% and 3.6%, a 2 years OS of 
22.9% and 7.1%, respectively, in the maintenance therapy 
after a gemcitabine -based first line [61]. Even so, a not 
significant superiority was achieved for the combination of 
Sunitinib and Gemcitabine in a randomized phase II trial 
in first line locally advanced or metastatic PDAC [62].

Moreover, Elpamotide, a peptide VEGFR-2 vaccine 
inducing a cellular immune response against VEGFR-2 
expressing endothelial cells, did not improved mOS 
or PFS compared to gemcitabine alone, although the 
subgroup that showed severe side effects at the injection 
site apparently had a better outcome [63]. Probably 
the failure of anti-angiogenesis could depend on the 
absence of predictors of response, moreover, only 35% of 
PDAC seems to have an angiogenic phenotype [34, 64]. 
Ramucirumab, a recombinant fully human monoclonal 
antibody directed against human VEGFR-2, is under 
investigation in a phase II study, evaluating the efficacy 
and safety of FOLFIRINOX plus ramucirumab (Arm A) 
vs. FOLFIRINOX plus placebo (Arm B) in 94 subjects 
with advanced pancreatic cancer [65].

As mentioned above in the pre-clinical studies, lack 
of response may derive from high interstitial pressures 
and collapse of tumor vasculature. In fact, targeting 
stromal microenvironment elements could be an efficient 
therapeutic strategy in addition to classical and new 
chemoterapic agents [1]. The possible therapeutic role of 
PEGPH20, has been recently investigated in a randomized 
phase II trial. The study enrolled untreated patients 
with metastatic PDAC to receive nab-paclitaxel and 
gemcitabine (nab-paclitaxel 125 mg/m2 plus gemcitabine 
1000 mg/m2 given IV x1/week 3/4 weeks per cycle) 
combined with PEGPH20 (3ug/kg IV x 2/week for cycle 
1 and weekly for cycle 2 and beyond, PAG) or placebo 
(AG). Following an initial clinical withdrawal for the 
evidence of several thromboembolic events (29% and 15% 
for PAG and AG, respectively) the trial was started again 
with a prevention treatment with low molecular weight 
heparin, and concluded that in hyaluronan-high expression 
patients receiving PAG and AG, the ORR was 52% vs 
24% respectively (P = .038), while there was no difference 
in 37% vs 38% hyaluronan-low expression patients. 
Moreover PFS was increased in patients with hyaluronan-
high expression, 9.2 and 4.3 for PAG and AG, respectively, 
and a there was a positive trend in OS [66]. On the basis of 
these results, a phase III trial of PAG has been started [67]. 
Based on encouraging preclinical data in Hedgehog signal 
role inhibition in tumor-associated stroma [51], IPI-926, 
an oral Hedgehog inhibitor, was evaluated in combination 
with FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, 
oxaliplatin) in a multicenter phase Ib study. Patients were 
treated with once-daily IPI-926 plus FOLFIRINOX 

at 3 + 3 dose escalation design. The combination was 
generally well tolerated, with common treatment-related 
adverse events such as liver function test abnormalities, 
neuropathy, nausea/vomiting, and diarrhea. Patients 
presented a promising ORR of 67%, with evident decline 
of CA19-9 levels [68]. Unfortunately, a phase II trial of 
IPI-926 plus gemcitabine was closed early due to an initial 
detrimental effect of this combination [69]. Furthermore, 
the MMP inhibitor marimastat was tested in patients with 
PDAC, based on the data that aberrant MMP expression 
is observed in this neoplasm. Bramhall et al. designed 
a phase III randomised study on 239 PDAC patients to 
compare orally administered marimastat in combination 
with gemcitabine to gemcitabine alone. There was no 
significant difference in OS between combination and 
gemcitabine plus placebo arm (P = 0.95), with a 1-year 
survival of 18% and 17%, respectively. Also no significant 
advantage was seen in ORR (11 and 16% respectively), in 
PFS (P = 0.68) and in time to treatment failure (P = 0.70) 
between the treatment arms [70].

In the future, the PDAC patients will be selected 
for the use of anti-angiogenic therapy through the 
angiogenetic signature. Moreover, the target of stroma 
through Hedgehog inhibitors or hyaluronidase enzymes 
together with actual standard therapies will plays a key 
role in the treatment of this malignancy. The main clinical 
trials are in progress are summarized in Table 1.

CONCLUDING REMARKS

The hypothesis that the peculiar stroma is 
responsible of chemoresistance in PDAC explains the low 
efficacy of anti-angiogenic agents in PDAC treatment. 
On the other hand, this biological property of PDAC 
microenvironment has led to suggest the depletion 
of tumor stroma as a strategy for PDAC treatment. 
However, this approach seems contradictory because in 
some GEMM studies stromal depletion with increased 
tumor vascularity and drug diffusion resulted efficacious, 
resulting in increasing survival. In the meantime, other 
studies have demonstrated that increased vasculature 
correlates with disease progression. In this context, 
strategies aimed to achieve a more precise and efficacious 
modulation of desmoplasia and tumor vascularity in 
PDAC are necessary.
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