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Abstract 9 

Starting from small-scale batch cultivations, acetic acid fermentations in static and submerged 10 

systems have been performed by a single acetic acid bacterial strain. To provide user-friendly 11 

selected starter cultures for industry, the versatility of these cultures in using different oxidation 12 

substrates under different conditions was assessed. In all cases, vinegars with the desired acetic 13 

acid, residual ethanol and reducing sugar contents were obtained.  14 

An appropriate small-scale batch cultivation subjected to strict process control was pivotal for 15 

obtaining the desired acetic acid concentrations and an active culture for submerged fermentation. 16 

This achievement enabled the generation of selected starter cultures for submerged vinegar 17 

production, which reached an acetic acid content of 8.00-9.00% (w/v), as well as prototype-scale 18 

vinegar production. The production of vinegars with reducing sugars in the range of 15.00 to 27.00 19 

(% w/v) was achieved, and cellulose production was avoided. The dominance of the microbial 20 

culture in this process was shown via (GTG)5-PCR. These results are valuable for introducing the 21 

use of selected acetic acid bacteria cultures in industrial vinegar production.  22 

 23 

Keywords: Acetobacter pasteurianus, acetic acid fermentation, submerged fermentation, static 24 

fermentation 25 

 26 

 27 

 28 
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 32 
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Introduction 33 

Acetic acid bacteria (AAB) fermentations are oxidative fermentations performed by AAB growing 34 

on carbon substrates under aerobic conditions [1]. Vinegar production is the most common example 35 

of an AAB fermentation and occurs without the use of selected starter cultures (SSCs), both at small 36 

and large industrial scales [2-5].  37 

The low cost of vinegar is one of the reasons why the industry does not use SSCs for vinegar 38 

fermentation. Indeed, the use of indigenous AAB cultures, propagated by a back-slopping 39 

procedure, satisfies the main needs of the industry: low production costs, high performance and no 40 

specialized expertise required to perform the fermentation because the back-slopping procedure is 41 

easily customized. In the industrial production of some vinegars (for example, spirit vinegar), the 42 

acidity reaches 20% (expressed as acetic acid (% w/v)), whereas for wine vinegar, the acetic acid 43 

content is approximately 10-12%, which derives from approximately 95-98% of the ethanol content 44 

of the original wine [6]. In these productions, the substrate to be oxidized is ethanol, and the main 45 

goal is to reach the highest conversion yield of acetic acid. In contrast, for some high-priced 46 

vinegars, such as sherry, traditional balsamic, and some eastern cereal vinegars, the final high 47 

acidity and acetic acid yield are not the main attributes. Moreover, consumer demand is strongly 48 

oriented towards sweet vinegars, which are generally obtained by blending sugars and vinegar, 49 

rarely by fermenting liquid media containing both sugar and ethanol [7]. For these vinegars, new 50 

fermentations performed by AAB with specific traits, such as the ability to grow in high-sugar 51 

environments without depleting the sugar and to produce cellulose from glucose, are required.  52 

Previous studies have highlighted the occurrence of Komagataeibacter europaeus in submerged 53 

fermentations for the production of high-acidity vinegar (10-15%) and Acetobacter pasteurianus in 54 

vinegars that reach acetic acid contents of 6-7%. The fermentative attributes of these species are 55 

well studied with respect to acetic acid production in conventional vinegars [8, 4, 9,10, 11, 12]. 56 
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What is less studied is the behaviour of AAB in the presence of multiple carbon sources (ethanol 57 

and glucose) in industrial conditions and how to avoid cellulose formation.  58 

Before scaling up a bioprocess for vinegar production, basic knowledge must be gathered 59 

concerning the technological traits of AAB and the fitness of these strains over the course of 60 

cultivation [13, 3, 14, 15]. Moreover, exploring the feasibility of fermentation parameter 61 

optimization in different culture broths will be necessary to obtain successful fermentations [16-62 

17,18-19,20,21,22,23,24]. Finally, process scalability is a bottleneck due to the transfer of 63 

optimized fermentation conditions from small batches to large fermentations because the different 64 

operation modes interfere with microbial activity. In particular, the transition from laboratory to 65 

industrial scale is affected by the loss of the ability to oxidize ethanol and the loss of acetic acid 66 

resistance. These deficiencies have been observed frequently with AAB. Although little is known 67 

about the genetic background governing the instability of physiological properties such as ethanol 68 

oxidation, acetic acid resistance and cellulose formation, phenotypic modifications by transposon 69 

insertion have been previously reported in AAB [25-26-27-28-29,30].  70 

In this work, an AAB strain selected for its particular technological traits, including the inability to 71 

produce cellulose while growing on ethanol and glucose-rich media, was used to develop SSCs via 72 

static and submerged fermentations of wine and fermented grape musts rich in glucose. Specific 73 

operation modes were established to maintain culture functionality during the use of different 74 

fermentation methods at both the laboratory and industrial prototype scales. 75 

 76 

 2. Materials and Methods 77 

 2.1 General experimental plan 78 

Figure 1 summarizes the general experimental design to obtain a set of vinegars with reducing sugar 79 

contents in the range of 7.00 to 25.00% (w/v), an acetic acid content of 5.5-7.0% (w/v) and residual 80 

ethanol less than 1.0% (v/v). 81 
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The culture produced in the small-scale fermentation system was scaled up in static conditions and 82 

used to produce the SSC for the submerged and prototype static fermentations.  A total of five SSCs 83 

were produced, two in static fermentation systems and three in submerged fermentations. These 84 

SSCs were used to develop the static fermentation at the prototype scale. 85 

 86 

2.2 Bacterial strains, culture media and phenotypic assays 87 

A. pasteurianus AB0220 (DSM 25273/UMCC 1754), previously isolated from vinegar [13], A. 88 

pasteurianus (DSM 3509T) and K. xylinus (DSM 2004) were used in this study. Subcultures were 89 

recovered from preserved aliquots (-80 °C) and cultivated on GY broth (10.0% glucose and 1.0% 90 

yeast extract dissolved in deionized water, pH not adjusted). One millilitre of culture was inoculated 91 

into tubes containing 5 ml of GY. The cultures were incubated at 28 °C for 5-7 days. Cultivation on 92 

solid medium (GYC) was performed on GY supplemented with calcium carbonate (2.0%) and agar 93 

(8.0%) at 28 °C for 5-7 days. Frateur medium (30 ml/L ethanol, 1.0% yeast extract, 2.0% calcium 94 

carbonate and 2.0% agar) was used to assay acetic acid production from ethanol and over-oxidation. 95 

Filter-sterilized ethanol was added to the sterile basal medium after cooling to 50 °C. Cell shape, 96 

KOH tests and catalase production were assayed as previously reported [31]. The cellulose 97 

production test was performed by collecting the pellicles and boiling them in 4 ml of 5.0% NaOH 98 

for 2 hours, according to the previously reported method [32]. The presence of cellulose was 99 

confirmed when the pellicle did not dissolve after boiling. K. xylinus (DSM 2004) was used as a 100 

positive control. 101 

 102 

2.3 Fermentation substrates 103 

Wine (sterile and unsterile) and concentrated grape must (CGM) rich in glucose were used as 104 

acetification substrates to produce the five SSCs (Tables 1 and 2). Wine sterilization was performed 105 

by filtration (0.22-μm Millipore Express® PLUS membranes). All substrates were stored at 4 °C 106 
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until use. To produce SSC-E, a special mash composed of unfiltered wine and CGM was used. The 107 

mixture was prepared appropriately to limit the sugar concentration to a range of 20 to 30%. 108 

2.4 Analytical methods 109 

pH and titratable acidity were measured using an automatic titrator (TitroLine® EASY) equipped 110 

with an SI Analytics electrode. Samples were neutralized with NaOH (0.1 N) at pH 7.2. It was 111 

assumed that all sample acidity was due to acetic acid.  Reducing sugars were determined by the 112 

standard Fehling method [33]. Ethanol % (v/v) was measured as follows: the hydroalcoholic 113 

solutions were analysed directly with a Malligand ebulliometer. CGM was first subjected to 114 

distillation (distiller Enochimico Gibertini®) and then analysed with a Malligand ebulliometer. All 115 

experiments were performed in triplicate. 116 

The “total concentration” parameter was calculated by adding ethanol (mL per 100 mL) and acetic 117 

acid (g per 100 mL) concentrations. This parameter expresses the maximal concentration of acetic 118 

acid that can be obtained in a complete fermentation. The vinegar stoichiometric yield was 119 

calculated as the percentage of ethanol in the liquid medium converted into acetic acid. In contrast, 120 

the acetification rate was expressed as the ratio between acidity produced and time (hours) [6]. 121 

 122 

2.5 Small-scale batch cultivations and static fermentations 123 

Small-scale batch cultivations were performed in 250-mL and 2-L Erlenmeyer flasks. First, 5 ml of 124 

revitalized culture were transferred into a 250-mL flask containing 50 mL of GY broth enriched 125 

with 2.0% ethanol. New alcoholic broth was added after the ethanol concentration dropped below 126 

1.0% (v/v). To conduct the static fermentations, the refilling procedure was performed by fixing 127 

1.0% and 3.0% as the upper and lower limits for ethanol content, respectively, and 3.0% and 8.0% 128 

(w/v) as the lower and maximum limits for acetic acid content, respectively. After a sufficient 129 

volume was achieved (1 L), the culture was transferred to a 2-L Erlenmeyer flask and scaled-up as 130 

previously described [34].   131 
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2.6 Submerged fermentation 132 

Submerged fermentations were performed in an 8.0-L fermenter (CETOTEC® GmbH, Germany). 133 

The operating conditions during the start-up phase were as follow: volume of the starting mash, 4L; 134 

aeration, 40 l/h; and temperature, 30°C. The starting mash (6.0% (w/v) titratable acidity and 4.6% 135 

(v/v) ethanol) was composed of three litres of SSC-A produced in the static system fermentation 136 

and one litre of wine. In the fermentation phase, the volume was gradually increased to 6 L and the 137 

aeration raised to 80 l/h. The bioreactor was operated in semi-batch mode. Approximately 1/3 of the 138 

fermentation liquid was discharged when the residual ethanol concentration reached 1.2-2.0% (v/v) 139 

and was then replaced with fresh mash. At the beginning of a new cycle, the ethanol and titratable 140 

acidity concentrations were approximately 4.0-4.5% (v/v) and 6.0-6.5% (w/v), respectively, for 141 

both SSC-C and SSC-D, versus 2.5-3.0% (v/v) and 3.5-4.0% (w/v), respectively, for SSC-E.  142 

2.7 Prototype-scale fermentation 143 

To develop the fermentation at a prototype scale, four custom-made stainless steel 200-L fermenters 144 

equipped with a bubbler, a thermostat and sampling devices were used. Analytic parameters were 145 

measured weekly using the procedures described above. Two batches (1A and 3A) were developed 146 

starting from SSC-E and SSC-B, respectively, and were refilled with CGM. Batches 2A and 4A 147 

were started from SSC-C and SSC-D, respectively, adding unfiltered wine. The amount of sugar in 148 

batch 1A was kept constant (approximately 25 % (w/v)), whereas in batch 3A, it was gradually 149 

increased to 15% (w/v).  150 

 151 

2.8 Genomic DNA extraction and typing 152 

Genomic DNA (gDNA) from the strain cultures was extracted using a sodium dodecyl sulfate 153 

(SDS) proteinase-cetyltrimethyl ammonium bromide (CTAB) treatment as previously reported [13]. 154 

Samples from the prototype system were collected in triplicate from three different points on the 155 

tank’s surface, streaked on GYC and incubated at 28 °C for 3 days. gDNA was extracted from 156 
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colonies recovered on plates as previously described. gDNA was visualized by electrophoresis on 157 

agarose (Fisher Molecular Biology) gels (1% in 0.5 X TBE buffer) stained with ethidium bromide 158 

(0.1 μg/mL) under UV light. Quantification was performed with a spectrophotometer (NanoDrop 159 

ND-1000). A 260/280 nm absorption ratio between 1.7 and 2.0 was used to assess the purity of the 160 

gDNA. (GTG)5-PCR fingerprinting was performed according to [35] with some modifications. 161 

(GTG)5-PCR reproducibility was tested by amplifying gDNA from randomly chosen strains several 162 

times. In addition, each PCR mixture was controlled for reproducibility by the inclusion of A. 163 

pasteurianus 3509T gDNA. Genomic DNA was titrated to optimize the PCR amplification for a 164 

given reaction. No mineral oil was added to the PCRs. Each PCR run contained a negative control 165 

(water instead of gDNA). The PCRs were performed in a BioRad thermocycler (My-Thermal 166 

Cycler). The GeneRuler 100 bp DNA Ladder Plus molecular marker (Thermo Scientific, Carlsbad, 167 

CA, USA) was used to deduce the size of the templates. Digital images were generated in a 168 

BioDocAnalyze system (BDA; Germany). 169 

 170 

3. Results and Discussion 171 

3.1. Selected starter cultures produced in static fermentation mode 172 

In this study, strain AB0220 was chosen as a microbial culture because of its versatility in 173 

performing acetic acid fermentations under different conditions (Table 3). Previously, this strain 174 

was successfully used at the industrial scale to produce vinegar [34], and the phenotypic stability of 175 

its subcultures after long storage times has been proven [20]. The observation that this strain could 176 

be used to generate starter cultures provided the basis for developing SSCs suitable for use under 177 

different fermentation conditions.  178 

To produce a set of vinegars with the parameters detailed in the general experimental plan, first, two 179 

SSCs (SSC-A and SSC-B) were produced via small-scale batch cultivation and static fermentation 180 

under batch conditions at 28 °C and using the acetification substrates reported in Table 1. SSC-A 181 
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was started from the strain re-cultivated on GY and then on wine. In contrast, SSC-B was developed 182 

from an aliquot of SSC-A after recursive cultivation on wine as the substrate. The final SSC 183 

parameters are reported in Table 2. 184 

The higher acetification speed during the scale-up of SSC-B (0.5 L per week) compared with that of 185 

SSC-A (0.25 L per week) (Figs. 2a and b) was expected because it has been shown that AAB cells 186 

maintained with acetate as a selective pressure acquire resistance and preserve physiological traits 187 

such as acetic acid resistance and the ability to oxidise ethanol [14,24,15]. From an industrial 188 

perspective, this observation is one reason why vinegar processes are conducted with AAB cultures 189 

recovered from previous fermentations, which are cyclically propagated in the fermentation broth.  190 

 191 

3.2. Selected starter cultures produced in submerged fermentation mode 192 

 193 

A total of three different starter cultures, SSC-C, SSC-D and SSC-E, were developed in submerged 194 

systems using SSC-A as the inoculum (Table 2). SSC-C and SSC-D were produced under the same 195 

conditions except the substrate (wine) was sterile for SSC-C and unsterile for SSC-D. Unsterile 196 

wine was used to evaluate the dominance of the microbial culture over the extant microflora in 197 

commercial wine and later in industrial conditions, in which wine is not sterilized and 198 

contaminations from the environment cannot be excluded. No significant differences were observed 199 

with respect to start-up time and fermentation parameters between SSC-C and SSC-D, suggesting 200 

that the microbial culture is also effective in unsterile fermentation broths.  201 

Figure 3 shows the start-up phase (Fig. 3a) and fermentation phase (Fig. 3b) for SSC-C. During the 202 

first 7 days (start-up), titratable acidity remained stable, whereas the concentration of ethanol 203 

declined slight, mainly due to evaporation (Fig. 3a). The fermentation phase started on the 8th day, 204 

and in less than 24 hours, almost all of the remaining ethanol was oxidized to acetic acid (Fig. 3b).  205 
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According to the trials performed in this study, the start-up was set at 4.6% (v/v) ethanol and 6.0% 206 

(w/v) acetic acid. The temperature was kept constant at 30 °C, and the airflow was set to 40 L/h.  207 

To evaluate culture performance in a submerged system, three fermentative cycles of SSC-C were 208 

studied in detail. Each cycle was started at 6.0% (w/v) titratable acidity and 4.4% (v/v) ethanol and 209 

were considered finished when the titratable acidity reached at least 8.50% (w/v). The efficiency of 210 

the fermentation process, expressed as the vinegar stoichiometric yield, was in the range of 93 to 211 

95% (Table 5). Consistent with previous studies [36], ethanol loss by evaporation was observed 212 

because the process was performed without a volatile compound recovery system.   213 

SSC-E, produced using a mixture of wine and CGM (see Table 1), was developed to evaluate the 214 

ability of the microbial culture to ferment acetic acid in the presence of multiple carbon sources 215 

(ethanol and glucose).  216 

As shown in Table 3, SSC-E achieved lower values of maximum titratable acidity (6.15 ± 0.06%) 217 

compared to SSC-C (9.08 ± 0.09%). This result is mainly due to the lower total concentration of the 218 

CGM/wine mixture used. Cycles were started at approximately 4.0% (w/v) titratable acidity and 219 

3.0% (v/v) ethanol. Fermentation was considered finished when the titratable acidity reached at 220 

least 5.0% (w/v) (Table 5). No decrease in sugars was observed during this process. The average 221 

length of the cycles for SSC-E was approximately 76 h, noticeably higher than that of SSC-C and 222 

SSC-D (both approximately 24 h); as a consequence, a lower acetification rate and stoichiometric 223 

yield were observed. However, the stoichiometric yield increased (13.0%) with subsequent cycles 224 

due to the extended cultivation of the culture with wine/CGM as the substrate (Table 5). The SSC-225 

C, SSC-D and SSC-E scale-up trends are reported in Figs. 4A-c. 226 

 227 

 228 

 229 

 230 
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3.3. Prototype-scale fermentation start-up and products development 231 

 232 

Four fermentation batches (1A, 2A, 3A, and 4A) were developed from the SSCs (B, C, D and E) 233 

and were transferred to the prototype scale for obtaining vinegars with different compositions 234 

(Table 4). When the batches reached the maximum volume (approximately 220 L), the discharged 235 

vinegars were transferred to four additional vessels prior to successive refilling with the substrate. 236 

Start-up required approximately one week for all batches. The respective substrates were added 237 

weekly to support acetic acid fermentation. A total of more than 200 litres of vinegar per fermenter 238 

were produced and were subjected to downstream processing to obtain final products with different 239 

acetic acid, sugar and residual ethanol contents. The final analytical values of the cultures are 240 

shown in Table 4 (the data refer to the last filling step), whereas the scale-up trends are shown in 241 

Figs. 5a-d. The entire process lasted approximately seven months for batches 2A, 3A and 4A and 242 

approximately two months for batch 1A. It must be noted that SSC-E, used to start batch 1A, was 243 

obtained in submerged operation mode using CGM as the substrate (over 20.0% w/v reducing 244 

sugar). Thus, when the culture was transferred to the prototype scale, it was already adapted to a 245 

high-sugar-content substrate. Moreover, batch 1A was considerably larger (45 L) compared with the 246 

other batches (13, 16 and 17 L, respectively).  247 

 248 

3.4. Dominance of the microbial culture over fermentation time 249 

The dominance of the microbial culture from the laboratory to the prototype scale was proven with 250 

phenotypic and molecular assays, using the working culture maintained at laboratory scale as a 251 

purity control. Both phenotypic and molecular tests were performed on samples recovered from the 252 

prototype scale after 6 months (batches 2A, 3A and 4A) or two months (batch 1A) of fermentation. 253 

 Assays were conducted on biofilms recovered from GYC plates. The cells were rod-shaped, KOH-254 

positive and catalase-positive. Cultivation on GYC medium showed vigorous growth mainly as a 255 
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biofilm spread across the plate’s surface. The oxidation of ethanol to acetic acid and acetate 256 

assimilation were shown on Frateur medium by a clear halo around bacterial growth, followed by 257 

the reappearance of opacity on the bottom of the plates due to acetate oxidation. No cellulose 258 

production was observed in samples except for batch 3A, for which the analysis of the 259 

exopolysaccharide-containing pellicle confirmed the presence of cellulose. 260 

High-resolution fingerprinting patterns were obtained via (GTG)5-PCR and allowed the persistence 261 

of the strain to be mapped and the detection of a single loss-of-dominance event during the 262 

fermentation process (Fig. 6, lanes 5, 6, and 7). The size of the DNA fragments obtained after 263 

amplification ranged from 300 to 3000 bp (Fig. 5). (GTG)5-PCR reproducibility was monitored by 264 

including the control strain (DSM 3509T) in each reaction. The PCRs and electrophoresis were 265 

performed in triplicate from the same DNA stock and the same reagents; no qualitative differences 266 

in the banding patterns were observed. Consistent with previous data [37], repeated fingerprintings 267 

were obtained, confirming that the banding patterns of samples 1A, 2A and 4B were identical to 268 

each other and to that of the laboratory working culture. In contrast, a different pattern was obtained 269 

from sample 3A.  270 

(GTG)5-PCR analysis is able to reveal that a given species is represented by different strains within 271 

the same sample or even to detect the dominance of a single strain throughout a process. Recently, 272 

many studies have focused on the high-throughput identification and typing of a broad range of 273 

AAB using (GTG)5-PCR fingerprinting with a single primer [38,39,40]. Moreover, (GTG)5-PCR 274 

enabled the detection of indigenous AAB belonging to A. pasteurianus species and strains of the 275 

Komagataeibacter genus in vinegars produced by a selected A. pasteurianus strain as a result of 276 

dominance loss [4]. In our study, (GTG)5-PCR analysis suggested that in batch 3A, two strains 277 

appeared (the inoculated strain and a contaminant strain) or that the dominant indigenous strain was 278 

able to produce both acetic acid and cellulose. This result is in agreement with the phenotypic 279 

assays, in which a cellulosic pellicle was identified in sample 3A.  280 
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As observed in a previous study [34], our hypothesis is that an indigenous strain became dominant 281 

at the prototype scale as a consequence of supplying a mixture of wine and CGM as the substrate at 282 

ethanol values below 2.0% (v/v). It is interesting to note that the strain was active in batch 1A, 283 

which derived from a submerged system containing 27.0% (w/v) reducing sugars. Instead, a loss of 284 

dominance was observed in batch 3A, which had been produced in static conditions at a lower sugar 285 

concentration (15.15% (w/v)). Moreover, the length of the process was shorter for batch 1A (2 286 

months) than for batch 3A (6 months). The operation mode to obtain each batch was also different; 287 

the main variation concerned the step at which the CGM was added. In particular, batch 1A was 288 

developed from SSC-E; thus the culture was adapted to a high-sugar environment during growth in 289 

the submerged system. Batch 3A was obtained from SSC-B cultured in static conditions and using 290 

wine as the substrate. At the prototype-scale, batch 3A was scaled up using wine as the substrate for 291 

the first 5 months, and from month 6 onwards, a mash containing wine and CGM was added, 292 

reaching 15% reducing sugars, 5.5% (w/v) acetic acid and approximately 1.0% (v/v) ethanol. 293 

 Ethanol depletion (< 2.0% (v/v)), corresponded to the addition of glucose- and fructose-containing 294 

CGM, which may have induced cellulose formation from glucose. Although a cellulose layer was 295 

detected in batch 3A, the final product reached the desired acetic acid content (>5.40% (w/v)). On 296 

the basis of these observations, the indigenous strain that conducted the last phases of fermentation 297 

was able to produce both acetic acid and cellulose, as in the case of K. xylinus. 298 

Indeed, strains of this species are able to produce both acetic acid and cellulose when growing in 299 

vinegar environments. Briefly, acetic acid produced periplasmically can accumulate in the 300 

surrounding liquid or enter the cell. The acetate in the cell is fed by extracellular acetic acid, and it 301 

can be excreted or phosphorylated into acyl-phosphate, which is transformed into acetyl-coenzyme 302 

A to feed the tricarboxylic acid cycle [41]. Oxaloacetate produced by the glyoxylate shunt is 303 

decarboxylated into pyruvate, forming glucose 6-phosphate (via the gluconeogenesis pathway). 304 

Then, pyruvate is used by the gluconeogenesis pathway to produce glucose, the building block of 305 
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cellulose [42]. Glucose 6-phosphate and fructose 6-phosphate, which are freely interconverted by a 306 

phosphohexose isomerase, feed a glucan-synthase enzyme complex that permits cellulose 307 

biosynthesis from glucose 6-phosphate [43]. Therefore, with different energy balances, both acetic 308 

acid and cellulose can be produced from the diauxic consumption of ethanol and glucose as carbon 309 

sources. 310 

 311 

4. Conclusions 312 

Scalable fermentations require robust strains able to dominate unsterile environments and to 313 

maintain their traits throughout the process. Moreover, rational process development requires many 314 

considerations to drive the transition from microlitre to industrial scales. Most bioprocesses that use 315 

AAB, while technically feasible, are still confined to the laboratory scale due to the difficulty of 316 

handling active cultures throughout the process. Consequently, the use of SSCs in the vinegar 317 

industry is not a common practice. In this study, a selected AAB strain was scaled up from the 318 

laboratory (millilitres) to a prototype scale (hundreds of litres) in a combined fermentation mode 319 

(static and submerged systems). The combination of static and submerged system fermentation by 320 

A. pasteurianus AB0220 has proven to reliably produce viable SSCs at both laboratory and 321 

prototype scales. This approach successfully produced small amounts of SSCs in a static system 322 

that were able to start prototype-scale fermentations, whereas a submerged system greatly sped up 323 

the process.  324 

Two sweetened fermented vinegars were developed, and cellulose was not observed in the presence 325 

of ethanol, suggesting the robustness of the designed SSC strict process controls. The long-term 326 

process stability in the static, submerged and prototype-scale systems confirmed the feasibility of 327 

using selected AAB cultures in industrial acetic acid fermentations.  328 

 329 
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Figure legends 454 

Fig. 1: Schematic of the experimental plan.  455 

Fig. 2. Trends in analytical parameters during static fermentation (a, b: SSC-A and SSC-B). 456 

Symbols: (☐) ethanol; (▲) titratable acidity; (O) total concentration; (×) volume. Each value is the 457 

mean of three parallel replicates ± standard deviation.   458 

Fig. 3. Trend in analytical parameters in the main phases of submerged fermentation (a, b: start-up 459 

and fermentation). Symbols: (☐) ethanol; (▲) titratable acidity; (O) total concentration. Each value 460 

is the mean of three parallel replicates ± standard deviation.  461 

Fig. 4. Semi-continuous fermentation in the submerged system. Trend in analytical parameters 462 

during culture scale-ups with different acetification substrates (a-c: SSC-C, SSC-D and SSC-E). 463 

Symbols: (☐) ethanol; (▲) titratable acidity; (O) total concentration; (×) discharged volume; 464 

reducing sugars (●). Each value is the mean of three parallel replicates ± standard deviation.  465 

Fig. 5. Prototype-scale fermentation in the static system. Trends in analytical parameters during 466 

culture scale-ups with different acetification substrates (a-d: 1A, 2A, 3A and 4A). Symbols: (☐) 467 

ethanol; (▲) titratable acidity; (O) total concentration; (×) volume. Each value is the mean of three 468 

parallel replicates ± standard deviation.  469 

Fig 6. (GTG)5-PCR fingerprinting patterns. L: 100 bp Plus DNA Ladder (Thermo Scientific, 470 

Carlsbad, CA, USA); 1: AB0220 (culture strain); 2-4: (triplicates of sample 4A); 5-7: (triplicates of 471 

sample 3A); 8-10: (triplicates of sample 2A); 11-13: (triplicates of sample 1A); 14: AB0220; 15: 472 

negative control; 16: DSMZ 3509T (A. pasteurianus). 473 

 474 

 475 
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Table 1  476 

Substrates for SSC production at laboratory and prototype scales 477 

 478 

Substrate  pH  Titratable acidity 
(% w/v)  

Ethanol (% v/v)  Reducing sugars  
(% w/v) 

Sterile wine  3.50 ± 0.05 0.36 ± 0.03 10.00 ± 0.15 -  

Unsterile wine 3.50 ± 0.03 0.71 ± 0.06 14.80 ± 0.20 - 

Unsterile CGM  2.75 ± 0.04 1.71 ± 0.02 1.20 ± 0.10 80.00 ± 3.00 

(–) not detected 479 

 480 

Table 2  481 

Substrate, fermentation mode and final parameters of the SSCs produced at the laboratory scale 482 

 483 

Name Substrate Fermentation 
mode 

Titratable 
acidity 
(% w/v) 

Ethanol 
(% v/v) 

Reducing 
sugar           
(% w/v) 

Volume (L) 

SSC-A Sterile wine Static 7.98 ± 0.03 1.00 ± 0.09 - 3.00 

SSC-B Sterile wine Static 7.35 ± 0.08 0.30 ± 0.07 - 11.20 

SSC-C Sterile wine Submerged 9.10 ± 0.04 0.30 ± 0.15 - 11.90 

SSC-D Unsterile 
wine 

Submerged 8.80 ± 0.03 0.40 ± 0.13 - 12.30 

SSC-E Unsterile 
wine/CGM 

Submerged 5.50 ± 0.06 0.40 ± 0.05 22 ± 2.00 40.60 

(–) not detected 484 

 485 

 486 

 487 

 488 

 489 
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Table 3 490 

Maximum titratable acidity of Acetobacter pasteurianus (AB0220) under different conditions 491 

 492 

Medium Operation mode Maximum  
titratable  
acidity (w/v)  

Reference 

Wine/ethanol 12%  bStatic after revitalization  6.80 ± 0.34 [20]   

Wine/ethanol 7.5% bStatic fermentation 3.59 ± 0.71 [34]   

Wine + aYE (2%)/ethanol 7.5% bStatic fermentation 5.07 ± 0.71 [34]   

CGM/ethanol 7.5% bStatic fermentation 5.35 ± 0.05 [34]   

SSC-B wine/ethanol 10.5% bStatic fermentation 8.90 ± 0.05 This study 

SSC-C wine/ethanol 10.5% bSemi-continuous 
submerged fermentation 

9.08 ± 0.09 This study 

SSC-E wine-CGM/ethanol 
4.60% 

bSemi-continuous 
submerged fermentation 

6.15 ± 0.06 This study 

Wine/ethanol 14.80% cStatic fermentation 7.50 ± 0.13 This study 

Wine-CGM/ethanol 7.00% cStatic fermentation 5.49 ± 0.12 This study 
aYeast extract 493 
bLaboratory scale 494 
c Prototype scale 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
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Table 4 509 

Substrates and final parameters of the prototype-scale batches 510 

 511 

Batch SSC Substrate Titratable 
acidity  
(% w/v) 

Ethanol  
(% v/v) 

Reducing 
sugar  
(% w/v) 

Volume 
(L) 

1A E CGM 3.12 ± 0.09 3.00 ± 0.06 27.45 ± 1.02 220 

2A C Unsterilized 
wine 

4.44 ± 0.04 3.15 ± 0.12 - 224 

3A B CGM 5.37 ± 0.09 1.30 ± 0.09 15.15 ± 0.45 226 

4A D Unsterilized 
wine 

4.29 ± 0.05 3.10 ± 0.14 - 224 

(–) not detected 512 
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